/* $OpenBSD: kate.c,v 1.1 2008/03/27 01:44:23 cnst Exp $ */ /* * Copyright (c) 2008 Constantine A. Murenin * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include /* * AMD NPT Family 0Fh Processors, Function 3 -- Miscellaneous Control */ /* Function 3 Registers */ #define K_THERMTRIP_STAT_R 0xe4 #define K_NORTHBRIDGE_CAP_R 0xe8 #define K_CPUID_FAMILY_MODEL_R 0xfc /* Bits within Thermtrip Status Register */ #define K_THERM_SENSE_SEL (1 << 6) #define K_THERM_SENSE_CORE_SEL (1 << 2) /* Flip core and sensor selection bits */ #define K_T_SEL_C0(v) (v |= K_THERM_SENSE_CORE_SEL) #define K_T_SEL_C1(v) (v &= ~(K_THERM_SENSE_CORE_SEL)) #define K_T_SEL_S0(v) (v &= ~(K_THERM_SENSE_SEL)) #define K_T_SEL_S1(v) (v |= K_THERM_SENSE_SEL) /* * Revision Guide for AMD NPT Family 0Fh Processors, * Publication # 33610, Revision 3.30, February 2008 */ static const struct { const char rev[5]; const pcireg_t cpuid[4]; } kate_proc[] = { { "JH-F", { 0x00040F10, 0x00040F30, 0, 0 } }, /* F2, F3*/ { "BH-F", { 0x00040FB0, 0x00040F80, 0, 0 } }, /* F2 */ { "DH-F", { 0x00040FF0, 0x00050FF0, 0x00040FC0, 0 } }, /* F2, F3 */ { "JH-F", { 0x00040F30, 0x000C0F10, 0x00040F30, 0 } }, /* F3 */ { "BH-G", { 0x00060FB0, 0x00060F80, 0, 0 } }, /* G1, G2 */ { "DH-G", { 0x00070FF0, 0x00060FF0, 0, 0 } } /* G1, G2 */ }; struct kate_softc { struct device sc_dev; pci_chipset_tag_t sc_pc; pcitag_t sc_pcitag; struct ksensor sc_sensors[4]; struct ksensordev sc_sensordev; char sc_rev; int8_t sc_numsensors; }; int kate_match(struct device *, void *, void *); void kate_attach(struct device *, struct device *, void *); void kate_refresh(void *); struct cfattach kate_ca = { sizeof(struct kate_softc), kate_match, kate_attach }; struct cfdriver kate_cd = { NULL, "kate", DV_DULL }; int kate_match(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; #ifndef KATE_STRICT struct kate_softc ks; struct kate_softc *sc = &ks; #endif /* !KATE_STRICT */ pcireg_t c; int i, j; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD || PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_AMD_AMD64_MISC) return 0; /* * First, let's probe for chips at or after Revision F, which is * when the temperature readings were officially introduced. */ c = pci_conf_read(pa->pa_pc, pa->pa_tag, K_CPUID_FAMILY_MODEL_R); for (i = 0; i < sizeof(kate_proc) / sizeof(kate_proc[0]); i++) for (j = 0; kate_proc[i].cpuid[j] != 0; j++) if ((c & ~0xf) == kate_proc[i].cpuid[j]) return 2; /* supersede pchb(4) */ #ifndef KATE_STRICT /* * If the probe above was not successful, let's try to actually * read the sensors from the chip, and see if they make any sense. */ sc->sc_numsensors = 4; sc->sc_pc = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; kate_refresh(sc); for (i = 0; i < sc->sc_numsensors; i++) if (!(sc->sc_sensors[i].flags & SENSOR_FINVALID)) return 2; /* supersede pchb(4) */ #endif /* !KATE_STRICT */ return 0; } void kate_attach(struct device *parent, struct device *self, void *aux) { struct kate_softc *sc = (struct kate_softc *)self; struct pci_attach_args *pa = aux; pcireg_t c, d; int i, j, cmpcap; c = pci_conf_read(pa->pa_pc, pa->pa_tag, K_CPUID_FAMILY_MODEL_R); for (i = 0; i < sizeof(kate_proc) / sizeof(kate_proc[0]) && sc->sc_rev == '\0'; i++) for (j = 0; kate_proc[i].cpuid[j] != 0; j++) if ((c & ~0xf) == kate_proc[i].cpuid[j]) { sc->sc_rev = kate_proc[i].rev[3]; printf(": core rev %.4s%.1x", kate_proc[i].rev, c & 0xf); } if (c != 0x0 && sc->sc_rev == '\0') { /* CPUID Family Model Register was introduced in Revision F */ sc->sc_rev = 'G'; /* newer than E, assume G */ printf(": cpuid 0x%x", c); } d = pci_conf_read(pa->pa_pc, pa->pa_tag, K_NORTHBRIDGE_CAP_R); cmpcap = (d >> 12) && 0x3; sc->sc_pc = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; #ifndef KATE_STRICT sc->sc_numsensors = 4; kate_refresh(sc); if (cmpcap == 0 && (sc->sc_sensors[2].flags & SENSOR_FINVALID) && (sc->sc_sensors[3].flags & SENSOR_FINVALID)) sc->sc_numsensors = 2; #else sc->sc_numsensors = cmpcap ? 4 : 2; #endif /* !KATE_STRICT */ strlcpy(sc->sc_sensordev.xname, sc->sc_dev.dv_xname, sizeof(sc->sc_sensordev.xname)); for (i = 0; i < sc->sc_numsensors; i++) { sc->sc_sensors[i].type = SENSOR_TEMP; sensor_attach(&sc->sc_sensordev, &sc->sc_sensors[i]); } if (sensor_task_register(sc, kate_refresh, 5) == NULL) { printf(": unable to register the update task\n"); return; } sensordev_install(&sc->sc_sensordev); printf("\n"); } void kate_refresh(void *arg) { struct kate_softc *sc = arg; struct ksensor *s = sc->sc_sensors; int8_t n = sc->sc_numsensors; pcireg_t t, m; int i, v; t = pci_conf_read(sc->sc_pc, sc->sc_pcitag, K_THERMTRIP_STAT_R); for (i = 0; i < n; i++) { switch(i) { case 0: K_T_SEL_C0(t); K_T_SEL_S0(t); break; case 1: K_T_SEL_C0(t); K_T_SEL_S1(t); break; case 2: K_T_SEL_C1(t); K_T_SEL_S0(t); break; case 3: K_T_SEL_C1(t); K_T_SEL_S1(t); break; } m = t & (K_THERM_SENSE_CORE_SEL | K_THERM_SENSE_SEL); pci_conf_write(sc->sc_pc, sc->sc_pcitag, K_THERMTRIP_STAT_R, t); t = pci_conf_read(sc->sc_pc, sc->sc_pcitag, K_THERMTRIP_STAT_R); v = 0x3ff & (t >> 14); #ifdef KATE_STRICT if (sc->sc_rev != 'G') v &= ~0x3; #endif /* KATE_STRICT */ if ((t & (K_THERM_SENSE_CORE_SEL | K_THERM_SENSE_SEL)) == m && (v & ~0x3) != 0) s[i].flags &= ~SENSOR_FINVALID; else s[i].flags |= SENSOR_FINVALID; s[i].value = (v * 250000 - 49000000) + 273150000; } }