/* $OpenBSD: ncr.c,v 1.64 2002/06/04 00:09:08 deraadt Exp $ */ /* $NetBSD: ncr.c,v 1.63 1997/09/23 02:39:15 perry Exp $ */ /************************************************************************** ** ** Id: ncr.c,v 1.112 1997/11/07 09:20:56 phk Exp ** ** Device driver for the NCR 53C8xx PCI-SCSI-Controller. ** ** FreeBSD / NetBSD / OpenBSD ** **------------------------------------------------------------------------- ** ** Written for 386bsd and FreeBSD by ** Wolfgang Stanglmeier ** Stefan Esser ** ** Ported to NetBSD by ** Charles M. Hannum ** ** Modified for big endian systems by ** Per Fogelstrom for RTMX Inc, North Carolina. ** **------------------------------------------------------------------------- ** ** Copyright (c) 1994 Wolfgang Stanglmeier. All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** *************************************************************************** */ #define NCR_DATE "pl24 96/12/14" #define NCR_VERSION (2) #define MAX_UNITS (16) #define NCR_GETCC_WITHMSG #if defined (__FreeBSD__) && defined(KERNEL) #include "opt_ncr.h" #endif /* defined (__FreeBSD__) && defined(KERNEL) */ #ifdef FAILSAFE #ifndef SCSI_NCR_DFLT_TAGS #define SCSI_NCR_DFLT_TAGS (0) #endif /* SCSI_NCR_DFLT_TAGS */ #define NCR_CDROM_ASYNC #endif /* FAILSAFE */ /*========================================================== ** ** Configuration and Debugging ** ** May be overwritten in ** **========================================================== */ /* ** SCSI address of this device. ** The boot routines should have set it. ** If not, use this. */ #ifndef SCSI_NCR_MYADDR #define SCSI_NCR_MYADDR (7) #endif /* SCSI_NCR_MYADDR */ /* ** The default synchronous period factor ** (0=asynchronous) ** If maximum synchronous frequency is defined, use it instead. */ #ifndef SCSI_NCR_MAX_SYNC #ifndef SCSI_NCR_DFLT_SYNC #define SCSI_NCR_DFLT_SYNC (10) #endif /* SCSI_NCR_DFLT_SYNC */ #else #if SCSI_NCR_MAX_SYNC == 0 #define SCSI_NCR_DFLT_SYNC 0 #else #define SCSI_NCR_DFLT_SYNC (250000 / SCSI_NCR_MAX_SYNC) #endif #endif /* ** The minimal asynchronous pre-scaler period (ns) ** Shall be 40. */ #ifndef SCSI_NCR_MIN_ASYNC #define SCSI_NCR_MIN_ASYNC (40) #endif /* SCSI_NCR_MIN_ASYNC */ /* ** The maximal bus with (in log2 byte) ** (0=8 bit, 1=16 bit) */ #ifndef SCSI_NCR_MAX_WIDE #define SCSI_NCR_MAX_WIDE (1) #endif /* SCSI_NCR_MAX_WIDE */ /* ** The maximum number of tags per logic unit. ** Used only for disk devices that support tags. */ #ifndef SCSI_NCR_DFLT_TAGS #define SCSI_NCR_DFLT_TAGS (4) #endif /* SCSI_NCR_DFLT_TAGS */ /*========================================================== ** ** Configuration and Debugging ** **========================================================== */ /* ** Number of targets supported by the driver. ** n permits target numbers 0..n-1. ** Default is 16, meaning targets #0..#15. ** #7 is the host adapter. */ #define MAX_TARGET (16) /* ** Number of logic units supported by the driver. ** n enables logic unit numbers 0..n-1. ** The common SCSI devices require only ** one lun, so take 1 as the default. */ #ifndef MAX_LUN #define MAX_LUN (8) #endif /* MAX_LUN */ /* ** The maximum number of jobs scheduled for starting. ** There should be one slot per target, and one slot ** for each tag of each target in use. */ #ifndef MAX_START #define MAX_START (256) #endif /* ** The maximum number of segments a transfer is split into. */ #define MAX_SCATTER (33) /* ** The maximum transfer length (should be >= 64k). ** MUST NOT be greater than (MAX_SCATTER-1) * PAGE_SIZE. */ #ifdef __OpenBSD__ #define MAX_SIZE ((MAX_SCATTER-1) * (long) NBPG) #else #define MAX_SIZE ((MAX_SCATTER-1) * (long) PAGE_SIZE) #endif /* ** other */ #define NCR_SNOOP_TIMEOUT (1000000) /*========================================================== ** ** Include files ** **========================================================== */ #ifdef __OpenBSD__ #ifdef _KERNEL #define KERNEL #endif #else #include #endif #include #include #ifdef KERNEL #include #include #include #include #ifndef __OpenBSD__ #include #include #else #include #endif #include #endif /* KERNEL */ #ifndef __OpenBSD__ #include #include #include #else #include #include #include #include #include #include #if !defined(__alpha__) && !defined(__mips__) && !defined(__powerpc__) #define DELAY(x) delay(x) #endif #include #endif /* __OpenBSD__ */ #include #ifdef __OpenBSD__ #define __BROKEN_INDIRECT_CONFIG #ifdef NCR_VERBOSE #define bootverbose NCR_VERBOSE #else #define bootverbose 0 #endif #endif #if !defined(NCR_KVATOPHYS) #define NCR_KVATOPHYS(sc, va) vtophys(va) #endif #if defined(__OpenBSD__) && defined(__alpha__) /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va)) #endif /*========================================================== ** ** Debugging tags ** **========================================================== */ #define DEBUG_ALLOC (0x0001) #define DEBUG_PHASE (0x0002) #define DEBUG_POLL (0x0004) #define DEBUG_QUEUE (0x0008) #define DEBUG_RESULT (0x0010) #define DEBUG_SCATTER (0x0020) #define DEBUG_SCRIPT (0x0040) #define DEBUG_TINY (0x0080) #define DEBUG_TIMING (0x0100) #define DEBUG_NEGO (0x0200) #define DEBUG_TAGS (0x0400) #define DEBUG_FREEZE (0x0800) #define DEBUG_RESTART (0x1000) /* ** Enable/Disable debug messages. ** Can be changed at runtime too. */ #ifdef SCSI_NCR_DEBUG #define DEBUG_FLAGS ncr_debug #else /* SCSI_NCR_DEBUG */ #define SCSI_NCR_DEBUG 0 #define DEBUG_FLAGS 0 #endif /* SCSI_NCR_DEBUG */ /*========================================================== ** ** assert () ** **========================================================== ** ** modified copy from 386bsd:/usr/include/sys/assert.h ** **---------------------------------------------------------- */ #undef assert #define assert(expression) { \ if (!(expression)) { \ (void)printf(\ "assertion \"%s\" failed: file \"%s\", line %d\n", \ #expression, \ __FILE__, __LINE__); \ } \ } /*========================================================== ** ** Access to the controller chip. ** **========================================================== */ #ifdef __OpenBSD__ #define INB(r) \ INB_OFF(offsetof(struct ncr_reg, r)) #define INB_OFF(o) \ bus_space_read_1 (np->sc_st, np->sc_sh, (o)) #define INW(r) \ bus_space_read_2 (np->sc_st, np->sc_sh, offsetof(struct ncr_reg, r)) #define INL(r) \ INL_OFF(offsetof(struct ncr_reg, r)) #define INL_OFF(o) \ bus_space_read_4 (np->sc_st, np->sc_sh, (o)) #define OUTB(r, val) \ bus_space_write_1 (np->sc_st, np->sc_sh, offsetof(struct ncr_reg, r), (val)) #define OUTW(r, val) \ bus_space_write_2 (np->sc_st, np->sc_sh, offsetof(struct ncr_reg, r), (val)) #define OUTL(r, val) \ OUTL_OFF(offsetof(struct ncr_reg, r), (val)) #define OUTL_OFF(o, val) \ bus_space_write_4 (np->sc_st, np->sc_sh, (o), (val)) #define READSCRIPT_OFF(base, off) \ SCR_BO(base ? *((int32_t *)((char *)base + (off))) : \ bus_space_read_4 (np->ram_tag, np->ram_handle, off)) #define WRITESCRIPT_OFF(base, off, val) \ do { \ if (base) \ *((int32_t *)((char *)base + (off))) = (SCR_BO(val)); \ else \ bus_space_write_4 (np->ram_tag, np->ram_handle, off, SCR_BO(val)); \ } while (0) #define READSCRIPT(r) \ READSCRIPT_OFF(np->script, offsetof(struct script, r)) #define WRITESCRIPT(r, val) \ WRITESCRIPT_OFF(np->script, offsetof(struct script, r), val) #else /* !__OpenBSD__ */ #ifdef NCR_IOMAPPED #define INB(r) inb (np->port + offsetof(struct ncr_reg, r)) #define INB_OFF(o) inb (np->port + (o)) #define INW(r) inw (np->port + offsetof(struct ncr_reg, r)) #define INL(r) inl (np->port + offsetof(struct ncr_reg, r)) #define INL_OFF(o) inl (np->port + (o)) #define OUTB(r, val) outb (np->port+offsetof(struct ncr_reg,r),(val)) #define OUTW(r, val) outw (np->port+offsetof(struct ncr_reg,r),(val)) #define OUTL(r, val) outl (np->port+offsetof(struct ncr_reg,r),(val)) #define OUTL_OFF(o, val) outl (np->port+(o),(val)) #else #define INB(r) (np->reg->r) #define INB_OFF(o) (*((volatile int8_t *)((char *)np->reg + (o)))) #define INW(r) (np->reg->r) #define INL(r) (np->reg->r) #define INL_OFF(o) (*((volatile int32_t *)((char *)np->reg + (o)))) #define OUTB(r, val) np->reg->r = (val) #define OUTW(r, val) np->reg->r = (val) #define OUTL(r, val) np->reg->r = (val) #define OUTL_OFF(o, val) *((volatile int32_t *)((char *)np->reg + (o))) = val #endif #define READSCRIPT_OFF(base, off) (*((int32_t *)((char *)base + (off)))) #define READSCRIPT(r) (np->script->r) #define WRITESCRIPT(r, val) np->script->r = (val) #endif /* __OpenBSD__ */ /* ** Set bit field ON, OFF */ #define OUTONB(r, m) OUTB(r, INB(r) | (m)) #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) #define OUTONW(r, m) OUTW(r, INW(r) | (m)) #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) #define OUTONL(r, m) OUTL(r, INL(r) | (m)) #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) /*========================================================== ** ** Command control block states. ** **========================================================== */ #define HS_IDLE (0) #define HS_BUSY (1) #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ #define HS_DISCONNECT (3) /* Disconnected by target */ #define HS_COMPLETE (4) #define HS_SEL_TIMEOUT (5) /* Selection timeout */ #define HS_RESET (6) /* SCSI reset */ #define HS_ABORTED (7) /* Transfer aborted */ #define HS_TIMEOUT (8) /* Software timeout */ #define HS_FAIL (9) /* SCSI or PCI bus errors */ #define HS_UNEXPECTED (10) /* Unexpected disconnect */ #define HS_DONEMASK (0xfc) /*========================================================== ** ** Software Interrupt Codes ** **========================================================== */ #define SIR_SENSE_RESTART (1) #define SIR_SENSE_FAILED (2) #define SIR_STALL_RESTART (3) #define SIR_STALL_QUEUE (4) #define SIR_NEGO_SYNC (5) #define SIR_NEGO_WIDE (6) #define SIR_NEGO_FAILED (7) #define SIR_NEGO_PROTO (8) #define SIR_REJECT_RECEIVED (9) #define SIR_REJECT_SENT (10) #define SIR_IGN_RESIDUE (11) #define SIR_MISSING_SAVE (12) #define SIR_MAX (12) /*========================================================== ** ** Extended error codes. ** xerr_status field of struct ccb. ** **========================================================== */ #define XE_OK (0) #define XE_EXTRA_DATA (1) /* unexpected data phase */ #define XE_BAD_PHASE (2) /* illegal phase (4/5) */ /*========================================================== ** ** Negotiation status. ** nego_status field of struct ccb. ** **========================================================== */ #define NS_SYNC (1) #define NS_WIDE (2) /*========================================================== ** ** "Special features" of targets. ** quirks field of struct tcb. ** actualquirks field of struct ccb. ** **========================================================== */ #define QUIRK_AUTOSAVE (0x01) #define QUIRK_NOMSG (0x02) #define QUIRK_NOSYNC (0x10) #define QUIRK_NOWIDE16 (0x20) #define QUIRK_NOTAGS (0x40) #define QUIRK_UPDATE (0x80) /*========================================================== ** ** Capability bits in Inquire response byte 7. ** **========================================================== */ #define INQ7_QUEUE (0x02) #define INQ7_SYNC (0x10) #define INQ7_WIDE16 (0x20) /*========================================================== ** ** Misc. ** **========================================================== */ #define CCB_MAGIC (0xf2691ad2) #define MAX_TAGS (16) /* hard limit */ /*========================================================== ** ** OS dependencies. ** ** Note that various types are defined in ncrreg.h. ** **========================================================== */ #define PRINT_ADDR(xp) sc_print_addr(xp->sc_link) /*========================================================== ** ** Declaration of structs. ** **========================================================== */ struct tcb; struct lcb; struct ccb; struct ncb; struct script; typedef struct ncb * ncb_p; typedef struct tcb * tcb_p; typedef struct lcb * lcb_p; typedef struct ccb * ccb_p; struct link { ncrcmd l_cmd; ncrcmd l_paddr; }; struct usrcmd { u_long target; u_long lun; u_long data; u_long cmd; }; #define UC_SETSYNC 10 #define UC_SETTAGS 11 #define UC_SETDEBUG 12 #define UC_SETORDER 13 #define UC_SETWIDE 14 #define UC_SETFLAG 15 #define UF_TRACE (0x01) /*--------------------------------------- ** ** Timestamps for profiling ** **--------------------------------------- */ struct tstamp { struct timeval start; struct timeval end; struct timeval select; struct timeval command; struct timeval data; struct timeval status; struct timeval disconnect; struct timeval reselect; }; /* ** profiling data (per device) */ struct profile { u_long num_trans; u_long num_bytes; u_long num_disc; u_long num_break; u_long num_int; u_long num_fly; u_long ms_setup; u_long ms_data; u_long ms_disc; u_long ms_post; }; /*========================================================== ** ** Declaration of structs: target control block ** **========================================================== */ struct tcb { /* ** during reselection the ncr jumps to this point ** with SFBR set to the encoded target number ** with bit 7 set. ** if it's not this target, jump to the next. ** ** JUMP IF (SFBR != #target#) ** @(next tcb) */ struct link jump_tcb; /* ** load the actual values for the sxfer and the scntl3 ** register (sync/wide mode). ** ** SCR_COPY (1); ** @(sval field of this tcb) ** @(sxfer register) ** SCR_COPY (1); ** @(wval field of this tcb) ** @(scntl3 register) */ ncrcmd getscr[6]; /* ** if next message is "identify" ** then load the message to SFBR, ** else load 0 to SFBR. ** ** CALL ** */ struct link call_lun; /* ** now look for the right lun. ** ** JUMP ** @(first ccb of this lun) */ struct link jump_lcb; /* ** pointer to interrupted getcc ccb */ ccb_p hold_cp; /* ** pointer to ccb used for negotiating. ** Avoid to start a nego for all queued commands ** when tagged command queuing is enabled. */ ccb_p nego_cp; /* ** statistical data */ u_long transfers; u_long bytes; /* ** user settable limits for sync transfer ** and tagged commands. */ u_char usrsync; u_char usrtags; u_char usrwide; u_char usrflag; /* ** negotiation of wide and synch transfer. ** device quirks. */ /*0*/ u_char minsync; /*1*/ u_char sval; /*2*/ u_short period; /*0*/ u_char maxoffs; /*1*/ u_char quirks; /*2*/ u_char widedone; /*3*/ u_char wval; /* ** inquire data */ #define MAX_INQUIRE 36 u_char inqdata[MAX_INQUIRE]; /* ** the lcb's of this tcb */ lcb_p lp[MAX_LUN]; }; /*========================================================== ** ** Declaration of structs: lun control block ** **========================================================== */ struct lcb { /* ** during reselection the ncr jumps to this point ** with SFBR set to the "Identify" message. ** if it's not this lun, jump to the next. ** ** JUMP IF (SFBR != #lun#) ** @(next lcb of this target) */ struct link jump_lcb; /* ** if next message is "simple tag", ** then load the tag to SFBR, ** else load 0 to SFBR. ** ** CALL ** */ struct link call_tag; /* ** now look for the right ccb. ** ** JUMP ** @(first ccb of this lun) */ struct link jump_ccb; /* ** start of the ccb chain */ ccb_p next_ccb; /* ** Control of tagged queueing */ u_char reqccbs; u_char actccbs; u_char reqlink; u_char actlink; u_char usetags; u_char lasttag; }; /*========================================================== ** ** Declaration of structs: COMMAND control block ** **========================================================== ** ** This substructure is copied from the ccb to a ** global address after selection (or reselection) ** and copied back before disconnect. ** ** These fields are accessible to the script processor. ** **---------------------------------------------------------- */ struct head { /* ** Execution of a ccb starts at this point. ** It's a jump to the "SELECT" label ** of the script. ** ** After successful selection the script ** processor overwrites it with a jump to ** the IDLE label of the script. */ struct link launch; /* ** Saved data pointer. ** Points to the position in the script ** responsible for the actual transfer ** of data. ** It's written after reception of a ** "SAVE_DATA_POINTER" message. ** The goalpointer points after ** the last transfer command. */ u_int32_t savep; u_int32_t lastp; u_int32_t goalp; /* ** The virtual address of the ccb ** containing this header. */ ccb_p cp; /* ** space for some timestamps to gather ** profiling data about devices and this driver. */ struct tstamp stamp; /* ** status fields. */ u_char status[8]; }; /* ** The status bytes are used by the host and the script processor. ** ** The first four byte are copied to the scratchb register ** (declared as scr0..scr3 in ncrreg.h) just after the select/reselect, ** and copied back just after disconnecting. ** Inside the script the XX_REG are used. ** ** The last four bytes are used inside the script by "COPY" commands. ** Because source and destination must have the same alignment ** in a longword, the fields HAVE to be at the choosen offsets. ** xerr_st (4) 0 (0x34) scratcha ** sync_st (5) 1 (0x05) sxfer ** wide_st (7) 3 (0x03) scntl3 */ /* ** First four bytes (script) */ #define QU_REG scr0 #define HS_REG scr1 #define HS_PRT nc_scr1 #define SS_REG scr2 #define PS_REG scr3 /* ** First four bytes (host) */ #define actualquirks phys.header.status[0] #define host_status phys.header.status[1] #define scsi_status phys.header.status[2] #define parity_status phys.header.status[3] /* ** Last four bytes (script) */ #define xerr_st header.status[4] /* MUST be ==0 mod 4 */ #define sync_st header.status[5] /* MUST be ==1 mod 4 */ #define nego_st header.status[6] #define wide_st header.status[7] /* MUST be ==3 mod 4 */ /* ** Last four bytes (host) */ #define xerr_status phys.xerr_st #define sync_status phys.sync_st #define nego_status phys.nego_st #define wide_status phys.wide_st /*========================================================== ** ** Declaration of structs: Data structure block ** **========================================================== ** ** During execution of a ccb by the script processor, ** the DSA (data structure address) register points ** to this substructure of the ccb. ** This substructure contains the header with ** the script-processor-changable data and ** data blocks for the indirect move commands. ** **---------------------------------------------------------- */ struct dsb { /* ** Header. ** Has to be the first entry, ** because it's jumped to by the ** script processor */ struct head header; /* ** Table data for Script */ struct scr_tblsel select; struct scr_tblmove smsg ; struct scr_tblmove smsg2 ; struct scr_tblmove cmd ; struct scr_tblmove scmd ; struct scr_tblmove sense ; struct scr_tblmove data [MAX_SCATTER]; }; /*========================================================== ** ** Declaration of structs: Command control block. ** **========================================================== ** ** During execution of a ccb by the script processor, ** the DSA (data structure address) register points ** to this substructure of the ccb. ** This substructure contains the header with ** the script-processor-changable data and then ** data blocks for the indirect move commands. ** **---------------------------------------------------------- */ struct ccb { /* ** This filler ensures that the global header is ** cache line size aligned. */ ncrcmd filler[4]; /* ** during reselection the ncr jumps to this point. ** If a "SIMPLE_TAG" message was received, ** then SFBR is set to the tag. ** else SFBR is set to 0 ** If looking for another tag, jump to the next ccb. ** ** JUMP IF (SFBR != #TAG#) ** @(next ccb of this lun) */ struct link jump_ccb; /* ** After execution of this call, the return address ** (in the TEMP register) points to the following ** data structure block. ** So copy it to the DSA register, and start ** processing of this data structure. ** ** CALL ** */ struct link call_tmp; /* ** This is the data structure which is ** to be executed by the script processor. */ struct dsb phys; /* ** If a data transfer phase is terminated too early ** (after reception of a message (i.e. DISCONNECT)), ** we have to prepare a mini script to transfer ** the rest of the data. */ ncrcmd patch[8]; /* ** The general SCSI driver provides a ** pointer to a control block. */ struct scsi_xfer *xfer; /* ** We prepare a message to be sent after selection, ** and a second one to be sent after getcc selection. ** Contents are IDENTIFY and SIMPLE_TAG. ** While negotiating sync or wide transfer, ** a SDTM or WDTM message is appended. */ u_char scsi_smsg [8]; u_char scsi_smsg2[8]; #if defined(__mips__) u_char local_sense[sizeof(struct scsi_sense_data)]; #endif /* ** Lock this ccb. ** Flag is used while looking for a free ccb. */ u_long magic; /* ** Physical address of this instance of ccb */ u_long p_ccb; /* ** Completion time out for this job. ** It's set to time of start + allowed number of seconds. */ u_long tlimit; /* ** All ccbs of one hostadapter are chained. */ ccb_p link_ccb; /* ** All ccbs of one target/lun are chained. */ ccb_p next_ccb; /* ** Sense command */ u_char sensecmd[6]; /* ** Tag for this transfer. ** It's patched into jump_ccb. ** If it's not zero, a SIMPLE_TAG ** message is included in smsg. */ u_char tag; }; #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl)) /*========================================================== ** ** Declaration of structs: NCR device descriptor ** **========================================================== */ struct ncb { #ifndef __OpenBSD__ /* ** The global header. ** Accessible to both the host and the ** script-processor. ** We assume it is cache line size aligned. */ struct head header; #endif #ifdef __OpenBSD__ struct device sc_dev; pci_chipset_tag_t sc_pc; void *sc_ih; bus_space_tag_t sc_st; bus_space_handle_t sc_sh; int sc_iomapped; #else /* !__OpenBSD__ */ int unit; #endif /* __OpenBSD__ */ /*----------------------------------------------- ** Scripts .. **----------------------------------------------- ** ** During reselection the ncr jumps to this point. ** The SFBR register is loaded with the encoded target id. ** ** Jump to the first target. ** ** JUMP ** @(next tcb) */ struct link jump_tcb; /*----------------------------------------------- ** Configuration .. **----------------------------------------------- ** ** virtual and physical addresses ** of the 53c810 chip. */ #ifdef __OpenBSD__ bus_addr_t paddr; bus_space_tag_t ram_tag; bus_space_handle_t ram_handle; bus_addr_t paddr2; int scriptmapped; #else vm_offset_t vaddr; vm_offset_t paddr; vm_offset_t vaddr2; vm_offset_t paddr2; /* ** pointer to the chip's registers. */ volatile struct ncr_reg* reg; #endif /* ** Scripts instance virtual address. */ struct script *script; struct scripth *scripth; /* ** Scripts instance physical address. */ u_long p_script; u_long p_scripth; /* ** The SCSI address of the host adapter. */ u_char myaddr; /* ** timing parameters */ u_char minsync; /* Minimum sync period factor */ u_char maxsync; /* Maximum sync period factor */ u_char maxoffs; /* Max scsi offset */ u_char clock_divn; /* Number of clock divisors */ u_long clock_khz; /* SCSI clock frequency in KHz */ u_long features; /* Chip features map */ u_char multiplier; /* Clock multiplier (1,2,4) */ u_char maxburst; /* log base 2 of dwords burst */ /* ** BIOS supplied PCI bus options */ u_char rv_scntl3; u_char rv_dcntl; u_char rv_dmode; u_char rv_ctest3; u_char rv_ctest4; u_char rv_ctest5; u_char rv_gpcntl; u_char rv_stest2; /*----------------------------------------------- ** Link to the generic SCSI driver **----------------------------------------------- */ struct scsi_link sc_link; /*----------------------------------------------- ** Job control **----------------------------------------------- ** ** Commands from user */ struct usrcmd user; u_char order; /* ** Target data */ struct tcb target[MAX_TARGET]; /* ** Start queue. */ u_int32_t squeue [MAX_START]; u_short squeueput; u_short actccbs; /* ** Timeout handler */ u_long heartbeat; u_short ticks; u_short latetime; u_long lasttime; #ifdef __FreeBSD__ struct callout_handle timeout_ch; #elif defined (__OpenBSD__) struct timeout sc_timeout; #endif /*----------------------------------------------- ** Debug and profiling **----------------------------------------------- ** ** register dump */ struct ncr_reg regdump; struct timeval regtime; /* ** Profiling data */ struct profile profile; u_long disc_phys; u_long disc_ref; #ifdef __OpenBSD__ /* ** The global header. ** Accessible to both the host and the ** script-processor. ** We assume it is cache line size aligned. */ struct head header; #endif /* ** The global control block. ** It's used only during the configuration phase. ** A target control block will be created ** after the first successful transfer. ** It is allocated separately in order to ensure ** cache line size alignment. */ struct ccb *ccb; /* ** message buffers. ** Should be longword aligned, ** because they're written with a ** COPY script command. */ u_char msgout[8]; u_char msgin [8]; u_int32_t lastmsg; /* ** Buffer for STATUS_IN phase. */ u_char scratch; /* ** controller chip dependent maximal transfer width. */ u_char maxwide; /* ** option for M_IDENTIFY message: enables disconnecting */ u_char disc; #if defined(NCR_IOMAPPED) && !defined(__OpenBSD__) /* ** address of the ncr control registers in io space */ u_short port; #endif }; #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl)) #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl)) /*========================================================== ** ** ** Script for NCR-Processor. ** ** Use ncr_script_fill() to create the variable parts. ** Use ncr_script_copy_and_bind() to make a copy and ** bind to physical addresses. ** ** **========================================================== ** ** We have to know the offsets of all labels before ** we reach them (for forward jumps). ** Therefore we declare a struct here. ** If you make changes inside the script, ** DONT FORGET TO CHANGE THE LENGTHS HERE! ** **---------------------------------------------------------- */ /* ** Script fragments which are loaded into the on-board RAM ** of 825A, 875 and 895 chips. */ struct script { ncrcmd start [ 7]; ncrcmd start0 [ 2]; ncrcmd start1 [ 3]; ncrcmd startpos [ 1]; ncrcmd trysel [ 8]; ncrcmd skip [ 8]; ncrcmd skip2 [ 3]; ncrcmd idle [ 2]; ncrcmd select [ 18]; ncrcmd prepare [ 4]; ncrcmd loadpos [ 14]; ncrcmd prepare2 [ 24]; ncrcmd setmsg [ 5]; ncrcmd clrack [ 2]; ncrcmd dispatch [ 33]; ncrcmd no_data [ 17]; ncrcmd checkatn [ 10]; ncrcmd command [ 15]; ncrcmd status [ 27]; ncrcmd msg_in [ 26]; ncrcmd msg_bad [ 6]; ncrcmd complete [ 13]; ncrcmd cleanup [ 12]; ncrcmd cleanup0 [ 9]; ncrcmd signal [ 12]; ncrcmd save_dp [ 5]; ncrcmd restore_dp [ 5]; ncrcmd disconnect [ 12]; ncrcmd disconnect0 [ 5]; ncrcmd disconnect1 [ 23]; ncrcmd msg_out [ 9]; ncrcmd msg_out_done [ 7]; ncrcmd badgetcc [ 6]; ncrcmd reselect [ 8]; ncrcmd reselect1 [ 8]; ncrcmd reselect2 [ 8]; ncrcmd resel_tmp [ 5]; ncrcmd resel_lun [ 18]; ncrcmd resel_tag [ 24]; ncrcmd data_in [MAX_SCATTER * 4 + 7]; ncrcmd data_out [MAX_SCATTER * 4 + 7]; }; /* ** Script fragments which stay in main memory for all chips. */ struct scripth { ncrcmd tryloop [MAX_START*5+2]; ncrcmd msg_parity [ 6]; ncrcmd msg_reject [ 8]; ncrcmd msg_ign_residue [ 32]; ncrcmd msg_extended [ 18]; ncrcmd msg_ext_2 [ 18]; ncrcmd msg_wdtr [ 27]; ncrcmd msg_ext_3 [ 18]; ncrcmd msg_sdtr [ 27]; ncrcmd msg_out_abort [ 10]; ncrcmd getcc [ 4]; ncrcmd getcc1 [ 5]; #ifdef NCR_GETCC_WITHMSG ncrcmd getcc2 [ 29]; #else ncrcmd getcc2 [ 14]; #endif ncrcmd getcc3 [ 6]; ncrcmd aborttag [ 4]; ncrcmd abort [ 22]; ncrcmd snooptest [ 9]; ncrcmd snoopend [ 2]; }; /*========================================================== ** ** ** Function headers. ** ** **========================================================== */ #ifdef KERNEL static void ncr_alloc_ccb (ncb_p np, u_long target, u_long lun); static void ncr_complete (ncb_p np, ccb_p cp); static int ncr_delta (struct timeval * from, struct timeval * to); static void ncr_exception (ncb_p np); static void ncr_free_ccb (ncb_p np, ccb_p cp, int flags); static void ncr_selectclock (ncb_p np, u_char scntl3); static void ncr_getclock (ncb_p np, u_char multiplier); static ccb_p ncr_get_ccb (ncb_p np, u_long flags, u_long t,u_long l); static void ncr_init (ncb_p np, char * msg, u_long code); #ifdef __OpenBSD__ static int ncr_intr (void *vnp); #else static void ncr_intr (void *vnp); static u_int32_t ncr_info (int unit); #endif /* !__OpenBSD__ */ static void ncr_int_ma (ncb_p np, u_char dstat); static void ncr_int_sir (ncb_p np); static void ncr_int_sto (ncb_p np); #ifdef __OpenBSD__ static u_long ncr_lookup (char *id); #endif static void ncr_min_phys (struct buf *bp); static void ncr_negotiate (struct ncb* np, struct tcb* tp); static void ncr_opennings (ncb_p np, lcb_p lp, struct scsi_xfer * xp); static void ncb_profile (ncb_p np, ccb_p cp); static void ncr_script_copy_and_bind (ncb_p np, ncrcmd *src, ncrcmd *dst, int len); static void ncr_script_fill (struct script * scr, struct scripth *scrh); static int ncr_scatter (ncb_p np, struct dsb* phys, vm_offset_t vaddr, vm_size_t datalen); static void ncr_setmaxtags (tcb_p tp, u_long usrtags); static void ncr_getsync (ncb_p np, u_char sfac, u_char *fakp, u_char *scntl3p); static void ncr_setsync (ncb_p np, ccb_p cp,u_char scntl3,u_char sxfer); static void ncr_settags (tcb_p tp, lcb_p lp, u_long usrtags); static void ncr_setwide (ncb_p np, ccb_p cp, u_char wide, u_char ack); static int ncr_show_msg (u_char * msg); static int ncr_snooptest (ncb_p np); static int32_t ncr_start (struct scsi_xfer *xp); static void ncr_timeout (void *arg); static void ncr_usercmd (ncb_p np); static void ncr_wakeup (ncb_p np, u_long code); #ifdef __OpenBSD__ #ifdef __BROKEN_INDIRECT_CONFIG static int ncr_probe (struct device *, void *, void *); #else static int ncr_probe (struct device *, struct cfdata *, void *); #endif static void ncr_attach (struct device *, struct device *, void *); #else /* !__OpenBSD__ */ static char *ncr_probe (pcici_t tag, pcidi_t type); static void ncr_attach (pcici_t tag, int unit); #endif /* __OpenBSD__ */ #endif /* KERNEL */ /*========================================================== ** ** ** Global static data. ** ** **========================================================== */ #if 0 static char ident[] = "\n$OpenBSD: ncr.c,v 1.64 2002/06/04 00:09:08 deraadt Exp $\n"; #endif static const u_long ncr_version = NCR_VERSION * 11 + (u_long) sizeof (struct ncb) * 7 + (u_long) sizeof (struct ccb) * 5 + (u_long) sizeof (struct lcb) * 3 + (u_long) sizeof (struct tcb) * 2; #ifdef KERNEL #ifndef __OpenBSD__ static const int nncr=MAX_UNITS; /* XXX to be replaced by SYSCTL */ ncb_p ncrp [MAX_UNITS]; /* XXX to be replaced by SYSCTL */ #endif /* !__OpenBSD__ */ static int ncr_debug = SCSI_NCR_DEBUG; #ifndef __OpenBSD__ SYSCTL_INT(_debug, OID_AUTO, ncr_debug, CTLFLAG_RW, &ncr_debug, 0, ""); #endif /* !__OpenBSD__ */ static int ncr_cache; /* to be aligned _NOT_ static */ /*========================================================== ** ** ** Global static data: auto configure ** ** **========================================================== */ #define NCR_810_ID (0x00011000ul) #define NCR_815_ID (0x00041000ul) #define NCR_820_ID (0x00021000ul) #define NCR_825_ID (0x00031000ul) #define NCR_860_ID (0x00061000ul) #define NCR_875_ID (0x000f1000ul) #define NCR_875_ID2 (0x008f1000ul) #define NCR_885_ID (0x000d1000ul) #define NCR_895_ID (0x000c1000ul) #define NCR_895A_ID (0x00121000ul) #define NCR_896_ID (0x000b1000ul) #define NCR_1510_ID (0x00101000ul) #define NCR_1510D_ID (0x000a1000ul) #ifdef __OpenBSD__ struct cfattach ncr_ca = { sizeof(struct ncb), ncr_probe, ncr_attach }; struct cfdriver ncr_cd = { NULL, "ncr", DV_DULL }; #else /* !__OpenBSD__ */ static u_long ncr_count; static struct pci_device ncr_device = { "ncr", ncr_probe, ncr_attach, &ncr_count, NULL }; DATA_SET (pcidevice_set, ncr_device); #endif /* !__OpenBSD__ */ static struct scsi_adapter ncr_switch = { ncr_start, ncr_min_phys, 0, 0, #ifndef __OpenBSD__ ncr_info, "ncr", #endif /* !__OpenBSD__ */ }; static struct scsi_device ncr_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ #ifndef __OpenBSD__ "ncr", #endif /* !__OpenBSD__ */ }; #ifdef __OpenBSD__ #define ncr_name(np) (np->sc_dev.dv_xname) #else /* !__OpenBSD__ */ static char *ncr_name (ncb_p np) { static char name[10]; sprintf(name, "ncr%d", np->unit); return (name); } #endif /*========================================================== ** ** ** Scripts for NCR-Processor. ** ** Use ncr_script_bind for binding to physical addresses. ** ** **========================================================== ** ** NADDR generates a reference to a field of the controller data. ** PADDR generates a reference to another part of the script. ** RADDR generates a reference to a script processor register. ** FADDR generates a reference to a script processor register ** with offset. ** **---------------------------------------------------------- */ #define RELOC_SOFTC 0x40000000 #define RELOC_LABEL 0x50000000 #define RELOC_REGISTER 0x60000000 #define RELOC_KVAR 0x70000000 #define RELOC_LABELH 0x80000000 #define RELOC_MASK 0xf0000000 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label)) #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label)) #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label)) #define RADDR(label) (RELOC_REGISTER | REG(label)) #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) #define KVAR(which) (RELOC_KVAR | (which)) #define KVAR_TIME_TV_SEC (0) #define KVAR_TIME (1) #define KVAR_NCR_CACHE (2) #define SCRIPT_KVAR_FIRST (0) #define SCRIPT_KVAR_LAST (3) /* * Kernel variables referenced in the scripts. * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. */ #ifdef __OpenBSD__ static unsigned long script_kvars[] = { (unsigned long)&mono_time.tv_sec, (unsigned long)&mono_time, (unsigned long)&ncr_cache, }; #else static void *script_kvars[] = { &time.tv_sec, &time, &ncr_cache }; #endif static struct script script0 = { /*--------------------------< START >-----------------------*/ { /* ** Claim to be still alive ... */ SCR_COPY (sizeof (((struct ncb *)0)->heartbeat)), KVAR (KVAR_TIME_TV_SEC), NADDR (heartbeat), /* ** Make data structure address invalid. ** clear SIGP. */ SCR_LOAD_REG (dsa, 0xff), 0, SCR_FROM_REG (ctest2), 0, }/*-------------------------< START0 >----------------------*/,{ /* ** Hook for interrupted GetConditionCode. ** Will be patched to ... IFTRUE by ** the interrupt handler. */ SCR_INT ^ IFFALSE (0), SIR_SENSE_RESTART, }/*-------------------------< START1 >----------------------*/,{ /* ** Hook for stalled start queue. ** Will be patched to IFTRUE by the interrupt handler. */ SCR_INT ^ IFFALSE (0), SIR_STALL_RESTART, /* ** Then jump to a certain point in tryloop. ** Due to the lack of indirect addressing the code ** is self modifying here. */ SCR_JUMP, }/*-------------------------< STARTPOS >--------------------*/,{ PADDRH(tryloop), }/*-------------------------< TRYSEL >----------------------*/,{ /* ** Now: ** DSA: Address of a Data Structure ** or Address of the IDLE-Label. ** ** TEMP: Address of a script, which tries to ** start the NEXT entry. ** ** Save the TEMP register into the SCRATCHA register. ** Then copy the DSA to TEMP and RETURN. ** This is kind of an indirect jump. ** (The script processor has NO stack, so the ** CALL is actually a jump and link, and the ** RETURN is an indirect jump.) ** ** If the slot was empty, DSA contains the address ** of the IDLE part of this script. The processor ** jumps to IDLE and waits for a reselect. ** It will wake up and try the same slot again ** after the SIGP bit becomes set by the host. ** ** If the slot was not empty, DSA contains ** the address of the phys-part of a ccb. ** The processor jumps to this address. ** phys starts with head, ** head starts with launch, ** so actually the processor jumps to ** the lauch part. ** If the entry is scheduled for execution, ** then launch contains a jump to SELECT. ** If it's not scheduled, it contains a jump to IDLE. */ SCR_COPY (4), RADDR (temp), RADDR (scratcha), SCR_COPY (4), RADDR (dsa), RADDR (temp), SCR_RETURN, 0 }/*-------------------------< SKIP >------------------------*/,{ /* ** This entry has been canceled. ** Next time use the next slot. */ SCR_COPY (4), RADDR (scratcha), PADDR (startpos), /* ** patch the launch field. ** should look like an idle process. */ SCR_COPY_F (4), RADDR (dsa), PADDR (skip2), SCR_COPY (8), PADDR (idle), }/*-------------------------< SKIP2 >-----------------------*/,{ 0, SCR_JUMP, PADDR(start), }/*-------------------------< IDLE >------------------------*/,{ /* ** Nothing to do? ** Wait for reselect. */ SCR_JUMP, PADDR(reselect), }/*-------------------------< SELECT >----------------------*/,{ /* ** DSA contains the address of a scheduled ** data structure. ** ** SCRATCHA contains the address of the script, ** which starts the next entry. ** ** Set Initiator mode. ** ** (Target mode is left as an exercise for the reader) */ SCR_CLR (SCR_TRG), 0, SCR_LOAD_REG (HS_REG, 0xff), 0, /* ** And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), PADDR (reselect), /* ** Now there are 4 possibilities: ** ** (1) The ncr looses arbitration. ** This is ok, because it will try again, ** when the bus becomes idle. ** (But beware of the timeout function!) ** ** (2) The ncr is reselected. ** Then the script processor takes the jump ** to the RESELECT label. ** ** (3) The ncr completes the selection. ** Then it will execute the next statement. ** ** (4) There is a selection timeout. ** Then the ncr should interrupt the host and stop. ** Unfortunately, it seems to continue execution ** of the script. But it will fail with an ** IID-interrupt on the next WHEN. */ SCR_JUMPR ^ IFTRUE (WHEN (SCR_MSG_IN)), 0, /* ** Send the IDENTIFY and SIMPLE_TAG messages ** (and the M_X_SYNC_REQ message) */ SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct dsb, smsg), #ifdef undef /* XXX better fail than try to deal with this ... */ SCR_JUMPR ^ IFTRUE (WHEN (SCR_MSG_OUT)), -16, #endif SCR_CLR (SCR_ATN), 0, SCR_COPY (1), RADDR (sfbr), NADDR (lastmsg), /* ** Selection complete. ** Next time use the next slot. */ SCR_COPY (4), RADDR (scratcha), PADDR (startpos), }/*-------------------------< PREPARE >----------------------*/,{ /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can access it. ** ** We patch the address part of a ** COPY command with the DSA-register. */ SCR_COPY_F (4), RADDR (dsa), PADDR (loadpos), /* ** then we do the actual copy. */ SCR_COPY (sizeof (struct head)), /* ** continued after the next label ... */ }/*-------------------------< LOADPOS >---------------------*/,{ 0, NADDR (header), /* ** Mark this ccb as not scheduled. */ SCR_COPY (8), PADDR (idle), NADDR (header.launch), /* ** Set a time stamp for this selection */ SCR_COPY (sizeof (struct timeval)), KVAR (KVAR_TIME), NADDR (header.stamp.select), /* ** load the savep (saved pointer) into ** the TEMP register (actual pointer) */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), /* ** Initialize the status registers */ SCR_COPY (4), NADDR (header.status), RADDR (scr0), }/*-------------------------< PREPARE2 >---------------------*/,{ /* ** Load the synchronous mode register */ SCR_COPY (1), NADDR (sync_st), RADDR (sxfer), /* ** Load the wide mode and timing register */ SCR_COPY (1), NADDR (wide_st), RADDR (scntl3), /* ** Initialize the msgout buffer with a NOOP message. */ SCR_LOAD_REG (scratcha, M_NOOP), 0, SCR_COPY (1), RADDR (scratcha), NADDR (msgout), SCR_COPY (1), RADDR (scratcha), NADDR (msgin), /* ** Message in phase ? */ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** Extended or reject message ? */ SCR_FROM_REG (sbdl), 0, SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), PADDR (msg_in), SCR_JUMP ^ IFTRUE (DATA (M_REJECT)), PADDRH (msg_reject), /* ** normal processing */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< SETMSG >----------------------*/,{ SCR_COPY (1), RADDR (scratcha), NADDR (msgout), SCR_SET (SCR_ATN), 0, }/*-------------------------< CLRACK >----------------------*/,{ /* ** Terminate possible pending message phase. */ SCR_CLR (SCR_ACK), 0, }/*-----------------------< DISPATCH >----------------------*/,{ SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, /* ** remove bogus output signals */ SCR_REG_REG (socl, SCR_AND, CACK|CATN), 0, SCR_RETURN ^ IFTRUE (WHEN (SCR_DATA_OUT)), 0, SCR_RETURN ^ IFTRUE (IF (SCR_DATA_IN)), 0, SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), PADDR (msg_out), SCR_JUMP ^ IFTRUE (IF (SCR_MSG_IN)), PADDR (msg_in), SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), PADDR (command), SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), PADDR (status), /* ** Discard one illegal phase byte, if required. */ SCR_LOAD_REG (scratcha, XE_BAD_PHASE), 0, SCR_COPY (1), RADDR (scratcha), NADDR (xerr_st), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_IN, NADDR (scratch), SCR_JUMP, PADDR (dispatch), }/*-------------------------< NO_DATA >--------------------*/,{ /* ** The target wants to tranfer too much data ** or in the wrong direction. ** Remember that in extended error. */ SCR_LOAD_REG (scratcha, XE_EXTRA_DATA), 0, SCR_COPY (1), RADDR (scratcha), NADDR (xerr_st), /* ** Discard one data byte, if required. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_IN, NADDR (scratch), /* ** .. and repeat as required. */ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*-------------------------< CHECKATN >--------------------*/,{ /* ** If AAP (bit 1 of scntl0 register) is set ** and a parity error is detected, ** the script processor asserts ATN. ** ** The target should switch to a MSG_OUT phase ** to get the message. */ SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFFALSE (MASK (CATN, CATN)), PADDR (dispatch), /* ** count it */ SCR_REG_REG (PS_REG, SCR_ADD, 1), 0, /* ** Prepare a M_ID_ERROR message ** (initiator detected error). ** The target should retry the transfer. */ SCR_LOAD_REG (scratcha, M_ID_ERROR), 0, SCR_JUMP, PADDR (setmsg), }/*-------------------------< COMMAND >--------------------*/,{ /* ** If this is not a GETCC transfer ... */ SCR_FROM_REG (SS_REG), 0, /*<<<*/ SCR_JUMPR ^ IFTRUE (DATA (S_CHECK_COND)), 28, /* ** ... set a timestamp ... */ SCR_COPY (sizeof (struct timeval)), KVAR (KVAR_TIME), NADDR (header.stamp.command), /* ** ... and send the command */ SCR_MOVE_TBL ^ SCR_COMMAND, offsetof (struct dsb, cmd), SCR_JUMP, PADDR (dispatch), /* ** Send the GETCC command */ /*>>>*/ SCR_MOVE_TBL ^ SCR_COMMAND, offsetof (struct dsb, scmd), SCR_JUMP, PADDR (dispatch), }/*-------------------------< STATUS >--------------------*/,{ /* ** set the timestamp. */ SCR_COPY (sizeof (struct timeval)), KVAR (KVAR_TIME), NADDR (header.stamp.status), /* ** If this is a GETCC transfer, */ SCR_FROM_REG (SS_REG), 0, /*<<<*/ SCR_JUMPR ^ IFFALSE (DATA (S_CHECK_COND)), 40, /* ** get the status */ SCR_MOVE_ABS (1) ^ SCR_STATUS, NADDR (scratch), /* ** Save status to scsi_status. ** Mark as complete. ** And wait for disconnect. */ SCR_TO_REG (SS_REG), 0, SCR_REG_REG (SS_REG, SCR_OR, S_SENSE), 0, SCR_LOAD_REG (HS_REG, HS_COMPLETE), 0, SCR_JUMP, PADDR (checkatn), /* ** If it was no GETCC transfer, ** save the status to scsi_status. */ /*>>>*/ SCR_MOVE_ABS (1) ^ SCR_STATUS, NADDR (scratch), SCR_TO_REG (SS_REG), 0, /* ** if it was no check condition ... */ SCR_JUMP ^ IFTRUE (DATA (S_CHECK_COND)), PADDR (checkatn), /* ** ... mark as complete. */ SCR_LOAD_REG (HS_REG, HS_COMPLETE), 0, SCR_JUMP, PADDR (checkatn), }/*-------------------------< MSG_IN >--------------------*/,{ /* ** Get the first byte of the message ** and save it to SCRATCHA. ** ** The script processor doesn't negate the ** ACK signal after this transfer. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[0]), /* ** Check for message parity error. */ SCR_TO_REG (scratcha), 0, SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFTRUE (MASK (CATN, CATN)), PADDRH (msg_parity), SCR_FROM_REG (scratcha), 0, /* ** Parity was ok, handle this message. */ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), PADDR (complete), SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), PADDR (save_dp), SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), PADDR (restore_dp), SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), PADDR (disconnect), SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), PADDRH (msg_extended), SCR_JUMP ^ IFTRUE (DATA (M_NOOP)), PADDR (clrack), SCR_JUMP ^ IFTRUE (DATA (M_REJECT)), PADDRH (msg_reject), SCR_JUMP ^ IFTRUE (DATA (M_IGN_RESIDUE)), PADDRH (msg_ign_residue), /* ** Rest of the messages left as ** an exercise ... ** ** Unimplemented messages: ** fall through to MSG_BAD. */ }/*-------------------------< MSG_BAD >------------------*/,{ /* ** unimplemented message - reject it. */ SCR_INT, SIR_REJECT_SENT, SCR_LOAD_REG (scratcha, M_REJECT), 0, SCR_JUMP, PADDR (setmsg), }/*-------------------------< COMPLETE >-----------------*/,{ /* ** Complete message. ** ** If it's not the get condition code, ** copy TEMP register to LASTP in header. */ SCR_FROM_REG (SS_REG), 0, /*<<<*/ SCR_JUMPR ^ IFTRUE (MASK (S_SENSE, S_SENSE)), 12, SCR_COPY (4), RADDR (temp), NADDR (header.lastp), /*>>>*/ /* ** When we terminate the cycle by clearing ACK, ** the target may disconnect immediately. ** ** We don't want to be told of an ** "unexpected disconnect", ** so we disable this feature. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, /* ** Terminate cycle ... */ SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** ... and wait for the disconnect. */ SCR_WAIT_DISC, 0, }/*-------------------------< CLEANUP >-------------------*/,{ /* ** dsa: Pointer to ccb ** or xxxxxxFF (no ccb) ** ** HS_REG: Host-Status (<>0!) */ SCR_FROM_REG (dsa), 0, SCR_JUMP ^ IFTRUE (DATA (0xff)), PADDR (signal), /* ** dsa is valid. ** save the status registers */ SCR_COPY (4), RADDR (scr0), NADDR (header.status), /* ** and copy back the header to the ccb. */ SCR_COPY_F (4), RADDR (dsa), PADDR (cleanup0), SCR_COPY (sizeof (struct head)), NADDR (header), }/*-------------------------< CLEANUP0 >--------------------*/,{ 0, /* ** If command resulted in "check condition" ** status and is not yet completed, ** try to get the condition code. */ SCR_FROM_REG (HS_REG), 0, /*<<<*/ SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)), 16, SCR_FROM_REG (SS_REG), 0, SCR_JUMP ^ IFTRUE (DATA (S_CHECK_COND)), PADDRH(getcc2), }/*-------------------------< SIGNAL >----------------------*/,{ /* ** if status = queue full, ** reinsert in startqueue and stall queue. */ /*>>>*/ SCR_FROM_REG (SS_REG), 0, SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)), SIR_STALL_QUEUE, /* ** And make the DSA register invalid. */ SCR_LOAD_REG (dsa, 0xff), /* invalid */ 0, /* ** if job completed ... */ SCR_FROM_REG (HS_REG), 0, /* ** ... signal completion to the host */ SCR_INT_FLY ^ IFFALSE (MASK (0, HS_DONEMASK)), 0, /* ** Auf zu neuen Schandtaten! */ SCR_JUMP, PADDR(start), }/*-------------------------< SAVE_DP >------------------*/,{ /* ** SAVE_DP message: ** Copy TEMP register to SAVEP in header. */ SCR_COPY (4), RADDR (temp), NADDR (header.savep), SCR_JUMP, PADDR (clrack), }/*-------------------------< RESTORE_DP >---------------*/,{ /* ** RESTORE_DP message: ** Copy SAVEP in header to TEMP register. */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), SCR_JUMP, PADDR (clrack), }/*-------------------------< DISCONNECT >---------------*/,{ /* ** If QUIRK_AUTOSAVE is set, ** do an "save pointer" operation. */ SCR_FROM_REG (QU_REG), 0, /*<<<*/ SCR_JUMPR ^ IFFALSE (MASK (QUIRK_AUTOSAVE, QUIRK_AUTOSAVE)), 12, /* ** like SAVE_DP message: ** Copy TEMP register to SAVEP in header. */ SCR_COPY (4), RADDR (temp), NADDR (header.savep), /*>>>*/ /* ** Check if temp==savep or temp==goalp: ** if not, log a missing save pointer message. ** In fact, it's a comparison mod 256. ** ** Hmmm, I hadn't thought that I would be urged to ** write this kind of ugly self modifying code. ** ** It's unbelievable, but the ncr53c8xx isn't able ** to subtract one register from another. */ SCR_FROM_REG (temp), 0, /* ** You are not expected to understand this .. ** ** CAUTION: only little endian architectures supported! XXX */ SCR_COPY_F (1), NADDR (header.savep), PADDR (disconnect0), }/*-------------------------< DISCONNECT0 >--------------*/,{ /*<<<*/ SCR_JUMPR ^ IFTRUE (DATA (1)), 20, /* ** neither this */ SCR_COPY_F (1), NADDR (header.goalp), PADDR (disconnect1), }/*-------------------------< DISCONNECT1 >--------------*/,{ SCR_INT ^ IFFALSE (DATA (1)), SIR_MISSING_SAVE, /*>>>*/ /* ** DISCONNECTing ... ** ** disable the "unexpected disconnect" feature, ** and remove the ACK signal. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** Wait for the disconnect. */ SCR_WAIT_DISC, 0, /* ** Profiling: ** Set a time stamp, ** and count the disconnects. */ SCR_COPY (sizeof (struct timeval)), KVAR (KVAR_TIME), NADDR (header.stamp.disconnect), SCR_COPY (4), NADDR (disc_phys), RADDR (temp), SCR_REG_REG (temp, SCR_ADD, 0x01), 0, SCR_COPY (4), RADDR (temp), NADDR (disc_phys), /* ** Status is: DISCONNECTED. */ SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 0, SCR_JUMP, PADDR (cleanup), }/*-------------------------< MSG_OUT >-------------------*/,{ /* ** The target requests a message. */ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), RADDR (sfbr), NADDR (lastmsg), /* ** If it was no ABORT message ... */ SCR_JUMP ^ IFTRUE (DATA (M_ABORT)), PADDRH (msg_out_abort), /* ** ... wait for the next phase ** if it's a message out, send it again, ... */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDR (msg_out), }/*-------------------------< MSG_OUT_DONE >--------------*/,{ /* ** ... else clear the message ... */ SCR_LOAD_REG (scratcha, M_NOOP), 0, SCR_COPY (4), RADDR (scratcha), NADDR (msgout), /* ** ... and process the next phase */ SCR_JUMP, PADDR (dispatch), }/*------------------------< BADGETCC >---------------------*/,{ /* ** If SIGP was set, clear it and try again. */ SCR_FROM_REG (ctest2), 0, SCR_JUMP ^ IFTRUE (MASK (CSIGP,CSIGP)), PADDRH (getcc2), SCR_INT, SIR_SENSE_FAILED, }/*-------------------------< RESELECT >--------------------*/,{ /* ** This NOP will be patched with LED OFF ** SCR_REG_REG (gpreg, SCR_OR, 0x01) */ SCR_NO_OP, 0, /* ** make the DSA invalid. */ SCR_LOAD_REG (dsa, 0xff), 0, SCR_CLR (SCR_TRG), 0, /* ** Sleep waiting for a reselection. ** If SIGP is set, special treatment. ** ** Zu allem bereit .. */ SCR_WAIT_RESEL, PADDR(reselect2), }/*-------------------------< RESELECT1 >--------------------*/,{ /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** ... zu nichts zu gebrauchen ? ** ** load the target id into the SFBR ** and jump to the control block. ** ** Look at the declarations of ** - struct ncb ** - struct tcb ** - struct lcb ** - struct ccb ** to understand what's going on. */ SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 0, SCR_TO_REG (sdid), 0, SCR_JUMP, NADDR (jump_tcb), }/*-------------------------< RESELECT2 >-------------------*/,{ /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** If it's not connected :( ** -> interrupted by SIGP bit. ** Jump to start. */ SCR_FROM_REG (ctest2), 0, SCR_JUMP ^ IFTRUE (MASK (CSIGP,CSIGP)), PADDR (start), SCR_JUMP, PADDR (reselect), }/*-------------------------< RESEL_TMP >-------------------*/,{ /* ** The return address in TEMP ** is in fact the data structure address, ** so copy it to the DSA register. */ SCR_COPY (4), RADDR (temp), RADDR (dsa), SCR_JUMP, PADDR (prepare), }/*-------------------------< RESEL_LUN >-------------------*/,{ /* ** come back to this point ** to get an IDENTIFY message ** Wait for a msg_in phase. */ /*<<<*/ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 48, /* ** message phase ** It's not a sony, it's a trick: ** read the data without acknowledging it. */ SCR_FROM_REG (sbdl), 0, /*<<<*/ SCR_JUMPR ^ IFFALSE (MASK (M_IDENTIFY, 0x98)), 32, /* ** It WAS an Identify message. ** get it and ack it! */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_CLR (SCR_ACK), 0, /* ** Mask out the lun. */ SCR_REG_REG (sfbr, SCR_AND, 0x07), 0, SCR_RETURN, 0, /* ** No message phase or no IDENTIFY message: ** return 0. */ /*>>>*/ SCR_LOAD_SFBR (0), 0, SCR_RETURN, 0, }/*-------------------------< RESEL_TAG >-------------------*/,{ /* ** come back to this point ** to get a SIMPLE_TAG message ** Wait for a MSG_IN phase. */ /*<<<*/ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 64, /* ** message phase ** It's a trick - read the data ** without acknowledging it. */ SCR_FROM_REG (sbdl), 0, /*<<<*/ SCR_JUMPR ^ IFFALSE (DATA (M_SIMPLE_TAG)), 48, /* ** It WAS a SIMPLE_TAG message. ** get it and ack it! */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_CLR (SCR_ACK), 0, /* ** Wait for the second byte (the tag) */ /*<<<*/ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 24, /* ** Get it and ack it! */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_CLR (SCR_ACK|SCR_CARRY), 0, SCR_RETURN, 0, /* ** No message phase or no SIMPLE_TAG message ** or no second byte: return 0. */ /*>>>*/ SCR_LOAD_SFBR (0), 0, SCR_SET (SCR_CARRY), 0, SCR_RETURN, 0, }/*-------------------------< DATA_IN >--------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTER parameter, ** it is filled in at runtime. ** ** SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), ** PADDR (no_data), ** SCR_COPY (sizeof (struct timeval)), ** KVAR (KVAR_TIME), ** NADDR (header.stamp.data), ** SCR_MOVE_TBL ^ SCR_DATA_IN, ** offsetof (struct dsb, data[ 0]), ** ** ##===========< i=1; i========= ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), ** || PADDR (checkatn), ** || SCR_MOVE_TBL ^ SCR_DATA_IN, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** ** SCR_CALL, ** PADDR (checkatn), ** SCR_JUMP, ** PADDR (no_data), */ 0 }/*-------------------------< DATA_OUT >-------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTER parameter, ** it is filled in at runtime. ** ** SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_OUT)), ** PADDR (no_data), ** SCR_COPY (sizeof (struct timeval)), ** KVAR (KVAR_TIME), ** NADDR (header.stamp.data), ** SCR_MOVE_TBL ^ SCR_DATA_OUT, ** offsetof (struct dsb, data[ 0]), ** ** ##===========< i=1; i========= ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** ** SCR_CALL, ** PADDR (dispatch), ** SCR_JUMP, ** PADDR (no_data), ** **--------------------------------------------------------- */ #ifdef __OpenBSD__ 0 #else (u_long)&ident #endif }/*--------------------------------------------------------*/ }; static struct scripth scripth0 = { /*-------------------------< TRYLOOP >---------------------*/{ /* ** Load an entry of the start queue into dsa ** and try to start it by jumping to TRYSEL. ** ** Because the size depends on the ** #define MAX_START parameter, it is filled ** in at runtime. ** **----------------------------------------------------------- ** ** ##===========< I=0; i=========== ** || SCR_COPY (4), ** || NADDR (squeue[i]), ** || RADDR (dsa), ** || SCR_CALL, ** || PADDR (trysel), ** ##========================================== ** ** SCR_JUMP, ** PADDRH(tryloop), ** **----------------------------------------------------------- */ 0 }/*-------------------------< MSG_PARITY >---------------*/,{ /* ** count it */ SCR_REG_REG (PS_REG, SCR_ADD, 0x01), 0, /* ** send a "message parity error" message. */ SCR_LOAD_REG (scratcha, M_PARITY), 0, SCR_JUMP, PADDR (setmsg), }/*-------------------------< MSG_REJECT >---------------*/,{ /* ** If a negotiation was in progress, ** negotiation failed. */ SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, /* ** else make host log this message */ SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)), SIR_REJECT_RECEIVED, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{ /* ** Terminate cycle */ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get residue size. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* ** Check for message parity error. */ SCR_TO_REG (scratcha), 0, SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFTRUE (MASK (CATN, CATN)), PADDRH (msg_parity), SCR_FROM_REG (scratcha), 0, /* ** Size is 0 .. ignore message. */ SCR_JUMP ^ IFTRUE (DATA (0)), PADDR (clrack), /* ** Size is not 1 .. have to interrupt. */ /*<<<*/ SCR_JUMPR ^ IFFALSE (DATA (1)), 40, /* ** Check for residue byte in swide register */ SCR_FROM_REG (scntl2), 0, /*<<<*/ SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), 16, /* ** There IS data in the swide register. ** Discard it. */ SCR_REG_REG (scntl2, SCR_OR, WSR), 0, SCR_JUMP, PADDR (clrack), /* ** Load again the size to the sfbr register. */ /*>>>*/ SCR_FROM_REG (scratcha), 0, /*>>>*/ SCR_INT, SIR_IGN_RESIDUE, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_EXTENDED >-------------*/,{ /* ** Terminate cycle */ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get length. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* ** Check for message parity error. */ SCR_TO_REG (scratcha), 0, SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFTRUE (MASK (CATN, CATN)), PADDRH (msg_parity), SCR_FROM_REG (scratcha), 0, /* */ SCR_JUMP ^ IFTRUE (DATA (3)), PADDRH (msg_ext_3), SCR_JUMP ^ IFFALSE (DATA (2)), PADDR (msg_bad), }/*-------------------------< MSG_EXT_2 >----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get extended message code. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[2]), /* ** Check for message parity error. */ SCR_TO_REG (scratcha), 0, SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFTRUE (MASK (CATN, CATN)), PADDRH (msg_parity), SCR_FROM_REG (scratcha), 0, SCR_JUMP ^ IFTRUE (DATA (M_X_WIDE_REQ)), PADDRH (msg_wdtr), /* ** unknown extended message */ SCR_JUMP, PADDR (msg_bad) }/*-------------------------< MSG_WDTR >-----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get data bus width */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[3]), SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFTRUE (MASK (CATN, CATN)), PADDRH (msg_parity), /* ** let the host do the real work. */ SCR_INT, SIR_NEGO_WIDE, /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), SIR_NEGO_PROTO, /* ** Send the M_X_WIDE_REQ */ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, NADDR (msgout), SCR_CLR (SCR_ATN), 0, SCR_COPY (1), RADDR (sfbr), NADDR (lastmsg), SCR_JUMP, PADDR (msg_out_done), }/*-------------------------< MSG_EXT_3 >----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get extended message code. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[2]), /* ** Check for message parity error. */ SCR_TO_REG (scratcha), 0, SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFTRUE (MASK (CATN, CATN)), PADDRH (msg_parity), SCR_FROM_REG (scratcha), 0, SCR_JUMP ^ IFTRUE (DATA (M_X_SYNC_REQ)), PADDRH (msg_sdtr), /* ** unknown extended message */ SCR_JUMP, PADDR (msg_bad) }/*-------------------------< MSG_SDTR >-----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get period and offset */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, NADDR (msgin[3]), SCR_FROM_REG (socl), 0, SCR_JUMP ^ IFTRUE (MASK (CATN, CATN)), PADDRH (msg_parity), /* ** let the host do the real work. */ SCR_INT, SIR_NEGO_SYNC, /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), SIR_NEGO_PROTO, /* ** Send the M_X_SYNC_REQ */ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, NADDR (msgout), SCR_CLR (SCR_ATN), 0, SCR_COPY (1), RADDR (sfbr), NADDR (lastmsg), SCR_JUMP, PADDR (msg_out_done), }/*-------------------------< MSG_OUT_ABORT >-------------*/,{ /* ** After ABORT message, ** ** expect an immediate disconnect, ... */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, /* ** ... and set the status to "ABORTED" */ SCR_LOAD_REG (HS_REG, HS_ABORTED), 0, SCR_JUMP, PADDR (cleanup), }/*-------------------------< GETCC >-----------------------*/,{ /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can modify it. ** ** We patch the address part of a COPY command ** with the address of the dsa register ... */ SCR_COPY_F (4), RADDR (dsa), PADDRH (getcc1), /* ** ... then we do the actual copy. */ SCR_COPY (sizeof (struct head)), }/*-------------------------< GETCC1 >----------------------*/,{ 0, NADDR (header), /* ** Initialize the status registers */ SCR_COPY (4), NADDR (header.status), RADDR (scr0), }/*-------------------------< GETCC2 >----------------------*/,{ /* ** Get the condition code from a target. ** ** DSA points to a data structure. ** Set TEMP to the script location ** that receives the condition code. ** ** Because there is no script command ** to load a longword into a register, ** we use a CALL command. */ /*<<<*/ SCR_CALLR, 24, /* ** Get the condition code. */ SCR_MOVE_TBL ^ SCR_DATA_IN, offsetof (struct dsb, sense), /* ** No data phase may follow! */ SCR_CALL, PADDR (checkatn), SCR_JUMP, PADDR (no_data), /*>>>*/ /* ** The CALL jumps to this point. ** Prepare for a RESTORE_POINTER message. ** Save the TEMP register into the saved pointer. */ SCR_COPY (4), RADDR (temp), NADDR (header.savep), /* ** Load scratcha, because in case of a selection timeout, ** the host will expect a new value for startpos in ** the scratcha register. */ SCR_COPY (4), PADDR (startpos), RADDR (scratcha), #ifdef NCR_GETCC_WITHMSG /* ** If QUIRK_NOMSG is set, select without ATN. ** and don't send a message. */ SCR_FROM_REG (QU_REG), 0, SCR_JUMP ^ IFTRUE (MASK (QUIRK_NOMSG, QUIRK_NOMSG)), PADDRH(getcc3), /* ** Then try to connect to the target. ** If we are reselected, special treatment ** of the current job is required before ** accepting the reselection. */ SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), PADDR(badgetcc), /* ** Send the IDENTIFY message. ** In case of short transfer, remove ATN. */ SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct dsb, smsg2), SCR_CLR (SCR_ATN), 0, /* ** save the first byte of the message. */ SCR_COPY (1), RADDR (sfbr), NADDR (lastmsg), SCR_JUMP, PADDR (prepare2), #endif }/*-------------------------< GETCC3 >----------------------*/,{ /* ** Try to connect to the target. ** If we are reselected, special treatment ** of the current job is required before ** accepting the reselection. ** ** Silly target won't accept a message. ** Select without ATN. */ SCR_SEL_TBL ^ offsetof (struct dsb, select), PADDR(badgetcc), /* ** Force error if selection timeout */ SCR_JUMPR ^ IFTRUE (WHEN (SCR_MSG_IN)), 0, /* ** don't negotiate. */ SCR_JUMP, PADDR (prepare2), }/*-------------------------< ABORTTAG >-------------------*/,{ /* ** Abort a bad reselection. ** Set the message to ABORT vs. ABORT_TAG */ SCR_LOAD_REG (scratcha, M_ABORT_TAG), 0, SCR_JUMPR ^ IFFALSE (CARRYSET), 8, }/*-------------------------< ABORT >----------------------*/,{ SCR_LOAD_REG (scratcha, M_ABORT), 0, SCR_COPY (1), RADDR (scratcha), NADDR (msgout), SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, /* ** and send it. ** we expect an immediate disconnect */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), RADDR (sfbr), NADDR (lastmsg), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, SCR_JUMP, PADDR (start), }/*-------------------------< SNOOPTEST >-------------------*/,{ /* ** Read the variable. */ SCR_COPY (4), KVAR (KVAR_NCR_CACHE), RADDR (scratcha), /* ** Write the variable. */ SCR_COPY (4), RADDR (temp), KVAR (KVAR_NCR_CACHE), /* ** Read back the variable. */ SCR_COPY (4), KVAR (KVAR_NCR_CACHE), RADDR (temp), }/*-------------------------< SNOOPEND >-------------------*/,{ /* ** And stop. */ SCR_INT, 99, }/*--------------------------------------------------------*/ }; /*========================================================== ** ** ** Fill in #define dependent parts of the script ** ** **========================================================== */ void ncr_script_fill (struct script * scr, struct scripth * scrh) { int i; ncrcmd *p; p = scrh->tryloop; for (i=0; itryloop + sizeof (scrh->tryloop)); p = scr->data_in; *p++ =SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)); *p++ =PADDR (no_data); *p++ =SCR_COPY (sizeof (struct timeval)); *p++ =(ncrcmd) KVAR (KVAR_TIME); *p++ =NADDR (header.stamp.data); *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN; *p++ =offsetof (struct dsb, data[ 0]); for (i=1; idata_in + sizeof (scr->data_in)); p = scr->data_out; *p++ =SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_OUT)); *p++ =PADDR (no_data); *p++ =SCR_COPY (sizeof (struct timeval)); *p++ =(ncrcmd) KVAR (KVAR_TIME); *p++ =NADDR (header.stamp.data); *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT; *p++ =offsetof (struct dsb, data[ 0]); for (i=1; idata_out + sizeof (scr->data_out)); } /*========================================================== ** ** ** Copy and rebind a script. ** ** **========================================================== */ static void ncr_script_copy_and_bind (ncb_p np, ncrcmd *src, ncrcmd *dst, int len) { ncrcmd opcode, new, old, tmp1, tmp2; ncrcmd *start, *end; int relocs, offset; start = src; end = src + len/4; offset = 0; while (src < end) { opcode = *src++; WRITESCRIPT_OFF(dst, offset, opcode); offset += 4; /* ** If we forget to change the length ** in struct script, a field will be ** padded with 0. This is an illegal ** command. */ if (opcode == 0) { printf ("%s: ERROR0 IN SCRIPT at %ld.\n", ncr_name(np), (long)(src-start-1)); DELAY (1000000); }; if (DEBUG_FLAGS & DEBUG_SCRIPT) printf ("%p: <%x>\n", (src-1), (unsigned)opcode); /* ** We don't have to decode ALL commands */ switch (opcode >> 28) { case 0xc: /* ** COPY has TWO arguments. */ relocs = 2; tmp1 = src[0]; if ((tmp1 & RELOC_MASK) == RELOC_KVAR) tmp1 = 0; tmp2 = src[1]; if ((tmp2 & RELOC_MASK) == RELOC_KVAR) tmp2 = 0; if ((tmp1 ^ tmp2) & 3) { printf ("%s: ERROR1 IN SCRIPT at %ld.\n", ncr_name(np), (long)(src-start-1)); DELAY (1000000); } /* ** If PREFETCH feature not enabled, remove ** the NO FLUSH bit if present. */ if ((opcode & SCR_NO_FLUSH) && !(np->features&FE_PFEN)) WRITESCRIPT_OFF(dst, offset - 4, (opcode & ~SCR_NO_FLUSH)); break; case 0x0: /* ** MOVE (absolute address) */ relocs = 1; break; case 0x8: /* ** JUMP / CALL ** dont't relocate if relative :-) */ if (opcode & 0x00800000) relocs = 0; else relocs = 1; break; case 0x4: case 0x5: case 0x6: case 0x7: relocs = 1; break; default: relocs = 0; break; }; if (relocs) { while (relocs--) { old = *src++; switch (old & RELOC_MASK) { case RELOC_REGISTER: new = (old & ~RELOC_MASK) + np->paddr; break; case RELOC_LABEL: new = (old & ~RELOC_MASK) + np->p_script; break; case RELOC_LABELH: new = (old & ~RELOC_MASK) + np->p_scripth; break; case RELOC_SOFTC: new = (old & ~RELOC_MASK) + NCR_KVATOPHYS(np, np); break; case RELOC_KVAR: if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) || ((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST)) panic("ncr KVAR out of range"); new = NCR_KVATOPHYS(np, (void *)script_kvars[old & ~RELOC_MASK]); break; case 0: /* Don't relocate a 0 address. */ if (old == 0) { new = old; break; } /* fall through */ default: panic("ncr_script_copy_and_bind: weird relocation %x @ %ld", old, (long)(src - start)); break; } WRITESCRIPT_OFF(dst, offset, new); offset += 4; } } else { WRITESCRIPT_OFF(dst, offset, *src); offset += 4; src++; } }; } /*========================================================== ** ** ** Auto configuration. ** ** **========================================================== */ /*---------------------------------------------------------- ** ** Reduce the transfer length to the max value ** we can transfer safely. ** ** Reading a block greater then MAX_SIZE from the ** raw (character) device exercises a memory leak ** in the vm subsystem. This is common to ALL devices. ** We have submitted a description of this bug to ** . ** It should be fixed in the current release. ** **---------------------------------------------------------- */ #ifndef __OpenBSD__ void ncr_min_phys (struct buf *bp) { if ((unsigned long)bp->b_bcount > MAX_SIZE) bp->b_bcount = MAX_SIZE; } #else void ncr_min_phys (struct buf *bp) { if (bp->b_bcount > MAX_SIZE) bp->b_bcount = MAX_SIZE; minphys(bp); } #endif /*---------------------------------------------------------- ** ** Maximal number of outstanding requests per target. ** **---------------------------------------------------------- */ #ifndef __OpenBSD__ u_int32_t ncr_info (int unit) { return (1); /* may be changed later */ } #endif /*---------------------------------------------------------- ** ** NCR chip devices table and chip look up function. ** Features bit are defined in ncrreg.h. Is it the ** right place? ** **---------------------------------------------------------- */ typedef struct { unsigned long device_id; unsigned short minrevid; unsigned char maxburst; unsigned char maxoffs; unsigned char clock_divn; unsigned int features; } ncr_chip; static ncr_chip ncr_chip_table[] = { {NCR_810_ID, 0x00, 4, 8, 4, FE_ERL} , {NCR_810_ID, 0x10, 4, 8, 4, FE_ERL|FE_LDSTR|FE_PFEN|FE_BOF} , {NCR_815_ID, 0x00, 4, 8, 4, FE_ERL|FE_BOF} , {NCR_820_ID, 0x00, 4, 8, 4, FE_WIDE|FE_ERL} , {NCR_825_ID, 0x00, 4, 8, 4, FE_WIDE|FE_ERL|FE_BOF} , {NCR_825_ID, 0x10, 7, 8, 4, FE_WIDE|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , {NCR_860_ID, 0x00, 4, 8, 5, FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_LDSTR|FE_PFEN} , {NCR_875_ID, 0x00, 7, 16, 5, FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , {NCR_875_ID, 0x02, 7, 16, 5, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , #ifdef NCR_NARROW_875J {NCR_875_ID2, 0x00, 4, 8, 5, FE_ULTRA|FE_DBLR|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} #else {NCR_875_ID2, 0x00, 7, 16, 5, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} #endif , {NCR_885_ID, 0x00, 7, 16, 5, FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , {NCR_895_ID, 0x00, 7, 31, 7, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , {NCR_895A_ID, 0x00, 7, 31, 7, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , {NCR_896_ID, 0x00, 7, 31, 7, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , {NCR_1510_ID, 0x00, 7, 31, 7, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} , {NCR_1510D_ID, 0x00, 7, 31, 7, FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM} }; static int ncr_chip_lookup(u_long device_id, u_char revision_id) { int i, found; found = -1; for (i = 0; i < sizeof(ncr_chip_table)/sizeof(ncr_chip_table[0]); i++) { if (device_id == ncr_chip_table[i].device_id && ncr_chip_table[i].minrevid <= revision_id) { if (found < 0 || ncr_chip_table[found].minrevid < ncr_chip_table[i].minrevid) { found = i; } } } return found; } /*---------------------------------------------------------- ** ** Probe the hostadapter. ** **---------------------------------------------------------- */ #ifdef __OpenBSD__ int ncr_probe(parent, match, aux) struct device *parent; #ifdef __BROKEN_INDIRECT_CONFIG void *match; #else struct cfdata *match; #endif void *aux; { struct pci_attach_args * const pa = aux; u_char rev = PCI_REVISION(pa->pa_class); #if 0 struct cfdata *cf = match; if (!pci_targmatch(cf, pa)) return 0; #endif if (ncr_chip_lookup(pa->pa_id, rev) < 0) return 0; return 1; } #else /* !__OpenBSD__ */ static char *ncr_probe (pcici_t tag, pcidi_t type) { u_char rev = PCI_REVISION(pa->pa_class); int i; i = ncr_chip_lookup(type, rev); if (i >= 0) return ncr_chip_table[i].name; return (NULL); } #endif /* !__OpenBSD__ */ /*========================================================== ** ** NCR chip clock divisor table. ** Divisors are multiplied by 10,000,000 in order to make ** calculations more simple. ** **========================================================== */ #define _5M 5000000 static u_long div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; /*=============================================================== ** ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128 ** transfers. 32,64,128 are only supported by 875 and 895 chips. ** We use log base 2 (burst length) as internal code, with ** value 0 meaning "burst disabled". ** **=============================================================== */ /* * Burst length from burst code. */ #define burst_length(bc) (!(bc))? 0 : 1 << (bc) /* * Burst code from io register bits. */ #define burst_code(dmode, ctest4, ctest5) \ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 /* * Set initial io register bits from burst code. */ static void ncr_init_burst(ncb_p np, u_char bc) { np->rv_ctest4 &= ~0x80; np->rv_dmode &= ~(0x3 << 6); np->rv_ctest5 &= ~0x4; if (!bc) { np->rv_ctest4 |= 0x80; } else { --bc; np->rv_dmode |= ((bc & 0x3) << 6); np->rv_ctest5 |= (bc & 0x4); } } /*========================================================== ** ** ** Auto configuration: attach and init a host adapter. ** ** **========================================================== */ #ifdef __OpenBSD__ void ncr_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; int retval; pci_intr_handle_t intrhandle; const char *intrstr; ncb_p np = (void *)self; u_long period; int i; u_char rev = PCI_REVISION(pa->pa_class); bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; bus_addr_t ioaddr, memaddr; int ioh_valid, memh_valid; char *type; #if defined(__mips__) pci_sync_cache(pc, (vm_offset_t)np, sizeof (struct ncb)); np = (struct ncb *)PHYS_TO_UNCACHED(NCR_KVATOPHYS(np, np)); #endif /*__mips__*/ np->sc_pc = pc; np->ccb = (ccb_p) malloc (sizeof (struct ccb), M_DEVBUF, M_NOWAIT); if (np->ccb == NULL) return; #if defined(__mips__) pci_sync_cache(pc, (vm_offset_t)np->ccb, sizeof (struct ccb)); np->ccb = (struct ccb *)PHYS_TO_UNCACHED(NCR_KVATOPHYS(np, np->ccb)); #endif /* __mips__ */ bzero (np->ccb, sizeof (*np->ccb)); /* ** Try to map the controller chip to ** virtual and physical memory. */ ioh_valid = (pci_mapreg_map(pa, 0x10, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, &ioaddr, NULL, 0) == 0); memh_valid = (pci_mapreg_map(pa, 0x14, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &memaddr, NULL, 0) == 0); #if defined(NCR_IOMAPPED) if (ioh_valid) { np->sc_st = iot; np->sc_sh = ioh; np->paddr = ioaddr; np->sc_iomapped = 1; } else if (memh_valid) { np->sc_st = memt; np->sc_sh = memh; np->paddr = memaddr; np->sc_iomapped = 0; } #else /* defined(NCR_IOMAPPED) */ if (memh_valid) { np->sc_st = memt; np->sc_sh = memh; np->paddr = memaddr; np->sc_iomapped = 0; } else if (ioh_valid) { np->sc_st = iot; np->sc_sh = ioh; np->paddr = ioaddr; np->sc_iomapped = 1; } #endif /* defined(NCR_IOMAPPED) */ else { printf(": unable to map device registers\n"); return; } /* ** Set up the controller chip's interrupt. */ retval = pci_intr_map(pa, &intrhandle); if (retval) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, intrhandle); np->sc_ih = pci_intr_establish(pc, intrhandle, IPL_BIO, ncr_intr, np, self->dv_xname); if (np->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } i = ncr_chip_lookup(pa->pa_id, rev); if (ncr_chip_table[i].features & FE_ULTRA2) type = "ultra2"; else if (ncr_chip_table[i].features & FE_ULTRA) type = "ultra"; else type = "fast"; if (intrstr != NULL) printf(": %s%s scsi, %s\n", type, (ncr_chip_table[i].features & FE_WIDE) ? " wide" : "", intrstr); else printf(": %s%s scsi\n", type, (ncr_chip_table[i].features & FE_WIDE) ? " wide" : ""); #else /* !__OpenBSD__ */ static void ncr_attach (pcici_t config_id, int unit) { ncb_p np = (struct ncb*) 0; #if ! (__FreeBSD__ >= 2) extern unsigned bio_imask; #endif #if (__FreeBSD__ >= 2) struct scsibus_data *scbus; #endif u_char rev = 0; u_long period; int i; /* ** allocate and initialize structures. */ if (!np) { np = (ncb_p) malloc (sizeof (struct ncb), M_DEVBUF, M_WAITOK); ncrp[unit]=np; } bzero (np, sizeof (*np)); np->ccb = (ccb_p) malloc (sizeof (struct ccb), M_DEVBUF, M_WAITOK); #if defined(__mips__) pci_sync_cache(pc, (vm_offset_t)np->ccb, sizeof (struct ccb)); np->ccb = (struct ccb *)PHYS_TO_UNCACHED(NCR_KVATOPHYS(np, np->ccb)); #endif /* __mips__ */ bzero (np->ccb, sizeof (*np->ccb)); np->unit = unit; /* ** Try to map the controller chip to ** virtual and physical memory. */ if (!pci_map_mem (config_id, 0x14, &np->vaddr, &np->paddr)) return; /* ** Make the controller's registers available. ** Now the INB INW INL OUTB OUTW OUTL macros ** can be used safely. */ np->reg = (struct ncr_reg*) np->vaddr; #ifdef NCR_IOMAPPED /* ** Try to map the controller chip into iospace. */ if (!pci_map_port (config_id, 0x10, &np->port)) return; #endif #endif /* !__OpenBSD__ */ /* ** Save some controller register default values */ np->rv_scntl3 = INB(nc_scntl3) & 0x77; np->rv_dmode = INB(nc_dmode) & 0xce; np->rv_dcntl = INB(nc_dcntl) & 0xa9; np->rv_ctest3 = INB(nc_ctest3) & 0x01; np->rv_ctest4 = INB(nc_ctest4) & 0x88; np->rv_ctest5 = INB(nc_ctest5) & 0x24; np->rv_gpcntl = INB(nc_gpcntl); np->rv_stest2 = INB(nc_stest2) & 0x20; if (bootverbose >= 2) { printf ("\tBIOS values: SCNTL3:%02x DMODE:%02x DCNTL:%02x\n", np->rv_scntl3, np->rv_dmode, np->rv_dcntl); printf ("\t CTEST3:%02x CTEST4:%02x CTEST5:%02x\n", np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } np->rv_dcntl |= NOCOM; /* ** Do chip dependent initialization. */ #ifndef __OpenBSD__ rev = pci_conf_read (config_id, PCI_CLASS_REG) & 0xff; #endif /* !__OpenBSD__ */ /* ** Get chip features from chips table. */ #ifndef __OpenBSD__ i = ncr_chip_lookup(pci_conf_read(config_id, PCI_ID_REG), rev); #endif /* !__OpenBSD__ */ if (i >= 0) { np->maxburst = ncr_chip_table[i].maxburst; np->maxoffs = ncr_chip_table[i].maxoffs; np->clock_divn = ncr_chip_table[i].clock_divn; np->features = ncr_chip_table[i].features; } else { /* Should'nt happen if probe() is ok */ np->maxburst = 4; np->maxoffs = 8; np->clock_divn = 4; np->features = FE_ERL; } np->maxwide = np->features & FE_WIDE ? 1 : 0; #ifdef NEED_PCI_SCSI_CLOCK_FUNC { int b, d, f; pci_decompose_tag(pc, pa->pa_tag, &b, &d, &f); \ if((np->clock_khz = pci_scsi_clock(pc, b, d)) == 0) np->clock_khz = np->features & FE_CLK80 ? 80000 : 40000; } #else np->clock_khz = np->features & FE_CLK80 ? 80000 : 40000; #endif if (np->features & FE_QUAD) np->multiplier = 4; else if (np->features & FE_DBLR) np->multiplier = 2; else np->multiplier = 1; /* ** Get the frequency of the chip's clock. ** Find the right value for scntl3. */ if (np->features & (FE_ULTRA|FE_ULTRA2)) ncr_getclock(np, np->multiplier); #ifdef NCR_TEKRAM_EEPROM if (bootverbose) { printf ("%s: Tekram EEPROM read %s\n", ncr_name(np), read_tekram_eeprom (np, NULL) ? "succeeded" : "failed"); } #endif /* NCR_TEKRAM_EEPROM */ /* * If scntl3 != 0, we assume BIOS is present. */ if (np->rv_scntl3) np->features |= FE_BIOS; /* * Divisor to be used for async (timer pre-scaler). */ i = np->clock_divn - 1; while (i >= 0) { --i; if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) { ++i; break; } } np->rv_scntl3 = i+1; /* * Minimum synchronous period factor supported by the chip. * Btw, 'period' is in tenths of nanoseconds. */ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; if (period <= 250) np->minsync = 10; else if (period <= 303) np->minsync = 11; else if (period <= 500) np->minsync = 12; else np->minsync = (period + 40 - 1) / 40; /* * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). */ if (np->minsync < 25 && !(np->features & (FE_ULTRA|FE_ULTRA2))) np->minsync = 25; else if (np->minsync < 12 && !(np->features & FE_ULTRA2)) np->minsync = 12; /* * Maximum synchronous period factor supported by the chip. */ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); np->maxsync = period > 2540 ? 254 : period / 10; /* * Now, some features available with Symbios compatible boards. * LED support through GPIO0 and DIFF support. */ #ifdef SCSI_NCR_SYMBIOS_COMPAT if (!(np->rv_gpcntl & 0x01)) np->features |= FE_LED0; #if 0 /* Not safe enough without NVRAM support or user settable option */ if (!(INB(nc_gpreg) & 0x08)) np->features |= FE_DIFF; #endif #endif /* SCSI_NCR_SYMBIOS_COMPAT */ /* * Prepare initial IO registers settings. * Trust BIOS only if we believe we have one and if we want to. */ #ifdef SCSI_NCR_TRUST_BIOS if (!(np->features & FE_BIOS)) { #else if (1) { #endif np->rv_dmode = 0; np->rv_dcntl = NOCOM; np->rv_ctest3 = 0; np->rv_ctest4 = MPEE; np->rv_ctest5 = 0; np->rv_stest2 = 0; if (np->features & FE_ERL) np->rv_dmode |= ERL; /* Enable Read Line */ if (np->features & FE_BOF) np->rv_dmode |= BOF; /* Burst Opcode Fetch */ if (np->features & FE_ERMP) np->rv_dmode |= ERMP; /* Enable Read Multiple */ if (np->features & FE_CLSE) np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ if (np->features & FE_WRIE) np->rv_ctest3 |= WRIE; /* Write and Invalidate */ if (np->features & FE_PFEN) np->rv_dcntl |= PFEN; /* Prefetch Enable */ if (np->features & FE_DFS) np->rv_ctest5 |= DFS; /* Dma Fifo Size */ if (np->features & FE_DIFF) np->rv_stest2 |= 0x20; /* Differential mode */ ncr_init_burst(np, np->maxburst); /* Max dwords burst length */ } else { np->maxburst = burst_code(np->rv_dmode, np->rv_ctest4, np->rv_ctest5); } #ifndef NCR_IOMAPPED /* ** Get on-chip SRAM address, if supported */ #ifdef __OpenBSD__ if ((np->features & FE_RAM) && sizeof(struct script) <= 4096) { if (pci_mapreg_map(pa, 0x18, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &memaddr, NULL, 0) == 0) { np->ram_tag = memt; np->ram_handle = memh; np->paddr2 = memaddr; np->scriptmapped = 1; } else { np->scriptmapped = 0; } } #else /* !__OpenBSD__ */ if ((np->features & FE_RAM) && sizeof(struct script) <= 4096) (void)(!pci_map_mem (config_id,0x18, &np->vaddr2, &np->paddr2)); #endif /* __OpenBSD__ */ #endif /* !NCR_IOMAPPED */ /* ** Allocate structure for script relocation. */ #ifdef __FreeBSD__ if (np->vaddr2 != NULL) { np->script = (struct script *) np->vaddr2; np->p_script = np->paddr2; } else if (sizeof (struct script) > PAGE_SIZE) { np->script = (struct script*) vm_page_alloc_contig (round_page(sizeof (struct script)), 0x100000, 0xffffffff, PAGE_SIZE); #else if (ISSCRIPTRAMMAPPED(np)) { /* * A NULL value means that the script is in the chip's * on-board RAM and has no virtual address. */ np->script = NULL; np->p_script = np->paddr2; #endif /* __FreeBSD__ */ } else { np->script = (struct script *) malloc (sizeof (struct script), M_DEVBUF, M_WAITOK); #if defined(__mips__) pci_sync_cache(pc, (vm_offset_t)np->script, sizeof (struct script)); np->script = (struct script *)PHYS_TO_UNCACHED(NCR_KVATOPHYS(np, np->script)); #endif /*__mips__*/ } #ifdef __FreeBSD__ if (sizeof (struct scripth) > PAGE_SIZE) { np->scripth = (struct scripth*) vm_page_alloc_contig (round_page(sizeof (struct scripth)), 0x100000, 0xffffffff, PAGE_SIZE); } else #endif /* __FreeBSD__ */ { np->scripth = (struct scripth *) malloc (sizeof (struct scripth), M_DEVBUF, M_WAITOK); #if defined(__mips__) pci_sync_cache(pc, (vm_offset_t)np->scripth, sizeof (struct scripth)); np->scripth = (struct scripth *)PHYS_TO_UNCACHED(NCR_KVATOPHYS(np, np->scripth)); #endif /*__mips__*/ } #ifdef SCSI_NCR_PCI_CONFIG_FIXUP /* ** If cache line size is enabled, check PCI config space and ** try to fix it up if necessary. */ #ifdef PCIR_CACHELNSZ /* To be sure that new PCI stuff is present */ { u_char cachelnsz = pci_cfgread(config_id, PCIR_CACHELNSZ, 1); u_short command = pci_cfgread(config_id, PCIR_COMMAND, 2); if (!cachelnsz) { cachelnsz = 8; printf("%s: setting PCI cache line size register to %d.\n", ncr_name(np), (int)cachelnsz); pci_cfgwrite(config_id, PCIR_CACHELNSZ, cachelnsz, 1); } if (!(command & (1<<4))) { command |= (1<<4); printf("%s: setting PCI command write and invalidate.\n", ncr_name(np)); pci_cfgwrite(config_id, PCIR_COMMAND, command, 2); } } #endif /* PCIR_CACHELNSZ */ #endif /* SCSI_NCR_PCI_CONFIG_FIXUP */ /* ** Bells and whistles ;-) */ if (bootverbose) printf("%s: minsync=%d, maxsync=%d, maxoffs=%d, %d dwords burst, %s dma fifo\n", ncr_name(np), np->minsync, np->maxsync, np->maxoffs, burst_length(np->maxburst), (np->rv_ctest5 & DFS) ? "large" : "normal"); /* ** Print some complementary information that can be helpfull. */ if (bootverbose) printf("%s: %s, %s IRQ driver%s\n", ncr_name(np), np->rv_stest2 & 0x20 ? "differential" : "single-ended", np->rv_dcntl & IRQM ? "totem pole" : "open drain", ISSCRIPTRAMMAPPED(np) ? ", using on-chip SRAM" : ""); /* ** Patch scripts to physical addresses */ ncr_script_fill (&script0, &scripth0); if (np->script) np->p_script = NCR_KVATOPHYS(np, np->script); np->p_scripth = NCR_KVATOPHYS(np, np->scripth); ncr_script_copy_and_bind (np, (ncrcmd *) &script0, (ncrcmd *) np->script, sizeof(struct script)); ncr_script_copy_and_bind (np, (ncrcmd *) &scripth0, (ncrcmd *) np->scripth, sizeof(struct scripth)); np->ccb->p_ccb = NCR_KVATOPHYS (np, np->ccb); /* ** Patch the script for LED support. */ if (np->features & FE_LED0) { WRITESCRIPT(reselect[0], SCR_REG_REG(gpreg, SCR_OR, 0x01)); WRITESCRIPT(reselect1[0], SCR_REG_REG(gpreg, SCR_AND, 0xfe)); WRITESCRIPT(reselect2[0], SCR_REG_REG(gpreg, SCR_AND, 0xfe)); } /* ** init data structure */ np->jump_tcb.l_cmd = SCR_BO(SCR_JUMP); np->jump_tcb.l_paddr = SCR_BO(NCB_SCRIPTH_PHYS (np, abort)); /* ** Get SCSI addr of host adapter (set by bios?). */ np->myaddr = INB(nc_scid) & 0x07; if (!np->myaddr) np->myaddr = SCSI_NCR_MYADDR; #ifdef NCR_DUMP_REG /* ** Log the initial register contents */ { int reg; #ifdef __OpenBSD__ u_long config_id = pa->pa_tag; #endif /* __OpenBSD__ */ for (reg=0; reg<256; reg+=4) { if (reg%16==0) printf ("reg[%2x]", reg); printf (" %08x", (int)pci_conf_read (config_id, reg)); if (reg%16==12) printf ("\n"); } } #endif /* NCR_DUMP_REG */ /* ** Reset chip. */ OUTB (nc_istat, SRST); DELAY (1000); OUTB (nc_istat, 0 ); /* ** Now check the cache handling of the pci chipset. */ if (ncr_snooptest (np)) { printf ("CACHE INCORRECTLY CONFIGURED.\n"); return; }; #ifndef __OpenBSD__ /* ** Install the interrupt handler. */ if (!pci_map_int (config_id, ncr_intr, np, &bio_imask)) printf ("\tinterruptless mode: reduced performance.\n"); #endif /* !__OpenBSD__ */ /* ** After SCSI devices have been opened, we cannot ** reset the bus safely, so we do it here. ** Interrupt handler does the real work. */ OUTB (nc_scntl1, CRST); DELAY (1000); /* ** Process the reset exception, ** if interrupts are not enabled yet. ** Then enable disconnects. */ ncr_exception (np); np->disc = 1; /* ** Now let the generic SCSI driver ** look for the SCSI devices on the bus .. */ #ifdef __OpenBSD__ np->sc_link.adapter_softc = np; np->sc_link.adapter_target = np->myaddr; np->sc_link.openings = 1; if (np->maxwide) np->sc_link.adapter_buswidth = MAX_TARGET; #else /* !__OpenBSD__ */ np->sc_link.adapter_unit = unit; np->sc_link.adapter_softc = np; np->sc_link.adapter_targ = np->myaddr; np->sc_link.fordriver = 0; #endif /* !__OpenBSD__ */ np->sc_link.adapter = &ncr_switch; np->sc_link.device = &ncr_dev; np->sc_link.flags = 0; #ifdef __OpenBSD__ config_found(self, &np->sc_link, scsiprint); #else /* !__OpenBSD__ */ #if (__FreeBSD__ >= 2) scbus = scsi_alloc_bus(); if(!scbus) return; scbus->adapter_link = &np->sc_link; if(np->maxwide) scbus->maxtarg = 15; if (bootverbose) { unsigned t_from = 0; unsigned t_to = scbus->maxtarg; unsigned myaddr = np->myaddr; char *txt_and = ""; printf ("%s scanning for targets ", ncr_name (np)); if (t_from < myaddr) { printf ("%d..%d ", t_from, myaddr -1); txt_and = "and "; } if (myaddr < t_to) printf ("%s%d..%d ", txt_and, myaddr +1, t_to); printf ("(V%d " NCR_DATE ")\n", NCR_VERSION); } scsi_attachdevs (scbus); scbus = NULL; /* Upper-level SCSI code owns this now */ #else scsi_attachdevs (&np->sc_link); #endif /* !__FreeBSD__ >= 2 */ #endif /* !__OpenBSD__ */ /* ** start the timeout daemon */ timeout_set(&np->sc_timeout, ncr_timeout, np); ncr_timeout (np); np->lasttime=0; /* ** use SIMPLE TAG messages by default */ np->order = M_SIMPLE_TAG; /* ** Done. */ return; } /*========================================================== ** ** ** Process pending device interrupts. ** ** **========================================================== */ #ifdef __OpenBSD__ static int #else /* !__OpenBSD__ */ static void #endif /* __OpenBSD__ */ ncr_intr(vnp) void *vnp; { #ifdef __OpenBSD__ int n = 0; #endif ncb_p np = vnp; int oldspl = splbio(); if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); if (INB(nc_istat) & (INTF|SIP|DIP)) { /* ** Repeat until no outstanding ints */ do { ncr_exception (np); } while (INB(nc_istat) & (INTF|SIP|DIP)); #ifdef __OpenBSD__ n=1; #endif np->ticks = 100; }; if (DEBUG_FLAGS & DEBUG_TINY) printf ("]\n"); splx (oldspl); #ifdef __OpenBSD__ return (n); #endif } /*========================================================== ** ** ** Start execution of a SCSI command. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int32_t ncr_start (struct scsi_xfer * xp) { ncb_p np = (ncb_p) xp->sc_link->adapter_softc; struct scsi_generic * cmd = (struct scsi_generic *)xp->cmd; ccb_p cp; lcb_p lp; tcb_p tp = &np->target[xp->sc_link->target]; int i, oldspl, segments, flags = xp->flags, pollmode; u_char qidx, nego, idmsg, *msgptr; u_long msglen, msglen2; /*--------------------------------------------- ** ** Reset SCSI bus ** ** Interrupt handler does the real work. ** **--------------------------------------------- */ if (flags & SCSI_RESET) { OUTB (nc_scntl1, CRST); DELAY (1000); return(COMPLETE); }; /*--------------------------------------------- ** ** Some shortcuts ... ** **--------------------------------------------- */ if ((xp->sc_link->target == np->myaddr ) || (xp->sc_link->target >= MAX_TARGET) || (xp->sc_link->lun >= MAX_LUN ) || (flags & SCSI_DATA_UIO)) { xp->error = XS_DRIVER_STUFFUP; return(COMPLETE); }; /*--------------------------------------------- ** ** Diskaccess to partial blocks? ** **--------------------------------------------- */ if ((xp->datalen & 0x1ff) && !(tp->inqdata[0] & 0x1f)) { switch (cmd->opcode) { case 0x28: /* READ_BIG (10) */ case 0xa8: /* READ_HUGE (12) */ case 0x2a: /* WRITE_BIG (10) */ case 0xaa: /* WRITE_HUGE(12) */ PRINT_ADDR(xp); printf ("access to partial disk block refused.\n"); xp->error = XS_DRIVER_STUFFUP; return(COMPLETE); }; }; if ((unsigned)xp->datalen > 128*1024*1024) { PRINT_ADDR(xp); printf ("trying to transfer %8x bytes, mem addr = %p\n", xp->datalen, xp->data); { int j; PRINT_ADDR(xp); printf ("command: %2x (", cmd->opcode); for (j = 0; j<11; j++) printf (" %2x", cmd->bytes[j]); printf (")\n"); } } if (DEBUG_FLAGS & DEBUG_TINY) { PRINT_ADDR(xp); printf ("CMD=%x F=%x A=%p L=%x ", cmd->opcode, (unsigned)xp->flags, xp->data, (unsigned)xp->datalen); } /*-------------------------------------------- ** ** Sanity checks ... ** copied from Elischer's Adaptec driver. ** **-------------------------------------------- */ flags = xp->flags; if(flags & ITSDONE) { printf("%s: ?ITSDONE?\n", ncr_name (np)); xp->flags &= ~ITSDONE; }; if (xp->bp) flags |= (SCSI_NOSLEEP); /* just to be sure */ /*--------------------------------------------------- ** ** Assign a ccb / bind xp ** **---------------------------------------------------- */ #if defined(__mips__) if (xp->data && xp->datalen) { pci_sync_cache(np->sc_pc, (vm_offset_t)xp->data, xp->datalen); } pci_sync_cache(np->sc_pc, (vm_offset_t)xp->cmd, xp->cmdlen); pci_sync_cache(np->sc_pc, (vm_offset_t)&xp->sense, sizeof(struct scsi_sense_data)); #endif /* __mips__ */ oldspl = splbio(); if (!(cp=ncr_get_ccb (np, flags, xp->sc_link->target, xp->sc_link->lun))) { printf ("%s: no ccb.\n", ncr_name (np)); xp->error = XS_DRIVER_STUFFUP; splx(oldspl); return(TRY_AGAIN_LATER); }; cp->xfer = xp; /*--------------------------------------------------- ** ** timestamp ** **---------------------------------------------------- */ bzero (&cp->phys.header.stamp, sizeof (struct tstamp)); #ifdef __OpenBSD__ cp->phys.header.stamp.start = mono_time; #else gettime(&cp->phys.header.stamp.start); #endif /*---------------------------------------------------- ** ** Get device quirks from a speciality table. ** ** @GENSCSI@ ** This should be a part of the device table ** in "scsi_conf.c". ** **---------------------------------------------------- */ if (tp->quirks & QUIRK_UPDATE) { #ifdef __OpenBSD__ tp->quirks = ncr_lookup ((char *) &tp->inqdata[0]); #else int q = xp->sc_link->quirks; tp->quirks = QUIRK_NOMSG; if (q & SD_Q_NO_TAGS) tp->quirks |= QUIRK_NOTAGS; if (q & SD_Q_NO_SYNC) tp->quirks |= QUIRK_NOSYNC; if (q & SD_Q_NO_WIDE) tp->quirks |= QUIRK_NOWIDE16; #endif if (bootverbose && (tp->quirks & ~QUIRK_NOMSG)) { PRINT_ADDR(xp); printf ("NCR quirks=0x%x\n", tp->quirks); }; /* ** set number of tags */ ncr_setmaxtags (tp, tp->usrtags); }; /*--------------------------------------------------- ** ** negotiation required? ** **---------------------------------------------------- */ nego = 0; if (!tp->nego_cp && tp->inqdata[7]) { /* ** negotiate wide transfers ? */ if (!tp->widedone) { if (tp->inqdata[7] & INQ7_WIDE16) { nego = NS_WIDE; } else tp->widedone=1; }; /* ** negotiate synchronous transfers? */ if (!nego && !tp->period) { if (SCSI_NCR_DFLT_SYNC #ifdef NCR_CDROM_ASYNC && ((tp->inqdata[0] & 0x1f) != 5) #endif /* NCR_CDROM_ASYNC */ && (tp->inqdata[7] & INQ7_SYNC)) { nego = NS_SYNC; } else { tp->period =0xffff; tp->sval = 0xe0; PRINT_ADDR(xp); printf ("asynchronous.\n"); }; }; /* ** remember nego is pending for the target. ** Avoid to start a nego for all queued commands ** when tagged command queuing is enabled. */ if (nego) tp->nego_cp = cp; }; /*--------------------------------------------------- ** ** choose a new tag ... ** **---------------------------------------------------- */ if ((lp = tp->lp[xp->sc_link->lun]) && (lp->usetags)) { /* ** assign a tag to this ccb! */ while (!cp->tag) { ccb_p cp2 = lp->next_ccb; lp->lasttag = lp->lasttag % 255 + 1; while (cp2 && cp2->tag != lp->lasttag) cp2 = cp2->next_ccb; if (cp2) continue; cp->tag=lp->lasttag; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_ADDR(xp); printf ("using tag #%d.\n", cp->tag); }; }; } else { cp->tag=0; }; /*---------------------------------------------------- ** ** Build the identify / tag / sdtr message ** **---------------------------------------------------- */ idmsg = M_IDENTIFY | xp->sc_link->lun; if ((cp!=np->ccb) && (np->disc)) idmsg |= 0x40; msgptr = cp->scsi_smsg; msglen = 0; msgptr[msglen++] = idmsg; if (cp->tag) { char tag; tag = np->order; if (tag == 0) { /* ** Ordered write ops, unordered read ops. */ switch (cmd->opcode) { case 0x08: /* READ_SMALL (6) */ case 0x28: /* READ_BIG (10) */ case 0xa8: /* READ_HUGE (12) */ tag = M_SIMPLE_TAG; break; default: tag = M_ORDERED_TAG; } } msgptr[msglen++] = tag; msgptr[msglen++] = cp -> tag; } switch (nego) { case NS_SYNC: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 3; msgptr[msglen++] = M_X_SYNC_REQ; msgptr[msglen++] = tp->minsync; msgptr[msglen++] = tp->maxoffs; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("sync msgout: "); ncr_show_msg (&cp->scsi_smsg [msglen-5]); printf (".\n"); }; break; case NS_WIDE: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 2; msgptr[msglen++] = M_X_WIDE_REQ; msgptr[msglen++] = tp->usrwide; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("wide msgout: "); ncr_show_msg (&cp->scsi_smsg [msglen-4]); printf (".\n"); }; break; }; /*---------------------------------------------------- ** ** Build the identify message for getcc. ** **---------------------------------------------------- */ cp -> scsi_smsg2 [0] = idmsg; msglen2 = 1; /*---------------------------------------------------- ** ** Build the data descriptors ** **---------------------------------------------------- */ segments = ncr_scatter (np, &cp->phys, (vm_offset_t) xp->data, (vm_size_t) xp->datalen); if (segments < 0) { xp->error = XS_DRIVER_STUFFUP; ncr_free_ccb(np, cp, flags); splx(oldspl); return(COMPLETE); }; /*---------------------------------------------------- ** ** Set the SAVED_POINTER. ** **---------------------------------------------------- */ if (flags & SCSI_DATA_IN) { u_long sp; sp = NCB_SCRIPT_PHYS (np, data_in); cp->phys.header.savep = SCR_BO(sp); cp->phys.header.goalp = SCR_BO(sp + 20 + segments * 16); } else if (flags & SCSI_DATA_OUT) { u_long sp; sp = NCB_SCRIPT_PHYS (np, data_out); cp->phys.header.savep = SCR_BO(sp); cp->phys.header.goalp = SCR_BO(sp + 20 + segments * 16); } else { cp->phys.header.savep = SCR_BO(NCB_SCRIPT_PHYS (np, no_data)); cp->phys.header.goalp = cp->phys.header.savep; }; cp->phys.header.lastp = cp->phys.header.savep; /*---------------------------------------------------- ** ** fill in ccb ** **---------------------------------------------------- ** ** ** physical -> virtual backlink ** Generic SCSI command */ cp->phys.header.cp = cp; /* ** Startqueue */ cp->phys.header.launch.l_paddr = SCR_BO(NCB_SCRIPT_PHYS (np, select)); cp->phys.header.launch.l_cmd = SCR_BO(SCR_JUMP); /* ** select */ cp->phys.select.sel_id = xp->sc_link->target; cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; /* ** message */ cp->phys.smsg.addr = SCR_BO(CCB_PHYS (cp, scsi_smsg)); cp->phys.smsg.size = SCR_BO(msglen); cp->phys.smsg2.addr = SCR_BO(CCB_PHYS (cp, scsi_smsg2)); cp->phys.smsg2.size = SCR_BO(msglen2); /* ** command */ cp->phys.cmd.addr = SCR_BO(NCR_KVATOPHYS (np, cmd)); cp->phys.cmd.size = SCR_BO(xp->cmdlen); /* ** sense command */ cp->phys.scmd.addr = SCR_BO(CCB_PHYS (cp, sensecmd)); cp->phys.scmd.size = SCR_BO(6); /* ** patch requested size into sense command */ cp->sensecmd[0] = 0x03; cp->sensecmd[1] = xp->sc_link->lun << 5; cp->sensecmd[4] = sizeof(struct scsi_sense_data); if (xp->req_sense_length) cp->sensecmd[4] = xp->req_sense_length; /* ** sense data */ #if defined(__mips__) cp->phys.sense.addr = SCR_BO(NCR_KVATOPHYS (np, &cp->local_sense)); #else cp->phys.sense.addr = SCR_BO(NCR_KVATOPHYS (np, &cp->xfer->sense)); #endif cp->phys.sense.size = SCR_BO(sizeof(struct scsi_sense_data)); /* ** status */ cp->actualquirks = tp->quirks; cp->host_status = nego ? HS_NEGOTIATE : HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->parity_status = 0; cp->xerr_status = XE_OK; cp->sync_status = tp->sval; cp->nego_status = nego; cp->wide_status = tp->wval; /*---------------------------------------------------- ** ** Critical region: start this job. ** **---------------------------------------------------- */ /* ** reselect pattern and activate this job. */ cp->jump_ccb.l_cmd = SCR_BO((SCR_JUMP ^ IFFALSE (DATA (cp->tag)))); #ifdef __OpenBSD__ cp->tlimit = mono_time.tv_sec + xp->timeout / 1000 + 2; #else cp->tlimit = time.tv_sec + xp->timeout / 1000 + 2; #endif cp->magic = CCB_MAGIC; /* ** insert into start queue. */ qidx = np->squeueput + 1; if (qidx >= MAX_START) qidx=0; np->squeue [qidx ] = SCR_BO(NCB_SCRIPT_PHYS (np, idle)); np->squeue [np->squeueput] = SCR_BO(CCB_PHYS (cp, phys)); np->squeueput = qidx; if(DEBUG_FLAGS & DEBUG_QUEUE) printf ("%s: queuepos=%d tryoffset=%d.\n", ncr_name (np), np->squeueput, (unsigned)(READSCRIPT(startpos[0])- (NCB_SCRIPTH_PHYS (np, tryloop)))); /* ** Script processor may be waiting for reselect. ** Wake it up. */ OUTB (nc_istat, SIGP); /* ** and reenable interrupts */ #ifdef __OpenBSD__ pollmode = flags & SCSI_POLL; #else pollmode = flags & SCSI_NOMASK; #endif splx (oldspl); /* ** If interrupts are enabled, return now. ** Command is successfully queued. */ if (!pollmode) { if(DEBUG_FLAGS & DEBUG_TINY) printf ("Q"); return(SUCCESSFULLY_QUEUED); }; /*---------------------------------------------------- ** ** Interrupts not yet enabled - have to poll. ** **---------------------------------------------------- */ if (DEBUG_FLAGS & DEBUG_POLL) printf("P"); for (i=xp->timeout; i && !(xp->flags & ITSDONE);i--) { if ((DEBUG_FLAGS & DEBUG_POLL) && (cp->host_status)) printf ("%c", (cp->host_status & 0xf) + '0'); DELAY (1000); ncr_exception (np); }; /* ** Abort if command not done. */ if (!(xp->flags & ITSDONE)) { printf ("%s: aborting job ...\n", ncr_name (np)); OUTB (nc_istat, CABRT); DELAY (100000); OUTB (nc_istat, SIGP); ncr_exception (np); }; if (!(xp->flags & ITSDONE)) { printf ("%s: abortion failed at %x.\n", ncr_name (np), (unsigned) INL(nc_dsp)); ncr_init (np, "timeout", HS_TIMEOUT); }; if (!(xp->flags & ITSDONE)) { cp-> host_status = HS_SEL_TIMEOUT; ncr_complete (np, cp); }; if (DEBUG_FLAGS & DEBUG_RESULT) { printf ("%s: result: %x %x.\n", ncr_name (np), cp->host_status, cp->scsi_status); }; switch (xp->error) { case 0 : return (COMPLETE); case XS_BUSY: return (TRY_AGAIN_LATER); }; return (COMPLETE); } /*========================================================== ** ** ** Complete execution of a SCSI command. ** Signal completion to the generic SCSI driver. ** ** **========================================================== */ void ncr_complete (ncb_p np, ccb_p cp) { struct scsi_xfer * xp; tcb_p tp; lcb_p lp; /* ** Sanity check */ if (!cp || (cp->magic!=CCB_MAGIC) || !cp->xfer) return; cp->magic = 1; cp->tlimit= 0; /* ** No Reselect anymore. */ cp->jump_ccb.l_cmd = SCR_BO((SCR_JUMP)); /* ** No starting. */ cp->phys.header.launch.l_paddr= SCR_BO(NCB_SCRIPT_PHYS (np, idle)); /* ** timestamp */ ncb_profile (np, cp); if (DEBUG_FLAGS & DEBUG_TINY) printf ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp & 0xfff, cp->host_status,cp->scsi_status); xp = cp->xfer; cp->xfer = NULL; tp = &np->target[xp->sc_link->target]; lp = tp->lp[xp->sc_link->lun]; #if defined(__mips__) /* ** Move sense data back to request struct. */ { int i; u_char *p = (u_char *)&xp->sense; for(i = 0; i < sizeof(struct scsi_sense_data); i++) { *p++ = cp->local_sense[i]; } } #endif /* ** We do not queue more than 1 ccb per target ** with negotiation at any time. If this ccb was ** used for negotiation, clear this info in the tcb. */ if (cp == tp->nego_cp) tp->nego_cp = 0; /* ** Check for parity errors. */ if (cp->parity_status) { PRINT_ADDR(xp); printf ("%d parity error(s), fallback.\n", cp->parity_status); /* ** fallback to asynch transfer. */ tp->usrsync=255; tp->period = 0; }; /* ** Check for extended errors. */ if (cp->xerr_status != XE_OK) { PRINT_ADDR(xp); switch (cp->xerr_status) { case XE_EXTRA_DATA: printf ("extraneous data discarded.\n"); break; case XE_BAD_PHASE: printf ("illegal scsi phase (4/5).\n"); break; default: printf ("extended error %d.\n", cp->xerr_status); break; }; if (cp->host_status==HS_COMPLETE) cp->host_status = HS_FAIL; }; /* ** Check the status. */ #ifdef __OpenBSD__ if (xp->error != XS_NOERROR) { /* ** Don't override the error value. */ } else #endif /* __OpenBSD__ */ if ( (cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_GOOD)) { /* ** All went well. */ xp->resid = 0; /* ** if (cp->phys.header.lastp != cp->phys.header.goalp)... ** ** @RESID@ ** Could dig out the correct value for resid, ** but it would be quite complicated. ** ** The ah1542.c driver sets it to 0 too ... */ /* ** Try to assign a ccb to this nexus */ ncr_alloc_ccb (np, xp->sc_link->target, xp->sc_link->lun); /* ** On inquire cmd (0x12) save some data. */ if (xp->cmd->opcode == 0x12 && xp->sc_link->lun == 0) { bcopy ( xp->data, &tp->inqdata, sizeof (tp->inqdata)); /* ** prepare negotiation of synch and wide. */ ncr_negotiate (np, tp); /* ** force quirks update before next command start */ tp->quirks |= QUIRK_UPDATE; }; /* ** Announce changes to the generic driver */ if (lp) { if (lp->reqlink != lp->actlink) ncr_opennings (np, lp, xp); }; tp->bytes += xp->datalen; tp->transfers ++; #ifndef __OpenBSD__ } else if (xp->flags & SCSI_ERR_OK) { /* ** Not correct, but errors expected. */ xp->resid = 0; #endif /* !__OpenBSD__ */ } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == (S_SENSE|S_GOOD))) { /* ** Check condition code */ xp->error = XS_SENSE; if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { u_char * p = (u_char *) & xp->sense; int i; printf ("\n%s: sense data:", ncr_name (np)); for (i=0; i<14; i++) printf (" %x", *p++); printf (".\n"); }; } else if ((cp->host_status == HS_COMPLETE) && ((cp->scsi_status == S_BUSY) || (cp->scsi_status == S_CONFLICT))) { /* ** Target is busy, or reservation conflict */ xp->error = XS_BUSY; } else if (cp->host_status == HS_SEL_TIMEOUT) { /* ** Device failed selection */ xp->error = XS_SELTIMEOUT; } else if(cp->host_status == HS_TIMEOUT) { /* ** No response */ xp->error = XS_TIMEOUT; } else { /* ** Other protocol messes */ PRINT_ADDR(xp); printf ("COMMAND FAILED (%x %x) @%p.\n", cp->host_status, cp->scsi_status, cp); xp->error = XS_TIMEOUT; } xp->flags |= ITSDONE; /* ** trace output */ if (tp->usrflag & UF_TRACE) { u_char * p; int i; PRINT_ADDR(xp); printf (" CMD:"); p = (u_char *) &xp->cmd->opcode; for (i=0; icmdlen; i++) printf (" %x", *p++); if (cp->host_status==HS_COMPLETE) { switch (cp->scsi_status) { case S_GOOD: printf (" GOOD"); break; case S_CHECK_COND: printf (" SENSE:"); p = (u_char *) &xp->sense; for (i=0; ireq_sense_length; i++) printf (" %x", *p++); break; default: printf (" STAT: %x\n", cp->scsi_status); break; }; } else printf (" HOSTERROR: %x", cp->host_status); printf ("\n"); }; /* ** Free this ccb */ ncr_free_ccb (np, cp, xp->flags); /* ** signal completion to generic driver. */ scsi_done (xp); } /*========================================================== ** ** ** Signal all (or one) control block done. ** ** **========================================================== */ void ncr_wakeup (ncb_p np, u_long code) { /* ** Starting at the default ccb and following ** the links, complete all jobs with a ** host_status greater than "disconnect". ** ** If the "code" parameter is not zero, ** complete all jobs that are not IDLE. */ ccb_p cp = np->ccb; while (cp) { switch (cp->host_status) { case HS_IDLE: break; case HS_DISCONNECT: if(DEBUG_FLAGS & DEBUG_TINY) printf ("D"); /* fall through */ case HS_BUSY: case HS_NEGOTIATE: if (!code) break; cp->host_status = code; /* fall through */ default: ncr_complete (np, cp); break; }; cp = cp -> link_ccb; }; } /*========================================================== ** ** ** Start NCR chip. ** ** **========================================================== */ void ncr_init (ncb_p np, char * msg, u_long code) { int i; u_long usrsync; u_char usrwide; /* ** Reset chip. */ OUTB (nc_istat, SRST); DELAY (1000); OUTB (nc_istat, 0); /* ** Message. */ if (msg) printf ("%s: restart (%s).\n", ncr_name (np), msg); /* ** Clear Start Queue */ for (i=0;i squeue [i] = SCR_BO(NCB_SCRIPT_PHYS (np, idle)); /* ** Start at first entry. */ np->squeueput = 0; WRITESCRIPT(startpos[0], NCB_SCRIPTH_PHYS (np, tryloop)); WRITESCRIPT(start0 [0], SCR_INT ^ IFFALSE (0)); /* ** Wakeup all pending jobs. */ ncr_wakeup (np, code); /* ** Init chip. */ OUTB (nc_istat, 0x00 ); /* Remove Reset, abort ... */ OUTB (nc_scntl0, 0xca ); /* full arb., ena parity, par->ATN */ OUTB (nc_scntl1, 0x00 ); /* odd parity, and remove CRST!! */ ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ OUTB (nc_scid , RRE|np->myaddr);/* host adapter SCSI address */ OUTW (nc_respid, 1ul<myaddr);/* id to respond to */ OUTB (nc_istat , SIGP ); /* Signal Process */ OUTB (nc_dmode , np->rv_dmode); /* XXX modify burstlen ??? */ OUTB (nc_dcntl , np->rv_dcntl); OUTB (nc_ctest3, np->rv_ctest3); OUTB (nc_ctest5, np->rv_ctest5); OUTB (nc_ctest4, np->rv_ctest4);/* enable master parity checking */ OUTB (nc_stest2, np->rv_stest2|EXT); /* Extended Sreq/Sack filtering */ OUTB (nc_stest3, TE ); /* TolerANT enable */ OUTB (nc_stime0, 0x0b ); /* HTH = disabled, STO = 0.1 sec. */ if (bootverbose >= 2) { printf ("\tACTUAL values:SCNTL3:%02x DMODE:%02x DCNTL:%02x\n", np->rv_scntl3, np->rv_dmode, np->rv_dcntl); printf ("\t CTEST3:%02x CTEST4:%02x CTEST5:%02x\n", np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } /* ** Enable GPIO0 pin for writing if LED support. */ if (np->features & FE_LED0) { OUTOFFB (nc_gpcntl, 0x01); } /* ** Reinitialize usrsync. ** Have to renegotiate synch mode. */ usrsync = 255; if (SCSI_NCR_DFLT_SYNC) { usrsync = SCSI_NCR_DFLT_SYNC; if (usrsync > np->maxsync) usrsync = np->maxsync; if (usrsync < np->minsync) usrsync = np->minsync; }; /* ** Reinitialize usrwide. ** Have to renegotiate wide mode. */ usrwide = (SCSI_NCR_MAX_WIDE); if (usrwide > np->maxwide) usrwide=np->maxwide; /* ** Disable disconnects. */ np->disc = 0; /* ** Fill in target structure. */ for (i=0;itarget[i]; tp->sval = 0; tp->wval = np->rv_scntl3; tp->usrsync = usrsync; tp->usrwide = usrwide; ncr_negotiate (np, tp); } /* ** enable ints */ OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST); OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID); /* ** Start script processor. */ OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, start)); } /*========================================================== ** ** Prepare the negotiation values for wide and ** synchronous transfers. ** **========================================================== */ static void ncr_negotiate (struct ncb* np, struct tcb* tp) { /* ** minsync unit is 4ns ! */ u_long minsync = tp->usrsync; /* ** if not scsi 2 ** don't believe FAST! */ if ((minsync < 50) && (tp->inqdata[2] & 0x0f) < 2) minsync=50; /* ** our limit .. */ if (minsync < np->minsync) minsync = np->minsync; /* ** divider limit */ if (minsync > np->maxsync) minsync = 255; tp->minsync = minsync; tp->maxoffs = (minsync<255 ? np->maxoffs : 0); /* ** period=0: has to negotiate sync transfer */ tp->period=0; /* ** widedone=0: has to negotiate wide transfer */ tp->widedone=0; } /*========================================================== ** ** Get clock factor and sync divisor for a given ** synchronous factor period. ** Returns the clock factor (in sxfer) and scntl3 ** synchronous divisor field. ** **========================================================== */ static void ncr_getsync(ncb_p np, u_char sfac, u_char *fakp, u_char *scntl3p) { u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */ int div = np->clock_divn; /* Number of divisors supported */ u_long fak; /* Sync factor in sxfer */ u_long per; /* Period in tenths of ns */ u_long kpc; /* (per * clk) */ /* ** Compute the synchronous period in tenths of nano-seconds */ if (sfac <= 10) per = 250; else if (sfac == 11) per = 303; else if (sfac == 12) per = 500; else per = 40 * sfac; /* ** Look for the greatest clock divisor that allows an ** input speed faster than the period. */ kpc = per * clk; while (--div >= 0) if (kpc >= (div_10M[div] * 4)) break; /* ** Calculate the lowest clock factor that allows an output ** speed not faster than the period. */ fak = (kpc - 1) / div_10M[div] + 1; #if 0 /* You can #if 1 if you think this optimization is usefull */ per = (fak * div_10M[div]) / clk; /* ** Why not to try the immediate lower divisor and to choose ** the one that allows the fastest output speed ? ** We dont want input speed too much greater than output speed. */ if (div >= 1 && fak < 6) { u_long fak2, per2; fak2 = (kpc - 1) / div_10M[div-1] + 1; per2 = (fak2 * div_10M[div-1]) / clk; if (per2 < per && fak2 <= 6) { fak = fak2; per = per2; --div; } } #endif if (fak < 4) fak = 4; /* Should never happen, too bad ... */ /* ** Compute and return sync parameters for the ncr */ *fakp = fak - 4; *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); } /*========================================================== ** ** Switch sync mode for current job and it's target ** **========================================================== */ static void ncr_setsync (ncb_p np, ccb_p cp, u_char scntl3, u_char sxfer) { struct scsi_xfer *xp; tcb_p tp; int div; u_char target = INB (nc_sdid) & 0x0f; assert (cp); if (!cp) return; xp = cp->xfer; assert (xp); if (!xp) return; assert (target == (xp->sc_link->target & 0x0f)); tp = &np->target[target]; if (!scntl3 || !(sxfer & 0x1f)) scntl3 = np->rv_scntl3; scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07); /* ** Deduce the value of controller sync period from scntl3. ** period is in tenths of nano-seconds. */ div = ((scntl3 >> 4) & 0x7); if ((sxfer & 0x1f) && div) tp->period = (((sxfer>>5)+4)*div_10M[div-1])/np->clock_khz; else tp->period = 0xffff; /* ** Stop there if sync parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; /* ** Bells and whistles ;-) */ PRINT_ADDR(xp); if (sxfer & 0x1f) { unsigned f10 = 100000 << (tp->widedone ? tp->widedone -1 : 0); unsigned mb10 = (f10 + tp->period/2) / tp->period; /* ** Disable extended Sreq/Sack filtering */ if (tp->period <= 2000) OUTOFFB (nc_stest2, EXT); printf ("%d.%d MB/s (%d ns, offset %d)\n", mb10 / 10, mb10 % 10, tp->period / 10, sxfer & 0x1f); } else printf ("asynchronous.\n"); /* ** set actual value and sync_status */ OUTB (nc_sxfer, sxfer); np->sync_st = sxfer; OUTB (nc_scntl3, scntl3); np->wide_st = scntl3; /* ** patch ALL ccbs of this target. */ for (cp = np->ccb; cp; cp = cp->link_ccb) { if (!cp->xfer) continue; if (cp->xfer->sc_link->target != target) continue; cp->sync_status = sxfer; cp->wide_status = scntl3; }; } /*========================================================== ** ** Switch wide mode for current job and it's target ** SCSI specs say: a SCSI device that accepts a WDTR ** message shall reset the synchronous agreement to ** asynchronous mode. ** **========================================================== */ static void ncr_setwide (ncb_p np, ccb_p cp, u_char wide, u_char ack) { struct scsi_xfer *xp; u_short target = INB (nc_sdid) & 0x0f; tcb_p tp; u_char scntl3; u_char sxfer; assert (cp); if (!cp) return; xp = cp->xfer; assert (xp); if (!xp) return; assert (target == (xp->sc_link->target & 0x0f)); tp = &np->target[target]; tp->widedone = wide+1; scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0); sxfer = ack ? 0 : tp->sval; /* ** Stop there if sync/wide parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; /* ** Bells and whistles ;-) */ PRINT_ADDR(xp); if (scntl3 & EWS) printf ("WIDE SCSI (16 bit) enabled\n"); else printf ("WIDE SCSI disabled\n"); /* ** set actual value and sync_status */ OUTB (nc_sxfer, sxfer); np->sync_st = sxfer; OUTB (nc_scntl3, scntl3); np->wide_st = scntl3; /* ** patch ALL ccbs of this target. */ for (cp = np->ccb; cp; cp = cp->link_ccb) { if (!cp->xfer) continue; if (cp->xfer->sc_link->target != target) continue; cp->sync_status = sxfer; cp->wide_status = scntl3; }; } /*========================================================== ** ** Switch tagged mode for a target. ** **========================================================== */ static void ncr_setmaxtags (tcb_p tp, u_long usrtags) { int l; for (l=0; llp[l]; if (!lp) continue; ncr_settags (tp, lp, usrtags); }; } static void ncr_settags (tcb_p tp, lcb_p lp, u_long usrtags) { u_char reqtags, tmp; if ((!tp) || (!lp)) return; /* ** only devices capable of tagges commands ** only disk devices ** only if enabled by user .. */ if ((tp->inqdata[0] & 0x1f) != 0x00 || (tp->inqdata[7] & INQ7_QUEUE) == 0 || (tp->quirks & QUIRK_NOTAGS) != 0) { usrtags=0; } if (usrtags) { reqtags = usrtags; if (lp->actlink <= 1) lp->usetags=reqtags; } else { reqtags = 1; if (lp->actlink <= 1) lp->usetags=0; }; /* ** don't announce more than available. */ tmp = lp->actccbs; if (tmp > reqtags) tmp = reqtags; lp->reqlink = tmp; /* ** don't discard if announced. */ tmp = lp->actlink; if (tmp < reqtags) tmp = reqtags; lp->reqccbs = tmp; if (lp->reqlink < lp->reqccbs) lp->reqlink = lp->reqccbs; } /*---------------------------------------------------- ** ** handle user commands ** **---------------------------------------------------- */ static void ncr_usercmd (ncb_p np) { u_char t; tcb_p tp; switch (np->user.cmd) { case 0: return; case UC_SETSYNC: for (t=0; tuser.target>>t)&1)) continue; tp = &np->target[t]; tp->usrsync = np->user.data; ncr_negotiate (np, tp); }; break; case UC_SETTAGS: if (np->user.data > MAX_TAGS) break; for (t=0; tuser.target>>t)&1)) continue; tp = &np->target[t]; tp->usrtags = np->user.data; ncr_setmaxtags (tp, tp->usrtags); }; break; case UC_SETDEBUG: ncr_debug = np->user.data; break; case UC_SETORDER: np->order = np->user.data; break; case UC_SETWIDE: for (t=0; tuser.target>>t)&1)) continue; tp = &np->target[t]; size = np->user.data; if (size > np->maxwide) size=np->maxwide; tp->usrwide = size; ncr_negotiate (np, tp); }; break; case UC_SETFLAG: for (t=0; tuser.target>>t)&1)) continue; tp = &np->target[t]; tp->usrflag = np->user.data; }; break; } np->user.cmd=0; } /*========================================================== ** ** ** ncr timeout handler. ** ** **========================================================== ** ** Misused to keep the driver running when ** interrupts are not configured correctly. ** **---------------------------------------------------------- */ static void ncr_timeout (void *arg) { ncb_p np = arg; #ifdef __OpenBSD__ u_long thistime = mono_time.tv_sec; #else u_long thistime = time.tv_sec; #endif u_long step = np->ticks; u_long count = 0; long signed t; ccb_p cp; if (np->lasttime != thistime) { /* ** block ncr interrupts */ int oldspl = splbio(); np->lasttime = thistime; ncr_usercmd (np); /*---------------------------------------------------- ** ** handle ncr chip timeouts ** ** Assumption: ** We have a chance to arbitrate for the ** SCSI bus at least every 10 seconds. ** **---------------------------------------------------- */ t = thistime - np->heartbeat; if (t<2) np->latetime=0; else np->latetime++; if (np->latetime>2) { /* ** If there are no requests, the script ** processor will sleep on SEL_WAIT_RESEL. ** But we have to check whether it died. ** Let's try to wake it up. */ OUTB (nc_istat, SIGP); }; /*---------------------------------------------------- ** ** handle ccb timeouts ** **---------------------------------------------------- */ for (cp=np->ccb; cp; cp=cp->link_ccb) { /* ** look for timed out ccbs. */ if (!cp->host_status) continue; count++; if (cp->tlimit > thistime) continue; /* ** Disable reselect. ** Remove it from startqueue. */ cp->jump_ccb.l_cmd = SCR_BO((SCR_JUMP)); if (cp->phys.header.launch.l_paddr == SCR_BO(NCB_SCRIPT_PHYS (np, select))) { printf ("%s: timeout ccb=%p (skip)\n", ncr_name (np), cp); cp->phys.header.launch.l_paddr = SCR_BO(NCB_SCRIPT_PHYS (np, skip)); }; switch (cp->host_status) { case HS_BUSY: case HS_NEGOTIATE: /* ** still in start queue ? */ if (cp->phys.header.launch.l_paddr == SCR_BO(NCB_SCRIPT_PHYS (np, skip))) continue; /* fall through */ case HS_DISCONNECT: cp->host_status=HS_TIMEOUT; }; cp->tag = 0; /* ** wakeup this ccb. */ ncr_complete (np, cp); }; splx (oldspl); } #ifdef __FreeBSD__ np->timeout_ch = timeout (ncr_timeout, (caddr_t) np, step ? step : 1); #else timeout_add(&np->sc_timeout, step ? step : 1); #endif if (INB(nc_istat) & (INTF|SIP|DIP)) { /* ** Process pending interrupts. */ int oldspl = splbio (); if (DEBUG_FLAGS & DEBUG_TINY) printf ("{"); ncr_exception (np); if (DEBUG_FLAGS & DEBUG_TINY) printf ("}"); splx (oldspl); }; } /*========================================================== ** ** log message for real hard errors ** ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." ** ** exception register: ** ds: dstat ** si: sist ** ** SCSI bus lines: ** so: control lines as driven by NCR. ** si: control lines as seen by NCR. ** sd: scsi data lines as seen by NCR. ** ** wide/fastmode: ** sxfer: (see the manual) ** scntl3: (see the manual) ** ** current script command: ** dsp: script adress (relative to start of script). ** dbc: first word of script command. ** ** First 16 register of the chip: ** r0..rf ** **========================================================== */ static void ncr_log_hard_error(ncb_p np, u_short sist, u_char dstat) { u_int32_t dsp; int script_ofs; int script_size; char *script_name; u_char *script_base; int i; dsp = INL (nc_dsp); if (np->p_script < dsp && dsp <= np->p_script + sizeof(struct script)) { script_ofs = dsp - np->p_script; script_size = sizeof(struct script); script_base = (u_char *) np->script; script_name = "script"; } else if (np->p_scripth < dsp && dsp <= np->p_scripth + sizeof(struct scripth)) { script_ofs = dsp - np->p_scripth; script_size = sizeof(struct scripth); script_base = (u_char *) np->scripth; script_name = "scripth"; } else { script_ofs = dsp; script_size = 0; script_base = 0; script_name = "mem"; } printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs, (unsigned)INL (nc_dbc)); if (((script_ofs & 3) == 0) && (unsigned)script_ofs < script_size) { printf ("%s: script cmd = %08x\n", ncr_name(np), (int)READSCRIPT_OFF(script_base, script_ofs)); } printf ("%s: regdump:", ncr_name(np)); for (i=0; i<16;i++) printf (" %02x", (unsigned)INB_OFF(i)); printf (".\n"); } /*========================================================== ** ** ** ncr chip exception handler. ** ** **========================================================== */ void ncr_exception (ncb_p np) { u_int8_t istat, dstat; u_int16_t sist; /* ** interrupt on the fly ? */ while ((istat = INB (nc_istat)) & INTF) { if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); OUTB (nc_istat, INTF); np->profile.num_fly++; ncr_wakeup (np, 0); }; if (!(istat & (SIP|DIP))) { return; } /* ** Steinbach's Guideline for Systems Programming: ** Never test for an error condition you don't know how to handle. */ sist = (istat & SIP) ? INW (nc_sist) : 0; dstat = (istat & DIP) ? INB (nc_dstat) : 0; np->profile.num_int++; if (DEBUG_FLAGS & DEBUG_TINY) printf ("<%d|%x:%x|%x:%x>", INB(nc_scr0), dstat,sist, (unsigned)INL(nc_dsp), (unsigned)INL(nc_dbc)); if ((dstat==DFE) && (sist==PAR)) return; /*========================================================== ** ** First the normal cases. ** **========================================================== */ /*------------------------------------------- ** SCSI reset **------------------------------------------- */ if (sist & RST) { ncr_init (np, bootverbose ? "scsi reset" : NULL, HS_RESET); return; }; /*------------------------------------------- ** selection timeout ** ** IID excluded from dstat mask! ** (chip bug) **------------------------------------------- */ if ((sist & STO) && !(sist & (GEN|HTH|MA|SGE|UDC|RST|PAR)) && !(dstat & (MDPE|BF|ABRT|SIR))) { ncr_int_sto (np); return; }; /*------------------------------------------- ** Phase mismatch. **------------------------------------------- */ if ((sist & MA) && !(sist & (STO|GEN|HTH|SGE|UDC|RST|PAR)) && !(dstat & (MDPE|BF|ABRT|SIR|IID))) { ncr_int_ma (np, dstat); return; }; /*---------------------------------------- ** move command with length 0 **---------------------------------------- */ if ((dstat & IID) && !(sist & (STO|GEN|HTH|MA|SGE|UDC|RST|PAR)) && !(dstat & (MDPE|BF|ABRT|SIR)) && ((INL(nc_dbc) & 0xf8000000) == SCR_MOVE_TBL)) { /* ** Target wants more data than available. ** The "no_data" script will do it. */ OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, no_data)); return; }; /*------------------------------------------- ** Programmed interrupt **------------------------------------------- */ if ((dstat & SIR) && !(sist & (STO|GEN|HTH|MA|SGE|UDC|RST|PAR)) && !(dstat & (MDPE|BF|ABRT|IID)) && (INB(nc_dsps) <= SIR_MAX)) { ncr_int_sir (np); return; }; /*======================================== ** log message for real hard errors **======================================== */ ncr_log_hard_error(np, sist, dstat); /*======================================== ** do the register dump **======================================== */ #ifdef __OpenBSD__ if (mono_time.tv_sec - np->regtime.tv_sec>10) { int i; np->regtime = mono_time; #else if (time.tv_sec - np->regtime.tv_sec>10) { int i; gettime(&np->regtime); #endif for (i=0; iregdump); i++) ((char *)&np->regdump)[i] = INB_OFF(i); np->regdump.nc_dstat = dstat; np->regdump.nc_sist = sist; }; /*---------------------------------------- ** clean up the dma fifo **---------------------------------------- */ if ( (INB(nc_sstat0) & (ILF|ORF|OLF) ) || (INB(nc_sstat1) & (FF3210) ) || (INB(nc_sstat2) & (ILF1|ORF1|OLF1)) || /* wide .. */ !(dstat & DFE)) { printf ("%s: have to clear fifos.\n", ncr_name (np)); OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ } /*---------------------------------------- ** handshake timeout **---------------------------------------- */ if (sist & HTH) { printf ("%s: handshake timeout\n", ncr_name(np)); OUTB (nc_scntl1, CRST); DELAY (1000); OUTB (nc_scntl1, 0x00); OUTB (nc_scr0, HS_FAIL); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, cleanup)); return; } /*---------------------------------------- ** unexpected disconnect **---------------------------------------- */ if ((sist & UDC) && !(sist & (STO|GEN|HTH|MA|SGE|RST|PAR)) && !(dstat & (MDPE|BF|ABRT|SIR|IID))) { OUTB (nc_scr0, HS_UNEXPECTED); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, cleanup)); return; }; /*---------------------------------------- ** cannot disconnect **---------------------------------------- */ if ((dstat & IID) && !(sist & (STO|GEN|HTH|MA|SGE|UDC|RST|PAR)) && !(dstat & (MDPE|BF|ABRT|SIR)) && ((INL(nc_dbc) & 0xf8000000) == SCR_WAIT_DISC)) { /* ** Unexpected data cycle while waiting for disconnect. */ if (INB(nc_sstat2) & LDSC) { /* ** It's an early reconnect. ** Let's continue ... */ OUTB (nc_dcntl, np->rv_dcntl | STD); /* ** info message */ printf ("%s: INFO: LDSC while IID.\n", ncr_name (np)); return; }; printf ("%s: target %d doesn't release the bus.\n", ncr_name (np), INB (nc_sdid)&0x0f); /* ** return without restarting the NCR. ** timeout will do the real work. */ return; }; /*---------------------------------------- ** single step **---------------------------------------- */ if ((dstat & SSI) && !(sist & (STO|GEN|HTH|MA|SGE|UDC|RST|PAR)) && !(dstat & (MDPE|BF|ABRT|SIR|IID))) { OUTB (nc_dcntl, np->rv_dcntl | STD); return; }; /* ** @RECOVER@ HTH, SGE, ABRT. ** ** We should try to recover from these interrupts. ** They may occur if there are problems with synch transfers, or ** if targets are switched on or off while the driver is running. */ if (sist & SGE) { /* clear scsi offsets */ OUTB (nc_ctest3, np->rv_ctest3 | CLF); } /* ** Freeze controller to be able to read the messages. */ if (DEBUG_FLAGS & DEBUG_FREEZE) { int i; unsigned char val; for (i=0; i<0x60; i++) { switch (i%16) { case 0: printf ("%s: reg[%d0]: ", ncr_name(np),i/16); break; case 4: case 8: case 12: printf (" "); break; }; val = INB_OFF(i); printf (" %x%x", val/16, val%16); if (i%16==15) printf (".\n"); }; #ifdef __FreeBSD__ untimeout (ncr_timeout, (caddr_t) np, np->timeout_ch); #else timeout_del(&np->sc_timeout); #endif printf ("%s: halted!\n", ncr_name(np)); /* ** don't restart controller ... */ OUTB (nc_istat, SRST); return; }; #ifdef NCR_FREEZE /* ** Freeze system to be able to read the messages. */ printf ("ncr: fatal error: system halted - press reset to reboot ..."); (void) splhigh(); for (;;); #endif /* ** sorry, have to kill ALL jobs ... */ ncr_init (np, "fatal error", HS_FAIL); } /*========================================================== ** ** ncr chip exception handler for selection timeout ** **========================================================== ** ** There seems to be a bug in the 53c810. ** Although a STO-Interrupt is pending, ** it continues executing script commands. ** But it will fail and interrupt (IID) on ** the next instruction where it's looking ** for a valid phase. ** **---------------------------------------------------------- */ void ncr_int_sto (ncb_p np) { u_long dsa, scratcha, diff; ccb_p cp; if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); /* ** look for ccb and set the status. */ dsa = INL (nc_dsa); cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; if (cp) { cp-> host_status = HS_SEL_TIMEOUT; ncr_complete (np, cp); }; /* ** repair start queue */ scratcha = INL (nc_scratcha); diff = scratcha - NCB_SCRIPTH_PHYS (np, tryloop); /* assert ((diff <= MAX_START * 20) && !(diff % 20));*/ if ((diff <= MAX_START * 20) && !(diff % 20)) { WRITESCRIPT(startpos[0], scratcha); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, start)); return; }; ncr_init (np, "selection timeout", HS_FAIL); } /*========================================================== ** ** ** ncr chip exception handler for phase errors. ** ** **========================================================== ** ** We have to construct a new transfer descriptor, ** to transfer the rest of the current block. ** **---------------------------------------------------------- */ static void ncr_int_ma (ncb_p np, u_char dstat) { u_int32_t dbc; u_int32_t rest; u_int32_t dsa; u_int32_t dsp; u_int32_t nxtdsp; void *vdsp_base; size_t vdsp_off; u_int32_t oadr, olen; u_int32_t *tblp; ncrcmd *newcmd; u_int32_t cmd, sbcl, delta, ss0, ss2, ctest5; ccb_p cp; dsp = INL (nc_dsp); dsa = INL (nc_dsa); dbc = INL (nc_dbc); ss0 = INB (nc_sstat0); ss2 = INB (nc_sstat2); sbcl= INB (nc_sbcl); cmd = dbc >> 24; rest= dbc & 0xffffff; ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0; if (ctest5 & DFS) delta=(((ctest5<<8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff; else delta=(INB (nc_dfifo) - rest) & 0x7f; /* ** The data in the dma fifo has not been transferred to ** the target -> add the amount to the rest ** and clear the data. ** Check the sstat2 register in case of wide transfer. */ if (!(dstat & DFE)) rest += delta; if (ss0 & OLF) rest++; if (ss0 & ORF) rest++; if (INB(nc_scntl3) & EWS) { if (ss2 & OLF1) rest++; if (ss2 & ORF1) rest++; }; OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ /* ** locate matching cp */ dsa = INL (nc_dsa); cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; if (!cp) { printf ("%s: SCSI phase error fixup: CCB already dequeued (%p)\n", ncr_name (np), np->header.cp); return; } if (cp != np->header.cp) { printf ("%s: SCSI phase error fixup: CCB address mismatch (0x%08lx != 0x%08lx) np->ccb = %p\n", ncr_name (np), (u_long) cp, (u_long) np->header.cp, np->ccb); /* return;*/ } /* ** find the interrupted script command, ** and the address at which to continue. */ if (dsp == NCR_KVATOPHYS (np, &cp->patch[2])) { vdsp_base = cp; vdsp_off = offsetof(struct ccb, patch[0]); nxtdsp = READSCRIPT_OFF(vdsp_base, vdsp_off + 3*4); } else if (dsp == NCR_KVATOPHYS (np, &cp->patch[6])) { vdsp_base = cp; vdsp_off = offsetof(struct ccb, patch[4]); nxtdsp = READSCRIPT_OFF(vdsp_base, vdsp_off + 3*4); } else if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { vdsp_base = np->script; vdsp_off = dsp - np->p_script - 8; nxtdsp = dsp; } else { vdsp_base = np->scripth; vdsp_off = dsp - np->p_scripth - 8; nxtdsp = dsp; }; /* ** log the information */ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) { printf ("P%x%x ",cmd&7, sbcl&7); printf ("RL=%d D=%d SS0=%x ", (unsigned) rest, (unsigned) delta, ss0); }; if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP_BASE=%p VDSP_OFF=0x%x CMD=%x ", cp, np->header.cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp_base, (unsigned)vdsp_off, cmd); }; /* ** get old startaddress and old length. */ oadr = READSCRIPT_OFF(vdsp_base, vdsp_off + 1*4); if (cmd & 0x10) { /* Table indirect */ tblp = (u_int32_t *) ((char *) &cp->phys + oadr); olen = SCR_BO(tblp[0]); oadr = SCR_BO(tblp[1]); } else { tblp = (u_int32_t *) 0; olen = READSCRIPT_OFF(vdsp_base, vdsp_off) & 0xffffff; }; if (DEBUG_FLAGS & DEBUG_PHASE) { printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", (unsigned) (READSCRIPT_OFF(vdsp_base, vdsp_off) >> 24), tblp, (unsigned) olen, (unsigned) oadr); }; /* ** if old phase not dataphase, leave here. */ if (cmd != (READSCRIPT_OFF(vdsp_base, vdsp_off) >> 24)) { PRINT_ADDR(cp->xfer); printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", (unsigned)cmd, (unsigned)READSCRIPT_OFF(vdsp_base, vdsp_off) >> 24); return; } if (cmd & 0x06) { PRINT_ADDR(cp->xfer); printf ("phase change %x-%x %d@%08x resid=%d.\n", cmd&7, sbcl&7, (unsigned)olen, (unsigned)oadr, (unsigned)rest); OUTB (nc_dcntl, np->rv_dcntl | STD); return; }; /* ** choose the correct patch area. ** if savep points to one, choose the other. */ newcmd = cp->patch; if (cp->phys.header.savep == SCR_BO(NCR_KVATOPHYS (np, newcmd))) newcmd+=4; /* ** fillin the commands */ newcmd[0] = SCR_BO(((cmd & 0x0f) << 24) | rest); newcmd[1] = SCR_BO(oadr + olen - rest); newcmd[2] = SCR_BO(SCR_JUMP); newcmd[3] = SCR_BO(nxtdsp); if (DEBUG_FLAGS & DEBUG_PHASE) { PRINT_ADDR(cp->xfer); printf ("newcmd[%ld] %x %x %x %x.\n", (long)(newcmd - cp->patch), (unsigned)newcmd[0], (unsigned)newcmd[1], (unsigned)newcmd[2], (unsigned)newcmd[3]); } /* ** fake the return address (to the patch). ** and restart script processor at dispatcher. */ np->profile.num_break++; OUTL (nc_temp, NCR_KVATOPHYS (np, newcmd)); if ((cmd & 7) == 0) OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, dispatch)); else OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, checkatn)); } /*========================================================== ** ** ** ncr chip exception handler for programmed interrupts. ** ** **========================================================== */ static int ncr_show_msg (u_char * msg) { u_char i; printf ("%x",*msg); if (*msg==M_EXTENDED) { for (i=1;i<8;i++) { if (i-1>msg[1]) break; printf ("-%x",msg[i]); }; return (i+1); } else if ((*msg & 0xf0) == 0x20) { printf ("-%x",msg[1]); return (2); }; return (1); } void ncr_int_sir (ncb_p np) { u_char scntl3; u_char chg, ofs, per, fak, wide; u_char num = INB (nc_dsps); ccb_p cp=0; u_long dsa; u_char target = INB (nc_sdid) & 0x0f; tcb_p tp = &np->target[target]; int i; if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); switch (num) { case SIR_SENSE_RESTART: case SIR_STALL_RESTART: break; default: /* ** lookup the ccb */ dsa = INL (nc_dsa); cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; assert (cp); if (!cp) goto out; assert (cp == np->header.cp); if (cp != np->header.cp) goto out; } switch (num) { /*-------------------------------------------------------------------- ** ** Processing of interrupted getcc selects ** **-------------------------------------------------------------------- */ case SIR_SENSE_RESTART: /*------------------------------------------ ** Script processor is idle. ** Look for interrupted "check cond" **------------------------------------------ */ if (DEBUG_FLAGS & DEBUG_RESTART) printf ("%s: int#%d",ncr_name (np),num); cp = (ccb_p) 0; for (i=0; itarget[i]; if (DEBUG_FLAGS & DEBUG_RESTART) printf ("+"); cp = tp->hold_cp; if (!cp) continue; if (DEBUG_FLAGS & DEBUG_RESTART) printf ("+"); if ((cp->host_status==HS_BUSY) && (cp->scsi_status==S_CHECK_COND)) break; if (DEBUG_FLAGS & DEBUG_RESTART) printf ("- (remove)"); tp->hold_cp = cp = (ccb_p) 0; }; if (cp) { if (DEBUG_FLAGS & DEBUG_RESTART) printf ("+ restart job ..\n"); OUTL (nc_dsa, CCB_PHYS (cp, phys)); OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, getcc)); return; }; /* ** no job, resume normal processing */ if (DEBUG_FLAGS & DEBUG_RESTART) printf (" -- remove trap\n"); WRITESCRIPT(start0[0], SCR_INT ^ IFFALSE (0)); break; case SIR_SENSE_FAILED: /*------------------------------------------- ** While trying to select for ** getting the condition code, ** a target reselected us. **------------------------------------------- */ if (DEBUG_FLAGS & DEBUG_RESTART) { PRINT_ADDR(cp->xfer); printf ("in getcc reselect by t%d.\n", INB(nc_ssid) & 0x0f); } /* ** Mark this job */ cp->host_status = HS_BUSY; cp->scsi_status = S_CHECK_COND; np->target[cp->xfer->sc_link->target].hold_cp = cp; /* ** And patch code to restart it. */ WRITESCRIPT(start0[0], SCR_INT); break; /*----------------------------------------------------------------------------- ** ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... ** ** We try to negotiate sync and wide transfer only after ** a successfull inquire command. We look at byte 7 of the ** inquire data to determine the capabilities if the target. ** ** When we try to negotiate, we append the negotiation message ** to the identify and (maybe) simple tag message. ** The host status field is set to HS_NEGOTIATE to mark this ** situation. ** ** If the target doesn't answer this message immidiately ** (as required by the standard), the SIR_NEGO_FAIL interrupt ** will be raised eventually. ** The handler removes the HS_NEGOTIATE status, and sets the ** negotiated value to the default (async / nowide). ** ** If we receive a matching answer immediately, we check it ** for validity, and set the values. ** ** If we receive a Reject message immediately, we assume the ** negotiation has failed, and fall back to standard values. ** ** If we receive a negotiation message while not in HS_NEGOTIATE ** state, it's a target initiated negotiation. We prepare a ** (hopefully) valid answer, set our parameters, and send back ** this answer to the target. ** ** If the target doesn't fetch the answer (no message out phase), ** we assume the negotiation has failed, and fall back to default ** settings. ** ** When we set the values, we adjust them in all ccbs belonging ** to this target, in the controller's register, and in the "phys" ** field of the controller's struct ncb. ** ** Possible cases: hs sir msg_in value send goto ** We try try to negotiate: ** -> target doesnt't msgin NEG FAIL noop defa. - dispatch ** -> target rejected our msg NEG FAIL reject defa. - dispatch ** -> target answered (ok) NEG SYNC sdtr set - clrack ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad ** -> target answered (ok) NEG WIDE wdtr set - clrack ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad ** -> any other msgin NEG FAIL noop defa. - dispatch ** ** Target tries to negotiate: ** -> incoming message --- SYNC sdtr set SDTR - ** -> incoming message --- WIDE wdtr set WDTR - ** We sent our answer: ** -> target doesn't msgout --- PROTO ? defa. - dispatch ** **----------------------------------------------------------------------------- */ case SIR_NEGO_FAILED: /*------------------------------------------------------- ** ** Negotiation failed. ** Target doesn't send an answer message, ** or target rejected our message. ** ** Remove negotiation request. ** **------------------------------------------------------- */ OUTB (HS_PRT, HS_BUSY); /* fall through */ case SIR_NEGO_PROTO: /*------------------------------------------------------- ** ** Negotiation failed. ** Target doesn't fetch the answer message. ** **------------------------------------------------------- */ if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("negotiation failed sir=%x status=%x.\n", num, cp->nego_status); }; /* ** any error in negotiation: ** fall back to default mode. */ switch (cp->nego_status) { case NS_SYNC: ncr_setsync (np, cp, 0, 0xe0); break; case NS_WIDE: ncr_setwide (np, cp, 0, 0); break; }; np->msgin [0] = M_NOOP; np->msgout[0] = M_NOOP; cp->nego_status = 0; OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, dispatch)); break; case SIR_NEGO_SYNC: /* ** Synchronous request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("sync msgin: "); (void) ncr_show_msg (np->msgin); printf (".\n"); }; /* ** get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[4]; if (ofs==0) per=255; /* ** if target sends SDTR message, ** it CAN transfer synch. */ if (ofs) tp->inqdata[7] |= INQ7_SYNC; /* ** check values against driver limits. */ if (per < np->minsync) {chg = 1; per = np->minsync;} if (per < tp->minsync) {chg = 1; per = tp->minsync;} if (ofs > tp->maxoffs) {chg = 1; ofs = tp->maxoffs;} /* ** Check against controller limits. */ fak = 7; scntl3 = 0; if (ofs != 0) { ncr_getsync(np, per, &fak, &scntl3); if (fak > 7) { chg = 1; ofs = 0; } } if (ofs == 0) { fak = 7; per = 0; scntl3 = 0; tp->minsync = 0; } if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("sync: per=%d scntl3=0x%x ofs=%d fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_SYNC: /* ** This was an answer message */ if (chg) { /* ** Answer wasn't acceptable. */ ncr_setsync (np, cp, 0, 0xe0); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, msg_bad)); } else { /* ** Answer is ok. */ ncr_setsync (np,cp,scntl3,(fak<<5)|ofs); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); }; return; case NS_WIDE: ncr_setwide (np, cp, 0, 0); break; }; }; /* ** It was a request. Set value and ** prepare an answer message */ ncr_setsync (np, cp, scntl3, (fak<<5)|ofs); np->msgout[0] = M_EXTENDED; np->msgout[1] = 3; np->msgout[2] = M_X_SYNC_REQ; np->msgout[3] = per; np->msgout[4] = ofs; cp->nego_status = NS_SYNC; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("sync msgout: "); (void) ncr_show_msg (np->msgout); printf (".\n"); } if (!ofs) { OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, msg_bad)); return; } np->msgin [0] = M_NOOP; break; case SIR_NEGO_WIDE: /* ** Wide request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("wide msgin: "); (void) ncr_show_msg (np->msgin); printf (".\n"); }; /* ** get requested values. */ chg = 0; wide = np->msgin[3]; /* ** if target sends WDTR message, ** it CAN transfer wide. */ if (wide) tp->inqdata[7] |= INQ7_WIDE16; /* ** check values against driver limits. */ if (wide > tp->usrwide) {chg = 1; wide = tp->usrwide;} if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("wide: wide=%d chg=%d.\n", wide, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_WIDE: /* ** This was an answer message */ if (chg) { /* ** Answer wasn't acceptable. */ ncr_setwide (np, cp, 0, 1); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, msg_bad)); } else { /* ** Answer is ok. */ ncr_setwide (np, cp, wide, 1); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); }; return; case NS_SYNC: ncr_setsync (np, cp, 0, 0xe0); break; }; }; /* ** It was a request, set value and ** prepare an answer message */ ncr_setwide (np, cp, wide, 1); np->msgout[0] = M_EXTENDED; np->msgout[1] = 2; np->msgout[2] = M_X_WIDE_REQ; np->msgout[3] = wide; np->msgin [0] = M_NOOP; cp->nego_status = NS_WIDE; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->xfer); printf ("wide msgout: "); (void) ncr_show_msg (np->msgout); printf (".\n"); } break; /*-------------------------------------------------------------------- ** ** Processing of special messages ** **-------------------------------------------------------------------- */ case SIR_REJECT_RECEIVED: /*----------------------------------------------- ** ** We received a M_REJECT message. ** **----------------------------------------------- */ PRINT_ADDR(cp->xfer); printf ("M_REJECT received (%x:%x).\n", (unsigned)np->lastmsg, np->msgout[0]); break; case SIR_REJECT_SENT: /*----------------------------------------------- ** ** We received an unknown message ** **----------------------------------------------- */ PRINT_ADDR(cp->xfer); printf ("M_REJECT sent for "); (void) ncr_show_msg (np->msgin); printf (".\n"); break; /*-------------------------------------------------------------------- ** ** Processing of special messages ** **-------------------------------------------------------------------- */ case SIR_IGN_RESIDUE: /*----------------------------------------------- ** ** We received an IGNORE RESIDUE message, ** which couldn't be handled by the script. ** **----------------------------------------------- */ PRINT_ADDR(cp->xfer); printf ("M_IGN_RESIDUE received, but not yet implemented.\n"); break; case SIR_MISSING_SAVE: /*----------------------------------------------- ** ** We received an DISCONNECT message, ** but the datapointer wasn't saved before. ** **----------------------------------------------- */ PRINT_ADDR(cp->xfer); printf ("M_DISCONNECT received, but datapointer not saved:\n" "\tdata=%x save=%x goal=%x.\n", (unsigned) INL (nc_temp), SCR_BO((unsigned) np->header.savep), SCR_BO((unsigned) np->header.goalp)); break; /*-------------------------------------------------------------------- ** ** Processing of a "S_QUEUE_FULL" status. ** ** The current command has been rejected, ** because there are too many in the command queue. ** We have started too many commands for that target. ** ** If possible, reinsert at head of queue. ** Stall queue until there are no disconnected jobs ** (ncr is REALLY idle). Then restart processing. ** ** We should restart the current job after the controller ** has become idle. But this is not yet implemented. ** **-------------------------------------------------------------------- */ case SIR_STALL_QUEUE: /*----------------------------------------------- ** ** Stall the start queue. ** **----------------------------------------------- */ PRINT_ADDR(cp->xfer); printf ("queue full.\n"); WRITESCRIPT(start1[0], SCR_INT); /* ** Try to disable tagged transfers. */ ncr_setmaxtags (&np->target[target], 0); /* ** @QUEUE@ ** ** Should update the launch field of the ** current job to be able to restart it. ** Then prepend it to the start queue. */ /* fall through */ case SIR_STALL_RESTART: /*----------------------------------------------- ** ** Enable selecting again, ** if NO disconnected jobs. ** **----------------------------------------------- */ /* ** Look for a disconnected job. */ cp = np->ccb; while (cp && cp->host_status != HS_DISCONNECT) cp = cp->link_ccb; /* ** if there is one, ... */ if (cp) { /* ** wait for reselection */ OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, reselect)); return; }; /* ** else remove the interrupt. */ printf ("%s: queue empty.\n", ncr_name (np)); WRITESCRIPT(start1[0], SCR_INT ^ IFFALSE (0)); break; }; out: OUTB (nc_dcntl, np->rv_dcntl | STD); } /*========================================================== ** ** ** Acquire a control block ** ** **========================================================== */ static ccb_p ncr_get_ccb (ncb_p np, u_long flags, u_long target, u_long lun) { lcb_p lp; ccb_p cp = (ccb_p) 0; int oldspl; oldspl = splbio(); /* ** Lun structure available ? */ lp = np->target[target].lp[lun]; if (lp) { cp = lp->next_ccb; /* ** Look for free CCB */ while (cp && cp->magic) { cp = cp->next_ccb; } } /* ** if nothing available, take the default. */ if (!cp) cp = np->ccb; /* ** Wait until available. */ while (cp->magic) { if (flags & SCSI_NOSLEEP) break; if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0)) break; }; if (cp->magic) { splx(oldspl); return ((ccb_p) 0); } cp->magic = 1; splx(oldspl); return (cp); } /*========================================================== ** ** ** Release one control block ** ** **========================================================== */ void ncr_free_ccb (ncb_p np, ccb_p cp, int flags) { /* ** sanity */ assert (cp != NULL); cp -> host_status = HS_IDLE; cp -> magic = 0; if (cp == np->ccb) wakeup ((caddr_t) cp); } /*========================================================== ** ** ** Allocation of resources for Targets/Luns/Tags. ** ** **========================================================== */ static void ncr_alloc_ccb (ncb_p np, u_long target, u_long lun) { tcb_p tp; lcb_p lp; ccb_p cp; assert (np != NULL); if (target>=MAX_TARGET) return; if (lun >=MAX_LUN ) return; tp=&np->target[target]; if (!tp->jump_tcb.l_cmd) { /* ** initialize it. */ tp->jump_tcb.l_cmd = SCR_BO((SCR_JUMP^IFFALSE (DATA (0x80 + target)))); tp->jump_tcb.l_paddr = np->jump_tcb.l_paddr; tp->getscr[0] = (np->features & FE_PFEN)? SCR_BO(SCR_COPY(1)) : SCR_BO(SCR_COPY_F(1)); tp->getscr[1] = SCR_BO(NCR_KVATOPHYS (np, &tp->sval)); tp->getscr[2] = SCR_BO(np->paddr + offsetof (struct ncr_reg, nc_sxfer)); tp->getscr[3] = tp->getscr[0]; tp->getscr[4] = SCR_BO(NCR_KVATOPHYS (np, &tp->wval)); tp->getscr[5] = SCR_BO(np->paddr + offsetof (struct ncr_reg, nc_scntl3)); assert (( (offsetof(struct ncr_reg, nc_sxfer) ^ offsetof(struct tcb , sval )) &3) == 0); assert (( (offsetof(struct ncr_reg, nc_scntl3) ^ offsetof(struct tcb , wval )) &3) == 0); tp->call_lun.l_cmd = SCR_BO((SCR_CALL)); tp->call_lun.l_paddr = SCR_BO(NCB_SCRIPT_PHYS (np, resel_lun)); tp->jump_lcb.l_cmd = SCR_BO((SCR_JUMP)); tp->jump_lcb.l_paddr = SCR_BO(NCB_SCRIPTH_PHYS (np, abort)); np->jump_tcb.l_paddr = SCR_BO(NCR_KVATOPHYS (np, &tp->jump_tcb)); tp->usrtags = SCSI_NCR_DFLT_TAGS; ncr_setmaxtags (tp, tp->usrtags); } /* ** Logic unit control block */ lp = tp->lp[lun]; if (!lp) { /* ** Allocate a lcb */ lp = (lcb_p) malloc (sizeof (struct lcb), M_DEVBUF, M_NOWAIT); if (!lp) return; #if defined(__mips__) pci_sync_cache(np->sc_pc, (vm_offset_t)lp, sizeof (struct lcb)); lp = (struct lcb *)PHYS_TO_UNCACHED(NCR_KVATOPHYS(np, lp)); #endif /* __mips__ */ /* ** Initialize it */ bzero (lp, sizeof (*lp)); lp->jump_lcb.l_cmd = SCR_BO((SCR_JUMP ^ IFFALSE (DATA (lun)))); lp->jump_lcb.l_paddr = tp->jump_lcb.l_paddr; lp->call_tag.l_cmd = SCR_BO((SCR_CALL)); lp->call_tag.l_paddr = SCR_BO(NCB_SCRIPT_PHYS (np, resel_tag)); lp->jump_ccb.l_cmd = SCR_BO((SCR_JUMP)); lp->jump_ccb.l_paddr = SCR_BO(NCB_SCRIPTH_PHYS (np, aborttag)); lp->actlink = 1; /* ** Chain into LUN list */ tp->jump_lcb.l_paddr = SCR_BO(NCR_KVATOPHYS (np, &lp->jump_lcb)); tp->lp[lun] = lp; } /* ** Limit possible number of ccbs. ** ** If tagged command queueing is enabled, ** can use more than one ccb. */ if (np->actccbs >= MAX_START-2) return; if (lp->actccbs && (lp->actccbs >= lp->reqccbs)) return; /* ** Allocate a ccb */ cp = (ccb_p) malloc (sizeof (struct ccb), M_DEVBUF, M_NOWAIT); if (!cp) return; #if defined(__mips__) pci_sync_cache(np->sc_pc, (vm_offset_t)cp, sizeof (struct ccb)); cp = (struct ccb *)PHYS_TO_UNCACHED(NCR_KVATOPHYS(np, cp)); #endif /* __mips__ */ if (DEBUG_FLAGS & DEBUG_ALLOC) { printf ("new ccb @%p.\n", cp); } /* ** Count it */ lp->actccbs++; np->actccbs++; /* ** Initialize it */ bzero (cp, sizeof (*cp)); /* ** Fill in physical addresses */ cp->p_ccb = NCR_KVATOPHYS (np, cp); /* ** Chain into reselect list */ cp->jump_ccb.l_cmd = SCR_BO(SCR_JUMP); cp->jump_ccb.l_paddr = lp->jump_ccb.l_paddr; lp->jump_ccb.l_paddr = SCR_BO(CCB_PHYS (cp, jump_ccb)); cp->call_tmp.l_cmd = SCR_BO(SCR_CALL); cp->call_tmp.l_paddr = SCR_BO(NCB_SCRIPT_PHYS (np, resel_tmp)); /* ** Chain into wakeup list */ cp->link_ccb = np->ccb->link_ccb; np->ccb->link_ccb = cp; /* ** Chain into CCB list */ cp->next_ccb = lp->next_ccb; lp->next_ccb = cp; } /*========================================================== ** ** ** Announce the number of ccbs/tags to the scsi driver. ** ** **========================================================== */ static void ncr_opennings (ncb_p np, lcb_p lp, struct scsi_xfer * xp) { /* ** want to reduce the number ... */ if (lp->actlink > lp->reqlink) { /* ** Try to reduce the count. ** We assume to run at splbio .. */ u_char diff = lp->actlink - lp->reqlink; if (!diff) return; #ifdef __OpenBSD__ if (diff > xp->sc_link->openings) diff = xp->sc_link->openings; xp->sc_link->openings -= diff; #else if (diff > xp->sc_link->opennings) diff = xp->sc_link->opennings; xp->sc_link->opennings -= diff; #endif lp->actlink -= diff; if (DEBUG_FLAGS & DEBUG_TAGS) printf ("%s: actlink: diff=%d, new=%d, req=%d\n", ncr_name(np), diff, lp->actlink, lp->reqlink); return; }; /* ** want to increase the number ? */ if (lp->reqlink > lp->actlink) { u_char diff = lp->reqlink - lp->actlink; xp->sc_link->openings += diff; lp->actlink += diff; wakeup ((caddr_t) xp->sc_link); if (DEBUG_FLAGS & DEBUG_TAGS) printf ("%s: actlink: diff=%d, new=%d, req=%d\n", ncr_name(np), diff, lp->actlink, lp->reqlink); }; } /*========================================================== ** ** ** Build Scatter Gather Block ** ** **========================================================== ** ** The transfer area may be scattered among ** several non adjacent physical pages. ** ** We may use MAX_SCATTER blocks. ** **---------------------------------------------------------- */ static int ncr_scatter (ncb_p np, struct dsb* phys, vm_offset_t vaddr, vm_size_t datalen) { u_long paddr, pnext; u_short segment = 0; u_long segsize, segaddr; u_long size, csize = 0; u_long chunk = MAX_SIZE; int free; bzero (&phys->data, sizeof (phys->data)); if (!datalen) return (0); paddr = NCR_KVATOPHYS (np, (void *)vaddr); /* ** insert extra break points at a distance of chunk. ** We try to reduce the number of interrupts caused ** by unexpected phase changes due to disconnects. ** A typical harddisk may disconnect before ANY block. ** If we wanted to avoid unexpected phase changes at all ** we had to use a break point every 512 bytes. ** Of course the number of scatter/gather blocks is ** limited. */ free = MAX_SCATTER - 1; #ifdef __OpenBSD__ if (vaddr & (NBPG-1)) free -= datalen / NBPG; #else if (vaddr & PAGE_MASK) free -= datalen / PAGE_SIZE; #endif if (free>1) while ((chunk * free >= 2 * datalen) && (chunk>=1024)) chunk /= 2; if(DEBUG_FLAGS & DEBUG_SCATTER) printf("ncr?:\tscattering virtual=0x%x size=%d chunk=%d.\n", (unsigned) vaddr, (unsigned) datalen, (unsigned) chunk); /* ** Build data descriptors. */ while (datalen && (segment < MAX_SCATTER)) { /* ** this segment is empty */ segsize = 0; segaddr = paddr; pnext = paddr; if (!csize) csize = chunk; while ((datalen) && (paddr == pnext) && (csize)) { /* ** continue this segment */ #ifdef __OpenBSD__ pnext = (paddr & (~(NBPG - 1))) + NBPG; #else pnext = (paddr & (~PAGE_MASK)) + PAGE_SIZE; #endif /* ** Compute max size */ size = pnext - paddr; /* page size */ if (size > datalen) size = datalen; /* data size */ if (size > csize ) size = csize ; /* chunksize */ segsize += size; vaddr += size; csize -= size; datalen -= size; paddr = NCR_KVATOPHYS (np, (void *)vaddr); }; if(DEBUG_FLAGS & DEBUG_SCATTER) printf ("\tseg #%d addr=%x size=%d (rest=%d).\n", segment, (unsigned) segaddr, (unsigned) segsize, (unsigned) datalen); phys->data[segment].addr = SCR_BO(segaddr); phys->data[segment].size = SCR_BO(segsize); segment++; } if (datalen) { printf("ncr?: scatter/gather failed (residue=%d).\n", (unsigned) datalen); return (-1); }; return (segment); } /*========================================================== ** ** ** Test the pci bus snoop logic :-( ** ** Has to be called with interrupts disabled. ** ** **========================================================== */ #if !defined(NCR_IOMAPPED) || defined(__OpenBSD__) static int ncr_regtest (struct ncb* np) { register volatile u_int32_t data; /* ** ncr registers may NOT be cached. ** write 0xffffffff to a read only register area, ** and try to read it back. */ data = 0xffffffff; OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data); data = INL_OFF(offsetof(struct ncr_reg, nc_dstat)); #if 1 if (data == 0xffffffff) { #else if ((data & 0xe2f0fffd) != 0x02000080) { #endif printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", (unsigned) data); return (0x10); }; return (0); } #endif static int ncr_snooptest (struct ncb* np) { volatile u_int32_t ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; int i, err=0; #if !defined(NCR_IOMAPPED) || defined(__OpenBSD__) #ifdef __OpenBSD__ if (!np->sc_iomapped) #endif { err |= ncr_regtest (np); if (err) return (err); } #endif /* ** init */ pc = NCB_SCRIPTH_PHYS (np, snooptest); host_wr = 1; ncr_wr = 2; /* ** Set memory and register. */ ncr_cache = host_wr; #if defined(__mips__) pci_sync_cache(np->sc_pc, (vm_offset_t)&ncr_cache, sizeof (ncr_cache)); #endif /* __mips__ */ OUTL (nc_temp, SCR_BO(ncr_wr)); /* ** Start script (exchange values) */ OUTL (nc_dsp, pc); /* ** Wait 'til done (with timeout) */ for (i=0; i=NCR_SNOOP_TIMEOUT) { printf ("CACHE TEST FAILED: timeout.\n"); return (0x20); }; /* ** Check termination position. */ if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) { printf ("CACHE TEST FAILED: script execution failed.\n"); printf ("start=%08lx, pc=%08lx, end=%08lx\n", (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc, (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8); return (0x40); }; /* ** Show results. */ if (host_wr != ncr_rd) { printf ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", (int) host_wr, (int) ncr_rd); err |= 1; }; if (host_rd != ncr_wr) { printf ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", (int) ncr_wr, (int) host_rd); err |= 2; }; if (ncr_bk != ncr_wr) { printf ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", (int) ncr_wr, (int) ncr_bk); err |= 4; }; return (err); } /*========================================================== ** ** ** Profiling the drivers and targets performance. ** ** **========================================================== */ /* ** Compute the difference in milliseconds. **/ static int ncr_delta (struct timeval * from, struct timeval * to) { if (!from->tv_sec) return (-1); if (!to ->tv_sec) return (-2); return ( (to->tv_sec - from->tv_sec - 2)*1000+ +(to->tv_usec - from->tv_usec + 2000000)/1000); } #define PROFILE cp->phys.header.stamp static void ncb_profile (ncb_p np, ccb_p cp) { int co, da, st, en, di, se, post,work,disc; u_long diff; #ifdef __OpenBSD__ PROFILE.end = mono_time; #else gettime(&PROFILE.end); #endif st = ncr_delta (&PROFILE.start,&PROFILE.status); if (st<0) return; /* status not reached */ da = ncr_delta (&PROFILE.start,&PROFILE.data); if (da<0) return; /* No data transfer phase */ co = ncr_delta (&PROFILE.start,&PROFILE.command); if (co<0) return; /* command not executed */ en = ncr_delta (&PROFILE.start,&PROFILE.end), di = ncr_delta (&PROFILE.start,&PROFILE.disconnect), se = ncr_delta (&PROFILE.start,&PROFILE.select); post = en - st; /* ** @PROFILE@ Disconnect time invalid if multiple disconnects */ if (di>=0) disc = se-di; else disc = 0; work = (st - co) - disc; diff = (np->disc_phys - np->disc_ref) & 0xff; np->disc_ref += diff; np->profile.num_trans += 1; if (cp->xfer) np->profile.num_bytes += cp->xfer->datalen; np->profile.num_disc += diff; np->profile.ms_setup += co; np->profile.ms_data += work; np->profile.ms_disc += disc; np->profile.ms_post += post; } #undef PROFILE #ifdef __OpenBSD__ /*========================================================== ** ** ** Device lookup. ** ** @GENSCSI@ should be integrated to scsiconf.c ** ** **========================================================== */ struct table_entry { char * manufacturer; char * model; char * version; u_long info; }; static struct table_entry device_tab[] = { #ifdef NCR_GETCC_WITHMSG {"HP ", "C372", "", QUIRK_NOTAGS|QUIRK_NOMSG}, {"", "", "", QUIRK_NOMSG}, {"SONY", "SDT-5000", "3.17", QUIRK_NOMSG}, {"WangDAT", "Model 2600", "01.7", QUIRK_NOMSG}, {"WangDAT", "Model 3200", "02.2", QUIRK_NOMSG}, {"WangDAT", "Model 1300", "02.4", QUIRK_NOMSG}, #endif {"", "", "", 0} /* catch all: must be last entry. */ }; static u_long ncr_lookup(char * id) { struct table_entry * p = device_tab; char *d, *r, c; for (;;p++) { d = id+8; r = p->manufacturer; while ((c=*r++)) if (c!=*d++) break; if (c) continue; d = id+16; r = p->model; while ((c=*r++)) if (c!=*d++) break; if (c) continue; d = id+32; r = p->version; while ((c=*r++)) if (c!=*d++) break; if (c) continue; return (p->info); } } #endif /* __OpenBSD__ */ /*========================================================== ** ** Determine the ncr's clock frequency. ** This is essential for the negotiation ** of the synchronous transfer rate. ** **========================================================== ** ** Note: we have to return the correct value. ** THERE IS NO SAVE DEFAULT VALUE. ** ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. ** 53C860 and 53C875 rev. 1 support fast20 transfers but ** do not have a clock doubler and so are provided with a ** 80 MHz clock. All other fast20 boards incorporate a doubler ** and so should be delivered with a 40 MHz clock. ** The future fast40 chips (895/895) use a 40 Mhz base clock ** and provide a clock quadrupler (160 Mhz). The code below ** tries to deal as cleverly as possible with all this stuff. ** **---------------------------------------------------------- */ /* * Select NCR SCSI clock frequency */ static void ncr_selectclock(ncb_p np, u_char scntl3) { if (np->multiplier < 2) { OUTB(nc_scntl3, scntl3); return; } if (bootverbose >= 2) printf ("%s: enabling clock multiplier\n", ncr_name(np)); OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */ int i = 20; while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) DELAY(20); if (!i) printf("%s: the chip cannot lock the frequency\n", ncr_name(np)); } else /* Wait 20 micro-seconds for doubler */ DELAY(20); OUTB(nc_stest3, HSC); /* Halt the scsi clock */ OUTB(nc_scntl3, scntl3); OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ OUTB(nc_stest3, 0x00); /* Restart scsi clock */ } /* * calculate NCR SCSI clock frequency (in KHz) */ static unsigned ncrgetfreq (ncb_p np, int gen) { int ms = 0; /* * Measure GEN timer delay in order * to calculate SCSI clock frequency * * This code will never execute too * many loop iterations (if DELAY is * reasonably correct). It could get * too low a delay (too high a freq.) * if the CPU is slow executing the * loop for some reason (an NMI, for * example). For this reason we will * if multiple measurements are to be * performed trust the higher delay * (lower frequency returned). */ OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */ OUTW (nc_sien , 0); /* mask all scsi interrupts */ (void) INW (nc_sist); /* clear pending scsi interrupt */ OUTB (nc_dien , 0); /* mask all dma interrupts */ (void) INW (nc_sist); /* another one, just to be sure :) */ OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ OUTB (nc_stime1, 0); /* disable general purpose timer */ OUTB (nc_stime1, gen); /* set to nominal delay of (1<= 2) printf ("\tDelay (GEN=%d): %u msec\n", gen, ms); /* * adjust for prescaler, and convert into KHz */ return ms ? ((1 << gen) * 4440) / ms : 0; } static void ncr_getclock (ncb_p np, u_char multiplier) { unsigned char scntl3; unsigned char stest1; scntl3 = INB(nc_scntl3); stest1 = INB(nc_stest1); np->multiplier = 1; /* always false, except for 875 with clock doubler selected */ if ((stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { np->multiplier = multiplier; np->clock_khz = 40000 * multiplier; } else { if ((scntl3 & 7) == 0) { unsigned f1, f2; /* throw away first result */ (void) ncrgetfreq (np, 11); f1 = ncrgetfreq (np, 11); f2 = ncrgetfreq (np, 11); if (bootverbose >= 2) printf ("\tNCR clock is %uKHz, %uKHz\n", f1, f2); if (f1 > f2) f1 = f2; /* trust lower result */ if (f1 > 45000) { scntl3 = 5; /* >45Mhz: assume 80MHz */ } else { scntl3 = 3; /* <45Mhz: assume 40MHz */ } } else if ((scntl3 & 7) == 5) np->clock_khz = 80000; /* Probably a 875 rev. 1 ? */ } } /*=========================================================================*/ #ifdef NCR_TEKRAM_EEPROM struct tekram_eeprom_dev { u_char devmode; #define TKR_PARCHK 0x01 #define TKR_TRYSYNC 0x02 #define TKR_ENDISC 0x04 #define TKR_STARTUNIT 0x08 #define TKR_USETAGS 0x10 #define TKR_TRYWIDE 0x20 u_char syncparam; /* max. sync transfer rate (table ?) */ u_char filler1; u_char filler2; }; struct tekram_eeprom { struct tekram_eeprom_dev dev[16]; u_char adaptid; u_char adaptmode; #define TKR_ADPT_GT2DRV 0x01 #define TKR_ADPT_GT1GB 0x02 #define TKR_ADPT_RSTBUS 0x04 #define TKR_ADPT_ACTNEG 0x08 #define TKR_ADPT_NOSEEK 0x10 #define TKR_ADPT_MORLUN 0x20 u_char delay; /* unit ? (table ???) */ u_char tags; /* use 4 times as many ... */ u_char filler[60]; }; static void tekram_write_bit (ncb_p np, int bit) { u_char val = 0x10 + ((bit & 1) << 1); DELAY(10); OUTB (nc_gpreg, val); DELAY(10); OUTB (nc_gpreg, val | 0x04); DELAY(10); OUTB (nc_gpreg, val); DELAY(10); } static int tekram_read_bit (ncb_p np) { OUTB (nc_gpreg, 0x10); DELAY(10); OUTB (nc_gpreg, 0x14); DELAY(10); return INB (nc_gpreg) & 1; } static u_short read_tekram_eeprom_reg (ncb_p np, int reg) { int bit; u_short result = 0; int cmd = 0x80 | reg; OUTB (nc_gpreg, 0x10); tekram_write_bit (np, 1); for (bit = 7; bit >= 0; bit--) { tekram_write_bit (np, cmd >> bit); } for (bit = 0; bit < 16; bit++) { result <<= 1; result |= tekram_read_bit (np); } OUTB (nc_gpreg, 0x00); return result; } static int read_tekram_eeprom(ncb_p np, struct tekram_eeprom *buffer) { u_short *p = (u_short *) buffer; u_short sum = 0; int i; if (INB (nc_gpcntl) != 0x09) { return 0; } for (i = 0; i < 64; i++) { u_short val; if((i&0x0f) == 0) printf ("%02x:", i*2); val = read_tekram_eeprom_reg (np, i); if (p) *p++ = val; sum += val; if((i&0x01) == 0x00) printf (" "); printf ("%02x%02x", val & 0xff, (val >> 8) & 0xff); if((i&0x0f) == 0x0f) printf ("\n"); } printf ("Sum = %04x\n", sum); return sum == 0x1234; } #endif /* NCR_TEKRAM_EEPROM */ /*=========================================================================*/ #endif /* KERNEL */