/* $OpenBSD: pci.c,v 1.71 2009/11/23 22:34:23 mlarkin Exp $ */ /* $NetBSD: pci.c,v 1.31 1997/06/06 23:48:04 thorpej Exp $ */ /* * Copyright (c) 1995, 1996 Christopher G. Demetriou. All rights reserved. * Copyright (c) 1994 Charles Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * PCI bus autoconfiguration. */ #include #include #include #include #include #include #include #include int pcimatch(struct device *, void *, void *); void pciattach(struct device *, struct device *, void *); int pcidetach(struct device *, int); void pcipower(int, void *); int pciactivate(struct device *, int); #define NMAPREG ((PCI_MAPREG_END - PCI_MAPREG_START) / \ sizeof(pcireg_t)) struct pci_dev { LIST_ENTRY(pci_dev) pd_next; struct device *pd_dev; pcitag_t pd_tag; /* pci register tag */ pcireg_t pd_csr; pcireg_t pd_bhlc; pcireg_t pd_int; pcireg_t pd_map[NMAPREG]; }; #ifdef APERTURE extern int allowaperture; #endif struct cfattach pci_ca = { sizeof(struct pci_softc), pcimatch, pciattach, pcidetach, pciactivate }; struct cfdriver pci_cd = { NULL, "pci", DV_DULL }; int pci_ndomains; int pciprint(void *, const char *); int pcisubmatch(struct device *, void *, void *); #ifdef PCI_MACHDEP_ENUMERATE_BUS #define pci_enumerate_bus PCI_MACHDEP_ENUMERATE_BUS #else int pci_enumerate_bus(struct pci_softc *, int (*)(struct pci_attach_args *), struct pci_attach_args *); #endif int pci_reserve_resources(struct pci_attach_args *); /* * Important note about PCI-ISA bridges: * * Callbacks are used to configure these devices so that ISA/EISA bridges * can attach their child busses after PCI configuration is done. * * This works because: * (1) there can be at most one ISA/EISA bridge per PCI bus, and * (2) any ISA/EISA bridges must be attached to primary PCI * busses (i.e. bus zero). * * That boils down to: there can only be one of these outstanding * at a time, it is cleared when configuring PCI bus 0 before any * subdevices have been found, and it is run after all subdevices * of PCI bus 0 have been found. * * This is needed because there are some (legacy) PCI devices which * can show up as ISA/EISA devices as well (the prime example of which * are VGA controllers). If you attach ISA from a PCI-ISA/EISA bridge, * and the bridge is seen before the video board is, the board can show * up as an ISA device, and that can (bogusly) complicate the PCI device's * attach code, or make the PCI device not be properly attached at all. * * We use the generic config_defer() facility to achieve this. */ int pcimatch(struct device *parent, void *match, void *aux) { struct cfdata *cf = match; struct pcibus_attach_args *pba = aux; if (strcmp(pba->pba_busname, cf->cf_driver->cd_name)) return (0); /* Check the locators */ if (cf->pcibuscf_bus != PCIBUS_UNK_BUS && cf->pcibuscf_bus != pba->pba_bus) return (0); /* sanity */ if (pba->pba_bus < 0 || pba->pba_bus > 255) return (0); /* * XXX check other (hardware?) indicators */ return (1); } void pciattach(struct device *parent, struct device *self, void *aux) { struct pcibus_attach_args *pba = aux; struct pci_softc *sc = (struct pci_softc *)self; pci_attach_hook(parent, self, pba); printf("\n"); LIST_INIT(&sc->sc_devs); sc->sc_powerhook = powerhook_establish(pcipower, sc); sc->sc_iot = pba->pba_iot; sc->sc_memt = pba->pba_memt; sc->sc_dmat = pba->pba_dmat; sc->sc_pc = pba->pba_pc; sc->sc_ioex = pba->pba_ioex; sc->sc_memex = pba->pba_memex; sc->sc_pmemex = pba->pba_pmemex; sc->sc_domain = pba->pba_domain; sc->sc_bus = pba->pba_bus; sc->sc_bridgetag = pba->pba_bridgetag; sc->sc_bridgeih = pba->pba_bridgeih; sc->sc_maxndevs = pci_bus_maxdevs(pba->pba_pc, pba->pba_bus); sc->sc_intrswiz = pba->pba_intrswiz; sc->sc_intrtag = pba->pba_intrtag; pci_enumerate_bus(sc, pci_reserve_resources, NULL); pci_enumerate_bus(sc, NULL, NULL); } int pcidetach(struct device *self, int flags) { return pci_detach_devices((struct pci_softc *)self, flags); } int pciactivate(struct device *self, int act) { int rv = 0; switch (act) { case DVACT_SUSPEND: rv = config_activate_children(self, act); pcipower(PWR_SUSPEND, self); break; case DVACT_RESUME: pcipower(PWR_RESUME, self); rv = config_activate_children(self, act); break; } return (rv); } /* save and restore the pci config space */ void pcipower(int why, void *arg) { struct pci_softc *sc = (struct pci_softc *)arg; struct pci_dev *pd; pcireg_t reg; int i; LIST_FOREACH(pd, &sc->sc_devs, pd_next) { if (why != PWR_RESUME) { for (i = 0; i < NMAPREG; i++) pd->pd_map[i] = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_MAPREG_START + (i * 4)); pd->pd_csr = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG); pd->pd_bhlc = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG); pd->pd_int = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_INTERRUPT_REG); } else { for (i = 0; i < NMAPREG; i++) pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_MAPREG_START + (i * 4), pd->pd_map[i]); reg = pci_conf_read(sc->sc_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG, (reg & 0xffff0000) | (pd->pd_csr & 0x0000ffff)); pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_BHLC_REG, pd->pd_bhlc); pci_conf_write(sc->sc_pc, pd->pd_tag, PCI_INTERRUPT_REG, pd->pd_int); } } } int pciprint(void *aux, const char *pnp) { struct pci_attach_args *pa = aux; char devinfo[256]; if (pnp) { pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof devinfo); printf("%s at %s", devinfo, pnp); } printf(" dev %d function %d", pa->pa_device, pa->pa_function); if (!pnp) { pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); printf(" %s", devinfo); } return (UNCONF); } int pcisubmatch(struct device *parent, void *match, void *aux) { struct cfdata *cf = match; struct pci_attach_args *pa = aux; if (cf->pcicf_dev != PCI_UNK_DEV && cf->pcicf_dev != pa->pa_device) return (0); if (cf->pcicf_function != PCI_UNK_FUNCTION && cf->pcicf_function != pa->pa_function) return (0); return ((*cf->cf_attach->ca_match)(parent, match, aux)); } int pci_probe_device(struct pci_softc *sc, pcitag_t tag, int (*match)(struct pci_attach_args *), struct pci_attach_args *pap) { pci_chipset_tag_t pc = sc->sc_pc; struct pci_attach_args pa; struct pci_dev *pd; struct device *dev; pcireg_t id, csr, class, intr, bhlcr; int ret = 0, pin, bus, device, function; pci_decompose_tag(pc, tag, &bus, &device, &function); bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlcr) > 2) return (0); id = pci_conf_read(pc, tag, PCI_ID_REG); csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); class = pci_conf_read(pc, tag, PCI_CLASS_REG); /* Invalid vendor ID value? */ if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) return (0); /* XXX Not invalid, but we've done this ~forever. */ if (PCI_VENDOR(id) == 0) return (0); pa.pa_iot = sc->sc_iot; pa.pa_memt = sc->sc_memt; pa.pa_dmat = sc->sc_dmat; pa.pa_pc = pc; pa.pa_ioex = sc->sc_ioex; pa.pa_memex = sc->sc_memex; pa.pa_pmemex = sc->sc_pmemex; pa.pa_domain = sc->sc_domain; pa.pa_bus = bus; pa.pa_device = device; pa.pa_function = function; pa.pa_tag = tag; pa.pa_id = id; pa.pa_class = class; pa.pa_bridgetag = sc->sc_bridgetag; pa.pa_bridgeih = sc->sc_bridgeih; /* This is a simplification of the NetBSD code. We don't support turning off I/O or memory on broken hardware. */ pa.pa_flags = PCI_FLAGS_IO_ENABLED | PCI_FLAGS_MEM_ENABLED; if (sc->sc_bridgetag == NULL) { pa.pa_intrswiz = 0; pa.pa_intrtag = tag; } else { pa.pa_intrswiz = sc->sc_intrswiz + device; pa.pa_intrtag = sc->sc_intrtag; } intr = pci_conf_read(pc, tag, PCI_INTERRUPT_REG); pin = PCI_INTERRUPT_PIN(intr); pa.pa_rawintrpin = pin; if (pin == PCI_INTERRUPT_PIN_NONE) { /* no interrupt */ pa.pa_intrpin = 0; } else { /* * swizzle it based on the number of busses we're * behind and our device number. */ pa.pa_intrpin = /* XXX */ ((pin + pa.pa_intrswiz - 1) % 4) + 1; } pa.pa_intrline = PCI_INTERRUPT_LINE(intr); if (match != NULL) { ret = (*match)(&pa); if (ret != 0 && pap != NULL) *pap = pa; } else { if ((dev = config_found_sm(&sc->sc_dev, &pa, pciprint, pcisubmatch))) { pcireg_t reg; /* skip header type != 0 */ reg = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(reg) != 0) return(0); if (pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, NULL, NULL) == 0) return(0); if (!(pd = malloc(sizeof *pd, M_DEVBUF, M_NOWAIT))) return(0); pd->pd_tag = tag; pd->pd_dev = dev; LIST_INSERT_HEAD(&sc->sc_devs, pd, pd_next); } } return (ret); } int pci_detach_devices(struct pci_softc *sc, int flags) { struct pci_dev *pd, *next; int ret; ret = config_detach_children(&sc->sc_dev, flags); if (ret != 0) return (ret); for (pd = LIST_FIRST(&sc->sc_devs); pd != LIST_END(&sc->sc_devs); pd = next) { next = LIST_NEXT(pd, pd_next); free(pd, M_DEVBUF); } LIST_INIT(&sc->sc_devs); return (0); } int pci_get_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid, int *offset, pcireg_t *value) { pcireg_t reg; unsigned int ofs; reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); if (!(reg & PCI_STATUS_CAPLIST_SUPPORT)) return (0); /* Determine the Capability List Pointer register to start with. */ reg = pci_conf_read(pc, tag, PCI_BHLC_REG); switch (PCI_HDRTYPE_TYPE(reg)) { case 0: /* standard device header */ case 1: /* PCI-PCI bridge header */ ofs = PCI_CAPLISTPTR_REG; break; case 2: /* PCI-CardBus bridge header */ ofs = PCI_CARDBUS_CAPLISTPTR_REG; break; default: return (0); } ofs = PCI_CAPLIST_PTR(pci_conf_read(pc, tag, ofs)); while (ofs != 0) { #ifdef DIAGNOSTIC if ((ofs & 3) || (ofs < 0x40)) panic("pci_get_capability"); #endif reg = pci_conf_read(pc, tag, ofs); if (PCI_CAPLIST_CAP(reg) == capid) { if (offset) *offset = ofs; if (value) *value = reg; return (1); } ofs = PCI_CAPLIST_NEXT(reg); } return (0); } int pci_find_device(struct pci_attach_args *pa, int (*match)(struct pci_attach_args *)) { extern struct cfdriver pci_cd; struct device *pcidev; int i; for (i = 0; i < pci_cd.cd_ndevs; i++) { pcidev = pci_cd.cd_devs[i]; if (pcidev != NULL && pci_enumerate_bus((struct pci_softc *)pcidev, match, pa) != 0) return (1); } return (0); } int pci_set_powerstate(pci_chipset_tag_t pc, pcitag_t tag, int state) { pcireg_t reg; int offset; if (pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, 0)) { reg = pci_conf_read(pc, tag, offset + PCI_PMCSR); if ((reg & PCI_PMCSR_STATE_MASK) != state) { pci_conf_write(pc, tag, offset + PCI_PMCSR, (reg & ~PCI_PMCSR_STATE_MASK) | state); return (reg & PCI_PMCSR_STATE_MASK); } } return (state); } #ifndef PCI_MACHDEP_ENUMERATE_BUS /* * Generic PCI bus enumeration routine. Used unless machine-dependent * code needs to provide something else. */ int pci_enumerate_bus(struct pci_softc *sc, int (*match)(struct pci_attach_args *), struct pci_attach_args *pap) { pci_chipset_tag_t pc = sc->sc_pc; int device, function, nfunctions, ret; const struct pci_quirkdata *qd; pcireg_t id, bhlcr; pcitag_t tag; for (device = 0; device < sc->sc_maxndevs; device++) { tag = pci_make_tag(pc, sc->sc_bus, device, 0); bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlcr) > 2) continue; id = pci_conf_read(pc, tag, PCI_ID_REG); /* Invalid vendor ID value? */ if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) continue; /* XXX Not invalid, but we've done this ~forever. */ if (PCI_VENDOR(id) == 0) continue; qd = pci_lookup_quirkdata(PCI_VENDOR(id), PCI_PRODUCT(id)); if (qd != NULL && (qd->quirks & PCI_QUIRK_MULTIFUNCTION) != 0) nfunctions = 8; else if (qd != NULL && (qd->quirks & PCI_QUIRK_MONOFUNCTION) != 0) nfunctions = 1; else nfunctions = PCI_HDRTYPE_MULTIFN(bhlcr) ? 8 : 1; for (function = 0; function < nfunctions; function++) { tag = pci_make_tag(pc, sc->sc_bus, device, function); ret = pci_probe_device(sc, tag, match, pap); if (match != NULL && ret != 0) return (ret); } } return (0); } #endif /* PCI_MACHDEP_ENUMERATE_BUS */ int pci_reserve_resources(struct pci_attach_args *pa) { pci_chipset_tag_t pc = pa->pa_pc; pcitag_t tag = pa->pa_tag; pcireg_t bhlc, blr, type; bus_addr_t base, limit; bus_size_t size; int reg, reg_start, reg_end; int flags; bhlc = pci_conf_read(pc, tag, PCI_BHLC_REG); switch (PCI_HDRTYPE_TYPE(bhlc)) { case 0: reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_END; break; case 1: /* PCI-PCI bridge */ reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_PPB_END; break; case 2: /* PCI-CardBus bridge */ reg_start = PCI_MAPREG_START; reg_end = PCI_MAPREG_PCB_END; break; default: return (0); } for (reg = reg_start; reg < reg_end; reg += 4) { if (!pci_mapreg_probe(pc, tag, reg, &type)) continue; if (pci_mapreg_info(pc, tag, reg, type, &base, &size, &flags)) continue; if (base == 0) continue; switch (type) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: #ifdef BUS_SPACE_MAP_PREFETCHABLE if (ISSET(flags, BUS_SPACE_MAP_PREFETCHABLE) && pa->pa_pmemex && extent_alloc_region(pa->pa_pmemex, base, size, EX_NOWAIT) == 0) { break; } #endif if (pa->pa_memex && extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) { printf("mem address conflict 0x%x/0x%x\n", base, size); pci_conf_write(pc, tag, reg, 0); if (type & PCI_MAPREG_MEM_TYPE_64BIT) pci_conf_write(pc, tag, reg + 4, 0); } break; case PCI_MAPREG_TYPE_IO: if (pa->pa_ioex && extent_alloc_region(pa->pa_ioex, base, size, EX_NOWAIT)) { printf("io address conflict 0x%x/0x%x\n", base, size); pci_conf_write(pc, tag, reg, 0); } break; } if (type & PCI_MAPREG_MEM_TYPE_64BIT) reg += 4; } if (PCI_HDRTYPE_TYPE(bhlc) != 1) return (0); /* Figure out the I/O address range of the bridge. */ blr = pci_conf_read(pc, tag, PPB_REG_IOSTATUS); base = (blr & 0x000000f0) << 8; limit = (blr & 0x000f000) | 0x00000fff; blr = pci_conf_read(pc, tag, PPB_REG_IO_HI); base |= (blr & 0x0000ffff) << 16; limit |= (blr & 0xffff0000); if (limit > base) size = (limit - base + 1); else size = 0; if (pa->pa_ioex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_ioex, base, size, EX_NOWAIT)) { printf("bridge io address conflict 0x%x/0x%x\n", base, size); blr &= 0xffff0000; blr |= 0x000000f0; pci_conf_write(pc, tag, PPB_REG_IOSTATUS, blr); } } /* Figure out the memory mapped I/O address range of the bridge. */ blr = pci_conf_read(pc, tag, PPB_REG_MEM); base = (blr & 0x0000fff0) << 16; limit = (blr & 0xfff00000) | 0x000fffff; if (limit > base) size = (limit - base + 1); else size = 0; if (pa->pa_memex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) { printf("bridge mem address conflict 0x%x/0x%x\n", base, size); pci_conf_write(pc, tag, PPB_REG_MEM, 0x0000fff0); } } /* Figure out the prefetchable memory address range of the bridge. */ blr = pci_conf_read(pc, tag, PPB_REG_PREFMEM); base = (blr & 0x0000fff0) << 16; limit = (blr & 0xfff00000) | 0x000fffff; if (limit > base) size = (limit - base + 1); else size = 0; if (pa->pa_pmemex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_pmemex, base, size, EX_NOWAIT)) { printf("bridge mem address conflict 0x%x/0x%x\n", base, size); pci_conf_write(pc, tag, PPB_REG_PREFMEM, 0x0000fff0); } } else if (pa->pa_memex && base > 0 && size > 0) { if (extent_alloc_region(pa->pa_memex, base, size, EX_NOWAIT)) { printf("bridge mem address conflict 0x%x/0x%x\n", base, size); pci_conf_write(pc, tag, PPB_REG_PREFMEM, 0x0000fff0); } } return (0); } /* * Vital Product Data (PCI 2.2) */ int pci_vpd_read(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count, pcireg_t *data) { uint32_t reg; int ofs, i, j; KASSERT(data != NULL); KASSERT((offset + count) < 0x7fff); if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0) return (1); for (i = 0; i < count; offset += sizeof(*data), i++) { reg &= 0x0000ffff; reg &= ~PCI_VPD_OPFLAG; reg |= PCI_VPD_ADDRESS(offset); pci_conf_write(pc, tag, ofs, reg); /* * PCI 2.2 does not specify how long we should poll * for completion nor whether the operation can fail. */ j = 0; do { if (j++ == 20) return (1); delay(4); reg = pci_conf_read(pc, tag, ofs); } while ((reg & PCI_VPD_OPFLAG) == 0); data[i] = pci_conf_read(pc, tag, PCI_VPD_DATAREG(ofs)); } return (0); } int pci_vpd_write(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count, pcireg_t *data) { pcireg_t reg; int ofs, i, j; KASSERT(data != NULL); KASSERT((offset + count) < 0x7fff); if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0) return (1); for (i = 0; i < count; offset += sizeof(*data), i++) { pci_conf_write(pc, tag, PCI_VPD_DATAREG(ofs), data[i]); reg &= 0x0000ffff; reg |= PCI_VPD_OPFLAG; reg |= PCI_VPD_ADDRESS(offset); pci_conf_write(pc, tag, ofs, reg); /* * PCI 2.2 does not specify how long we should poll * for completion nor whether the operation can fail. */ j = 0; do { if (j++ == 20) return (1); delay(1); reg = pci_conf_read(pc, tag, ofs); } while (reg & PCI_VPD_OPFLAG); } return (0); } int pci_matchbyid(struct pci_attach_args *pa, const struct pci_matchid *ids, int nent) { const struct pci_matchid *pm; int i; for (i = 0, pm = ids; i < nent; i++, pm++) if (PCI_VENDOR(pa->pa_id) == pm->pm_vid && PCI_PRODUCT(pa->pa_id) == pm->pm_pid) return (1); return (0); } #ifdef USER_PCICONF /* * This is the user interface to PCI configuration space. */ #include #include #ifdef DEBUG #define PCIDEBUG(x) printf x #else #define PCIDEBUG(x) #endif int pciopen(dev_t dev, int oflags, int devtype, struct proc *p); int pciclose(dev_t dev, int flag, int devtype, struct proc *p); int pciioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p); int pciopen(dev_t dev, int oflags, int devtype, struct proc *p) { PCIDEBUG(("pciopen ndevs: %d\n" , pci_cd.cd_ndevs)); if (minor(dev) >= pci_ndomains) { return ENXIO; } #ifndef APERTURE if ((oflags & FWRITE) && securelevel > 0) { return EPERM; } #else if ((oflags & FWRITE) && securelevel > 0 && allowaperture == 0) { return EPERM; } #endif return (0); } int pciclose(dev_t dev, int flag, int devtype, struct proc *p) { PCIDEBUG(("pciclose\n")); return (0); } int pciioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { struct pcisel *sel = (struct pcisel *)data; struct pci_io *io; struct pci_rom *rom; int i, error; pcitag_t tag; struct pci_softc *pci = NULL; pci_chipset_tag_t pc; switch (cmd) { case PCIOCREAD: break; case PCIOCWRITE: if (!(flag & FWRITE)) return EPERM; break; case PCIOCGETROMLEN: case PCIOCGETROM: break; default: return ENOTTY; } for (i = 0; i < pci_cd.cd_ndevs; i++) { pci = pci_cd.cd_devs[i]; if (pci != NULL && pci->sc_domain == minor(dev) && pci->sc_bus == sel->pc_bus) break; } if (i >= pci_cd.cd_ndevs) return ENXIO; /* Check bounds */ if (pci->sc_bus >= 256 || sel->pc_dev >= pci_bus_maxdevs(pci->sc_pc, pci->sc_bus) || sel->pc_func >= 8) return EINVAL; pc = pci->sc_pc; tag = pci_make_tag(pc, sel->pc_bus, sel->pc_dev, sel->pc_func); switch (cmd) { case PCIOCREAD: io = (struct pci_io *)data; switch (io->pi_width) { case 4: /* Make sure the register is properly aligned */ if (io->pi_reg & 0x3) return EINVAL; io->pi_data = pci_conf_read(pc, tag, io->pi_reg); error = 0; break; default: error = ENODEV; break; } break; case PCIOCWRITE: io = (struct pci_io *)data; switch (io->pi_width) { case 4: /* Make sure the register is properly aligned */ if (io->pi_reg & 0x3) return EINVAL; pci_conf_write(pc, tag, io->pi_reg, io->pi_data); error = 0; break; default: error = ENODEV; break; } break; case PCIOCGETROMLEN: case PCIOCGETROM: { pcireg_t addr, mask, bhlc; bus_space_handle_t h; bus_size_t len, off; char buf[256]; int s; rom = (struct pci_rom *)data; bhlc = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlc) != 0) return (ENODEV); s = splhigh(); addr = pci_conf_read(pc, tag, PCI_ROM_REG); pci_conf_write(pc, tag, PCI_ROM_REG, ~PCI_ROM_ENABLE); mask = pci_conf_read(pc, tag, PCI_ROM_REG); pci_conf_write(pc, tag, PCI_ROM_REG, addr); splx(s); /* * Section 6.2.5.2 `Expansion ROM Base Addres Register', * * tells us that only the upper 21 bits are writable. * This means that the size of a ROM must be a * multiple of 2 KB. So reading the ROM in chunks of * 256 bytes should work just fine. */ if ((PCI_ROM_ADDR(addr) == 0 || PCI_ROM_SIZE(mask) % sizeof(buf)) != 0) return (ENODEV); /* If we're just after the size, skip reading the ROM. */ if (cmd == PCIOCGETROMLEN) { error = 0; goto fail; } if (rom->pr_romlen < PCI_ROM_SIZE(mask)) { error = ENOMEM; goto fail; } error = bus_space_map(pci->sc_memt, PCI_ROM_ADDR(addr), PCI_ROM_SIZE(mask), 0, &h); if (error) goto fail; off = 0; len = PCI_ROM_SIZE(mask); while (len > 0 && error == 0) { s = splhigh(); pci_conf_write(pc, tag, PCI_ROM_REG, addr | PCI_ROM_ENABLE); bus_space_read_region_1(pci->sc_memt, h, off, buf, sizeof(buf)); pci_conf_write(pc, tag, PCI_ROM_REG, addr); splx(s); error = copyout(buf, rom->pr_rom + off, sizeof(buf)); off += sizeof(buf); len -= sizeof(buf); } bus_space_unmap(pci->sc_memt, h, PCI_ROM_SIZE(mask)); fail: rom->pr_romlen = PCI_ROM_SIZE(mask); break; } default: error = ENOTTY; break; } return (error); } #endif