/* $OpenBSD: neo.c,v 1.9 2001/09/16 18:32:34 art Exp $ */ /* * Copyright (c) 1999 Cameron Grant * All rights reserved. * * Derived from the public domain Linux driver * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/sound/pci/neomagic.c,v 1.8 2000/03/20 15:30:50 cg Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* -------------------------------------------------------------------- */ /* * As of 04/13/00, public documentation on the Neomagic 256 is not available. * These comments were gleaned by looking at the driver carefully. * * The Neomagic 256 AV/ZX chips provide both video and audio capabilities * on one chip. About 2-6 megabytes of memory are associated with * the chip. Most of this goes to video frame buffers, but some is used for * audio buffering * * Unlike most PCI audio chips, the Neomagic chip does not rely on DMA. * Instead, the chip allows you to carve out two ring buffers out of its * memory. However you carve this and how much you can carve seems to be * voodoo. The algorithm is in nm_init. * * Most Neomagic audio chips use the AC-97 codec interface. However, there * seem to be a select few chips 256AV chips that do not support AC-97. * This driver does not support them but there are rumors that it * mgiht work with wss isa drivers. This might require some playing around * with your BIOS. * * The Neomagic 256 AV/ZX have 2 PCI I/O region descriptors. Both of * them describe a memory region. The frame buffer is the first region * and the register set is the second region. * * The register manipulation logic is taken from the Linux driver, * which is in the public domain. * * The Neomagic is even nice enough to map the AC-97 codec registers into * the register space to allow direct manipulation. Watch out, accessing * AC-97 registers on the Neomagic requires great delicateness, otherwise * the thing will hang the PCI bus, rendering your system frozen. * * For one, it seems the Neomagic status register that reports AC-97 * readiness should NOT be polled more often than once each 1ms. * * Also, writes to the AC-97 register space may take order 40us to * complete. * * Unlike many sound engines, the Neomagic does not support (as fas as * we know :) the notion of interrupting every n bytes transferred, * unlike many DMA engines. Instead, it allows you to specify one * location in each ring buffer (called the watermark). When the chip * passes that location while playing, it signals an interrupt. * * The ring buffer size is currently 16k. That is about 100ms of audio * at 44.1khz/stero/16 bit. However, to keep the buffer full, interrupts * are generated more often than that, so 20-40 interrupts per second * should not be unexpected. Increasing BUFFSIZE should help minimize * of glitches due to drivers that spend to much time looping at high * privelege levels as well as the impact of badly written audio * interface clients. * * TO-DO list: * neo_malloc/neo_free are still seriously broken. * * Figure out interaction with video stuff (look at Xfree86 driver?) * * Power management (neoactivate) * * Fix detect of Neo devices that don't work this driver (see neo_attach) * * Figure out how to shrink that huge table neo-coeff.h */ #define NM_BUFFSIZE 16384 #define NM256AV_PCI_ID 0x800510c8 #define NM256ZX_PCI_ID 0x800610c8 /* device private data */ struct neo_softc { struct device dev; bus_space_tag_t bufiot; bus_space_handle_t bufioh; bus_space_tag_t regiot; bus_space_handle_t regioh; u_int32_t type; void *ih; void (*pintr)(void *); /* dma completion intr handler */ void *parg; /* arg for intr() */ void (*rintr)(void *); /* dma completion intr handler */ void *rarg; /* arg for intr() */ u_int32_t ac97_base, ac97_status, ac97_busy; u_int32_t buftop, pbuf, rbuf, cbuf, acbuf; u_int32_t playint, recint, misc1int, misc2int; u_int32_t irsz, badintr; u_int32_t pbufsize; u_int32_t rbufsize; u_int32_t pblksize; u_int32_t rblksize; u_int32_t pwmark; u_int32_t rwmark; struct ac97_codec_if *codec_if; struct ac97_host_if host_if; }; /* -------------------------------------------------------------------- */ /* * prototypes */ static int nm_waitcd(struct neo_softc *sc); static int nm_loadcoeff(struct neo_softc *sc, int dir, int num); static int nm_init(struct neo_softc *); int nmchan_getptr(struct neo_softc *, int); /* talk to the card */ static u_int32_t nm_rd(struct neo_softc *, int, int); static void nm_wr(struct neo_softc *, int, u_int32_t, int); static u_int32_t nm_rdbuf(struct neo_softc *, int, int); static void nm_wrbuf(struct neo_softc *, int, u_int32_t, int); int neo_match __P((struct device *, void *, void *)); void neo_attach __P((struct device *, struct device *, void *)); int neo_intr __P((void *)); int neo_open __P((void *, int)); void neo_close __P((void *)); int neo_query_encoding __P((void *, struct audio_encoding *)); int neo_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); int neo_round_blocksize __P((void *, int)); int neo_trigger_output __P((void *, void *, void *, int, void (*)(void *), void *, struct audio_params *)); int neo_trigger_input __P((void *, void *, void *, int, void (*)(void *), void *, struct audio_params *)); int neo_halt_output __P((void *)); int neo_halt_input __P((void *)); int neo_getdev __P((void *, struct audio_device *)); int neo_mixer_set_port __P((void *, mixer_ctrl_t *)); int neo_mixer_get_port __P((void *, mixer_ctrl_t *)); int neo_attach_codec __P((void *sc, struct ac97_codec_if *)); int neo_read_codec __P((void *sc, u_int8_t a, u_int16_t *d)); int neo_write_codec __P((void *sc, u_int8_t a, u_int16_t d)); void neo_reset_codec __P((void *sc)); enum ac97_host_flags neo_flags_codec __P((void *sc)); int neo_query_devinfo __P((void *, mixer_devinfo_t *)); void *neo_malloc __P((void *, int, size_t, int, int)); void neo_free __P((void *, void *, int)); size_t neo_round_buffersize __P((void *, int, size_t)); int neo_get_props __P((void *)); void neo_set_mixer __P((struct neo_softc *sc, int a, int d)); struct cfdriver neo_cd = { NULL, "neo", DV_DULL }; struct cfattach neo_ca = { sizeof(struct neo_softc), neo_match, neo_attach }; struct audio_device neo_device = { "NeoMagic 256", "", "neo" }; #if 0 static u_int32_t badcards[] = { 0x0007103c, 0x008f1028, }; #endif #define NUM_BADCARDS (sizeof(badcards) / sizeof(u_int32_t)) /* The actual rates supported by the card. */ static int samplerates[9] = { 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 99999999 }; /* -------------------------------------------------------------------- */ struct audio_hw_if neo_hw_if = { neo_open, neo_close, NULL, neo_query_encoding, neo_set_params, #if 1 neo_round_blocksize, #else NULL, #endif NULL, NULL, NULL, NULL, NULL, neo_halt_output, neo_halt_input, NULL, neo_getdev, NULL, neo_mixer_set_port, neo_mixer_get_port, neo_query_devinfo, NULL, /* neo_malloc_old, */ neo_free, NULL, /* neo_round_buffersize_old, */ 0, /* neo_mappage, */ neo_get_props, neo_trigger_output, neo_trigger_input, neo_malloc, neo_round_buffersize, }; /* -------------------------------------------------------------------- */ /* Hardware */ static u_int32_t nm_rd(struct neo_softc *sc, int regno, int size) { bus_space_tag_t st = sc->regiot; bus_space_handle_t sh = sc->regioh; switch (size) { case 1: return bus_space_read_1(st, sh, regno); case 2: return bus_space_read_2(st, sh, regno); case 4: return bus_space_read_4(st, sh, regno); default: return 0xffffffff; } } static void nm_wr(struct neo_softc *sc, int regno, u_int32_t data, int size) { bus_space_tag_t st = sc->regiot; bus_space_handle_t sh = sc->regioh; switch (size) { case 1: bus_space_write_1(st, sh, regno, data); break; case 2: bus_space_write_2(st, sh, regno, data); break; case 4: bus_space_write_4(st, sh, regno, data); break; } } static u_int32_t nm_rdbuf(struct neo_softc *sc, int regno, int size) { bus_space_tag_t st = sc->bufiot; bus_space_handle_t sh = sc->bufioh; switch (size) { case 1: return bus_space_read_1(st, sh, regno); case 2: return bus_space_read_2(st, sh, regno); case 4: return bus_space_read_4(st, sh, regno); default: return 0xffffffff; } } static void nm_wrbuf(struct neo_softc *sc, int regno, u_int32_t data, int size) { bus_space_tag_t st = sc->bufiot; bus_space_handle_t sh = sc->bufioh; switch (size) { case 1: bus_space_write_1(st, sh, regno, data); break; case 2: bus_space_write_2(st, sh, regno, data); break; case 4: bus_space_write_4(st, sh, regno, data); break; } } /* ac97 codec */ static int nm_waitcd(struct neo_softc *sc) { int cnt = 10; int fail = 1; while (cnt-- > 0) { if (nm_rd(sc, sc->ac97_status, 2) & sc->ac97_busy) DELAY(100); else { fail = 0; break; } } return (fail); } static void nm_ackint(struct neo_softc *sc, u_int32_t num) { if (sc->type == NM256AV_PCI_ID) { nm_wr(sc, NM_INT_REG, num << 1, 2); } else if (sc->type == NM256ZX_PCI_ID) { nm_wr(sc, NM_INT_REG, num, 4); } } static int nm_loadcoeff(struct neo_softc *sc, int dir, int num) { int ofs, sz, i; u_int32_t addr; addr = (dir == AUMODE_PLAY)? 0x01c : 0x21c; if (dir == AUMODE_RECORD) num += 8; sz = coefficientSizes[num]; ofs = 0; while (num-- > 0) ofs+= coefficientSizes[num]; for (i = 0; i < sz; i++) nm_wrbuf(sc, sc->cbuf + i, coefficients[ofs + i], 1); nm_wr(sc, addr, sc->cbuf, 4); if (dir == AUMODE_PLAY) sz--; nm_wr(sc, addr + 4, sc->cbuf + sz, 4); return 0; } int nmchan_getptr(sc, mode) struct neo_softc *sc; int mode; { if (mode == AUMODE_PLAY) return nm_rd(sc, NM_PBUFFER_CURRP, 4) - sc->pbuf; else return nm_rd(sc, NM_RBUFFER_CURRP, 4) - sc->rbuf; } /* The interrupt handler */ int neo_intr(void *p) { struct neo_softc *sc = (struct neo_softc *)p; int status, x, active; int rv = 0; active = (sc->pintr || sc->rintr); status = nm_rd(sc, NM_INT_REG, sc->irsz); if (status & sc->playint) { status &= ~sc->playint; sc->pwmark += sc->pblksize; sc->pwmark %= sc->pbufsize; nm_wr(sc, NM_PBUFFER_WMARK, sc->pbuf + sc->pwmark, 4); nm_ackint(sc, sc->playint); if (sc->pintr) (*sc->pintr)(sc->parg); rv = 1; } if (status & sc->recint) { status &= ~sc->recint; sc->rwmark += sc->rblksize; sc->rwmark %= sc->rbufsize; nm_ackint(sc, sc->recint); if (sc->rintr) (*sc->rintr)(sc->rarg); rv = 1; } if (status & sc->misc1int) { status &= ~sc->misc1int; nm_ackint(sc, sc->misc1int); x = nm_rd(sc, 0x400, 1); nm_wr(sc, 0x400, x | 2, 1); printf("%s: misc int 1\n", sc->dev.dv_xname); rv = 1; } if (status & sc->misc2int) { status &= ~sc->misc2int; nm_ackint(sc, sc->misc2int); x = nm_rd(sc, 0x400, 1); nm_wr(sc, 0x400, x & ~2, 1); printf("%s: misc int 2\n", sc->dev.dv_xname); rv = 1; } if (status) { status &= ~sc->misc2int; nm_ackint(sc, sc->misc2int); printf("%s: unknown int\n", sc->dev.dv_xname); rv = 1; } return (rv); } /* -------------------------------------------------------------------- */ /* * Probe and attach the card */ static int nm_init(struct neo_softc *sc) { u_int32_t ofs, i; if (sc->type == NM256AV_PCI_ID) { sc->ac97_base = NM_MIXER_OFFSET; sc->ac97_status = NM_MIXER_STATUS_OFFSET; sc->ac97_busy = NM_MIXER_READY_MASK; sc->buftop = 2560 * 1024; sc->irsz = 2; sc->playint = NM_PLAYBACK_INT; sc->recint = NM_RECORD_INT; sc->misc1int = NM_MISC_INT_1; sc->misc2int = NM_MISC_INT_2; } else if (sc->type == NM256ZX_PCI_ID) { sc->ac97_base = NM_MIXER_OFFSET; sc->ac97_status = NM2_MIXER_STATUS_OFFSET; sc->ac97_busy = NM2_MIXER_READY_MASK; sc->buftop = (nm_rd(sc, 0xa0b, 2)? 6144 : 4096) * 1024; sc->irsz = 4; sc->playint = NM2_PLAYBACK_INT; sc->recint = NM2_RECORD_INT; sc->misc1int = NM2_MISC_INT_1; sc->misc2int = NM2_MISC_INT_2; } else return -1; sc->badintr = 0; ofs = sc->buftop - 0x0400; sc->buftop -= 0x1400; if ((nm_rdbuf(sc, ofs, 4) & NM_SIG_MASK) == NM_SIGNATURE) { i = nm_rdbuf(sc, ofs + 4, 4); if (i != 0 && i != 0xffffffff) sc->buftop = i; } sc->cbuf = sc->buftop - NM_MAX_COEFFICIENT; sc->rbuf = sc->cbuf - NM_BUFFSIZE; sc->pbuf = sc->rbuf - NM_BUFFSIZE; sc->acbuf = sc->pbuf - (NM_TOTAL_COEFF_COUNT * 4); nm_wr(sc, 0, 0x11, 1); nm_wr(sc, NM_RECORD_ENABLE_REG, 0, 1); nm_wr(sc, 0x214, 0, 2); return 0; } void neo_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct neo_softc *sc = (struct neo_softc *)self; struct pci_attach_args *pa = (struct pci_attach_args *)aux; pci_chipset_tag_t pc = pa->pa_pc; char const *intrstr; pci_intr_handle_t ih; pcireg_t csr; int error; sc->type = pa->pa_id; /* Map I/O register */ if (pci_mapreg_map(pa, PCI_MAPS, PCI_MAPREG_TYPE_MEM, 0, &sc->bufiot, &sc->bufioh, NULL, NULL, 0)) { printf("\n%s: can't map i/o space\n", sc->dev.dv_xname); return; } if (pci_mapreg_map(pa, PCI_MAPS + 4, PCI_MAPREG_TYPE_MEM, 0, &sc->regiot, &sc->regioh, NULL, NULL, 0)) { printf("\n%s: can't map i/o space\n", sc->dev.dv_xname); return; } /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { printf("\n%s: couldn't map interrupt\n", sc->dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); sc->ih = pci_intr_establish(pc, ih, IPL_AUDIO, neo_intr, sc, sc->dev.dv_xname); if (sc->ih == NULL) { printf("\n%s: couldn't establish interrupt", sc->dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s\n", intrstr); if ((error = nm_init(sc)) != 0) return; /* Enable the device. */ csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MASTER_ENABLE); sc->host_if.arg = sc; sc->host_if.attach = neo_attach_codec; sc->host_if.read = neo_read_codec; sc->host_if.write = neo_write_codec; sc->host_if.reset = neo_reset_codec; sc->host_if.flags = neo_flags_codec; if ((error = ac97_attach(&sc->host_if)) != 0) return; audio_attach_mi(&neo_hw_if, sc, &sc->dev); return; } int neo_match(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; #if 0 u_int32_t subdev, badcard; #endif if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_NEOMAGIC) return (0); #if 0 subdev = (pci_get_subdevice(dev) << 16) | pci_get_subvendor(dev); #endif switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_NEOMAGIC_NM256AV: #if 0 i = 0; while ((i < NUM_BADCARDS) && (badcards[i] != subdev)) i++; if (i == NUM_BADCARDS) s = "NeoMagic 256AV"; DEB(else) DEB(device_printf(dev, "this is a non-ac97 NM256AV, not attaching\n")); return (1); #endif case PCI_PRODUCT_NEOMAGIC_NM256ZX: return (1); } return (0); } int neo_read_codec(sc_, a, d) void *sc_; u_int8_t a; u_int16_t *d; { struct neo_softc *sc = sc_; if (!nm_waitcd(sc)) { *d = nm_rd(sc, sc->ac97_base + a, 2); DELAY(1000); return 0; } return (ENXIO); } int neo_write_codec(sc_, a, d) void *sc_; u_int8_t a; u_int16_t d; { struct neo_softc *sc = sc_; int cnt = 3; if (!nm_waitcd(sc)) { while (cnt-- > 0) { nm_wr(sc, sc->ac97_base + a, d, 2); if (!nm_waitcd(sc)) { DELAY(1000); return (0); } } } return (ENXIO); } int neo_attach_codec(sc_, codec_if) void *sc_; struct ac97_codec_if *codec_if; { struct neo_softc *sc = sc_; sc->codec_if = codec_if; return (0); } void neo_reset_codec(sc) void *sc; { nm_wr(sc, 0x6c0, 0x01, 1); nm_wr(sc, 0x6cc, 0x87, 1); nm_wr(sc, 0x6cc, 0x80, 1); nm_wr(sc, 0x6cc, 0x00, 1); return; } enum ac97_host_flags neo_flags_codec(sc) void *sc; { return (AC97_HOST_DONT_READANY); } int neo_open(addr, flags) void *addr; int flags; { return (0); } /* * Close function is called at splaudio(). */ void neo_close(addr) void *addr; { struct neo_softc *sc = addr; neo_halt_output(sc); neo_halt_input(sc); sc->pintr = 0; sc->rintr = 0; } int neo_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { switch (fp->index) { case 0: strcpy(fp->name, AudioEulinear); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; return (0); case 1: strcpy(fp->name, AudioEmulaw); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 2: strcpy(fp->name, AudioEalaw); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 3: strcpy(fp->name, AudioEslinear); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 4: strcpy(fp->name, AudioEslinear_le); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; return (0); case 5: strcpy(fp->name, AudioEulinear_le); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 6: strcpy(fp->name, AudioEslinear_be); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 7: strcpy(fp->name, AudioEulinear_be); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); default: return (EINVAL); } } /* Todo: don't commit settings to card until we've verified all parameters */ int neo_set_params(addr, setmode, usemode, play, rec) void *addr; int setmode, usemode; struct audio_params *play, *rec; { struct neo_softc *sc = addr; u_int32_t base; u_int8_t x; int mode; struct audio_params *p; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = mode == AUMODE_PLAY ? play : rec; if (p == NULL) continue; for (x = 0; x < 8; x++) if (p->sample_rate < (samplerates[x] + samplerates[x + 1]) / 2) break; if (x == 8) return (EINVAL); p->sample_rate = samplerates[x]; nm_loadcoeff(sc, mode, x); x <<= 4; x &= NM_RATE_MASK; if (p->precision == 16) x |= NM_RATE_BITS_16; if (p->channels == 2) x |= NM_RATE_STEREO; base = (mode == AUMODE_PLAY)? NM_PLAYBACK_REG_OFFSET : NM_RECORD_REG_OFFSET; nm_wr(sc, base + NM_RATE_REG_OFFSET, x, 1); p->factor = 1; p->sw_code = 0; switch (p->encoding) { case AUDIO_ENCODING_SLINEAR_BE: if (p->precision == 16) p->sw_code = swap_bytes; else p->sw_code = change_sign8; break; case AUDIO_ENCODING_SLINEAR_LE: if (p->precision != 16) p->sw_code = change_sign8; break; case AUDIO_ENCODING_ULINEAR_BE: if (p->precision == 16) { if (mode == AUMODE_PLAY) p->sw_code = swap_bytes_change_sign16; else p->sw_code = change_sign16_swap_bytes; } break; case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 16) p->sw_code = change_sign16; break; case AUDIO_ENCODING_ULAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->sw_code = mulaw_to_slinear16; } else p->sw_code = ulinear8_to_mulaw; break; case AUDIO_ENCODING_ALAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->sw_code = alaw_to_slinear16; } else p->sw_code = ulinear8_to_alaw; break; default: return (EINVAL); } } return (0); } int neo_round_blocksize(addr, blk) void *addr; int blk; { return (NM_BUFFSIZE / 2); } int neo_trigger_output(addr, start, end, blksize, intr, arg, param) void *addr; void *start, *end; int blksize; void (*intr) __P((void *)); void *arg; struct audio_params *param; { struct neo_softc *sc = addr; int ssz; sc->pintr = intr; sc->parg = arg; ssz = (param->precision * param->factor == 16)? 2 : 1; if (param->channels == 2) ssz <<= 1; sc->pbufsize = ((char*)end - (char *)start); sc->pblksize = blksize; sc->pwmark = blksize; nm_wr(sc, NM_PBUFFER_START, sc->pbuf, 4); nm_wr(sc, NM_PBUFFER_END, sc->pbuf + sc->pbufsize - ssz, 4); nm_wr(sc, NM_PBUFFER_CURRP, sc->pbuf, 4); nm_wr(sc, NM_PBUFFER_WMARK, sc->pbuf + sc->pwmark, 4); nm_wr(sc, NM_PLAYBACK_ENABLE_REG, NM_PLAYBACK_FREERUN | NM_PLAYBACK_ENABLE_FLAG, 1); nm_wr(sc, NM_AUDIO_MUTE_REG, 0, 2); return (0); } int neo_trigger_input(addr, start, end, blksize, intr, arg, param) void *addr; void *start, *end; int blksize; void (*intr) __P((void *)); void *arg; struct audio_params *param; { struct neo_softc *sc = addr; int ssz; sc->rintr = intr; sc->rarg = arg; ssz = (param->precision * param->factor == 16)? 2 : 1; if (param->channels == 2) ssz <<= 1; sc->rbufsize = ((char*)end - (char *)start); sc->rblksize = blksize; sc->rwmark = blksize; nm_wr(sc, NM_RBUFFER_START, sc->rbuf, 4); nm_wr(sc, NM_RBUFFER_END, sc->rbuf + sc->rbufsize, 4); nm_wr(sc, NM_RBUFFER_CURRP, sc->rbuf, 4); nm_wr(sc, NM_RBUFFER_WMARK, sc->rbuf + sc->rwmark, 4); nm_wr(sc, NM_RECORD_ENABLE_REG, NM_RECORD_FREERUN | NM_RECORD_ENABLE_FLAG, 1); return (0); } int neo_halt_output(addr) void *addr; { struct neo_softc *sc = (struct neo_softc *)addr; nm_wr(sc, NM_PLAYBACK_ENABLE_REG, 0, 1); nm_wr(sc, NM_AUDIO_MUTE_REG, NM_AUDIO_MUTE_BOTH, 2); sc->pintr = 0; return (0); } int neo_halt_input(addr) void *addr; { struct neo_softc *sc = (struct neo_softc *)addr; nm_wr(sc, NM_RECORD_ENABLE_REG, 0, 1); sc->rintr = 0; return (0); } int neo_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = neo_device; return (0); } int neo_mixer_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct neo_softc *sc = addr; return ((sc->codec_if->vtbl->mixer_set_port)(sc->codec_if, cp)); } int neo_mixer_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct neo_softc *sc = addr; return ((sc->codec_if->vtbl->mixer_get_port)(sc->codec_if, cp)); } int neo_query_devinfo(addr, dip) void *addr; mixer_devinfo_t *dip; { struct neo_softc *sc = addr; return ((sc->codec_if->vtbl->query_devinfo)(sc->codec_if, dip)); } void * neo_malloc(addr, direction, size, pool, flags) void *addr; int direction; size_t size; int pool, flags; { struct neo_softc *sc = addr; void *rv = 0; switch (direction) { case AUMODE_PLAY: rv = (char *)sc->bufioh + sc->pbuf; break; case AUMODE_RECORD: rv = (char *)sc->bufioh + sc->rbuf; break; default: break; } return (rv); } void neo_free(addr, ptr, pool) void *addr; void *ptr; int pool; { return; } size_t neo_round_buffersize(addr, direction, size) void *addr; int direction; size_t size; { return (NM_BUFFSIZE); } int neo_get_props(addr) void *addr; { return (AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); }