/* $OpenBSD: pci.c,v 1.123 2022/01/05 16:46:11 deraadt Exp $ */ /* $NetBSD: pci.c,v 1.31 1997/06/06 23:48:04 thorpej Exp $ */ /* * Copyright (c) 1995, 1996 Christopher G. Demetriou. All rights reserved. * Copyright (c) 1994 Charles Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * PCI bus autoconfiguration. */ #include #include #include #include #include #include #include #include int pcimatch(struct device *, void *, void *); void pciattach(struct device *, struct device *, void *); int pcidetach(struct device *, int); int pciactivate(struct device *, int); void pci_suspend(struct pci_softc *); void pci_powerdown(struct pci_softc *); void pci_resume(struct pci_softc *); struct msix_vector { uint32_t mv_ma; uint32_t mv_mau32; uint32_t mv_md; uint32_t mv_vc; }; #define NMAPREG ((PCI_MAPREG_END - PCI_MAPREG_START) / \ sizeof(pcireg_t)) struct pci_dev { struct device *pd_dev; LIST_ENTRY(pci_dev) pd_next; pcitag_t pd_tag; /* pci register tag */ pcireg_t pd_csr; pcireg_t pd_bhlc; pcireg_t pd_int; pcireg_t pd_map[NMAPREG]; pcireg_t pd_mask[NMAPREG]; pcireg_t pd_msi_mc; pcireg_t pd_msi_ma; pcireg_t pd_msi_mau32; pcireg_t pd_msi_md; pcireg_t pd_msix_mc; struct msix_vector *pd_msix_table; int pd_pmcsr_state; int pd_vga_decode; }; #ifdef APERTURE extern int allowaperture; #endif struct cfattach pci_ca = { sizeof(struct pci_softc), pcimatch, pciattach, pcidetach, pciactivate }; struct cfdriver pci_cd = { NULL, "pci", DV_DULL }; int pci_ndomains; struct proc *pci_vga_proc; struct pci_softc *pci_vga_pci; pcitag_t pci_vga_tag; int pci_dopm; int pciprint(void *, const char *); int pcisubmatch(struct device *, void *, void *); #ifdef PCI_MACHDEP_ENUMERATE_BUS #define pci_enumerate_bus PCI_MACHDEP_ENUMERATE_BUS #else int pci_enumerate_bus(struct pci_softc *, int (*)(struct pci_attach_args *), struct pci_attach_args *); #endif int pci_reserve_resources(struct pci_attach_args *); int pci_primary_vga(struct pci_attach_args *); /* * Important note about PCI-ISA bridges: * * Callbacks are used to configure these devices so that ISA/EISA bridges * can attach their child busses after PCI configuration is done. * * This works because: * (1) there can be at most one ISA/EISA bridge per PCI bus, and * (2) any ISA/EISA bridges must be attached to primary PCI * busses (i.e. bus zero). * * That boils down to: there can only be one of these outstanding * at a time, it is cleared when configuring PCI bus 0 before any * subdevices have been found, and it is run after all subdevices * of PCI bus 0 have been found. * * This is needed because there are some (legacy) PCI devices which * can show up as ISA/EISA devices as well (the prime example of which * are VGA controllers). If you attach ISA from a PCI-ISA/EISA bridge, * and the bridge is seen before the video board is, the board can show * up as an ISA device, and that can (bogusly) complicate the PCI device's * attach code, or make the PCI device not be properly attached at all. * * We use the generic config_defer() facility to achieve this. */ int pcimatch(struct device *parent, void *match, void *aux) { struct cfdata *cf = match; struct pcibus_attach_args *pba = aux; if (strcmp(pba->pba_busname, cf->cf_driver->cd_name)) return (0); /* Check the locators */ if (cf->pcibuscf_bus != PCIBUS_UNK_BUS && cf->pcibuscf_bus != pba->pba_bus) return (0); /* sanity */ if (pba->pba_bus < 0 || pba->pba_bus > 255) return (0); /* * XXX check other (hardware?) indicators */ return (1); } void pciattach(struct device *parent, struct device *self, void *aux) { struct pcibus_attach_args *pba = aux; struct pci_softc *sc = (struct pci_softc *)self; pci_attach_hook(parent, self, pba); printf("\n"); LIST_INIT(&sc->sc_devs); sc->sc_iot = pba->pba_iot; sc->sc_memt = pba->pba_memt; sc->sc_dmat = pba->pba_dmat; sc->sc_pc = pba->pba_pc; sc->sc_flags = pba->pba_flags; sc->sc_ioex = pba->pba_ioex; sc->sc_memex = pba->pba_memex; sc->sc_pmemex = pba->pba_pmemex; sc->sc_busex = pba->pba_busex; sc->sc_domain = pba->pba_domain; sc->sc_bus = pba->pba_bus; sc->sc_bridgetag = pba->pba_bridgetag; sc->sc_bridgeih = pba->pba_bridgeih; sc->sc_maxndevs = pci_bus_maxdevs(pba->pba_pc, pba->pba_bus); sc->sc_intrswiz = pba->pba_intrswiz; sc->sc_intrtag = pba->pba_intrtag; /* Reserve our own bus number. */ if (sc->sc_busex) extent_alloc_region(sc->sc_busex, sc->sc_bus, 1, EX_NOWAIT); pci_enumerate_bus(sc, pci_reserve_resources, NULL); /* Find the VGA device that's currently active. */ if (pci_enumerate_bus(sc, pci_primary_vga, NULL)) pci_vga_pci = sc; pci_enumerate_bus(sc, NULL, NULL); } int pcidetach(struct device *self, int flags) { return pci_detach_devices((struct pci_softc *)self, flags); } int pciactivate(struct device *self, int act) { int rv = 0; switch (act) { case DVACT_SUSPEND: rv = config_activate_children(self, act); pci_suspend((struct pci_softc *)self); break; case DVACT_RESUME: pci_resume((struct pci_softc *)self); rv = config_activate_children(self, act); break; case DVACT_POWERDOWN: rv = config_activate_children(self, act); pci_powerdown((struct pci_softc *)self); break; default: rv = config_activate_children(self, act); break; } return (rv); } void pci_suspend(struct pci_softc *sc) { struct pci_dev *pd; pcireg_t bhlc, reg; int off, i; LIST_FOREACH(pd, &sc->sc_devs, pd_next) { /* * Only handle header type 0 here; PCI-PCI bridges and * CardBus bridges need special handling, which will * be done in their specific drivers. */ bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlc) != 0) continue; /* Save registers that may get lost. */ for (i = 0; i < NMAPREG; i++) pd->pd_map[i] = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_MAPREG_START + (i * 4)); pd->pd_csr = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG); pd->pd_bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG); pd->pd_int = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_INTERRUPT_REG); if (pci_get_capability(sc->sc_pc, pd->pd_tag, PCI_CAP_MSI, &off, ®)) { pd->pd_msi_ma = pci_conf_read(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MA); if (reg & PCI_MSI_MC_C64) { pd->pd_msi_mau32 = pci_conf_read(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MAU32); pd->pd_msi_md = pci_conf_read(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MD64); } else { pd->pd_msi_md = pci_conf_read(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MD32); } pd->pd_msi_mc = reg; } pci_suspend_msix(sc->sc_pc, pd->pd_tag, sc->sc_memt, &pd->pd_msix_mc, pd->pd_msix_table); } } void pci_powerdown(struct pci_softc *sc) { struct pci_dev *pd; pcireg_t bhlc; LIST_FOREACH(pd, &sc->sc_devs, pd_next) { /* * Only handle header type 0 here; PCI-PCI bridges and * CardBus bridges need special handling, which will * be done in their specific drivers. */ bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlc) != 0) continue; if (pci_dopm) { /* * Place the device into the lowest possible * power state. */ pd->pd_pmcsr_state = pci_get_powerstate(sc->sc_pc, pd->pd_tag); pci_set_powerstate(sc->sc_pc, pd->pd_tag, pci_min_powerstate(sc->sc_pc, pd->pd_tag)); } } } void pci_resume(struct pci_softc *sc) { struct pci_dev *pd; pcireg_t bhlc, reg; int off, i; LIST_FOREACH(pd, &sc->sc_devs, pd_next) { /* * Only handle header type 0 here; PCI-PCI bridges and * CardBus bridges need special handling, which will * be done in their specific drivers. */ bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlc) != 0) continue; /* Restore power. */ if (pci_dopm) pci_set_powerstate(sc->sc_pc, pd->pd_tag, pd->pd_pmcsr_state); /* Restore the registers saved above. */ for (i = 0; i < NMAPREG; i++) pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_MAPREG_START + (i * 4), pd->pd_map[i]); reg = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG, (reg & 0xffff0000) | (pd->pd_csr & 0x0000ffff)); pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG, pd->pd_bhlc); pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_INTERRUPT_REG, pd->pd_int); if (pci_get_capability(sc->sc_pc, pd->pd_tag, PCI_CAP_MSI, &off, ®)) { pci_conf_write(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MA, pd->pd_msi_ma); if (reg & PCI_MSI_MC_C64) { pci_conf_write(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MAU32, pd->pd_msi_mau32); pci_conf_write(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MD64, pd->pd_msi_md); } else { pci_conf_write(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MD32, pd->pd_msi_md); } pci_conf_write(sc->sc_pc, pd->pd_tag, off + PCI_MSI_MC, pd->pd_msi_mc); } pci_resume_msix(sc->sc_pc, pd->pd_tag, sc->sc_memt, pd->pd_msix_mc, pd->pd_msix_table); } } int pciprint(void *aux, const char *pnp) { struct pci_attach_args *pa = aux; char devinfo[256]; if (pnp) { pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof devinfo); printf("%s at %s", devinfo, pnp); } printf(" dev %d function %d", pa->pa_device, pa->pa_function); if (!pnp) { pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); printf(" %s", devinfo); } return (UNCONF); } int pcisubmatch(struct device *parent, void *match, void *aux) { struct cfdata *cf = match; struct pci_attach_args *pa = aux; if (cf->pcicf_dev != PCI_UNK_DEV && cf->pcicf_dev != pa->pa_device) return (0); if (cf->pcicf_function != PCI_UNK_FUNCTION && cf->pcicf_function != pa->pa_function) return (0); return ((*cf->cf_attach->ca_match)(parent, match, aux)); } int pci_probe_device(struct pci_softc *sc, pcitag_t tag, int (*match)(struct pci_attach_args *), struct pci_attach_args *pap) { pci_chipset_tag_t pc = sc->sc_pc; struct pci_attach_args pa; struct pci_dev *pd; pcireg_t id, class, intr, bhlcr, cap; int pin, bus, device, function; int off, ret = 0; uint64_t addr; pci_decompose_tag(pc, tag, &bus, &device, &function); bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlcr) > 2) return (0); id = pci_conf_read(pc, tag, PCI_ID_REG); class = pci_conf_read(pc, tag, PCI_CLASS_REG); /* Invalid vendor ID value? */ if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) return (0); /* XXX Not invalid, but we've done this ~forever. */ if (PCI_VENDOR(id) == 0) return (0); pa.pa_iot = sc->sc_iot; pa.pa_memt = sc->sc_memt; pa.pa_dmat = sc->sc_dmat; pa.pa_pc = pc; pa.pa_ioex = sc->sc_ioex; pa.pa_memex = sc->sc_memex; pa.pa_pmemex = sc->sc_pmemex; pa.pa_busex = sc->sc_busex; pa.pa_domain = sc->sc_domain; pa.pa_bus = bus; pa.pa_device = device; pa.pa_function = function; pa.pa_tag = tag; pa.pa_id = id; pa.pa_class = class; pa.pa_bridgetag = sc->sc_bridgetag; pa.pa_bridgeih = sc->sc_bridgeih; /* This is a simplification of the NetBSD code. We don't support turning off I/O or memory on broken hardware. */ pa.pa_flags = sc->sc_flags; pa.pa_flags |= PCI_FLAGS_IO_ENABLED | PCI_FLAGS_MEM_ENABLED; if (sc->sc_bridgetag == NULL) { pa.pa_intrswiz = 0; pa.pa_intrtag = tag; } else { pa.pa_intrswiz = sc->sc_intrswiz + device; pa.pa_intrtag = sc->sc_intrtag; } intr = pci_conf_read(pc, tag, PCI_INTERRUPT_REG); pin = PCI_INTERRUPT_PIN(intr); pa.pa_rawintrpin = pin; if (pin == PCI_INTERRUPT_PIN_NONE) { /* no interrupt */ pa.pa_intrpin = 0; } else { /* * swizzle it based on the number of busses we're * behind and our device number. */ pa.pa_intrpin = /* XXX */ ((pin + pa.pa_intrswiz - 1) % 4) + 1; } pa.pa_intrline = PCI_INTERRUPT_LINE(intr); if (pci_get_ht_capability(pc, tag, PCI_HT_CAP_MSI, &off, &cap)) { /* * XXX Should we enable MSI mapping ourselves on * systems that have it disabled? */ if (cap & PCI_HT_MSI_ENABLED) { if ((cap & PCI_HT_MSI_FIXED) == 0) { addr = pci_conf_read(pc, tag, off + PCI_HT_MSI_ADDR); addr |= (uint64_t)pci_conf_read(pc, tag, off + PCI_HT_MSI_ADDR_HI32) << 32; } else addr = PCI_HT_MSI_FIXED_ADDR; /* * XXX This will fail to enable MSI on systems * that don't use the canonical address. */ if (addr == PCI_HT_MSI_FIXED_ADDR) pa.pa_flags |= PCI_FLAGS_MSI_ENABLED; } } /* * Give the MD code a chance to alter pci_attach_args and/or * skip devices. */ if (pci_probe_device_hook(pc, &pa) != 0) return (0); if (match != NULL) { ret = (*match)(&pa); if (ret != 0 && pap != NULL) *pap = pa; } else { pcireg_t address, csr; int i, reg, reg_start, reg_end; int s; pd = malloc(sizeof *pd, M_DEVBUF, M_ZERO | M_WAITOK); pd->pd_tag = tag; LIST_INSERT_HEAD(&sc->sc_devs, pd, pd_next); switch (PCI_HDRTYPE_TYPE(bhlcr)) { case 0: reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_END; break; case 1: /* PCI-PCI bridge */ reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_PPB_END; break; case 2: /* PCI-CardBus bridge */ reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_PCB_END; break; default: return (0); } pd->pd_msix_table = pci_alloc_msix_table(sc->sc_pc, pd->pd_tag); s = splhigh(); csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); if (csr & (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE)) pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr & ~(PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE)); for (reg = reg_start, i = 0; reg < reg_end; reg += 4, i++) { address = pci_conf_read(pc, tag, reg); pci_conf_write(pc, tag, reg, 0xffffffff); pd->pd_mask[i] = pci_conf_read(pc, tag, reg); pci_conf_write(pc, tag, reg, address); } if (csr & (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE)) pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr); splx(s); if ((PCI_CLASS(class) == PCI_CLASS_DISPLAY && PCI_SUBCLASS(class) == PCI_SUBCLASS_DISPLAY_VGA) || (PCI_CLASS(class) == PCI_CLASS_PREHISTORIC && PCI_SUBCLASS(class) == PCI_SUBCLASS_PREHISTORIC_VGA)) pd->pd_vga_decode = 1; pd->pd_dev = config_found_sm(&sc->sc_dev, &pa, pciprint, pcisubmatch); if (pd->pd_dev) pci_dev_postattach(pd->pd_dev, &pa); } return (ret); } int pci_detach_devices(struct pci_softc *sc, int flags) { struct pci_dev *pd, *next; int ret; ret = config_detach_children(&sc->sc_dev, flags); if (ret != 0) return (ret); for (pd = LIST_FIRST(&sc->sc_devs); pd != NULL; pd = next) { pci_free_msix_table(sc->sc_pc, pd->pd_tag, pd->pd_msix_table); next = LIST_NEXT(pd, pd_next); free(pd, M_DEVBUF, sizeof *pd); } LIST_INIT(&sc->sc_devs); return (0); } int pci_get_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid, int *offset, pcireg_t *value) { pcireg_t reg; unsigned int ofs; reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); if (!(reg & PCI_STATUS_CAPLIST_SUPPORT)) return (0); /* Determine the Capability List Pointer register to start with. */ reg = pci_conf_read(pc, tag, PCI_BHLC_REG); switch (PCI_HDRTYPE_TYPE(reg)) { case 0: /* standard device header */ case 1: /* PCI-PCI bridge header */ ofs = PCI_CAPLISTPTR_REG; break; case 2: /* PCI-CardBus bridge header */ ofs = PCI_CARDBUS_CAPLISTPTR_REG; break; default: return (0); } ofs = PCI_CAPLIST_PTR(pci_conf_read(pc, tag, ofs)); while (ofs != 0) { /* * Some devices, like parts of the NVIDIA C51 chipset, * have a broken Capabilities List. So we need to do * a sanity check here. */ if ((ofs & 3) || (ofs < 0x40)) return (0); reg = pci_conf_read(pc, tag, ofs); if (PCI_CAPLIST_CAP(reg) == capid) { if (offset) *offset = ofs; if (value) *value = reg; return (1); } ofs = PCI_CAPLIST_NEXT(reg); } return (0); } int pci_get_ht_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid, int *offset, pcireg_t *value) { pcireg_t reg; unsigned int ofs; if (pci_get_capability(pc, tag, PCI_CAP_HT, &ofs, NULL) == 0) return (0); while (ofs != 0) { #ifdef DIAGNOSTIC if ((ofs & 3) || (ofs < 0x40)) panic("pci_get_ht_capability"); #endif reg = pci_conf_read(pc, tag, ofs); if (PCI_HT_CAP(reg) == capid) { if (offset) *offset = ofs; if (value) *value = reg; return (1); } ofs = PCI_CAPLIST_NEXT(reg); } return (0); } int pci_get_ext_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid, int *offset, pcireg_t *value) { pcireg_t reg; unsigned int ofs; /* Make sure this is a PCI Express device. */ if (pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, NULL, NULL) == 0) return (0); /* Scan PCI Express extended capabilities. */ ofs = PCI_PCIE_ECAP; while (ofs != 0) { #ifdef DIAGNOSTIC if ((ofs & 3) || (ofs < PCI_PCIE_ECAP)) panic("pci_get_ext_capability"); #endif reg = pci_conf_read(pc, tag, ofs); if (PCI_PCIE_ECAP_ID(reg) == capid) { if (offset) *offset = ofs; if (value) *value = reg; return (1); } ofs = PCI_PCIE_ECAP_NEXT(reg); } return (0); } uint16_t pci_requester_id(pci_chipset_tag_t pc, pcitag_t tag) { int bus, dev, func; pci_decompose_tag(pc, tag, &bus, &dev, &func); return ((bus << 8) | (dev << 3) | func); } int pci_find_device(struct pci_attach_args *pa, int (*match)(struct pci_attach_args *)) { extern struct cfdriver pci_cd; struct device *pcidev; int i; for (i = 0; i < pci_cd.cd_ndevs; i++) { pcidev = pci_cd.cd_devs[i]; if (pcidev != NULL && pci_enumerate_bus((struct pci_softc *)pcidev, match, pa) != 0) return (1); } return (0); } int pci_get_powerstate(pci_chipset_tag_t pc, pcitag_t tag) { pcireg_t reg; int offset; if (pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, 0)) { reg = pci_conf_read(pc, tag, offset + PCI_PMCSR); return (reg & PCI_PMCSR_STATE_MASK); } return (PCI_PMCSR_STATE_D0); } int pci_set_powerstate(pci_chipset_tag_t pc, pcitag_t tag, int state) { pcireg_t reg; int offset, ostate = state; /* * Warn the firmware that we are going to put the device * into the given state. */ pci_set_powerstate_md(pc, tag, state, 1); if (pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, 0)) { if (state == PCI_PMCSR_STATE_D3) { /* * The PCI Power Management spec says we * should disable I/O and memory space as well * as bus mastering before we place the device * into D3. */ reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); reg &= ~PCI_COMMAND_IO_ENABLE; reg &= ~PCI_COMMAND_MEM_ENABLE; reg &= ~PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, reg); } reg = pci_conf_read(pc, tag, offset + PCI_PMCSR); if ((reg & PCI_PMCSR_STATE_MASK) != state) { ostate = reg & PCI_PMCSR_STATE_MASK; pci_conf_write(pc, tag, offset + PCI_PMCSR, (reg & ~PCI_PMCSR_STATE_MASK) | state); if (state == PCI_PMCSR_STATE_D3 || ostate == PCI_PMCSR_STATE_D3) delay(10 * 1000); } } /* * Warn the firmware that the device is now in the given * state. */ pci_set_powerstate_md(pc, tag, state, 0); return (ostate); } #ifndef PCI_MACHDEP_ENUMERATE_BUS /* * Generic PCI bus enumeration routine. Used unless machine-dependent * code needs to provide something else. */ int pci_enumerate_bus(struct pci_softc *sc, int (*match)(struct pci_attach_args *), struct pci_attach_args *pap) { pci_chipset_tag_t pc = sc->sc_pc; int device, function, nfunctions, ret; const struct pci_quirkdata *qd; pcireg_t id, bhlcr; pcitag_t tag; for (device = 0; device < sc->sc_maxndevs; device++) { tag = pci_make_tag(pc, sc->sc_bus, device, 0); bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlcr) > 2) continue; id = pci_conf_read(pc, tag, PCI_ID_REG); /* Invalid vendor ID value? */ if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) continue; /* XXX Not invalid, but we've done this ~forever. */ if (PCI_VENDOR(id) == 0) continue; qd = pci_lookup_quirkdata(PCI_VENDOR(id), PCI_PRODUCT(id)); if (qd != NULL && (qd->quirks & PCI_QUIRK_MULTIFUNCTION) != 0) nfunctions = 8; else if (qd != NULL && (qd->quirks & PCI_QUIRK_MONOFUNCTION) != 0) nfunctions = 1; else nfunctions = PCI_HDRTYPE_MULTIFN(bhlcr) ? 8 : 1; for (function = 0; function < nfunctions; function++) { tag = pci_make_tag(pc, sc->sc_bus, device, function); ret = pci_probe_device(sc, tag, match, pap); if (match != NULL && ret != 0) return (ret); } } return (0); } #endif /* PCI_MACHDEP_ENUMERATE_BUS */ int pci_reserve_resources(struct pci_attach_args *pa) { pci_chipset_tag_t pc = pa->pa_pc; pcitag_t tag = pa->pa_tag; pcireg_t bhlc, blr, type, bir; pcireg_t addr, mask; bus_addr_t base, limit; bus_size_t size; int reg, reg_start, reg_end, reg_rom; int bus, dev, func; int sec, sub; int flags; int s; pci_decompose_tag(pc, tag, &bus, &dev, &func); bhlc = pci_conf_read(pc, tag, PCI_BHLC_REG); switch (PCI_HDRTYPE_TYPE(bhlc)) { case 0: reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_END; reg_rom = PCI_ROM_REG; break; case 1: /* PCI-PCI bridge */ reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_PPB_END; reg_rom = 0; /* 0x38 */ break; case 2: /* PCI-CardBus bridge */ reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_PCB_END; reg_rom = 0; break; default: return (0); } for (reg = reg_start; reg < reg_end; reg += 4) { if (!pci_mapreg_probe(pc, tag, reg, &type)) continue; if (pci_mapreg_info(pc, tag, reg, type, &base, &size, &flags)) continue; if (base == 0) continue; switch (type) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: if (ISSET(flags, BUS_SPACE_MAP_PREFETCHABLE) && pa->pa_pmemex && extent_alloc_region(pa->pa_pmemex, base, size, EX_NOWAIT) == 0) { break; } #ifdef __sparc64__ /* * Certain SPARC T5 systems assign * non-prefetchable 64-bit BARs of its onboard * mpii(4) controllers addresses in the * prefetchable memory range. This is * (probably) safe, as reads from the device * registers mapped by these BARs are * side-effect free. So assume the firmware * knows what it is doing. */ if (base >= 0x100000000 && pa->pa_pmemex && extent_alloc_region(pa->pa_pmemex, base, size, EX_NOWAIT) == 0) { break; } #endif if (pa->pa_memex && extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) { printf("%d:%d:%d: mem address conflict 0x%lx/0x%lx\n", bus, dev, func, base, size); pci_conf_write(pc, tag, reg, 0); if (type & PCI_MAPREG_MEM_TYPE_64BIT) pci_conf_write(pc, tag, reg + 4, 0); } break; case PCI_MAPREG_TYPE_IO: if (pa->pa_ioex && extent_alloc_region(pa->pa_ioex, base, size, EX_NOWAIT)) { printf("%d:%d:%d: io address conflict 0x%lx/0x%lx\n", bus, dev, func, base, size); pci_conf_write(pc, tag, reg, 0); } break; } if (type & PCI_MAPREG_MEM_TYPE_64BIT) reg += 4; } if (reg_rom != 0) { s = splhigh(); addr = pci_conf_read(pc, tag, PCI_ROM_REG); pci_conf_write(pc, tag, PCI_ROM_REG, ~PCI_ROM_ENABLE); mask = pci_conf_read(pc, tag, PCI_ROM_REG); pci_conf_write(pc, tag, PCI_ROM_REG, addr); splx(s); base = PCI_ROM_ADDR(addr); size = PCI_ROM_SIZE(mask); if (base != 0 && size != 0) { if (pa->pa_pmemex && extent_alloc_region(pa->pa_pmemex, base, size, EX_NOWAIT) && pa->pa_memex && extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) { printf("%d:%d:%d: rom address conflict 0x%lx/0x%lx\n", bus, dev, func, base, size); pci_conf_write(pc, tag, PCI_ROM_REG, 0); } } } if (PCI_HDRTYPE_TYPE(bhlc) != 1) return (0); /* Figure out the I/O address range of the bridge. */ blr = pci_conf_read(pc, tag, PPB_REG_IOSTATUS); base = (blr & 0x000000f0) << 8; limit = (blr & 0x000f000) | 0x00000fff; blr = pci_conf_read(pc, tag, PPB_REG_IO_HI); base |= (blr & 0x0000ffff) << 16; limit |= (blr & 0xffff0000); if (limit > base) size = (limit - base + 1); else size = 0; if (pa->pa_ioex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_ioex, base, size, EX_NOWAIT)) { printf("%d:%d:%d: bridge io address conflict 0x%lx/0x%lx\n", bus, dev, func, base, size); blr &= 0xffff0000; blr |= 0x000000f0; pci_conf_write(pc, tag, PPB_REG_IOSTATUS, blr); } } /* Figure out the memory mapped I/O address range of the bridge. */ blr = pci_conf_read(pc, tag, PPB_REG_MEM); base = (blr & 0x0000fff0) << 16; limit = (blr & 0xfff00000) | 0x000fffff; if (limit > base) size = (limit - base + 1); else size = 0; if (pa->pa_memex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) { printf("%d:%d:%d: bridge mem address conflict 0x%lx/0x%lx\n", bus, dev, func, base, size); pci_conf_write(pc, tag, PPB_REG_MEM, 0x0000fff0); } } /* Figure out the prefetchable memory address range of the bridge. */ blr = pci_conf_read(pc, tag, PPB_REG_PREFMEM); base = (blr & 0x0000fff0) << 16; limit = (blr & 0xfff00000) | 0x000fffff; #ifdef __LP64__ blr = pci_conf_read(pc, pa->pa_tag, PPB_REG_PREFBASE_HI32); base |= ((uint64_t)blr) << 32; blr = pci_conf_read(pc, pa->pa_tag, PPB_REG_PREFLIM_HI32); limit |= ((uint64_t)blr) << 32; #endif if (limit > base) size = (limit - base + 1); else size = 0; if (pa->pa_pmemex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_pmemex, base, size, EX_NOWAIT)) { printf("%d:%d:%d: bridge mem address conflict 0x%lx/0x%lx\n", bus, dev, func, base, size); pci_conf_write(pc, tag, PPB_REG_PREFMEM, 0x0000fff0); } } else if (pa->pa_memex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) { printf("%d:%d:%d: bridge mem address conflict 0x%lx/0x%lx\n", bus, dev, func, base, size); pci_conf_write(pc, tag, PPB_REG_PREFMEM, 0x0000fff0); } } /* Figure out the bus range handled by the bridge. */ bir = pci_conf_read(pc, tag, PPB_REG_BUSINFO); sec = PPB_BUSINFO_SECONDARY(bir); sub = PPB_BUSINFO_SUBORDINATE(bir); if (pa->pa_busex && sub >= sec && sub > 0) { if (extent_alloc_region(pa->pa_busex, sec, sub - sec + 1, EX_NOWAIT)) { printf("%d:%d:%d: bridge bus conflict %d-%d\n", bus, dev, func, sec, sub); } } return (0); } /* * Vital Product Data (PCI 2.2) */ int pci_vpd_read(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count, pcireg_t *data) { uint32_t reg; int ofs, i, j; KASSERT(data != NULL); if ((offset + count) >= PCI_VPD_ADDRESS_MASK) return (EINVAL); if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0) return (ENXIO); for (i = 0; i < count; offset += sizeof(*data), i++) { reg &= 0x0000ffff; reg &= ~PCI_VPD_OPFLAG; reg |= PCI_VPD_ADDRESS(offset); pci_conf_write(pc, tag, ofs, reg); /* * PCI 2.2 does not specify how long we should poll * for completion nor whether the operation can fail. */ j = 0; do { if (j++ == 20) return (EIO); delay(4); reg = pci_conf_read(pc, tag, ofs); } while ((reg & PCI_VPD_OPFLAG) == 0); data[i] = pci_conf_read(pc, tag, PCI_VPD_DATAREG(ofs)); } return (0); } int pci_vpd_write(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count, pcireg_t *data) { pcireg_t reg; int ofs, i, j; KASSERT(data != NULL); KASSERT((offset + count) < 0x7fff); if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0) return (1); for (i = 0; i < count; offset += sizeof(*data), i++) { pci_conf_write(pc, tag, PCI_VPD_DATAREG(ofs), data[i]); reg &= 0x0000ffff; reg |= PCI_VPD_OPFLAG; reg |= PCI_VPD_ADDRESS(offset); pci_conf_write(pc, tag, ofs, reg); /* * PCI 2.2 does not specify how long we should poll * for completion nor whether the operation can fail. */ j = 0; do { if (j++ == 20) return (1); delay(1); reg = pci_conf_read(pc, tag, ofs); } while (reg & PCI_VPD_OPFLAG); } return (0); } int pci_matchbyid(struct pci_attach_args *pa, const struct pci_matchid *ids, int nent) { const struct pci_matchid *pm; int i; for (i = 0, pm = ids; i < nent; i++, pm++) if (PCI_VENDOR(pa->pa_id) == pm->pm_vid && PCI_PRODUCT(pa->pa_id) == pm->pm_pid) return (1); return (0); } void pci_disable_legacy_vga(struct device *dev) { struct pci_softc *pci; struct pci_dev *pd; /* XXX Until we attach the drm drivers directly to pci. */ while (dev->dv_parent->dv_cfdata->cf_driver != &pci_cd) dev = dev->dv_parent; pci = (struct pci_softc *)dev->dv_parent; LIST_FOREACH(pd, &pci->sc_devs, pd_next) { if (pd->pd_dev == dev) { pd->pd_vga_decode = 0; break; } } } #ifdef USER_PCICONF /* * This is the user interface to PCI configuration space. */ #include #include #ifdef DEBUG #define PCIDEBUG(x) printf x #else #define PCIDEBUG(x) #endif void pci_disable_vga(pci_chipset_tag_t, pcitag_t); void pci_enable_vga(pci_chipset_tag_t, pcitag_t); void pci_route_vga(struct pci_softc *); void pci_unroute_vga(struct pci_softc *); int pciopen(dev_t dev, int oflags, int devtype, struct proc *p); int pciclose(dev_t dev, int flag, int devtype, struct proc *p); int pciioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p); int pciopen(dev_t dev, int oflags, int devtype, struct proc *p) { PCIDEBUG(("pciopen ndevs: %d\n" , pci_cd.cd_ndevs)); if (minor(dev) >= pci_ndomains) { return ENXIO; } #ifndef APERTURE if ((oflags & FWRITE) && securelevel > 0) { return EPERM; } #else if ((oflags & FWRITE) && securelevel > 0 && allowaperture == 0) { return EPERM; } #endif return (0); } int pciclose(dev_t dev, int flag, int devtype, struct proc *p) { PCIDEBUG(("pciclose\n")); pci_vga_proc = NULL; return (0); } int pciioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { struct pcisel *sel = (struct pcisel *)data; struct pci_io *io; struct pci_dev *pd; struct pci_rom *rom; int i, error; pcitag_t tag; struct pci_softc *pci; pci_chipset_tag_t pc; switch (cmd) { case PCIOCREAD: case PCIOCREADMASK: break; case PCIOCWRITE: if (!(flag & FWRITE)) return EPERM; break; case PCIOCGETROMLEN: case PCIOCGETROM: case PCIOCGETVPD: break; case PCIOCGETVGA: case PCIOCSETVGA: if (pci_vga_pci == NULL) return EINVAL; break; default: return ENOTTY; } for (i = 0; i < pci_cd.cd_ndevs; i++) { pci = pci_cd.cd_devs[i]; if (pci != NULL && pci->sc_domain == minor(dev) && pci->sc_bus == sel->pc_bus) break; } if (i >= pci_cd.cd_ndevs) return ENXIO; /* Check bounds */ if (pci->sc_bus >= 256 || sel->pc_dev >= pci_bus_maxdevs(pci->sc_pc, pci->sc_bus) || sel->pc_func >= 8) return EINVAL; pc = pci->sc_pc; LIST_FOREACH(pd, &pci->sc_devs, pd_next) { int bus, dev, func; pci_decompose_tag(pc, pd->pd_tag, &bus, &dev, &func); if (bus == sel->pc_bus && dev == sel->pc_dev && func == sel->pc_func) break; } if (pd == LIST_END(&pci->sc_devs)) return ENXIO; tag = pci_make_tag(pc, sel->pc_bus, sel->pc_dev, sel->pc_func); switch (cmd) { case PCIOCREAD: io = (struct pci_io *)data; switch (io->pi_width) { case 4: /* Configuration space bounds check */ if (io->pi_reg < 0 || io->pi_reg >= pci_conf_size(pc, tag)) return EINVAL; /* Make sure the register is properly aligned */ if (io->pi_reg & 0x3) return EINVAL; io->pi_data = pci_conf_read(pc, tag, io->pi_reg); error = 0; break; default: error = EINVAL; break; } break; case PCIOCWRITE: io = (struct pci_io *)data; switch (io->pi_width) { case 4: /* Configuration space bounds check */ if (io->pi_reg < 0 || io->pi_reg >= pci_conf_size(pc, tag)) return EINVAL; /* Make sure the register is properly aligned */ if (io->pi_reg & 0x3) return EINVAL; pci_conf_write(pc, tag, io->pi_reg, io->pi_data); error = 0; break; default: error = EINVAL; break; } break; case PCIOCREADMASK: io = (struct pci_io *)data; if (io->pi_width != 4 || io->pi_reg & 0x3 || io->pi_reg < PCI_MAPREG_START || io->pi_reg >= PCI_MAPREG_END) return (EINVAL); i = (io->pi_reg - PCI_MAPREG_START) / 4; io->pi_data = pd->pd_mask[i]; error = 0; break; case PCIOCGETROMLEN: case PCIOCGETROM: { pcireg_t addr, mask, bhlc; bus_space_handle_t h; bus_size_t len, off; char buf[256]; int s; rom = (struct pci_rom *)data; bhlc = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlc) != 0) return (ENODEV); s = splhigh(); addr = pci_conf_read(pc, tag, PCI_ROM_REG); pci_conf_write(pc, tag, PCI_ROM_REG, ~PCI_ROM_ENABLE); mask = pci_conf_read(pc, tag, PCI_ROM_REG); pci_conf_write(pc, tag, PCI_ROM_REG, addr); splx(s); /* * Section 6.2.5.2 `Expansion ROM Base Address Register', * * tells us that only the upper 21 bits are writable. * This means that the size of a ROM must be a * multiple of 2 KB. So reading the ROM in chunks of * 256 bytes should work just fine. */ if ((PCI_ROM_ADDR(addr) == 0 || PCI_ROM_SIZE(mask) % sizeof(buf)) != 0) return (ENODEV); /* If we're just after the size, skip reading the ROM. */ if (cmd == PCIOCGETROMLEN) { error = 0; goto fail; } if (rom->pr_romlen < PCI_ROM_SIZE(mask)) { error = ENOMEM; goto fail; } error = bus_space_map(pci->sc_memt, PCI_ROM_ADDR(addr), PCI_ROM_SIZE(mask), 0, &h); if (error) goto fail; off = 0; len = PCI_ROM_SIZE(mask); while (len > 0 && error == 0) { s = splhigh(); pci_conf_write(pc, tag, PCI_ROM_REG, addr | PCI_ROM_ENABLE); bus_space_read_region_1(pci->sc_memt, h, off, buf, sizeof(buf)); pci_conf_write(pc, tag, PCI_ROM_REG, addr); splx(s); error = copyout(buf, rom->pr_rom + off, sizeof(buf)); off += sizeof(buf); len -= sizeof(buf); } bus_space_unmap(pci->sc_memt, h, PCI_ROM_SIZE(mask)); fail: rom->pr_romlen = PCI_ROM_SIZE(mask); break; } case PCIOCGETVPD: { struct pci_vpd_req *pv = (struct pci_vpd_req *)data; pcireg_t *data; size_t len; unsigned int i; int s; CTASSERT(sizeof(*data) == sizeof(*pv->pv_data)); data = mallocarray(pv->pv_count, sizeof(*data), M_TEMP, M_WAITOK|M_CANFAIL); if (data == NULL) { error = ENOMEM; break; } s = splhigh(); error = pci_vpd_read(pc, tag, pv->pv_offset, pv->pv_count, data); splx(s); len = pv->pv_count * sizeof(*pv->pv_data); if (error == 0) { for (i = 0; i < pv->pv_count; i++) data[i] = letoh32(data[i]); error = copyout(data, pv->pv_data, len); } free(data, M_TEMP, len); break; } case PCIOCGETVGA: { struct pci_vga *vga = (struct pci_vga *)data; struct pci_dev *pd; int bus, dev, func; vga->pv_decode = 0; LIST_FOREACH(pd, &pci->sc_devs, pd_next) { pci_decompose_tag(pc, pd->pd_tag, NULL, &dev, &func); if (dev == sel->pc_dev && func == sel->pc_func) { if (pd->pd_vga_decode) vga->pv_decode = PCI_VGA_IO_ENABLE | PCI_VGA_MEM_ENABLE; break; } } pci_decompose_tag(pci_vga_pci->sc_pc, pci_vga_tag, &bus, &dev, &func); vga->pv_sel.pc_bus = bus; vga->pv_sel.pc_dev = dev; vga->pv_sel.pc_func = func; error = 0; break; } case PCIOCSETVGA: { struct pci_vga *vga = (struct pci_vga *)data; int bus, dev, func; switch (vga->pv_lock) { case PCI_VGA_UNLOCK: case PCI_VGA_LOCK: case PCI_VGA_TRYLOCK: break; default: return (EINVAL); } if (vga->pv_lock == PCI_VGA_UNLOCK) { if (pci_vga_proc != p) return (EINVAL); pci_vga_proc = NULL; wakeup(&pci_vga_proc); return (0); } while (pci_vga_proc != p && pci_vga_proc != NULL) { if (vga->pv_lock == PCI_VGA_TRYLOCK) return (EBUSY); error = tsleep_nsec(&pci_vga_proc, PLOCK | PCATCH, "vgalk", INFSLP); if (error) return (error); } pci_vga_proc = p; pci_decompose_tag(pci_vga_pci->sc_pc, pci_vga_tag, &bus, &dev, &func); if (bus != vga->pv_sel.pc_bus || dev != vga->pv_sel.pc_dev || func != vga->pv_sel.pc_func) { pci_disable_vga(pci_vga_pci->sc_pc, pci_vga_tag); if (pci != pci_vga_pci) { pci_unroute_vga(pci_vga_pci); pci_route_vga(pci); pci_vga_pci = pci; } pci_enable_vga(pc, tag); pci_vga_tag = tag; } error = 0; break; } default: error = ENOTTY; break; } return (error); } void pci_disable_vga(pci_chipset_tag_t pc, pcitag_t tag) { pcireg_t csr; csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); csr &= ~(PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE); pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr); } void pci_enable_vga(pci_chipset_tag_t pc, pcitag_t tag) { pcireg_t csr; csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); csr |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE; pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, csr); } void pci_route_vga(struct pci_softc *sc) { pci_chipset_tag_t pc = sc->sc_pc; pcireg_t bc; if (sc->sc_bridgetag == NULL) return; bc = pci_conf_read(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL); bc |= PPB_BC_VGA_ENABLE; pci_conf_write(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL, bc); pci_route_vga((struct pci_softc *)sc->sc_dev.dv_parent->dv_parent); } void pci_unroute_vga(struct pci_softc *sc) { pci_chipset_tag_t pc = sc->sc_pc; pcireg_t bc; if (sc->sc_bridgetag == NULL) return; bc = pci_conf_read(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL); bc &= ~PPB_BC_VGA_ENABLE; pci_conf_write(pc, *sc->sc_bridgetag, PPB_REG_BRIDGECONTROL, bc); pci_unroute_vga((struct pci_softc *)sc->sc_dev.dv_parent->dv_parent); } #endif /* USER_PCICONF */ int pci_primary_vga(struct pci_attach_args *pa) { /* XXX For now, only handle the first PCI domain. */ if (pa->pa_domain != 0) return (0); if ((PCI_CLASS(pa->pa_class) != PCI_CLASS_DISPLAY || PCI_SUBCLASS(pa->pa_class) != PCI_SUBCLASS_DISPLAY_VGA) && (PCI_CLASS(pa->pa_class) != PCI_CLASS_PREHISTORIC || PCI_SUBCLASS(pa->pa_class) != PCI_SUBCLASS_PREHISTORIC_VGA)) return (0); if ((pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) & (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE)) != (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE)) return (0); pci_vga_tag = pa->pa_tag; return (1); } #ifdef __HAVE_PCI_MSIX struct msix_vector * pci_alloc_msix_table(pci_chipset_tag_t pc, pcitag_t tag) { struct msix_vector *table; pcireg_t reg; int tblsz; if (pci_get_capability(pc, tag, PCI_CAP_MSIX, NULL, ®) == 0) return NULL; tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1; table = mallocarray(tblsz, sizeof(*table), M_DEVBUF, M_WAITOK); return table; } void pci_free_msix_table(pci_chipset_tag_t pc, pcitag_t tag, struct msix_vector *table) { pcireg_t reg; int tblsz; if (pci_get_capability(pc, tag, PCI_CAP_MSIX, NULL, ®) == 0) return; tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1; free(table, M_DEVBUF, tblsz * sizeof(*table)); } void pci_suspend_msix(pci_chipset_tag_t pc, pcitag_t tag, bus_space_tag_t memt, pcireg_t *mc, struct msix_vector *table) { bus_space_handle_t memh; pcireg_t reg; int tblsz, i; if (pci_get_capability(pc, tag, PCI_CAP_MSIX, NULL, ®) == 0) return; KASSERT(table != NULL); if (pci_msix_table_map(pc, tag, memt, &memh)) return; tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1; for (i = 0; i < tblsz; i++) { table[i].mv_ma = bus_space_read_4(memt, memh, PCI_MSIX_MA(i)); table[i].mv_mau32 = bus_space_read_4(memt, memh, PCI_MSIX_MAU32(i)); table[i].mv_md = bus_space_read_4(memt, memh, PCI_MSIX_MD(i)); table[i].mv_vc = bus_space_read_4(memt, memh, PCI_MSIX_VC(i)); } pci_msix_table_unmap(pc, tag, memt, memh); *mc = reg; } void pci_resume_msix(pci_chipset_tag_t pc, pcitag_t tag, bus_space_tag_t memt, pcireg_t mc, struct msix_vector *table) { bus_space_handle_t memh; pcireg_t reg; int tblsz, i; int off; if (pci_get_capability(pc, tag, PCI_CAP_MSIX, &off, ®) == 0) return; KASSERT(table != NULL); if (pci_msix_table_map(pc, tag, memt, &memh)) return; tblsz = PCI_MSIX_MC_TBLSZ(reg) + 1; for (i = 0; i < tblsz; i++) { bus_space_write_4(memt, memh, PCI_MSIX_MA(i), table[i].mv_ma); bus_space_write_4(memt, memh, PCI_MSIX_MAU32(i), table[i].mv_mau32); bus_space_write_4(memt, memh, PCI_MSIX_MD(i), table[i].mv_md); bus_space_barrier(memt, memh, PCI_MSIX_MA(i), 16, BUS_SPACE_BARRIER_WRITE); bus_space_write_4(memt, memh, PCI_MSIX_VC(i), table[i].mv_vc); bus_space_barrier(memt, memh, PCI_MSIX_VC(i), 4, BUS_SPACE_BARRIER_WRITE); } pci_msix_table_unmap(pc, tag, memt, memh); pci_conf_write(pc, tag, off, mc); } int pci_intr_msix_count(struct pci_attach_args *pa) { pcireg_t reg; if ((pa->pa_flags & PCI_FLAGS_MSI_ENABLED) == 0) return (0); if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, NULL, ®) == 0) return (0); return (PCI_MSIX_MC_TBLSZ(reg) + 1); } #else /* __HAVE_PCI_MSIX */ struct msix_vector * pci_alloc_msix_table(pci_chipset_tag_t pc, pcitag_t tag) { return NULL; } void pci_free_msix_table(pci_chipset_tag_t pc, pcitag_t tag, struct msix_vector *table) { } void pci_suspend_msix(pci_chipset_tag_t pc, pcitag_t tag, bus_space_tag_t memt, pcireg_t *mc, struct msix_vector *table) { } void pci_resume_msix(pci_chipset_tag_t pc, pcitag_t tag, bus_space_tag_t memt, pcireg_t mc, struct msix_vector *table) { } int pci_intr_msix_count(struct pci_attach_args *pa) { return (0); } #endif /* __HAVE_PCI_MSIX */