/* $OpenBSD: ixgbe.c,v 1.8 2012/08/06 21:07:52 mikeb Exp $ */ /****************************************************************************** Copyright (c) 2001-2009, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.9 2009/12/07 21:30:54 jfv Exp $*/ #include int32_t ixgbe_acquire_eeprom(struct ixgbe_hw *hw); int32_t ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); int32_t ixgbe_ready_eeprom(struct ixgbe_hw *hw); void ixgbe_standby_eeprom(struct ixgbe_hw *hw); void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, uint16_t data, uint16_t count); uint16_t ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, uint16_t count); void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, uint32_t *eec); void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, uint32_t *eec); void ixgbe_release_eeprom(struct ixgbe_hw *hw); int32_t ixgbe_mta_vector(struct ixgbe_hw *hw, uint8_t *mc_addr); int32_t ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw); int32_t ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw); int32_t ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw); int32_t ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw); int32_t ixgbe_negotiate_fc(struct ixgbe_hw *hw, uint32_t adv_reg, uint32_t lp_reg, uint32_t adv_sym, uint32_t adv_asm, uint32_t lp_sym, uint32_t lp_asm); int32_t ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, uint32_t vlan); /* MBX */ int32_t ixgbe_poll_for_msg(struct ixgbe_hw *hw, uint16_t mbx_id); int32_t ixgbe_poll_for_ack(struct ixgbe_hw *hw, uint16_t mbx_id); uint32_t ixgbe_read_v2p_mailbox(struct ixgbe_hw *hw); int32_t ixgbe_check_for_bit_vf(struct ixgbe_hw *hw, uint32_t mask); int32_t ixgbe_check_for_msg_vf(struct ixgbe_hw *hw, uint16_t mbx_id); int32_t ixgbe_check_for_ack_vf(struct ixgbe_hw *hw, uint16_t mbx_id); int32_t ixgbe_check_for_rst_vf(struct ixgbe_hw *hw, uint16_t mbx_id); int32_t ixgbe_obtain_mbx_lock_vf(struct ixgbe_hw *hw); int32_t ixgbe_write_mbx_vf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id); int32_t ixgbe_read_mbx_vf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id); int32_t ixgbe_check_for_bit_pf(struct ixgbe_hw *hw, uint32_t mask, int32_t index); int32_t ixgbe_check_for_msg_pf(struct ixgbe_hw *hw, uint16_t vf_number); int32_t ixgbe_check_for_ack_pf(struct ixgbe_hw *hw, uint16_t vf_number); int32_t ixgbe_check_for_rst_pf(struct ixgbe_hw *hw, uint16_t vf_number); int32_t ixgbe_obtain_mbx_lock_pf(struct ixgbe_hw *hw, uint16_t vf_number); int32_t ixgbe_write_mbx_pf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t vf_number); int32_t ixgbe_read_mbx_pf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t vf_number); /** * ixgbe_init_ops_generic - Inits function ptrs * @hw: pointer to the hardware structure * * Initialize the function pointers. **/ int32_t ixgbe_init_ops_generic(struct ixgbe_hw *hw) { struct ixgbe_eeprom_info *eeprom = &hw->eeprom; struct ixgbe_mac_info *mac = &hw->mac; uint32_t eec = IXGBE_READ_REG(hw, IXGBE_EEC); /* EEPROM */ eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic; /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */ if (eec & (1 << 8)) eeprom->ops.read = &ixgbe_read_eerd_generic; else eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic; eeprom->ops.write = &ixgbe_write_eeprom_generic; eeprom->ops.validate_checksum = &ixgbe_validate_eeprom_checksum_generic; eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic; eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic; /* MAC */ mac->ops.init_hw = &ixgbe_init_hw_generic; mac->ops.reset_hw = NULL; mac->ops.start_hw = &ixgbe_start_hw_generic; mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic; mac->ops.get_media_type = NULL; mac->ops.get_supported_physical_layer = NULL; mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic; mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic; mac->ops.stop_adapter = &ixgbe_stop_adapter_generic; mac->ops.get_bus_info = &ixgbe_get_bus_info_generic; mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie; mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync; mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync; /* LEDs */ mac->ops.led_on = &ixgbe_led_on_generic; mac->ops.led_off = &ixgbe_led_off_generic; mac->ops.blink_led_start = &ixgbe_blink_led_start_generic; mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic; /* RAR, Multicast, VLAN */ mac->ops.set_rar = &ixgbe_set_rar_generic; mac->ops.clear_rar = &ixgbe_clear_rar_generic; mac->ops.insert_mac_addr = NULL; mac->ops.set_vmdq = NULL; mac->ops.clear_vmdq = NULL; mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic; mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic; mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic; mac->ops.enable_mc = &ixgbe_enable_mc_generic; mac->ops.disable_mc = &ixgbe_disable_mc_generic; mac->ops.clear_vfta = NULL; mac->ops.set_vfta = NULL; mac->ops.init_uta_tables = NULL; /* Flow Control */ mac->ops.fc_enable = &ixgbe_fc_enable_generic; /* Link */ mac->ops.get_link_capabilities = NULL; mac->ops.setup_link = NULL; mac->ops.check_link = NULL; return IXGBE_SUCCESS; } /** * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx * @hw: pointer to hardware structure * * Starts the hardware by filling the bus info structure and media type, clears * all on chip counters, initializes receive address registers, multicast * table, VLAN filter table, calls routine to set up link and flow control * settings, and leaves transmit and receive units disabled and uninitialized **/ int32_t ixgbe_start_hw_generic(struct ixgbe_hw *hw) { uint32_t ctrl_ext; /* Set the media type */ hw->phy.media_type = hw->mac.ops.get_media_type(hw); /* PHY ops initialization must be done in reset_hw() */ /* Clear the VLAN filter table */ hw->mac.ops.clear_vfta(hw); /* Clear statistics registers */ hw->mac.ops.clear_hw_cntrs(hw); /* Set No Snoop Disable */ ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); IXGBE_WRITE_FLUSH(hw); /* Setup flow control */ ixgbe_setup_fc(hw, 0); /* Clear adapter stopped flag */ hw->adapter_stopped = FALSE; return IXGBE_SUCCESS; } /** * ixgbe_start_hw_gen2 - Init sequence for common device family * @hw: pointer to hw structure * * Performs the init sequence common to the second generation * of 10 GbE devices. * Devices in the second generation: * 82599 * X540 **/ int32_t ixgbe_start_hw_gen2(struct ixgbe_hw *hw) { uint32_t i; uint32_t regval; /* Clear the rate limiters */ for (i = 0; i < hw->mac.max_tx_queues; i++) { IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); } IXGBE_WRITE_FLUSH(hw); /* Disable relaxed ordering */ for (i = 0; i < hw->mac.max_tx_queues; i++) { regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN; IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); } for (i = 0; i < hw->mac.max_rx_queues; i++) { regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN | IXGBE_DCA_RXCTRL_DESC_HSRO_EN); IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); } return IXGBE_SUCCESS; } /** * ixgbe_init_hw_generic - Generic hardware initialization * @hw: pointer to hardware structure * * Initialize the hardware by resetting the hardware, filling the bus info * structure and media type, clears all on chip counters, initializes receive * address registers, multicast table, VLAN filter table, calls routine to set * up link and flow control settings, and leaves transmit and receive units * disabled and uninitialized **/ int32_t ixgbe_init_hw_generic(struct ixgbe_hw *hw) { int32_t status = IXGBE_SUCCESS; /* Reset the hardware */ status = hw->mac.ops.reset_hw(hw); if (status == IXGBE_SUCCESS) { /* Start the HW */ status = hw->mac.ops.start_hw(hw); } return status; } /** * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters * @hw: pointer to hardware structure * * Clears all hardware statistics counters by reading them from the hardware * Statistics counters are clear on read. **/ int32_t ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) { uint16_t i = 0; IXGBE_READ_REG(hw, IXGBE_CRCERRS); IXGBE_READ_REG(hw, IXGBE_ILLERRC); IXGBE_READ_REG(hw, IXGBE_ERRBC); IXGBE_READ_REG(hw, IXGBE_MSPDC); for (i = 0; i < 8; i++) IXGBE_READ_REG(hw, IXGBE_MPC(i)); IXGBE_READ_REG(hw, IXGBE_MLFC); IXGBE_READ_REG(hw, IXGBE_MRFC); IXGBE_READ_REG(hw, IXGBE_RLEC); IXGBE_READ_REG(hw, IXGBE_LXONTXC); IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); if (hw->mac.type >= ixgbe_mac_82599EB) { IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); } else { IXGBE_READ_REG(hw, IXGBE_LXONRXC); IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); } for (i = 0; i < 8; i++) { IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); if (hw->mac.type >= ixgbe_mac_82599EB) { IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); } else { IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); } } if (hw->mac.type >= ixgbe_mac_82599EB) for (i = 0; i < 8; i++) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); IXGBE_READ_REG(hw, IXGBE_PRC64); IXGBE_READ_REG(hw, IXGBE_PRC127); IXGBE_READ_REG(hw, IXGBE_PRC255); IXGBE_READ_REG(hw, IXGBE_PRC511); IXGBE_READ_REG(hw, IXGBE_PRC1023); IXGBE_READ_REG(hw, IXGBE_PRC1522); IXGBE_READ_REG(hw, IXGBE_GPRC); IXGBE_READ_REG(hw, IXGBE_BPRC); IXGBE_READ_REG(hw, IXGBE_MPRC); IXGBE_READ_REG(hw, IXGBE_GPTC); IXGBE_READ_REG(hw, IXGBE_GORCL); IXGBE_READ_REG(hw, IXGBE_GORCH); IXGBE_READ_REG(hw, IXGBE_GOTCL); IXGBE_READ_REG(hw, IXGBE_GOTCH); for (i = 0; i < 8; i++) IXGBE_READ_REG(hw, IXGBE_RNBC(i)); IXGBE_READ_REG(hw, IXGBE_RUC); IXGBE_READ_REG(hw, IXGBE_RFC); IXGBE_READ_REG(hw, IXGBE_ROC); IXGBE_READ_REG(hw, IXGBE_RJC); IXGBE_READ_REG(hw, IXGBE_MNGPRC); IXGBE_READ_REG(hw, IXGBE_MNGPDC); IXGBE_READ_REG(hw, IXGBE_MNGPTC); IXGBE_READ_REG(hw, IXGBE_TORL); IXGBE_READ_REG(hw, IXGBE_TORH); IXGBE_READ_REG(hw, IXGBE_TPR); IXGBE_READ_REG(hw, IXGBE_TPT); IXGBE_READ_REG(hw, IXGBE_PTC64); IXGBE_READ_REG(hw, IXGBE_PTC127); IXGBE_READ_REG(hw, IXGBE_PTC255); IXGBE_READ_REG(hw, IXGBE_PTC511); IXGBE_READ_REG(hw, IXGBE_PTC1023); IXGBE_READ_REG(hw, IXGBE_PTC1522); IXGBE_READ_REG(hw, IXGBE_MPTC); IXGBE_READ_REG(hw, IXGBE_BPTC); for (i = 0; i < 16; i++) { IXGBE_READ_REG(hw, IXGBE_QPRC(i)); IXGBE_READ_REG(hw, IXGBE_QPTC(i)); if (hw->mac.type >= ixgbe_mac_82599EB) { IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); } else { IXGBE_READ_REG(hw, IXGBE_QBRC(i)); IXGBE_READ_REG(hw, IXGBE_QBTC(i)); } } if (hw->mac.type == ixgbe_mac_X540) { if (hw->phy.id == 0) hw->phy.ops.identify(hw); hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, IXGBE_MDIO_PCS_DEV_TYPE, &i); hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, IXGBE_MDIO_PCS_DEV_TYPE, &i); hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, IXGBE_MDIO_PCS_DEV_TYPE, &i); hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, IXGBE_MDIO_PCS_DEV_TYPE, &i); } return IXGBE_SUCCESS; } /** * ixgbe_read_pba_string_generic - Reads part number string from EEPROM * @hw: pointer to hardware structure * @pba_num: stores the part number string from the EEPROM * @pba_num_size: part number string buffer length * * Reads the part number string from the EEPROM. **/ int32_t ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, uint8_t *pba_num, uint32_t pba_num_size) { int32_t ret_val; uint16_t data; uint16_t pba_ptr; uint16_t offset; uint16_t length; if (pba_num == NULL) { DEBUGOUT("PBA string buffer was null\n"); return IXGBE_ERR_INVALID_ARGUMENT; } ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } /* * if data is not ptr guard the PBA must be in legacy format which * means pba_ptr is actually our second data word for the PBA number * and we can decode it into an ascii string */ if (data != IXGBE_PBANUM_PTR_GUARD) { DEBUGOUT("NVM PBA number is not stored as string\n"); /* we will need 11 characters to store the PBA */ if (pba_num_size < 11) { DEBUGOUT("PBA string buffer too small\n"); return IXGBE_ERR_NO_SPACE; } /* extract hex string from data and pba_ptr */ pba_num[0] = (data >> 12) & 0xF; pba_num[1] = (data >> 8) & 0xF; pba_num[2] = (data >> 4) & 0xF; pba_num[3] = data & 0xF; pba_num[4] = (pba_ptr >> 12) & 0xF; pba_num[5] = (pba_ptr >> 8) & 0xF; pba_num[6] = '-'; pba_num[7] = 0; pba_num[8] = (pba_ptr >> 4) & 0xF; pba_num[9] = pba_ptr & 0xF; /* put a null character on the end of our string */ pba_num[10] = '\0'; /* switch all the data but the '-' to hex char */ for (offset = 0; offset < 10; offset++) { if (pba_num[offset] < 0xA) pba_num[offset] += '0'; else if (pba_num[offset] < 0x10) pba_num[offset] += 'A' - 0xA; } return IXGBE_SUCCESS; } ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (length == 0xFFFF || length == 0) { DEBUGOUT("NVM PBA number section invalid length\n"); return IXGBE_ERR_PBA_SECTION; } /* check if pba_num buffer is big enough */ if (pba_num_size < (((uint32_t)length * 2) - 1)) { DEBUGOUT("PBA string buffer too small\n"); return IXGBE_ERR_NO_SPACE; } /* trim pba length from start of string */ pba_ptr++; length--; for (offset = 0; offset < length; offset++) { ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } pba_num[offset * 2] = (uint8_t)(data >> 8); pba_num[(offset * 2) + 1] = (uint8_t)(data & 0xFF); } pba_num[offset * 2] = '\0'; return IXGBE_SUCCESS; } /** * ixgbe_read_pba_length_generic - Reads part number length from EEPROM * @hw: pointer to hardware structure * @pba_num_size: part number string buffer length * * Reads the part number length from the EEPROM. * Returns expected buffer size in pba_num_size **/ int32_t ixgbe_read_pba_length_generic(struct ixgbe_hw *hw, uint32_t *pba_num_size) { int32_t ret_val; uint16_t data; uint16_t pba_ptr; uint16_t length; if (pba_num_size == NULL) { DEBUGOUT("PBA buffer size was null\n"); return IXGBE_ERR_INVALID_ARGUMENT; } ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } /* if data is not ptr guard the PBA must be in legacy format */ if (data != IXGBE_PBANUM_PTR_GUARD) { *pba_num_size = 11; return IXGBE_SUCCESS; } ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } if (length == 0xFFFF || length == 0) { DEBUGOUT("NVM PBA number section invalid length\n"); return IXGBE_ERR_PBA_SECTION; } /* * Convert from length in 16bit values to 8bit chars, add 1 for NULL, * and subtract 2 because length field is included in length. */ *pba_num_size = ((uint32_t)length * 2) - 1; return IXGBE_SUCCESS; } /** * ixgbe_read_pba_num_generic - Reads part number from EEPROM * @hw: pointer to hardware structure * @pba_num: stores the part number from the EEPROM * * Reads the part number from the EEPROM. **/ int32_t ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, uint32_t *pba_num) { int32_t ret_val; uint16_t data; ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } else if (data == IXGBE_PBANUM_PTR_GUARD) { DEBUGOUT("NVM Not supported\n"); return IXGBE_NOT_IMPLEMENTED; } *pba_num = (uint32_t)(data << 16); ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); return ret_val; } *pba_num |= data; return IXGBE_SUCCESS; } /** * ixgbe_get_mac_addr_generic - Generic get MAC address * @hw: pointer to hardware structure * @mac_addr: Adapter MAC address * * Reads the adapter's MAC address from first Receive Address Register (RAR0) * A reset of the adapter must be performed prior to calling this function * in order for the MAC address to have been loaded from the EEPROM into RAR0 **/ int32_t ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, uint8_t *mac_addr) { uint32_t rar_high; uint32_t rar_low; uint16_t i; rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); for (i = 0; i < 4; i++) mac_addr[i] = (uint8_t)(rar_low >> (i*8)); for (i = 0; i < 2; i++) mac_addr[i+4] = (uint8_t)(rar_high >> (i*8)); return IXGBE_SUCCESS; } /** * ixgbe_get_bus_info_generic - Generic set PCI bus info * @hw: pointer to hardware structure * * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure **/ int32_t ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) { struct ixgbe_mac_info *mac = &hw->mac; uint16_t link_status; hw->bus.type = ixgbe_bus_type_pci_express; /* Get the negotiated link width and speed from PCI config space */ link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS); switch (link_status & IXGBE_PCI_LINK_WIDTH) { case IXGBE_PCI_LINK_WIDTH_1: hw->bus.width = ixgbe_bus_width_pcie_x1; break; case IXGBE_PCI_LINK_WIDTH_2: hw->bus.width = ixgbe_bus_width_pcie_x2; break; case IXGBE_PCI_LINK_WIDTH_4: hw->bus.width = ixgbe_bus_width_pcie_x4; break; case IXGBE_PCI_LINK_WIDTH_8: hw->bus.width = ixgbe_bus_width_pcie_x8; break; default: hw->bus.width = ixgbe_bus_width_unknown; break; } switch (link_status & IXGBE_PCI_LINK_SPEED) { case IXGBE_PCI_LINK_SPEED_2500: hw->bus.speed = ixgbe_bus_speed_2500; break; case IXGBE_PCI_LINK_SPEED_5000: hw->bus.speed = ixgbe_bus_speed_5000; break; default: hw->bus.speed = ixgbe_bus_speed_unknown; break; } mac->ops.set_lan_id(hw); return IXGBE_SUCCESS; } /** * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices * @hw: pointer to the HW structure * * Determines the LAN function id by reading memory-mapped registers * and swaps the port value if requested. **/ void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) { struct ixgbe_bus_info *bus = &hw->bus; uint32_t reg; reg = IXGBE_READ_REG(hw, IXGBE_STATUS); bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; bus->lan_id = bus->func; /* check for a port swap */ reg = IXGBE_READ_REG(hw, IXGBE_FACTPS); if (reg & IXGBE_FACTPS_LFS) bus->func ^= 0x1; } /** * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units * @hw: pointer to hardware structure * * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, * disables transmit and receive units. The adapter_stopped flag is used by * the shared code and drivers to determine if the adapter is in a stopped * state and should not touch the hardware. **/ int32_t ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) { uint32_t number_of_queues; uint32_t reg_val; uint16_t i; /* * Set the adapter_stopped flag so other driver functions stop touching * the hardware */ hw->adapter_stopped = TRUE; /* Disable the receive unit */ reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL); reg_val &= ~(IXGBE_RXCTRL_RXEN); IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val); IXGBE_WRITE_FLUSH(hw); msec_delay(2); /* Clear interrupt mask to stop from interrupts being generated */ IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); /* Clear any pending interrupts */ IXGBE_READ_REG(hw, IXGBE_EICR); /* Disable the transmit unit. Each queue must be disabled. */ number_of_queues = hw->mac.max_tx_queues; for (i = 0; i < number_of_queues; i++) { reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i)); if (reg_val & IXGBE_TXDCTL_ENABLE) { reg_val &= ~IXGBE_TXDCTL_ENABLE; IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val); } } /* * Prevent the PCI-E bus from from hanging by disabling PCI-E master * access and verify no pending requests */ ixgbe_disable_pcie_master(hw); return IXGBE_SUCCESS; } /** * ixgbe_led_on_generic - Turns on the software controllable LEDs. * @hw: pointer to hardware structure * @index: led number to turn on **/ int32_t ixgbe_led_on_generic(struct ixgbe_hw *hw, uint32_t index) { uint32_t led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); /* To turn on the LED, set mode to ON. */ led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return IXGBE_SUCCESS; } /** * ixgbe_led_off_generic - Turns off the software controllable LEDs. * @hw: pointer to hardware structure * @index: led number to turn off **/ int32_t ixgbe_led_off_generic(struct ixgbe_hw *hw, uint32_t index) { uint32_t led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); /* To turn off the LED, set mode to OFF. */ led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return IXGBE_SUCCESS; } /** * ixgbe_init_eeprom_params_generic - Initialize EEPROM params * @hw: pointer to hardware structure * * Initializes the EEPROM parameters ixgbe_eeprom_info within the * ixgbe_hw struct in order to set up EEPROM access. **/ int32_t ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) { struct ixgbe_eeprom_info *eeprom = &hw->eeprom; uint32_t eec; uint16_t eeprom_size; if (eeprom->type == ixgbe_eeprom_uninitialized) { eeprom->type = ixgbe_eeprom_none; /* Set default semaphore delay to 10ms which is a well * tested value */ eeprom->semaphore_delay = 10; /* * Check for EEPROM present first. * If not present leave as none */ eec = IXGBE_READ_REG(hw, IXGBE_EEC); if (eec & IXGBE_EEC_PRES) { eeprom->type = ixgbe_eeprom_spi; /* * SPI EEPROM is assumed here. This code would need to * change if a future EEPROM is not SPI. */ eeprom_size = (uint16_t)((eec & IXGBE_EEC_SIZE) >> IXGBE_EEC_SIZE_SHIFT); eeprom->word_size = 1 << (eeprom_size + IXGBE_EEPROM_WORD_SIZE_BASE_SHIFT); } if (eec & IXGBE_EEC_ADDR_SIZE) eeprom->address_bits = 16; else eeprom->address_bits = 8; DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: " "%d\n", eeprom->type, eeprom->word_size, eeprom->address_bits); } return IXGBE_SUCCESS; } /** * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be written to * @data: 16 bit word to be written to the EEPROM * * If ixgbe_eeprom_update_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. **/ int32_t ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, uint16_t offset, uint16_t data) { int32_t status; uint8_t write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; hw->eeprom.ops.init_params(hw); if (offset >= hw->eeprom.word_size) { status = IXGBE_ERR_EEPROM; goto out; } /* Prepare the EEPROM for writing */ status = ixgbe_acquire_eeprom(hw); if (status == IXGBE_SUCCESS) { if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { ixgbe_release_eeprom(hw); status = IXGBE_ERR_EEPROM; } } if (status == IXGBE_SUCCESS) { ixgbe_standby_eeprom(hw); /* Send the WRITE ENABLE command (8 bit opcode ) */ ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI, IXGBE_EEPROM_OPCODE_BITS); ixgbe_standby_eeprom(hw); /* * Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((hw->eeprom.address_bits == 8) && (offset >= 128)) write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ ixgbe_shift_out_eeprom_bits(hw, write_opcode, IXGBE_EEPROM_OPCODE_BITS); ixgbe_shift_out_eeprom_bits(hw, (uint16_t)(offset*2), hw->eeprom.address_bits); /* Send the data */ data = (data >> 8) | (data << 8); ixgbe_shift_out_eeprom_bits(hw, data, 16); ixgbe_standby_eeprom(hw); /* Done with writing - release the EEPROM */ ixgbe_release_eeprom(hw); } out: return status; } /** * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be read * @data: read 16 bit value from EEPROM * * Reads 16 bit value from EEPROM through bit-bang method **/ int32_t ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, uint16_t offset, uint16_t *data) { int32_t status; uint16_t word_in; uint8_t read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; hw->eeprom.ops.init_params(hw); if (offset >= hw->eeprom.word_size) { status = IXGBE_ERR_EEPROM; goto out; } /* Prepare the EEPROM for reading */ status = ixgbe_acquire_eeprom(hw); if (status == IXGBE_SUCCESS) { if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { ixgbe_release_eeprom(hw); status = IXGBE_ERR_EEPROM; } } if (status == IXGBE_SUCCESS) { ixgbe_standby_eeprom(hw); /* * Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((hw->eeprom.address_bits == 8) && (offset >= 128)) read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ ixgbe_shift_out_eeprom_bits(hw, read_opcode, IXGBE_EEPROM_OPCODE_BITS); ixgbe_shift_out_eeprom_bits(hw, (uint16_t)(offset*2), hw->eeprom.address_bits); /* Read the data. */ word_in = ixgbe_shift_in_eeprom_bits(hw, 16); *data = (word_in >> 8) | (word_in << 8); /* End this read operation */ ixgbe_release_eeprom(hw); } out: return status; } /** * ixgbe_read_eerd_generic - Read EEPROM word using EERD * @hw: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the EERD register. **/ int32_t ixgbe_read_eerd_generic(struct ixgbe_hw *hw, uint16_t offset, uint16_t *data) { uint32_t eerd; int32_t status; hw->eeprom.ops.init_params(hw); if (offset >= hw->eeprom.word_size) { status = IXGBE_ERR_EEPROM; goto out; } eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) + IXGBE_EEPROM_RW_REG_START; IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); if (status == IXGBE_SUCCESS) *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >> IXGBE_EEPROM_RW_REG_DATA); else DEBUGOUT("Eeprom read timed out\n"); out: return status; } /** * ixgbe_write_eewr_generic - Write EEPROM word using EEWR * @hw: pointer to hardware structure * @offset: offset of word in the EEPROM to write * @data: word write to the EEPROM * * Write a 16 bit word to the EEPROM using the EEWR register. **/ int32_t ixgbe_write_eewr_generic(struct ixgbe_hw *hw, uint16_t offset, uint16_t data) { uint32_t eewr; int32_t status; hw->eeprom.ops.init_params(hw); if (offset >= hw->eeprom.word_size) { status = IXGBE_ERR_EEPROM; goto out; } eewr = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) | (data << IXGBE_EEPROM_RW_REG_DATA) | IXGBE_EEPROM_RW_REG_START; status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); if (status != IXGBE_SUCCESS) { DEBUGOUT("Eeprom write EEWR timed out\n"); goto out; } IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); if (status != IXGBE_SUCCESS) { DEBUGOUT("Eeprom write EEWR timed out\n"); goto out; } out: return status; } /** * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status * @hw: pointer to hardware structure * @ee_reg: EEPROM flag for polling * * Polls the status bit (bit 1) of the EERD or EEWR to determine when the * read or write is done respectively. **/ int32_t ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, uint32_t ee_reg) { uint32_t i; uint32_t reg; int32_t status = IXGBE_ERR_EEPROM; for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { if (ee_reg == IXGBE_NVM_POLL_READ) reg = IXGBE_READ_REG(hw, IXGBE_EERD); else reg = IXGBE_READ_REG(hw, IXGBE_EEWR); if (reg & IXGBE_EEPROM_RW_REG_DONE) { status = IXGBE_SUCCESS; break; } usec_delay(5); } return status; } /** * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang * @hw: pointer to hardware structure * * Prepares EEPROM for access using bit-bang method. This function should * be called before issuing a command to the EEPROM. **/ int32_t ixgbe_acquire_eeprom(struct ixgbe_hw *hw) { int32_t status = IXGBE_SUCCESS; uint32_t eec; uint32_t i; if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != IXGBE_SUCCESS) status = IXGBE_ERR_SWFW_SYNC; if (status == IXGBE_SUCCESS) { eec = IXGBE_READ_REG(hw, IXGBE_EEC); /* Request EEPROM Access */ eec |= IXGBE_EEC_REQ; IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { eec = IXGBE_READ_REG(hw, IXGBE_EEC); if (eec & IXGBE_EEC_GNT) break; usec_delay(5); } /* Release if grant not acquired */ if (!(eec & IXGBE_EEC_GNT)) { eec &= ~IXGBE_EEC_REQ; IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); DEBUGOUT("Could not acquire EEPROM grant\n"); hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); status = IXGBE_ERR_EEPROM; } /* Setup EEPROM for Read/Write */ if (status == IXGBE_SUCCESS) { /* Clear CS and SK */ eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); IXGBE_WRITE_FLUSH(hw); usec_delay(1); } } return status; } /** * ixgbe_get_eeprom_semaphore - Get hardware semaphore * @hw: pointer to hardware structure * * Sets the hardware semaphores so EEPROM access can occur for bit-bang method **/ int32_t ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) { int32_t status = IXGBE_ERR_EEPROM; uint32_t timeout = 2000; uint32_t i; uint32_t swsm; /* Get SMBI software semaphore between device drivers first */ for (i = 0; i < timeout; i++) { /* * If the SMBI bit is 0 when we read it, then the bit will be * set and we have the semaphore */ swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); if (!(swsm & IXGBE_SWSM_SMBI)) { status = IXGBE_SUCCESS; break; } usec_delay(50); } /* Now get the semaphore between SW/FW through the SWESMBI bit */ if (status == IXGBE_SUCCESS) { for (i = 0; i < timeout; i++) { swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); /* Set the SW EEPROM semaphore bit to request access */ swsm |= IXGBE_SWSM_SWESMBI; IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); /* * If we set the bit successfully then we got the * semaphore. */ swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); if (swsm & IXGBE_SWSM_SWESMBI) break; usec_delay(50); } /* * Release semaphores and return error if SW EEPROM semaphore * was not granted because we don't have access to the EEPROM */ if (i >= timeout) { DEBUGOUT("SWESMBI Software EEPROM semaphore " "not granted.\n"); ixgbe_release_eeprom_semaphore(hw); status = IXGBE_ERR_EEPROM; } } else { DEBUGOUT("Software semaphore SMBI between device drivers " "not granted.\n"); } return status; } /** * ixgbe_release_eeprom_semaphore - Release hardware semaphore * @hw: pointer to hardware structure * * This function clears hardware semaphore bits. **/ void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) { uint32_t swsm; swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); IXGBE_WRITE_FLUSH(hw); } /** * ixgbe_ready_eeprom - Polls for EEPROM ready * @hw: pointer to hardware structure **/ int32_t ixgbe_ready_eeprom(struct ixgbe_hw *hw) { int32_t status = IXGBE_SUCCESS; uint16_t i; uint8_t spi_stat_reg; /* * Read "Status Register" repeatedly until the LSB is cleared. The * EEPROM will signal that the command has been completed by clearing * bit 0 of the internal status register. If it's not cleared within * 5 milliseconds, then error out. */ for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, IXGBE_EEPROM_OPCODE_BITS); spi_stat_reg = (uint8_t)ixgbe_shift_in_eeprom_bits(hw, 8); if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) break; usec_delay(5); ixgbe_standby_eeprom(hw); }; /* * On some parts, SPI write time could vary from 0-20mSec on 3.3V * devices (and only 0-5mSec on 5V devices) */ if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { DEBUGOUT("SPI EEPROM Status error\n"); status = IXGBE_ERR_EEPROM; } return status; } /** * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state * @hw: pointer to hardware structure **/ void ixgbe_standby_eeprom(struct ixgbe_hw *hw) { uint32_t eec; eec = IXGBE_READ_REG(hw, IXGBE_EEC); /* Toggle CS to flush commands */ eec |= IXGBE_EEC_CS; IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); IXGBE_WRITE_FLUSH(hw); usec_delay(1); eec &= ~IXGBE_EEC_CS; IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); IXGBE_WRITE_FLUSH(hw); usec_delay(1); } /** * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. * @hw: pointer to hardware structure * @data: data to send to the EEPROM * @count: number of bits to shift out **/ void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, uint16_t data, uint16_t count) { uint32_t eec; uint32_t mask; uint32_t i; eec = IXGBE_READ_REG(hw, IXGBE_EEC); /* * Mask is used to shift "count" bits of "data" out to the EEPROM * one bit at a time. Determine the starting bit based on count */ mask = 0x01 << (count - 1); for (i = 0; i < count; i++) { /* * A "1" is shifted out to the EEPROM by setting bit "DI" to a * "1", and then raising and then lowering the clock (the SK * bit controls the clock input to the EEPROM). A "0" is * shifted out to the EEPROM by setting "DI" to "0" and then * raising and then lowering the clock. */ if (data & mask) eec |= IXGBE_EEC_DI; else eec &= ~IXGBE_EEC_DI; IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); IXGBE_WRITE_FLUSH(hw); usec_delay(1); ixgbe_raise_eeprom_clk(hw, &eec); ixgbe_lower_eeprom_clk(hw, &eec); /* * Shift mask to signify next bit of data to shift in to the * EEPROM */ mask = mask >> 1; }; /* We leave the "DI" bit set to "0" when we leave this routine. */ eec &= ~IXGBE_EEC_DI; IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); IXGBE_WRITE_FLUSH(hw); } /** * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM * @hw: pointer to hardware structure **/ uint16_t ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, uint16_t count) { uint32_t eec; uint32_t i; uint16_t data = 0; /* * In order to read a register from the EEPROM, we need to shift * 'count' bits in from the EEPROM. Bits are "shifted in" by raising * the clock input to the EEPROM (setting the SK bit), and then reading * the value of the "DO" bit. During this "shifting in" process the * "DI" bit should always be clear. */ eec = IXGBE_READ_REG(hw, IXGBE_EEC); eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); for (i = 0; i < count; i++) { data = data << 1; ixgbe_raise_eeprom_clk(hw, &eec); eec = IXGBE_READ_REG(hw, IXGBE_EEC); eec &= ~(IXGBE_EEC_DI); if (eec & IXGBE_EEC_DO) data |= 1; ixgbe_lower_eeprom_clk(hw, &eec); } return data; } /** * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. * @hw: pointer to hardware structure * @eec: EEC register's current value **/ void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, uint32_t *eec) { /* * Raise the clock input to the EEPROM * (setting the SK bit), then delay */ *eec = *eec | IXGBE_EEC_SK; IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); IXGBE_WRITE_FLUSH(hw); usec_delay(1); } /** * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. * @hw: pointer to hardware structure * @eecd: EECD's current value **/ void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, uint32_t *eec) { /* * Lower the clock input to the EEPROM (clearing the SK bit), then * delay */ *eec = *eec & ~IXGBE_EEC_SK; IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); IXGBE_WRITE_FLUSH(hw); usec_delay(1); } /** * ixgbe_release_eeprom - Release EEPROM, release semaphores * @hw: pointer to hardware structure **/ void ixgbe_release_eeprom(struct ixgbe_hw *hw) { uint32_t eec; eec = IXGBE_READ_REG(hw, IXGBE_EEC); eec |= IXGBE_EEC_CS; /* Pull CS high */ eec &= ~IXGBE_EEC_SK; /* Lower SCK */ IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); IXGBE_WRITE_FLUSH(hw); usec_delay(1); /* Stop requesting EEPROM access */ eec &= ~IXGBE_EEC_REQ; IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); /* Delay before attempt to obtain semaphore again to allow FW access */ msec_delay(hw->eeprom.semaphore_delay); } /** * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum * @hw: pointer to hardware structure **/ uint16_t ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) { uint16_t i; uint16_t j; uint16_t checksum = 0; uint16_t length = 0; uint16_t pointer = 0; uint16_t word = 0; /* Include 0x0-0x3F in the checksum */ for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) { DEBUGOUT("EEPROM read failed\n"); break; } checksum += word; } /* Include all data from pointers except for the fw pointer */ for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { hw->eeprom.ops.read(hw, i, &pointer); /* Make sure the pointer seems valid */ if (pointer != 0xFFFF && pointer != 0) { hw->eeprom.ops.read(hw, pointer, &length); if (length != 0xFFFF && length != 0) { for (j = pointer+1; j <= pointer+length; j++) { hw->eeprom.ops.read(hw, j, &word); checksum += word; } } } } checksum = (uint16_t)IXGBE_EEPROM_SUM - checksum; return checksum; } /** * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum * @hw: pointer to hardware structure * @checksum_val: calculated checksum * * Performs checksum calculation and validates the EEPROM checksum. If the * caller does not need checksum_val, the value can be NULL. **/ int32_t ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, uint16_t *checksum_val) { int32_t status; uint16_t checksum; uint16_t read_checksum = 0; /* * Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ status = hw->eeprom.ops.read(hw, 0, &checksum); if (status == IXGBE_SUCCESS) { checksum = hw->eeprom.ops.calc_checksum(hw); hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); /* * Verify read checksum from EEPROM is the same as * calculated checksum */ if (read_checksum != checksum) status = IXGBE_ERR_EEPROM_CHECKSUM; /* If the user cares, return the calculated checksum */ if (checksum_val) *checksum_val = checksum; } else { DEBUGOUT("EEPROM read failed\n"); } return status; } /** * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum * @hw: pointer to hardware structure **/ int32_t ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) { int32_t status; uint16_t checksum; /* * Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ status = hw->eeprom.ops.read(hw, 0, &checksum); if (status == IXGBE_SUCCESS) { checksum = hw->eeprom.ops.calc_checksum(hw); status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum); } else { DEBUGOUT("EEPROM read failed\n"); } return status; } /** * ixgbe_validate_mac_addr - Validate MAC address * @mac_addr: pointer to MAC address. * * Tests a MAC address to ensure it is a valid Individual Address **/ int32_t ixgbe_validate_mac_addr(uint8_t *mac_addr) { int32_t status = IXGBE_SUCCESS; /* Make sure it is not a multicast address */ if (IXGBE_IS_MULTICAST(mac_addr)) { DEBUGOUT("MAC address is multicast\n"); status = IXGBE_ERR_INVALID_MAC_ADDR; /* Not a broadcast address */ } else if (IXGBE_IS_BROADCAST(mac_addr)) { DEBUGOUT("MAC address is broadcast\n"); status = IXGBE_ERR_INVALID_MAC_ADDR; /* Reject the zero address */ } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) { DEBUGOUT("MAC address is all zeros\n"); status = IXGBE_ERR_INVALID_MAC_ADDR; } return status; } /** * ixgbe_set_rar_generic - Set Rx address register * @hw: pointer to hardware structure * @index: Receive address register to write * @addr: Address to put into receive address register * @vmdq: VMDq "set" or "pool" index * @enable_addr: set flag that address is active * * Puts an ethernet address into a receive address register. **/ int32_t ixgbe_set_rar_generic(struct ixgbe_hw *hw, uint32_t index, uint8_t *addr, uint32_t vmdq, uint32_t enable_addr) { uint32_t rar_low, rar_high; uint32_t rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { DEBUGOUT1("RAR index %d is out of range.\n", index); return IXGBE_ERR_INVALID_ARGUMENT; } /* setup VMDq pool selection before this RAR gets enabled */ hw->mac.ops.set_vmdq(hw, index, vmdq); /* Make sure we are using a valid rar index range */ /* * HW expects these in little endian so we reverse the byte * order from network order (big endian) to little endian */ rar_low = ((uint32_t)addr[0] | ((uint32_t)addr[1] << 8) | ((uint32_t)addr[2] << 16) | ((uint32_t)addr[3] << 24)); /* * Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); rar_high |= ((uint32_t)addr[4] | ((uint32_t)addr[5] << 8)); if (enable_addr != 0) rar_high |= IXGBE_RAH_AV; IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); return IXGBE_SUCCESS; } /** * ixgbe_clear_rar_generic - Remove Rx address register * @hw: pointer to hardware structure * @index: Receive address register to write * * Clears an ethernet address from a receive address register. **/ int32_t ixgbe_clear_rar_generic(struct ixgbe_hw *hw, uint32_t index) { uint32_t rar_high; uint32_t rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { DEBUGOUT1("RAR index %d is out of range.\n", index); return IXGBE_ERR_INVALID_ARGUMENT; } /* * Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); /* clear VMDq pool/queue selection for this RAR */ hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); return IXGBE_SUCCESS; } /** * ixgbe_init_rx_addrs_generic - Initializes receive address filters. * @hw: pointer to hardware structure * * Places the MAC address in receive address register 0 and clears the rest * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. **/ int32_t ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) { uint32_t i; uint32_t rar_entries = hw->mac.num_rar_entries; /* * If the current mac address is valid, assume it is a software override * to the permanent address. * Otherwise, use the permanent address from the eeprom. */ if (ixgbe_validate_mac_addr(hw->mac.addr) == IXGBE_ERR_INVALID_MAC_ADDR) { /* Get the MAC address from the RAR0 for later reference */ hw->mac.ops.get_mac_addr(hw, hw->mac.addr); DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ", hw->mac.addr[0], hw->mac.addr[1], hw->mac.addr[2]); DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], hw->mac.addr[4], hw->mac.addr[5]); } else { /* Setup the receive address. */ DEBUGOUT("Overriding MAC Address in RAR[0]\n"); DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ", hw->mac.addr[0], hw->mac.addr[1], hw->mac.addr[2]); DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], hw->mac.addr[4], hw->mac.addr[5]); hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); /* clear VMDq pool/queue selection for RAR 0 */ hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); } hw->addr_ctrl.overflow_promisc = 0; hw->addr_ctrl.rar_used_count = 1; /* Zero out the other receive addresses. */ DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1); for (i = 1; i < rar_entries; i++) { IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); } /* Clear the MTA */ hw->addr_ctrl.mta_in_use = 0; IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); DEBUGOUT(" Clearing MTA\n"); for (i = 0; i < hw->mac.mcft_size; i++) IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); ixgbe_hw0(hw, init_uta_tables); return IXGBE_SUCCESS; } /** * ixgbe_add_uc_addr - Adds a secondary unicast address. * @hw: pointer to hardware structure * @addr: new address * * Adds it to unused receive address register or goes into promiscuous mode. **/ void ixgbe_add_uc_addr(struct ixgbe_hw *hw, uint8_t *addr, uint32_t vmdq) { uint32_t rar_entries = hw->mac.num_rar_entries; uint32_t rar; DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); /* * Place this address in the RAR if there is room, * else put the controller into promiscuous mode */ if (hw->addr_ctrl.rar_used_count < rar_entries) { rar = hw->addr_ctrl.rar_used_count; hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar); hw->addr_ctrl.rar_used_count++; } else { hw->addr_ctrl.overflow_promisc++; } DEBUGOUT("ixgbe_add_uc_addr Complete\n"); } /** * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses * @hw: pointer to hardware structure * @addr_list: the list of new addresses * @addr_count: number of addresses * @next: iterator function to walk the address list * * The given list replaces any existing list. Clears the secondary addrs from * receive address registers. Uses unused receive address registers for the * first secondary addresses, and falls back to promiscuous mode as needed. * * Drivers using secondary unicast addresses must set user_set_promisc when * manually putting the device into promiscuous mode. **/ int32_t ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, uint8_t *addr_list, uint32_t addr_count, ixgbe_mc_addr_itr next) { uint8_t *addr; uint32_t i; uint32_t old_promisc_setting = hw->addr_ctrl.overflow_promisc; uint32_t uc_addr_in_use; uint32_t fctrl; uint32_t vmdq; /* * Clear accounting of old secondary address list, * don't count RAR[0] */ uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1; hw->addr_ctrl.rar_used_count -= uc_addr_in_use; hw->addr_ctrl.overflow_promisc = 0; /* Zero out the other receive addresses */ DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1); for (i = 0; i < uc_addr_in_use; i++) { IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0); IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0); } /* Add the new addresses */ for (i = 0; i < addr_count; i++) { DEBUGOUT(" Adding the secondary addresses:\n"); addr = next(hw, &addr_list, &vmdq); ixgbe_add_uc_addr(hw, addr, vmdq); } if (hw->addr_ctrl.overflow_promisc) { /* enable promisc if not already in overflow or set by user */ if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { DEBUGOUT(" Entering address overflow promisc mode\n"); fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); fctrl |= IXGBE_FCTRL_UPE; IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); } } else { /* only disable if set by overflow, not by user */ if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { DEBUGOUT(" Leaving address overflow promisc mode\n"); fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); fctrl &= ~IXGBE_FCTRL_UPE; IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); } } DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n"); return IXGBE_SUCCESS; } /** * ixgbe_mta_vector - Determines bit-vector in multicast table to set * @hw: pointer to hardware structure * @mc_addr: the multicast address * * Extracts the 12 bits, from a multicast address, to determine which * bit-vector to set in the multicast table. The hardware uses 12 bits, from * incoming rx multicast addresses, to determine the bit-vector to check in * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set * by the MO field of the MCSTCTRL. The MO field is set during initialization * to mc_filter_type. **/ int32_t ixgbe_mta_vector(struct ixgbe_hw *hw, uint8_t *mc_addr) { uint32_t vector = 0; switch (hw->mac.mc_filter_type) { case 0: /* use bits [47:36] of the address */ vector = ((mc_addr[4] >> 4) | (((uint16_t)mc_addr[5]) << 4)); break; case 1: /* use bits [46:35] of the address */ vector = ((mc_addr[4] >> 3) | (((uint16_t)mc_addr[5]) << 5)); break; case 2: /* use bits [45:34] of the address */ vector = ((mc_addr[4] >> 2) | (((uint16_t)mc_addr[5]) << 6)); break; case 3: /* use bits [43:32] of the address */ vector = ((mc_addr[4]) | (((uint16_t)mc_addr[5]) << 8)); break; default: /* Invalid mc_filter_type */ DEBUGOUT("MC filter type param set incorrectly\n"); panic("ixgbe"); break; } /* vector can only be 12-bits or boundary will be exceeded */ vector &= 0xFFF; return vector; } /** * ixgbe_set_mta - Set bit-vector in multicast table * @hw: pointer to hardware structure * @hash_value: Multicast address hash value * * Sets the bit-vector in the multicast table. **/ void ixgbe_set_mta(struct ixgbe_hw *hw, uint8_t *mc_addr) { uint32_t vector; uint32_t vector_bit; uint32_t vector_reg; hw->addr_ctrl.mta_in_use++; vector = ixgbe_mta_vector(hw, mc_addr); DEBUGOUT1(" bit-vector = 0x%03X\n", vector); /* * The MTA is a register array of 128 32-bit registers. It is treated * like an array of 4096 bits. We want to set bit * BitArray[vector_value]. So we figure out what register the bit is * in, read it, OR in the new bit, then write back the new value. The * register is determined by the upper 7 bits of the vector value and * the bit within that register are determined by the lower 5 bits of * the value. */ vector_reg = (vector >> 5) & 0x7F; vector_bit = vector & 0x1F; hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); } /** * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses * @hw: pointer to hardware structure * @mc_addr_list: the list of new multicast addresses * @mc_addr_count: number of addresses * @next: iterator function to walk the multicast address list * * The given list replaces any existing list. Clears the MC addrs from receive * address registers and the multicast table. Uses unused receive address * registers for the first multicast addresses, and hashes the rest into the * multicast table. **/ int32_t ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, uint8_t *mc_addr_list, uint32_t mc_addr_count, ixgbe_mc_addr_itr next) { uint32_t i; uint32_t vmdq; /* * Set the new number of MC addresses that we are being requested to * use. */ hw->addr_ctrl.num_mc_addrs = mc_addr_count; hw->addr_ctrl.mta_in_use = 0; /* Clear mta_shadow */ DEBUGOUT(" Clearing MTA\n"); memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); /* Update mta_shadow */ for (i = 0; i < mc_addr_count; i++) { DEBUGOUT(" Adding the multicast addresses:\n"); ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq)); } /* Enable mta */ for (i = 0; i < hw->mac.mcft_size; i++) IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, hw->mac.mta_shadow[i]); if (hw->addr_ctrl.mta_in_use > 0) IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n"); return IXGBE_SUCCESS; } /** * ixgbe_enable_mc_generic - Enable multicast address in RAR * @hw: pointer to hardware structure * * Enables multicast address in RAR and the use of the multicast hash table. **/ int32_t ixgbe_enable_mc_generic(struct ixgbe_hw *hw) { struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; if (a->mta_in_use > 0) IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); return IXGBE_SUCCESS; } /** * ixgbe_disable_mc_generic - Disable multicast address in RAR * @hw: pointer to hardware structure * * Disables multicast address in RAR and the use of the multicast hash table. **/ int32_t ixgbe_disable_mc_generic(struct ixgbe_hw *hw) { struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; if (a->mta_in_use > 0) IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); return IXGBE_SUCCESS; } /** * ixgbe_fc_enable_generic - Enable flow control * @hw: pointer to hardware structure * @packetbuf_num: packet buffer number (0-7) * * Enable flow control according to the current settings. **/ int32_t ixgbe_fc_enable_generic(struct ixgbe_hw *hw, int32_t packetbuf_num) { int32_t ret_val = IXGBE_SUCCESS; uint32_t mflcn_reg, fccfg_reg; uint32_t reg; uint32_t rx_pba_size; uint32_t fcrtl, fcrth; /* Negotiate the fc mode to use */ ret_val = ixgbe_fc_autoneg(hw); if (ret_val == IXGBE_ERR_FLOW_CONTROL) goto out; /* Disable any previous flow control settings */ mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE); fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); /* * The possible values of fc.current_mode are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but * we do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: Invalid. */ switch (hw->fc.current_mode) { case ixgbe_fc_none: /* * Flow control is disabled by software override or autoneg. * The code below will actually disable it in the HW. */ break; case ixgbe_fc_rx_pause: /* * Rx Flow control is enabled and Tx Flow control is * disabled by software override. Since there really * isn't a way to advertise that we are capable of RX * Pause ONLY, we will advertise that we support both * symmetric and asymmetric Rx PAUSE. Later, we will * disable the adapter's ability to send PAUSE frames. */ mflcn_reg |= IXGBE_MFLCN_RFCE; break; case ixgbe_fc_tx_pause: /* * Tx Flow control is enabled, and Rx Flow control is * disabled by software override. */ fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; break; case ixgbe_fc_full: /* Flow control (both Rx and Tx) is enabled by SW override. */ mflcn_reg |= IXGBE_MFLCN_RFCE; fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; break; default: DEBUGOUT("Flow control param set incorrectly\n"); ret_val = IXGBE_ERR_CONFIG; goto out; break; } /* Set 802.3x based flow control settings. */ mflcn_reg |= IXGBE_MFLCN_DPF; IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num)); rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT; fcrth = (rx_pba_size - hw->fc.high_water) << 10; fcrtl = (rx_pba_size - hw->fc.low_water) << 10; if (hw->fc.current_mode & ixgbe_fc_tx_pause) { fcrth |= IXGBE_FCRTH_FCEN; if (hw->fc.send_xon) fcrtl |= IXGBE_FCRTL_XONE; } IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth); IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl); /* Configure pause time (2 TCs per register) */ reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2)); if ((packetbuf_num & 1) == 0) reg = (reg & 0xFFFF0000) | hw->fc.pause_time; else reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16); IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg); IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1)); out: return ret_val; } /** * ixgbe_fc_autoneg - Configure flow control * @hw: pointer to hardware structure * * Compares our advertised flow control capabilities to those advertised by * our link partner, and determines the proper flow control mode to use. **/ int32_t ixgbe_fc_autoneg(struct ixgbe_hw *hw) { int32_t ret_val = IXGBE_SUCCESS; ixgbe_link_speed speed; int link_up; if (hw->fc.disable_fc_autoneg) goto out; /* * AN should have completed when the cable was plugged in. * Look for reasons to bail out. Bail out if: * - FC autoneg is disabled, or if * - link is not up. * * Since we're being called from an LSC, link is already known to be up. * So use link_up_wait_to_complete=FALSE. */ hw->mac.ops.check_link(hw, &speed, &link_up, FALSE); if (!link_up) { ret_val = IXGBE_ERR_FLOW_CONTROL; goto out; } switch (hw->phy.media_type) { /* Autoneg flow control on fiber adapters */ case ixgbe_media_type_fiber: if (speed == IXGBE_LINK_SPEED_1GB_FULL) ret_val = ixgbe_fc_autoneg_fiber(hw); break; /* Autoneg flow control on backplane adapters */ case ixgbe_media_type_backplane: ret_val = ixgbe_fc_autoneg_backplane(hw); break; /* Autoneg flow control on copper adapters */ case ixgbe_media_type_copper: if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS) ret_val = ixgbe_fc_autoneg_copper(hw); break; default: break; } out: if (ret_val == IXGBE_SUCCESS) { hw->fc.fc_was_autonegged = TRUE; } else { hw->fc.fc_was_autonegged = FALSE; hw->fc.current_mode = hw->fc.requested_mode; } return ret_val; } /** * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber * @hw: pointer to hardware structure * @speed: * @link_up * * Enable flow control according on 1 gig fiber. **/ int32_t ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) { uint32_t pcs_anadv_reg, pcs_lpab_reg, linkstat; int32_t ret_val; /* * On multispeed fiber at 1g, bail out if * - link is up but AN did not complete, or if * - link is up and AN completed but timed out */ linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) { ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; goto out; } pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, IXGBE_PCS1GANA_ASM_PAUSE, IXGBE_PCS1GANA_SYM_PAUSE, IXGBE_PCS1GANA_ASM_PAUSE); out: return ret_val; } /** * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 * @hw: pointer to hardware structure * * Enable flow control according to IEEE clause 37. **/ int32_t ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) { uint32_t links2, anlp1_reg, autoc_reg, links; int32_t ret_val; /* * On backplane, bail out if * - backplane autoneg was not completed, or if * - we are 82599 and link partner is not AN enabled */ links = IXGBE_READ_REG(hw, IXGBE_LINKS); if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) { hw->fc.fc_was_autonegged = FALSE; hw->fc.current_mode = hw->fc.requested_mode; ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; goto out; } if (hw->mac.type == ixgbe_mac_82599EB) { links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) { hw->fc.fc_was_autonegged = FALSE; hw->fc.current_mode = hw->fc.requested_mode; ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; goto out; } } /* * Read the 10g AN autoc and LP ability registers and resolve * local flow control settings accordingly */ autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); ret_val = ixgbe_negotiate_fc(hw, autoc_reg, anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); out: return ret_val; } /** * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 * @hw: pointer to hardware structure * * Enable flow control according to IEEE clause 37. **/ int32_t ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) { uint16_t technology_ability_reg = 0; uint16_t lp_technology_ability_reg = 0; hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &technology_ability_reg); hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &lp_technology_ability_reg); return ixgbe_negotiate_fc(hw, (uint32_t)technology_ability_reg, (uint32_t)lp_technology_ability_reg, IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); } /** * ixgbe_negotiate_fc - Negotiate flow control * @hw: pointer to hardware structure * @adv_reg: flow control advertised settings * @lp_reg: link partner's flow control settings * @adv_sym: symmetric pause bit in advertisement * @adv_asm: asymmetric pause bit in advertisement * @lp_sym: symmetric pause bit in link partner advertisement * @lp_asm: asymmetric pause bit in link partner advertisement * * Find the intersection between advertised settings and link partner's * advertised settings **/ int32_t ixgbe_negotiate_fc(struct ixgbe_hw *hw, uint32_t adv_reg, uint32_t lp_reg, uint32_t adv_sym, uint32_t adv_asm, uint32_t lp_sym, uint32_t lp_asm) { if ((!(adv_reg)) || (!(lp_reg))) return IXGBE_ERR_FC_NOT_NEGOTIATED; if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { /* * Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == ixgbe_fc_full) { hw->fc.current_mode = ixgbe_fc_full; DEBUGOUT("Flow Control = FULL.\n"); } else { hw->fc.current_mode = ixgbe_fc_rx_pause; DEBUGOUT("Flow Control=RX PAUSE frames only\n"); } } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && (lp_reg & lp_sym) && (lp_reg & lp_asm)) { hw->fc.current_mode = ixgbe_fc_tx_pause; DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { hw->fc.current_mode = ixgbe_fc_rx_pause; DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); } else { hw->fc.current_mode = ixgbe_fc_none; DEBUGOUT("Flow Control = NONE.\n"); } return IXGBE_SUCCESS; } /** * ixgbe_setup_fc - Set up flow control * @hw: pointer to hardware structure * * Called at init time to set up flow control. **/ int32_t ixgbe_setup_fc(struct ixgbe_hw *hw, int32_t packetbuf_num) { int32_t ret_val = IXGBE_SUCCESS; uint32_t reg = 0, reg_bp = 0;; uint16_t reg_cu = 0; /* Validate the packetbuf configuration */ if (packetbuf_num < 0 || packetbuf_num > 7) { DEBUGOUT1("Invalid packet buffer number [%d], expected range is" " 0-7\n", packetbuf_num); ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; goto out; } /* * Validate the water mark configuration. Zero water marks are invalid * because it causes the controller to just blast out fc packets. */ if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) { DEBUGOUT("Invalid water mark configuration\n"); ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; goto out; } /* * Validate the requested mode. Strict IEEE mode does not allow * ixgbe_fc_rx_pause because it will cause us to fail at UNH. */ if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; goto out; } /* * 10gig parts do not have a word in the EEPROM to determine the * default flow control setting, so we explicitly set it to full. */ if (hw->fc.requested_mode == ixgbe_fc_default) hw->fc.requested_mode = ixgbe_fc_full; /* * Set up the 1G and 10G flow control advertisement registers so the * HW will be able to do fc autoneg once the cable is plugged in. If * we link at 10G, the 1G advertisement is harmless and vice versa. */ switch (hw->phy.media_type) { case ixgbe_media_type_fiber: case ixgbe_media_type_backplane: reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC); break; case ixgbe_media_type_copper: hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu); break; default: ; } /* * The possible values of fc.requested_mode are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but * we do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: Invalid. */ switch (hw->fc.requested_mode) { case ixgbe_fc_none: /* Flow control completely disabled by software override. */ reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); if (hw->phy.media_type == ixgbe_media_type_backplane) reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE); else if (hw->phy.media_type == ixgbe_media_type_copper) reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); break; case ixgbe_fc_rx_pause: /* * Rx Flow control is enabled and Tx Flow control is * disabled by software override. Since there really * isn't a way to advertise that we are capable of RX * Pause ONLY, we will advertise that we support both * symmetric and asymmetric Rx PAUSE. Later, we will * disable the adapter's ability to send PAUSE frames. */ reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); if (hw->phy.media_type == ixgbe_media_type_backplane) reg_bp |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE); else if (hw->phy.media_type == ixgbe_media_type_copper) reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); break; case ixgbe_fc_tx_pause: /* * Tx Flow control is enabled, and Rx Flow control is * disabled by software override. */ reg |= (IXGBE_PCS1GANA_ASM_PAUSE); reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE); if (hw->phy.media_type == ixgbe_media_type_backplane) { reg_bp |= (IXGBE_AUTOC_ASM_PAUSE); reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE); } else if (hw->phy.media_type == ixgbe_media_type_copper) { reg_cu |= (IXGBE_TAF_ASM_PAUSE); reg_cu &= ~(IXGBE_TAF_SYM_PAUSE); } break; case ixgbe_fc_full: /* Flow control (both Rx and Tx) is enabled by SW override. */ reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); if (hw->phy.media_type == ixgbe_media_type_backplane) reg_bp |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE); else if (hw->phy.media_type == ixgbe_media_type_copper) reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); break; default: DEBUGOUT("Flow control param set incorrectly\n"); ret_val = IXGBE_ERR_CONFIG; goto out; break; } if (hw->mac.type != ixgbe_mac_X540) { /* * Enable auto-negotiation between the MAC & PHY; * the MAC will advertise clause 37 flow control. */ IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); /* Disable AN timeout */ if (hw->fc.strict_ieee) reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); } /* * AUTOC restart handles negotiation of 1G and 10G on backplane * and copper. There is no need to set the PCS1GCTL register. * */ if (hw->phy.media_type == ixgbe_media_type_backplane) { reg_bp |= IXGBE_AUTOC_AN_RESTART; IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp); } else if ((hw->phy.media_type == ixgbe_media_type_copper) && (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) { hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu); } DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg); out: return ret_val; } /** * ixgbe_disable_pcie_master - Disable PCI-express master access * @hw: pointer to hardware structure * * Disables PCI-Express master access and verifies there are no pending * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS * is returned signifying master requests disabled. **/ int32_t ixgbe_disable_pcie_master(struct ixgbe_hw *hw) { uint32_t i; uint32_t reg_val; uint32_t number_of_queues; int32_t status = IXGBE_ERR_MASTER_REQUESTS_PENDING; /* Just jump out if bus mastering is already disabled */ if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) goto out; /* Disable the receive unit by stopping each queue */ number_of_queues = hw->mac.max_rx_queues; for (i = 0; i < number_of_queues; i++) { reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); if (reg_val & IXGBE_RXDCTL_ENABLE) { reg_val &= ~IXGBE_RXDCTL_ENABLE; IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); } } reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL); reg_val |= IXGBE_CTRL_GIO_DIS; IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val); for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) goto check_device_status; usec_delay(100); } DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n"); status = IXGBE_ERR_MASTER_REQUESTS_PENDING; /* * Before proceeding, make sure that the PCIe block does not have * transactions pending. */ check_device_status: for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) break; usec_delay(100); } if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT) DEBUGOUT("PCIe transaction pending bit also did not clear.\n"); else goto out; /* * Two consecutive resets are required via CTRL.RST per datasheet * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine * of this need. The first reset prevents new master requests from * being issued by our device. We then must wait 1usec for any * remaining completions from the PCIe bus to trickle in, and then reset * again to clear out any effects they may have had on our device. */ hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; out: return status; } /** * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore * @hw: pointer to hardware structure * @mask: Mask to specify which semaphore to acquire * * Acquires the SWFW semaphore through the GSSR register for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ int32_t ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, uint16_t mask) { uint32_t gssr; uint32_t swmask = mask; uint32_t fwmask = mask << 5; int32_t timeout = 200; while (timeout) { /* * SW EEPROM semaphore bit is used for access to all * SW_FW_SYNC/GSSR bits (not just EEPROM) */ if (ixgbe_get_eeprom_semaphore(hw)) return IXGBE_ERR_SWFW_SYNC; gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); if (!(gssr & (fwmask | swmask))) break; /* * Firmware currently using resource (fwmask) or other software * thread currently using resource (swmask) */ ixgbe_release_eeprom_semaphore(hw); msec_delay(5); timeout--; } if (!timeout) { DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); return IXGBE_ERR_SWFW_SYNC; } gssr |= swmask; IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); ixgbe_release_eeprom_semaphore(hw); return IXGBE_SUCCESS; } /** * ixgbe_release_swfw_sync - Release SWFW semaphore * @hw: pointer to hardware structure * @mask: Mask to specify which semaphore to release * * Releases the SWFW semaphore through the GSSR register for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, uint16_t mask) { uint32_t gssr; uint32_t swmask = mask; ixgbe_get_eeprom_semaphore(hw); gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); gssr &= ~swmask; IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); ixgbe_release_eeprom_semaphore(hw); } /** * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit * @hw: pointer to hardware structure * @regval: register value to write to RXCTRL * * Enables the Rx DMA unit **/ int32_t ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, uint32_t regval) { IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); return IXGBE_SUCCESS; } /** * ixgbe_blink_led_start_generic - Blink LED based on index. * @hw: pointer to hardware structure * @index: led number to blink **/ int32_t ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, uint32_t index) { ixgbe_link_speed speed = 0; int link_up = 0; uint32_t autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); uint32_t led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); /* * Link must be up to auto-blink the LEDs; * Force it if link is down. */ hw->mac.ops.check_link(hw, &speed, &link_up, FALSE); if (!link_up) { autoc_reg |= IXGBE_AUTOC_AN_RESTART; autoc_reg |= IXGBE_AUTOC_FLU; IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); msec_delay(10); } led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg |= IXGBE_LED_BLINK(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return IXGBE_SUCCESS; } /** * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. * @hw: pointer to hardware structure * @index: led number to stop blinking **/ int32_t ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, uint32_t index) { uint32_t autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); uint32_t led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); autoc_reg &= ~IXGBE_AUTOC_FLU; autoc_reg |= IXGBE_AUTOC_AN_RESTART; IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg &= ~IXGBE_LED_BLINK(index); led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return IXGBE_SUCCESS; } /** * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count * @hw: pointer to hardware structure * * Read PCIe configuration space, and get the MSI-X vector count from * the capabilities table. **/ uint32_t ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) { uint32_t msix_count = 64; if (hw->mac.msix_vectors_from_pcie) { msix_count = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCIE_MSIX_82599_CAPS); msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; /* MSI-X count is zero-based in HW, so increment to give * proper value */ msix_count++; } return msix_count; } /** * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address * @hw: pointer to hardware structure * @addr: Address to put into receive address register * @vmdq: VMDq pool to assign * * Puts an ethernet address into a receive address register, or * finds the rar that it is aleady in; adds to the pool list **/ int32_t ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, uint8_t *addr, uint32_t vmdq) { static const uint32_t NO_EMPTY_RAR_FOUND = 0xFFFFFFFF; uint32_t first_empty_rar = NO_EMPTY_RAR_FOUND; uint32_t rar; uint32_t rar_low, rar_high; uint32_t addr_low, addr_high; /* swap bytes for HW little endian */ addr_low = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24); addr_high = addr[4] | (addr[5] << 8); /* * Either find the mac_id in rar or find the first empty space. * rar_highwater points to just after the highest currently used * rar in order to shorten the search. It grows when we add a new * rar to the top. */ for (rar = 0; rar < hw->mac.rar_highwater; rar++) { rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar)); if (((IXGBE_RAH_AV & rar_high) == 0) && first_empty_rar == NO_EMPTY_RAR_FOUND) { first_empty_rar = rar; } else if ((rar_high & 0xFFFF) == addr_high) { rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar)); if (rar_low == addr_low) break; /* found it already in the rars */ } } if (rar < hw->mac.rar_highwater) { /* already there so just add to the pool bits */ ixgbe_hw(hw, set_vmdq, rar, vmdq); } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) { /* stick it into first empty RAR slot we found */ rar = first_empty_rar; ixgbe_hw(hw, set_rar, rar, addr, vmdq, IXGBE_RAH_AV); } else if (rar == hw->mac.rar_highwater) { /* add it to the top of the list and inc the highwater mark */ ixgbe_hw(hw, set_rar, rar, addr, vmdq, IXGBE_RAH_AV); hw->mac.rar_highwater++; } else if (rar >= hw->mac.num_rar_entries) { return IXGBE_ERR_INVALID_MAC_ADDR; } /* * If we found rar[0], make sure the default pool bit (we use pool 0) * remains cleared to be sure default pool packets will get delivered */ if (rar == 0) ixgbe_hw(hw, clear_vmdq, rar, 0); return rar; } /** * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address * @hw: pointer to hardware struct * @rar: receive address register index to disassociate * @vmdq: VMDq pool index to remove from the rar **/ int32_t ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, uint32_t rar, uint32_t vmdq) { uint32_t mpsar_lo, mpsar_hi; uint32_t rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (rar >= rar_entries) { DEBUGOUT1("RAR index %d is out of range.\n", rar); return IXGBE_ERR_INVALID_ARGUMENT; } mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); if (!mpsar_lo && !mpsar_hi) goto done; if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { if (mpsar_lo) { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); mpsar_lo = 0; } if (mpsar_hi) { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); mpsar_hi = 0; } } else if (vmdq < 32) { mpsar_lo &= ~(1 << vmdq); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); } else { mpsar_hi &= ~(1 << (vmdq - 32)); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); } /* was that the last pool using this rar? */ if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) hw->mac.ops.clear_rar(hw, rar); done: return IXGBE_SUCCESS; } /** * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address * @hw: pointer to hardware struct * @rar: receive address register index to associate with a VMDq index * @vmdq: VMDq pool index **/ int32_t ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, uint32_t rar, uint32_t vmdq) { uint32_t mpsar; uint32_t rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (rar >= rar_entries) { DEBUGOUT1("RAR index %d is out of range.\n", rar); return IXGBE_ERR_INVALID_ARGUMENT; } if (vmdq < 32) { mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); mpsar |= 1 << vmdq; IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); } else { mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); mpsar |= 1 << (vmdq - 32); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); } return IXGBE_SUCCESS; } /** * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array * @hw: pointer to hardware structure **/ int32_t ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) { int i; DEBUGOUT("Clearing UTA\n"); for (i = 0; i < 128; i++) IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); return IXGBE_SUCCESS; } /** * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot * @hw: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * * return the VLVF index where this VLAN id should be placed * **/ int32_t ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, uint32_t vlan) { uint32_t bits = 0; uint32_t first_empty_slot = 0; int32_t regindex; /* short cut the special case */ if (vlan == 0) return 0; /* * Search for the vlan id in the VLVF entries. Save off the first empty * slot found along the way */ for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) { bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); if (!bits && !(first_empty_slot)) first_empty_slot = regindex; else if ((bits & 0x0FFF) == vlan) break; } /* * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan * in the VLVF. Else use the first empty VLVF register for this * vlan id. */ if (regindex >= IXGBE_VLVF_ENTRIES) { if (first_empty_slot) regindex = first_empty_slot; else { DEBUGOUT("No space in VLVF.\n"); regindex = IXGBE_ERR_NO_SPACE; } } return regindex; } /** * ixgbe_set_vfta_generic - Set VLAN filter table * @hw: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * @vind: VMDq output index that maps queue to VLAN id in VFVFB * @vlan_on: boolean flag to turn on/off VLAN in VFVF * * Turn on/off specified VLAN in the VLAN filter table. **/ int32_t ixgbe_set_vfta_generic(struct ixgbe_hw *hw, uint32_t vlan, uint32_t vind, int vlan_on) { int32_t regindex; uint32_t bitindex; uint32_t vfta; uint32_t bits; uint32_t vt; uint32_t targetbit; int vfta_changed = FALSE; if (vlan > 4095) return IXGBE_ERR_PARAM; /* * this is a 2 part operation - first the VFTA, then the * VLVF and VLVFB if VT Mode is set * We don't write the VFTA until we know the VLVF part succeeded. */ /* Part 1 * The VFTA is a bitstring made up of 128 32-bit registers * that enable the particular VLAN id, much like the MTA: * bits[11-5]: which register * bits[4-0]: which bit in the register */ regindex = (vlan >> 5) & 0x7F; bitindex = vlan & 0x1F; targetbit = (1 << bitindex); vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex)); if (vlan_on) { if (!(vfta & targetbit)) { vfta |= targetbit; vfta_changed = TRUE; } } else { if ((vfta & targetbit)) { vfta &= ~targetbit; vfta_changed = TRUE; } } /* Part 2 * If VT Mode is set * Either vlan_on * make sure the vlan is in VLVF * set the vind bit in the matching VLVFB * Or !vlan_on * clear the pool bit and possibly the vind */ vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL); if (vt & IXGBE_VT_CTL_VT_ENABLE) { int32_t vlvf_index; vlvf_index = ixgbe_find_vlvf_slot(hw, vlan); if (vlvf_index < 0) return vlvf_index; if (vlan_on) { /* set the pool bit */ if (vind < 32) { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index*2)); bits |= (1 << vind); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index*2), bits); } else { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB((vlvf_index*2)+1)); bits |= (1 << (vind-32)); IXGBE_WRITE_REG(hw, IXGBE_VLVFB((vlvf_index*2)+1), bits); } } else { /* clear the pool bit */ if (vind < 32) { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index*2)); bits &= ~(1 << vind); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index*2), bits); bits |= IXGBE_READ_REG(hw, IXGBE_VLVFB((vlvf_index*2)+1)); } else { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB((vlvf_index*2)+1)); bits &= ~(1 << (vind-32)); IXGBE_WRITE_REG(hw, IXGBE_VLVFB((vlvf_index*2)+1), bits); bits |= IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index*2)); } } /* * If there are still bits set in the VLVFB registers * for the VLAN ID indicated we need to see if the * caller is requesting that we clear the VFTA entry bit. * If the caller has requested that we clear the VFTA * entry bit but there are still pools/VFs using this VLAN * ID entry then ignore the request. We're not worried * about the case where we're turning the VFTA VLAN ID * entry bit on, only when requested to turn it off as * there may be multiple pools and/or VFs using the * VLAN ID entry. In that case we cannot clear the * VFTA bit until all pools/VFs using that VLAN ID have also * been cleared. This will be indicated by "bits" being * zero. */ if (bits) { IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), (IXGBE_VLVF_VIEN | vlan)); if (!vlan_on) { /* someone wants to clear the vfta entry * but some pools/VFs are still using it. * Ignore it. */ vfta_changed = FALSE; } } else IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); } if (vfta_changed) IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta); return IXGBE_SUCCESS; } /** * ixgbe_clear_vfta_generic - Clear VLAN filter table * @hw: pointer to hardware structure * * Clears the VLAN filer table, and the VMDq index associated with the filter **/ int32_t ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) { uint32_t offset; for (offset = 0; offset < hw->mac.vft_size; offset++) IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0); IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0); } return IXGBE_SUCCESS; } /** * ixgbe_check_mac_link_generic - Determine link and speed status * @hw: pointer to hardware structure * @speed: pointer to link speed * @link_up: TRUE when link is up * @link_up_wait_to_complete: bool used to wait for link up or not * * Reads the links register to determine if link is up and the current speed **/ int32_t ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, int *link_up, int link_up_wait_to_complete) { uint32_t links_reg, links_orig; uint32_t i; /* clear the old state */ links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); if (links_orig != links_reg) { DEBUGOUT2("LINKS changed from %08X to %08X\n", links_orig, links_reg); } if (link_up_wait_to_complete) { for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { if (links_reg & IXGBE_LINKS_UP) { *link_up = TRUE; break; } else { *link_up = FALSE; } msec_delay(100); links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); } } else { if (links_reg & IXGBE_LINKS_UP) *link_up = TRUE; else *link_up = FALSE; } if ((links_reg & IXGBE_LINKS_SPEED_82599) == IXGBE_LINKS_SPEED_10G_82599) *speed = IXGBE_LINK_SPEED_10GB_FULL; else if ((links_reg & IXGBE_LINKS_SPEED_82599) == IXGBE_LINKS_SPEED_1G_82599) *speed = IXGBE_LINK_SPEED_1GB_FULL; else if ((links_reg & IXGBE_LINKS_SPEED_82599) == IXGBE_LINKS_SPEED_100_82599) *speed = IXGBE_LINK_SPEED_100_FULL; else *speed = IXGBE_LINK_SPEED_UNKNOWN; /* if link is down, zero out the current_mode */ if (*link_up == FALSE) { hw->fc.current_mode = ixgbe_fc_none; hw->fc.fc_was_autonegged = FALSE; } return IXGBE_SUCCESS; } /** * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow * control * @hw: pointer to hardware structure * * There are several phys that do not support autoneg flow control. This * function check the device id to see if the associated phy supports * autoneg flow control. **/ int32_t ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) { switch (hw->device_id) { case IXGBE_DEV_ID_X540T: return IXGBE_SUCCESS; case IXGBE_DEV_ID_82599_T3_LOM: return IXGBE_SUCCESS; default: return IXGBE_ERR_FC_NOT_SUPPORTED; } } /** * ixgbe_get_device_caps_generic - Get additional device capabilities * @hw: pointer to hardware structure * @device_caps: the EEPROM word with the extra device capabilities * * This function will read the EEPROM location for the device capabilities, * and return the word through device_caps. **/ int32_t ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, uint16_t *device_caps) { hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); return IXGBE_SUCCESS; } /** * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering * @hw: pointer to hardware structure * **/ void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw) { uint32_t regval; uint32_t i; DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2"); /* Enable relaxed ordering */ for (i = 0; i < hw->mac.max_tx_queues; i++) { regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); regval |= IXGBE_DCA_TXCTRL_TX_WB_RO_EN; IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); } for (i = 0; i < hw->mac.max_rx_queues; i++) { regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); regval |= (IXGBE_DCA_RXCTRL_DESC_WRO_EN | IXGBE_DCA_RXCTRL_DESC_HSRO_EN); IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); } } /* * MBX: Mailbox handling */ /** * ixgbe_read_mbx - Reads a message from the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @mbx_id: id of mailbox to read * * returns SUCCESS if it successfuly read message from buffer **/ int32_t ixgbe_read_mbx(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_read_mbx"); /* limit read to size of mailbox */ if (size > mbx->size) size = mbx->size; if (mbx->ops.read) ret_val = mbx->ops.read(hw, msg, size, mbx_id); return ret_val; } /** * ixgbe_write_mbx - Write a message to the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully copied message into the buffer **/ int32_t ixgbe_write_mbx(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int32_t ret_val = IXGBE_SUCCESS; DEBUGFUNC("ixgbe_write_mbx"); if (size > mbx->size) ret_val = IXGBE_ERR_MBX; else if (mbx->ops.write) ret_val = mbx->ops.write(hw, msg, size, mbx_id); return ret_val; } /** * ixgbe_check_for_msg - checks to see if someone sent us mail * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the Status bit was found or else ERR_MBX **/ int32_t ixgbe_check_for_msg(struct ixgbe_hw *hw, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_check_for_msg"); if (mbx->ops.check_for_msg) ret_val = mbx->ops.check_for_msg(hw, mbx_id); return ret_val; } /** * ixgbe_check_for_ack - checks to see if someone sent us ACK * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the Status bit was found or else ERR_MBX **/ int32_t ixgbe_check_for_ack(struct ixgbe_hw *hw, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_check_for_ack"); if (mbx->ops.check_for_ack) ret_val = mbx->ops.check_for_ack(hw, mbx_id); return ret_val; } /** * ixgbe_check_for_rst - checks to see if other side has reset * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the Status bit was found or else ERR_MBX **/ int32_t ixgbe_check_for_rst(struct ixgbe_hw *hw, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_check_for_rst"); if (mbx->ops.check_for_rst) ret_val = mbx->ops.check_for_rst(hw, mbx_id); return ret_val; } /** * ixgbe_poll_for_msg - Wait for message notification * @hw: pointer to the HW structure * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully received a message notification **/ int32_t ixgbe_poll_for_msg(struct ixgbe_hw *hw, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int countdown = mbx->timeout; DEBUGFUNC("ixgbe_poll_for_msg"); if (!countdown || !mbx->ops.check_for_msg) goto out; while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) { countdown--; if (!countdown) break; usec_delay(mbx->usec_delay); } out: return countdown ? IXGBE_SUCCESS : IXGBE_ERR_MBX; } /** * ixgbe_poll_for_ack - Wait for message acknowledgement * @hw: pointer to the HW structure * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully received a message acknowledgement **/ int32_t ixgbe_poll_for_ack(struct ixgbe_hw *hw, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int countdown = mbx->timeout; DEBUGFUNC("ixgbe_poll_for_ack"); if (!countdown || !mbx->ops.check_for_ack) goto out; while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) { countdown--; if (!countdown) break; usec_delay(mbx->usec_delay); } out: return countdown ? IXGBE_SUCCESS : IXGBE_ERR_MBX; } /** * ixgbe_read_posted_mbx - Wait for message notification and receive message * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully received a message notification and * copied it into the receive buffer. **/ int32_t ixgbe_read_posted_mbx(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_read_posted_mbx"); if (!mbx->ops.read) goto out; ret_val = ixgbe_poll_for_msg(hw, mbx_id); /* if ack received read message, otherwise we timed out */ if (!ret_val) ret_val = mbx->ops.read(hw, msg, size, mbx_id); out: return ret_val; } /** * ixgbe_write_posted_mbx - Write a message to the mailbox, wait for ack * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully copied message into the buffer and * received an ack to that message within delay * timeout period **/ int32_t ixgbe_write_posted_mbx(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id) { struct ixgbe_mbx_info *mbx = &hw->mbx; int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_write_posted_mbx"); /* exit if either we can't write or there isn't a defined timeout */ if (!mbx->ops.write || !mbx->timeout) goto out; /* send msg */ ret_val = mbx->ops.write(hw, msg, size, mbx_id); /* if msg sent wait until we receive an ack */ if (!ret_val) ret_val = ixgbe_poll_for_ack(hw, mbx_id); out: return ret_val; } /** * ixgbe_init_mbx_ops_generic - Initialize MB function pointers * @hw: pointer to the HW structure * * Setups up the mailbox read and write message function pointers **/ void ixgbe_init_mbx_ops_generic(struct ixgbe_hw *hw) { struct ixgbe_mbx_info *mbx = &hw->mbx; mbx->ops.read_posted = ixgbe_read_posted_mbx; mbx->ops.write_posted = ixgbe_write_posted_mbx; } /** * ixgbe_read_v2p_mailbox - read v2p mailbox * @hw: pointer to the HW structure * * This function is used to read the v2p mailbox without losing the read to * clear status bits. **/ uint32_t ixgbe_read_v2p_mailbox(struct ixgbe_hw *hw) { uint32_t v2p_mailbox = IXGBE_READ_REG(hw, IXGBE_VFMAILBOX); v2p_mailbox |= hw->mbx.v2p_mailbox; hw->mbx.v2p_mailbox |= v2p_mailbox & IXGBE_VFMAILBOX_R2C_BITS; return v2p_mailbox; } /** * ixgbe_check_for_bit_vf - Determine if a status bit was set * @hw: pointer to the HW structure * @mask: bitmask for bits to be tested and cleared * * This function is used to check for the read to clear bits within * the V2P mailbox. **/ int32_t ixgbe_check_for_bit_vf(struct ixgbe_hw *hw, uint32_t mask) { uint32_t v2p_mailbox = ixgbe_read_v2p_mailbox(hw); int32_t ret_val = IXGBE_ERR_MBX; if (v2p_mailbox & mask) ret_val = IXGBE_SUCCESS; hw->mbx.v2p_mailbox &= ~mask; return ret_val; } /** * ixgbe_check_for_msg_vf - checks to see if the PF has sent mail * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the PF has set the Status bit or else ERR_MBX **/ int32_t ixgbe_check_for_msg_vf(struct ixgbe_hw *hw, uint16_t mbx_id) { int32_t ret_val = IXGBE_ERR_MBX; UNREFERENCED_PARAMETER(mbx_id); DEBUGFUNC("ixgbe_check_for_msg_vf"); if (!ixgbe_check_for_bit_vf(hw, IXGBE_VFMAILBOX_PFSTS)) { ret_val = IXGBE_SUCCESS; hw->mbx.stats.reqs++; } return ret_val; } /** * ixgbe_check_for_ack_vf - checks to see if the PF has ACK'd * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX **/ int32_t ixgbe_check_for_ack_vf(struct ixgbe_hw *hw, uint16_t mbx_id) { int32_t ret_val = IXGBE_ERR_MBX; UNREFERENCED_PARAMETER(mbx_id); DEBUGFUNC("ixgbe_check_for_ack_vf"); if (!ixgbe_check_for_bit_vf(hw, IXGBE_VFMAILBOX_PFACK)) { ret_val = IXGBE_SUCCESS; hw->mbx.stats.acks++; } return ret_val; } /** * ixgbe_check_for_rst_vf - checks to see if the PF has reset * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns TRUE if the PF has set the reset done bit or else FALSE **/ int32_t ixgbe_check_for_rst_vf(struct ixgbe_hw *hw, uint16_t mbx_id) { int32_t ret_val = IXGBE_ERR_MBX; UNREFERENCED_PARAMETER(mbx_id); DEBUGFUNC("ixgbe_check_for_rst_vf"); if (!ixgbe_check_for_bit_vf(hw, (IXGBE_VFMAILBOX_RSTD | IXGBE_VFMAILBOX_RSTI))) { ret_val = IXGBE_SUCCESS; hw->mbx.stats.rsts++; } return ret_val; } /** * ixgbe_obtain_mbx_lock_vf - obtain mailbox lock * @hw: pointer to the HW structure * * return SUCCESS if we obtained the mailbox lock **/ int32_t ixgbe_obtain_mbx_lock_vf(struct ixgbe_hw *hw) { int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_obtain_mbx_lock_vf"); /* Take ownership of the buffer */ IXGBE_WRITE_REG(hw, IXGBE_VFMAILBOX, IXGBE_VFMAILBOX_VFU); /* reserve mailbox for vf use */ if (ixgbe_read_v2p_mailbox(hw) & IXGBE_VFMAILBOX_VFU) ret_val = IXGBE_SUCCESS; return ret_val; } /** * ixgbe_write_mbx_vf - Write a message to the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully copied message into the buffer **/ int32_t ixgbe_write_mbx_vf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id) { int32_t ret_val; uint16_t i; UNREFERENCED_PARAMETER(mbx_id); DEBUGFUNC("ixgbe_write_mbx_vf"); /* lock the mailbox to prevent pf/vf race condition */ ret_val = ixgbe_obtain_mbx_lock_vf(hw); if (ret_val) goto out_no_write; /* flush msg and acks as we are overwriting the message buffer */ ixgbe_check_for_msg_vf(hw, 0); ixgbe_check_for_ack_vf(hw, 0); /* copy the caller specified message to the mailbox memory buffer */ for (i = 0; i < size; i++) IXGBE_WRITE_REG_ARRAY(hw, IXGBE_VFMBMEM, i, msg[i]); /* update stats */ hw->mbx.stats.msgs_tx++; /* Drop VFU and interrupt the PF to tell it a message has been sent */ IXGBE_WRITE_REG(hw, IXGBE_VFMAILBOX, IXGBE_VFMAILBOX_REQ); out_no_write: return ret_val; } /** * ixgbe_read_mbx_vf - Reads a message from the inbox intended for vf * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @mbx_id: id of mailbox to read * * returns SUCCESS if it successfuly read message from buffer **/ int32_t ixgbe_read_mbx_vf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t mbx_id) { int32_t ret_val = IXGBE_SUCCESS; uint16_t i; DEBUGFUNC("ixgbe_read_mbx_vf"); UNREFERENCED_PARAMETER(mbx_id); /* lock the mailbox to prevent pf/vf race condition */ ret_val = ixgbe_obtain_mbx_lock_vf(hw); if (ret_val) goto out_no_read; /* copy the message from the mailbox memory buffer */ for (i = 0; i < size; i++) msg[i] = IXGBE_READ_REG_ARRAY(hw, IXGBE_VFMBMEM, i); /* Acknowledge receipt and release mailbox, then we're done */ IXGBE_WRITE_REG(hw, IXGBE_VFMAILBOX, IXGBE_VFMAILBOX_ACK); /* update stats */ hw->mbx.stats.msgs_rx++; out_no_read: return ret_val; } /** * ixgbe_init_mbx_params_vf - set initial values for vf mailbox * @hw: pointer to the HW structure * * Initializes the hw->mbx struct to correct values for vf mailbox */ void ixgbe_init_mbx_params_vf(struct ixgbe_hw *hw) { struct ixgbe_mbx_info *mbx = &hw->mbx; /* start mailbox as timed out and let the reset_hw call set the timeout * value to begin communications */ mbx->timeout = 0; mbx->usec_delay = IXGBE_VF_MBX_INIT_DELAY; mbx->size = IXGBE_VFMAILBOX_SIZE; mbx->ops.read = ixgbe_read_mbx_vf; mbx->ops.write = ixgbe_write_mbx_vf; mbx->ops.read_posted = ixgbe_read_posted_mbx; mbx->ops.write_posted = ixgbe_write_posted_mbx; mbx->ops.check_for_msg = ixgbe_check_for_msg_vf; mbx->ops.check_for_ack = ixgbe_check_for_ack_vf; mbx->ops.check_for_rst = ixgbe_check_for_rst_vf; mbx->stats.msgs_tx = 0; mbx->stats.msgs_rx = 0; mbx->stats.reqs = 0; mbx->stats.acks = 0; mbx->stats.rsts = 0; } int32_t ixgbe_check_for_bit_pf(struct ixgbe_hw *hw, uint32_t mask, int32_t index) { uint32_t mbvficr = IXGBE_READ_REG(hw, IXGBE_MBVFICR(index)); int32_t ret_val = IXGBE_ERR_MBX; if (mbvficr & mask) { ret_val = IXGBE_SUCCESS; IXGBE_WRITE_REG(hw, IXGBE_MBVFICR(index), mask); } return ret_val; } /** * ixgbe_check_for_msg_pf - checks to see if the VF has sent mail * @hw: pointer to the HW structure * @vf_number: the VF index * * returns SUCCESS if the VF has set the Status bit or else ERR_MBX **/ int32_t ixgbe_check_for_msg_pf(struct ixgbe_hw *hw, uint16_t vf_number) { int32_t ret_val = IXGBE_ERR_MBX; int32_t index = IXGBE_MBVFICR_INDEX(vf_number); uint32_t vf_bit = vf_number % 16; DEBUGFUNC("ixgbe_check_for_msg_pf"); if (!ixgbe_check_for_bit_pf(hw, IXGBE_MBVFICR_VFREQ_VF1 << vf_bit, index)) { ret_val = IXGBE_SUCCESS; hw->mbx.stats.reqs++; } return ret_val; } /** * ixgbe_check_for_ack_pf - checks to see if the VF has ACKed * @hw: pointer to the HW structure * @vf_number: the VF index * * returns SUCCESS if the VF has set the Status bit or else ERR_MBX **/ int32_t ixgbe_check_for_ack_pf(struct ixgbe_hw *hw, uint16_t vf_number) { int32_t ret_val = IXGBE_ERR_MBX; int32_t index = IXGBE_MBVFICR_INDEX(vf_number); uint32_t vf_bit = vf_number % 16; DEBUGFUNC("ixgbe_check_for_ack_pf"); if (!ixgbe_check_for_bit_pf(hw, IXGBE_MBVFICR_VFACK_VF1 << vf_bit, index)) { ret_val = IXGBE_SUCCESS; hw->mbx.stats.acks++; } return ret_val; } /** * ixgbe_check_for_rst_pf - checks to see if the VF has reset * @hw: pointer to the HW structure * @vf_number: the VF index * * returns SUCCESS if the VF has set the Status bit or else ERR_MBX **/ int32_t ixgbe_check_for_rst_pf(struct ixgbe_hw *hw, uint16_t vf_number) { uint32_t reg_offset = (vf_number < 32) ? 0 : 1; uint32_t vf_shift = vf_number % 32; uint32_t vflre = 0; int32_t ret_val = IXGBE_ERR_MBX; DEBUGFUNC("ixgbe_check_for_rst_pf"); switch (hw->mac.type) { case ixgbe_mac_82599EB: vflre = IXGBE_READ_REG(hw, IXGBE_VFLRE(reg_offset)); break; case ixgbe_mac_X540: vflre = IXGBE_READ_REG(hw, IXGBE_VFLREC(reg_offset)); break; default: break; } if (vflre & (1 << vf_shift)) { ret_val = IXGBE_SUCCESS; IXGBE_WRITE_REG(hw, IXGBE_VFLREC(reg_offset), (1 << vf_shift)); hw->mbx.stats.rsts++; } return ret_val; } /** * ixgbe_obtain_mbx_lock_pf - obtain mailbox lock * @hw: pointer to the HW structure * @vf_number: the VF index * * return SUCCESS if we obtained the mailbox lock **/ int32_t ixgbe_obtain_mbx_lock_pf(struct ixgbe_hw *hw, uint16_t vf_number) { int32_t ret_val = IXGBE_ERR_MBX; uint32_t p2v_mailbox; DEBUGFUNC("ixgbe_obtain_mbx_lock_pf"); /* Take ownership of the buffer */ IXGBE_WRITE_REG(hw, IXGBE_PFMAILBOX(vf_number), IXGBE_PFMAILBOX_PFU); /* reserve mailbox for vf use */ p2v_mailbox = IXGBE_READ_REG(hw, IXGBE_PFMAILBOX(vf_number)); if (p2v_mailbox & IXGBE_PFMAILBOX_PFU) ret_val = IXGBE_SUCCESS; return ret_val; } /** * ixgbe_write_mbx_pf - Places a message in the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @vf_number: the VF index * * returns SUCCESS if it successfully copied message into the buffer **/ int32_t ixgbe_write_mbx_pf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t vf_number) { int32_t ret_val; uint16_t i; DEBUGFUNC("ixgbe_write_mbx_pf"); /* lock the mailbox to prevent pf/vf race condition */ ret_val = ixgbe_obtain_mbx_lock_pf(hw, vf_number); if (ret_val) goto out_no_write; /* flush msg and acks as we are overwriting the message buffer */ ixgbe_check_for_msg_pf(hw, vf_number); ixgbe_check_for_ack_pf(hw, vf_number); /* copy the caller specified message to the mailbox memory buffer */ for (i = 0; i < size; i++) IXGBE_WRITE_REG_ARRAY(hw, IXGBE_PFMBMEM(vf_number), i, msg[i]); /* Interrupt VF to tell it a message has been sent and release buffer*/ IXGBE_WRITE_REG(hw, IXGBE_PFMAILBOX(vf_number), IXGBE_PFMAILBOX_STS); /* update stats */ hw->mbx.stats.msgs_tx++; out_no_write: return ret_val; } /** * ixgbe_read_mbx_pf - Read a message from the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer * @vf_number: the VF index * * This function copies a message from the mailbox buffer to the caller's * memory buffer. The presumption is that the caller knows that there was * a message due to a VF request so no polling for message is needed. **/ int32_t ixgbe_read_mbx_pf(struct ixgbe_hw *hw, uint32_t *msg, uint16_t size, uint16_t vf_number) { int32_t ret_val; uint16_t i; DEBUGFUNC("ixgbe_read_mbx_pf"); /* lock the mailbox to prevent pf/vf race condition */ ret_val = ixgbe_obtain_mbx_lock_pf(hw, vf_number); if (ret_val) goto out_no_read; /* copy the message to the mailbox memory buffer */ for (i = 0; i < size; i++) msg[i] = IXGBE_READ_REG_ARRAY(hw, IXGBE_PFMBMEM(vf_number), i); /* Acknowledge the message and release buffer */ IXGBE_WRITE_REG(hw, IXGBE_PFMAILBOX(vf_number), IXGBE_PFMAILBOX_ACK); /* update stats */ hw->mbx.stats.msgs_rx++; out_no_read: return ret_val; } /** * ixgbe_init_mbx_params_pf - set initial values for pf mailbox * @hw: pointer to the HW structure * * Initializes the hw->mbx struct to correct values for pf mailbox */ void ixgbe_init_mbx_params_pf(struct ixgbe_hw *hw) { struct ixgbe_mbx_info *mbx = &hw->mbx; if (hw->mac.type != ixgbe_mac_82599EB && hw->mac.type != ixgbe_mac_X540) return; mbx->timeout = 0; mbx->usec_delay = 0; mbx->size = IXGBE_VFMAILBOX_SIZE; mbx->ops.read = ixgbe_read_mbx_pf; mbx->ops.write = ixgbe_write_mbx_pf; mbx->ops.read_posted = ixgbe_read_posted_mbx; mbx->ops.write_posted = ixgbe_write_posted_mbx; mbx->ops.check_for_msg = ixgbe_check_for_msg_pf; mbx->ops.check_for_ack = ixgbe_check_for_ack_pf; mbx->ops.check_for_rst = ixgbe_check_for_rst_pf; mbx->stats.msgs_tx = 0; mbx->stats.msgs_rx = 0; mbx->stats.reqs = 0; mbx->stats.acks = 0; mbx->stats.rsts = 0; }