/* $OpenBSD: safe.c,v 1.11 2004/01/09 21:32:24 brad Exp $ */ /*- * Copyright (c) 2003 Sam Leffler, Errno Consulting * Copyright (c) 2003 Global Technology Associates, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: /repoman/r/ncvs/src/sys/dev/safe/safe.c,v 1.1 2003/07/21 21:46:07 sam Exp $ */ #include /* * SafeNet SafeXcel-1141 hardware crypto accelerator */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef bswap32 #define bswap32 NTOHL #endif #define KASSERT_X(x,y) /* * Prototypes and count for the pci_device structure */ int safe_probe(struct device *, void *, void *); void safe_attach(struct device *, struct device *, void *); struct cfattach safe_ca = { sizeof(struct safe_softc), safe_probe, safe_attach }; struct cfdriver safe_cd = { 0, "safe", DV_DULL }; int safe_intr(void *); int safe_newsession(u_int32_t *, struct cryptoini *); int safe_freesession(u_int64_t); int safe_process(struct cryptop *); int safe_kprocess(struct cryptkop *); int safe_kstart(struct safe_softc *); void safe_kload_reg(struct safe_softc *, u_int32_t, u_int32_t, struct crparam *); struct safe_softc *safe_kfind(struct cryptkop *); void safe_kpoll(void *); void safe_kfeed(struct safe_softc *); int safe_ksigbits(struct crparam *cr); void safe_callback(struct safe_softc *, struct safe_ringentry *); void safe_feed(struct safe_softc *, struct safe_ringentry *); void safe_mcopy(struct mbuf *, struct mbuf *, u_int); void safe_rng_init(struct safe_softc *); void safe_rng(void *); int safe_dma_malloc(struct safe_softc *, bus_size_t, struct safe_dma_alloc *, int); #define safe_dma_sync(_sc, _dma, _flags) \ bus_dmamap_sync((_sc)->sc_dmat, (_dma)->dma_map, 0, \ (_dma)->dma_map->dm_mapsize, (_flags)) void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *); int safe_dmamap_aligned(const struct safe_operand *); int safe_dmamap_uniform(const struct safe_operand *); void safe_reset_board(struct safe_softc *); void safe_init_board(struct safe_softc *); void safe_init_pciregs(struct safe_softc *); void safe_cleanchip(struct safe_softc *); __inline u_int32_t safe_rng_read(struct safe_softc *); int safe_free_entry(struct safe_softc *, struct safe_ringentry *); #ifdef SAFE_DEBUG int safe_debug; #define DPRINTF(_x) if (safe_debug) printf _x void safe_dump_dmastatus(struct safe_softc *, const char *); void safe_dump_intrstate(struct safe_softc *, const char *); void safe_dump_ringstate(struct safe_softc *, const char *); void safe_dump_request(struct safe_softc *, const char *, struct safe_ringentry *); void safe_dump_ring(struct safe_softc *sc, const char *tag); #else #define DPRINTF(_x) #endif #define READ_REG(sc,r) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) #define WRITE_REG(sc,reg,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) struct safe_stats safestats; int safe_rnginterval = 1; /* poll once a second */ int safe_rngbufsize = 16; /* 64 bytes each poll */ int safe_rngmaxalarm = 8; /* max alarms before reset */ int safe_probe(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SAFENET && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SAFENET_SAFEXCEL) return (1); return (0); } void safe_attach(struct device *parent, struct device *self, void *aux) { struct safe_softc *sc = (struct safe_softc *)self; struct pci_attach_args *pa = aux; pci_intr_handle_t ih; const char *intrstr = NULL; bus_size_t iosize; bus_addr_t raddr; u_int32_t cmd, devinfo; int algs[CRYPTO_ALGORITHM_MAX + 1], i; /* XXX handle power management */ SIMPLEQ_INIT(&sc->sc_pkq); sc->sc_dmat = pa->pa_dmat; cmd = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); cmd |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd); cmd = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!(cmd & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping\n"); return; } if (!(cmd & PCI_COMMAND_MASTER_ENABLE)) { printf(": failed to enable bus mastering\n"); return; } /* * Setup memory-mapping of PCI registers. */ if (pci_mapreg_map(pa, SAFE_BAR, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_st, &sc->sc_sh, NULL, &iosize, 0)) { printf(": can't map register space\n"); goto bad; } if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto bad1; } intrstr = pci_intr_string(pa->pa_pc, ih); sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_NET, safe_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto bad2; } sc->sc_cid = crypto_get_driverid(0); if (sc->sc_cid < 0) { printf(": could not get crypto driver id\n"); goto bad3; } sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) & (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN); /* * Allocate packet engine descriptors. */ if (safe_dma_malloc(sc, SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), &sc->sc_ringalloc, 0)) { printf(": cannot allocate PE descriptor ring\n"); goto bad4; } /* * Hookup the static portion of all our data structures. */ sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr; sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE; sc->sc_front = sc->sc_ring; sc->sc_back = sc->sc_ring; raddr = sc->sc_ringalloc.dma_paddr; bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry)); for (i = 0; i < SAFE_MAX_NQUEUE; i++) { struct safe_ringentry *re = &sc->sc_ring[i]; re->re_desc.d_sa = raddr + offsetof(struct safe_ringentry, re_sa); re->re_sa.sa_staterec = raddr + offsetof(struct safe_ringentry, re_sastate); raddr += sizeof (struct safe_ringentry); } /* * Allocate scatter and gather particle descriptors. */ if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc), &sc->sc_spalloc, 0)) { printf(": cannot allocate source particle descriptor ring\n"); safe_dma_free(sc, &sc->sc_ringalloc); goto bad4; } sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr; sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART; sc->sc_spfree = sc->sc_spring; bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc)); if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), &sc->sc_dpalloc, 0)) { printf(": cannot allocate destination particle " "descriptor ring\n"); safe_dma_free(sc, &sc->sc_spalloc); safe_dma_free(sc, &sc->sc_ringalloc); goto bad4; } sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr; sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART; sc->sc_dpfree = sc->sc_dpring; bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc)); printf(": %s", intrstr); devinfo = READ_REG(sc, SAFE_DEVINFO); if (devinfo & SAFE_DEVINFO_RNG) printf(" rng"); bzero(algs, sizeof(algs)); if (devinfo & SAFE_DEVINFO_PKEY) { printf(" key"); algs[CRK_MOD_EXP] = CRYPTO_ALG_FLAG_SUPPORTED; crypto_kregister(sc->sc_cid, algs, safe_kprocess); timeout_set(&sc->sc_pkto, safe_kpoll, sc); } bzero(algs, sizeof(algs)); if (devinfo & SAFE_DEVINFO_DES) { printf(" des/3des"); algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; } if (devinfo & SAFE_DEVINFO_AES) { printf(" aes"); algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; } if (devinfo & SAFE_DEVINFO_MD5) { printf(" md5"); algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; } if (devinfo & SAFE_DEVINFO_SHA1) { printf(" sha1"); algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; } crypto_register(sc->sc_cid, algs, safe_newsession, safe_freesession, safe_process); /* XXX other supported algorithms? */ printf("\n"); safe_reset_board(sc); /* reset h/w */ safe_init_pciregs(sc); /* init pci settings */ safe_init_board(sc); /* init h/w */ if (devinfo & SAFE_DEVINFO_RNG) { safe_rng_init(sc); timeout_set(&sc->sc_rngto, safe_rng, sc); timeout_add(&sc->sc_rngto, hz * safe_rnginterval); } return; bad4: /* XXX crypto_unregister_all(sc->sc_cid); */ bad3: pci_intr_disestablish(pa->pa_pc, sc->sc_ih); bad2: /* pci_intr_unmap? */; bad1: bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); bad: return; } int safe_process(struct cryptop *crp) { int err = 0, i, nicealign, uniform, s; struct safe_softc *sc; struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; int bypass, oplen, ivsize, card; int16_t coffset; struct safe_session *ses; struct safe_ringentry *re; struct safe_sarec *sa; struct safe_pdesc *pd; u_int32_t cmd0, cmd1, staterec, iv[4]; s = splnet(); if (crp == NULL || crp->crp_callback == NULL) { safestats.st_invalid++; splx(s); return (EINVAL); } card = SAFE_CARD(crp->crp_sid); if (card >= safe_cd.cd_ndevs || safe_cd.cd_devs[card] == NULL) { safestats.st_invalid++; splx(s); return (EINVAL); } sc = safe_cd.cd_devs[card]; if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) { safestats.st_badsession++; splx(s); return (EINVAL); } if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) { safestats.st_ringfull++; splx(s); return (ERESTART); } re = sc->sc_front; staterec = re->re_sa.sa_staterec; /* save */ /* NB: zero everything but the PE descriptor */ bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc)); re->re_sa.sa_staterec = staterec; /* restore */ re->re_crp = crp; re->re_sesn = SAFE_SESSION(crp->crp_sid); if (crp->crp_flags & CRYPTO_F_IMBUF) { re->re_src_m = (struct mbuf *)crp->crp_buf; re->re_dst_m = (struct mbuf *)crp->crp_buf; } else if (crp->crp_flags & CRYPTO_F_IOV) { re->re_src_io = (struct uio *)crp->crp_buf; re->re_dst_io = (struct uio *)crp->crp_buf; } else { safestats.st_badflags++; err = EINVAL; goto errout; /* XXX we don't handle contiguous blocks! */ } sa = &re->re_sa; ses = &sc->sc_sessions[re->re_sesn]; crd1 = crp->crp_desc; if (crd1 == NULL) { safestats.st_nodesc++; err = EINVAL; goto errout; } crd2 = crd1->crd_next; cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */ cmd1 = 0; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) { maccrd = crd1; enccrd = NULL; cmd0 |= SAFE_SA_CMD0_OP_HASH; } else if (crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC) { maccrd = NULL; enccrd = crd1; cmd0 |= SAFE_SA_CMD0_OP_CRYPT; } else { safestats.st_badalg++; err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) && (crd2->crd_alg == CRYPTO_DES_CBC || crd2->crd_alg == CRYPTO_3DES_CBC || crd2->crd_alg == CRYPTO_AES_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC || crd2->crd_alg == CRYPTO_SHA1_HMAC) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { safestats.st_badalg++; err = EINVAL; goto errout; } cmd0 |= SAFE_SA_CMD0_OP_BOTH; } if (enccrd) { if (enccrd->crd_alg == CRYPTO_DES_CBC) { cmd0 |= SAFE_SA_CMD0_DES; cmd1 |= SAFE_SA_CMD1_CBC; ivsize = 2*sizeof(u_int32_t); } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) { cmd0 |= SAFE_SA_CMD0_3DES; cmd1 |= SAFE_SA_CMD1_CBC; ivsize = 2*sizeof(u_int32_t); } else if (enccrd->crd_alg == CRYPTO_AES_CBC) { cmd0 |= SAFE_SA_CMD0_AES; cmd1 |= SAFE_SA_CMD1_CBC; if (ses->ses_klen == 128) cmd1 |= SAFE_SA_CMD1_AES128; else if (ses->ses_klen == 192) cmd1 |= SAFE_SA_CMD1_AES192; else cmd1 |= SAFE_SA_CMD1_AES256; ivsize = 4*sizeof(u_int32_t); } else { cmd0 |= SAFE_SA_CMD0_CRYPT_NULL; ivsize = 0; } /* * Setup encrypt/decrypt state. When using basic ops * we can't use an inline IV because hash/crypt offset * must be from the end of the IV to the start of the * crypt data and this leaves out the preceding header * from the hash calculation. Instead we place the IV * in the state record and set the hash/crypt offset to * copy both the header+IV. */ if (enccrd->crd_flags & CRD_F_ENCRYPT) { cmd0 |= SAFE_SA_CMD0_OUTBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, iv, ivsize); else bcopy(ses->ses_iv, iv, ivsize); if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { if (crp->crp_flags & CRYPTO_F_IMBUF) m_copyback(re->re_src_m, enccrd->crd_inject, ivsize, iv); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copyback(re->re_src_io, enccrd->crd_inject, ivsize, iv); } for (i = 0; i < ivsize / sizeof(iv[0]); i++) re->re_sastate.sa_saved_iv[i] = htole32(iv[i]); cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV; re->re_flags |= SAFE_QFLAGS_COPYOUTIV; } else { cmd0 |= SAFE_SA_CMD0_INBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, iv, ivsize); else if (crp->crp_flags & CRYPTO_F_IMBUF) m_copydata(re->re_src_m, enccrd->crd_inject, ivsize, (caddr_t)iv); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copydata(re->re_src_io, enccrd->crd_inject, ivsize, (caddr_t)iv); for (i = 0; i < ivsize / sizeof(iv[0]); i++) re->re_sastate.sa_saved_iv[i] = htole32(iv[i]); cmd0 |= SAFE_SA_CMD0_IVLD_STATE; } /* * For basic encryption use the zero pad algorithm. * This pads results to an 8-byte boundary and * suppresses padding verification for inbound (i.e. * decrypt) operations. * * NB: Not sure if the 8-byte pad boundary is a problem. */ cmd0 |= SAFE_SA_CMD0_PAD_ZERO; /* XXX assert key bufs have the same size */ for (i = 0; i < sizeof(sa->sa_key)/sizeof(sa->sa_key[0]); i++) sa->sa_key[i] = ses->ses_key[i]; } if (maccrd) { if (maccrd->crd_alg == CRYPTO_MD5_HMAC) { cmd0 |= SAFE_SA_CMD0_MD5; cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) { cmd0 |= SAFE_SA_CMD0_SHA1; cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ } else { cmd0 |= SAFE_SA_CMD0_HASH_NULL; } /* * Digest data is loaded from the SA and the hash * result is saved to the state block where we * retrieve it for return to the caller. */ /* XXX assert digest bufs have the same size */ for (i = 0; i < sizeof(sa->sa_outdigest)/sizeof(sa->sa_outdigest[i]); i++) { sa->sa_indigest[i] = ses->ses_hminner[i]; sa->sa_outdigest[i] = ses->ses_hmouter[i]; } cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH; re->re_flags |= SAFE_QFLAGS_COPYOUTICV; } if (enccrd && maccrd) { /* * The offset from hash data to the start of * crypt data is the difference in the skips. */ bypass = maccrd->crd_skip; coffset = enccrd->crd_skip - maccrd->crd_skip; if (coffset < 0) { DPRINTF(("%s: hash does not precede crypt; " "mac skip %u enc skip %u\n", __func__, maccrd->crd_skip, enccrd->crd_skip)); safestats.st_skipmismatch++; err = EINVAL; goto errout; } oplen = enccrd->crd_skip + enccrd->crd_len; if (maccrd->crd_skip + maccrd->crd_len != oplen) { DPRINTF(("%s: hash amount %u != crypt amount %u\n", __func__, maccrd->crd_skip + maccrd->crd_len, oplen)); safestats.st_lenmismatch++; err = EINVAL; goto errout; } #ifdef SAFE_DEBUG if (safe_debug) { printf("mac: skip %d, len %d, inject %d\n", maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); printf("enc: skip %d, len %d, inject %d\n", enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); printf("bypass %d coffset %d oplen %d\n", bypass, coffset, oplen); } #endif if (coffset & 3) { /* offset must be 32-bit aligned */ DPRINTF(("%s: coffset %u misaligned\n", __func__, coffset)); safestats.st_coffmisaligned++; err = EINVAL; goto errout; } coffset >>= 2; if (coffset > 255) { /* offset must be <256 dwords */ DPRINTF(("%s: coffset %u too big\n", __func__, coffset)); safestats.st_cofftoobig++; err = EINVAL; goto errout; } /* * Tell the hardware to copy the header to the output. * The header is defined as the data from the end of * the bypass to the start of data to be encrypted. * Typically this is the inline IV. Note that you need * to do this even if src+dst are the same; it appears * that w/o this bit the crypted data is written * immediately after the bypass data. */ cmd1 |= SAFE_SA_CMD1_HDRCOPY; /* * Disable IP header mutable bit handling. This is * needed to get correct HMAC calculations. */ cmd1 |= SAFE_SA_CMD1_MUTABLE; } else { if (enccrd) { bypass = enccrd->crd_skip; oplen = bypass + enccrd->crd_len; } else { bypass = maccrd->crd_skip; oplen = bypass + maccrd->crd_len; } coffset = 0; } /* XXX verify multiple of 4 when using s/g */ if (bypass > 96) { /* bypass offset must be <= 96 bytes */ DPRINTF(("%s: bypass %u too big\n", __func__, bypass)); safestats.st_bypasstoobig++; err = EINVAL; goto errout; } if (bus_dmamap_create(sc->sc_dmat, SAFE_MAX_DMA, SAFE_MAX_PART, SAFE_MAX_DSIZE, SAFE_MAX_DSIZE, BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT, &re->re_src_map)) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (crp->crp_flags & CRYPTO_F_IMBUF) { if (bus_dmamap_load_mbuf(sc->sc_dmat, re->re_src_map, re->re_src_m, BUS_DMA_NOWAIT)) { bus_dmamap_destroy(sc->sc_dmat, re->re_src_map); re->re_src_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IOV) { if (bus_dmamap_load_uio(sc->sc_dmat, re->re_src_map, re->re_src_io, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, re->re_src_map); re->re_src_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } } nicealign = safe_dmamap_aligned(&re->re_src); uniform = safe_dmamap_uniform(&re->re_src); DPRINTF(("src nicealign %u uniform %u nsegs %u\n", nicealign, uniform, re->re_src_nsegs)); if (re->re_src_nsegs > 1) { re->re_desc.d_src = sc->sc_spalloc.dma_paddr + ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring); for (i = 0; i < re->re_src_nsegs; i++) { /* NB: no need to check if there's space */ pd = sc->sc_spfree; if (++(sc->sc_spfree) == sc->sc_springtop) sc->sc_spfree = sc->sc_spring; KASSERT_X((pd->pd_flags&3) == 0 || (pd->pd_flags&3) == SAFE_PD_DONE, ("bogus source particle descriptor; flags %x", pd->pd_flags)); pd->pd_addr = re->re_src_segs[i].ds_addr; pd->pd_ctrl = SAFE_PD_READY | ((re->re_src_segs[i].ds_len << SAFE_PD_LEN_S) & SAFE_PD_LEN_M); } cmd0 |= SAFE_SA_CMD0_IGATHER; } else { /* * No need for gather, reference the operand directly. */ re->re_desc.d_src = re->re_src_segs[0].ds_addr; } if (enccrd == NULL && maccrd != NULL) { /* * Hash op; no destination needed. */ } else { if (crp->crp_flags & CRYPTO_F_IOV) { if (!nicealign) { safestats.st_iovmisaligned++; err = EINVAL; goto errout; } if (uniform != 1) { /* * Source is not suitable for direct use as * the destination. Create a new scatter/gather * list based on the destination requirements * and check if that's ok. */ if (bus_dmamap_create(sc->sc_dmat, SAFE_MAX_DMA, SAFE_MAX_PART, SAFE_MAX_DSIZE, SAFE_MAX_DSIZE, BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT, &re->re_dst_map)) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_uio(sc->sc_dmat, re->re_dst_map, re->re_dst_io, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, re->re_dst_map); re->re_dst_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } uniform = safe_dmamap_uniform(&re->re_dst); if (!uniform) { /* * There's no way to handle the DMA * requirements with this uio. We * could create a separate DMA area for * the result and then copy it back, * but for now we just bail and return * an error. Note that uio requests * > SAFE_MAX_DSIZE are handled because * the DMA map and segment list for the * destination wil result in a * destination particle list that does * the necessary scatter DMA. */ safestats.st_iovnotuniform++; err = EINVAL; goto errout; } } else re->re_dst = re->re_src; } else if (crp->crp_flags & CRYPTO_F_IMBUF) { if (nicealign && uniform == 1) { /* * Source layout is suitable for direct * sharing of the DMA map and segment list. */ re->re_dst = re->re_src; } else if (nicealign && uniform == 2) { /* * The source is properly aligned but requires a * different particle list to handle DMA of the * result. Create a new map and do the load to * create the segment list. The particle * descriptor setup code below will handle the * rest. */ if (bus_dmamap_create(sc->sc_dmat, SAFE_MAX_DMA, SAFE_MAX_PART, SAFE_MAX_DSIZE, SAFE_MAX_DSIZE, BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT, &re->re_dst_map)) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_mbuf(sc->sc_dmat, re->re_dst_map, re->re_dst_m, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, re->re_dst_map); re->re_dst_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } } else { /* !(aligned and/or uniform) */ int totlen, len; struct mbuf *m, *top, **mp; /* * DMA constraints require that we allocate a * new mbuf chain for the destination. We * allocate an entire new set of mbufs of * optimal/required size and then tell the * hardware to copy any bits that are not * created as a byproduct of the operation. */ if (!nicealign) safestats.st_unaligned++; if (!uniform) safestats.st_notuniform++; totlen = re->re_src_mapsize; if (re->re_src_m->m_flags & M_PKTHDR) { len = MHLEN; MGETHDR(m, M_DONTWAIT, MT_DATA); } else { len = MLEN; MGET(m, M_DONTWAIT, MT_DATA); } if (m == NULL) { safestats.st_nombuf++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } if (len == MHLEN) M_DUP_PKTHDR(m, re->re_src_m); if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); safestats.st_nomcl++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } len = MCLBYTES; } m->m_len = len; top = NULL; mp = ⊤ while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(top); safestats.st_nombuf++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } len = MLEN; } if (top && totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { *mp = m; m_freem(top); safestats.st_nomcl++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } len = MCLBYTES; } m->m_len = len = min(totlen, len); totlen -= len; *mp = m; mp = &m->m_next; } re->re_dst_m = top; if (bus_dmamap_create(sc->sc_dmat, SAFE_MAX_DMA, SAFE_MAX_PART, SAFE_MAX_DSIZE, SAFE_MAX_DSIZE, BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT, &re->re_dst_map) != 0) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_mbuf(sc->sc_dmat, re->re_dst_map, re->re_dst_m, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, re->re_dst_map); re->re_dst_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } if (re->re_src_mapsize > oplen) { /* * There's data following what the * hardware will copy for us. If this * isn't just the ICV (that's going to * be written on completion), copy it * to the new mbufs */ if (!(maccrd && (re->re_src_mapsize-oplen) == 12 && maccrd->crd_inject == oplen)) safe_mcopy(re->re_src_m, re->re_dst_m, oplen); else safestats.st_noicvcopy++; } } } else { safestats.st_badflags++; err = EINVAL; goto errout; } if (re->re_dst_nsegs > 1) { re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr + ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring); for (i = 0; i < re->re_dst_nsegs; i++) { pd = sc->sc_dpfree; KASSERT_X((pd->pd_flags&3) == 0 || (pd->pd_flags&3) == SAFE_PD_DONE, ("bogus dest particle descriptor; flags %x", pd->pd_flags)); if (++(sc->sc_dpfree) == sc->sc_dpringtop) sc->sc_dpfree = sc->sc_dpring; pd->pd_addr = re->re_dst_segs[i].ds_addr; pd->pd_ctrl = SAFE_PD_READY; } cmd0 |= SAFE_SA_CMD0_OSCATTER; } else { /* * No need for scatter, reference the operand directly. */ re->re_desc.d_dst = re->re_dst_segs[0].ds_addr; } } /* * All done with setup; fillin the SA command words * and the packet engine descriptor. The operation * is now ready for submission to the hardware. */ sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI; sa->sa_cmd1 = cmd1 | (coffset << SAFE_SA_CMD1_OFFSET_S) | SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */ | SAFE_SA_CMD1_SRPCI; /* * NB: the order of writes is important here. In case the * chip is scanning the ring because of an outstanding request * it might nab this one too. In that case we need to make * sure the setup is complete before we write the length * field of the descriptor as it signals the descriptor is * ready for processing. */ re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI; if (maccrd) re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL; re->re_desc.d_len = oplen | SAFE_PE_LEN_READY | (bypass << SAFE_PE_LEN_BYPASS_S) ; safestats.st_ipackets++; safestats.st_ibytes += oplen; if (++(sc->sc_front) == sc->sc_ringtop) sc->sc_front = sc->sc_ring; /* XXX honor batching */ safe_feed(sc, re); splx(s); return (0); errout: if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m)) m_freem(re->re_dst_m); if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) { bus_dmamap_unload(sc->sc_dmat, re->re_dst_map); bus_dmamap_destroy(sc->sc_dmat, re->re_dst_map); } if (re->re_src_map != NULL) { bus_dmamap_unload(sc->sc_dmat, re->re_src_map); bus_dmamap_destroy(sc->sc_dmat, re->re_src_map); } crp->crp_etype = err; crypto_done(crp); splx(s); return (err); } /* * Resets the board. Values in the regesters are left as is * from the reset (i.e. initial values are assigned elsewhere). */ void safe_reset_board(struct safe_softc *sc) { u_int32_t v; /* * Reset the device. The manual says no delay * is needed between marking and clearing reset. */ v = READ_REG(sc, SAFE_PE_DMACFG) & ~(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | SAFE_PE_DMACFG_SGRESET); WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | SAFE_PE_DMACFG_SGRESET); WRITE_REG(sc, SAFE_PE_DMACFG, v); } /* * Initialize registers we need to touch only once. */ void safe_init_board(struct safe_softc *sc) { u_int32_t v, dwords; v = READ_REG(sc, SAFE_PE_DMACFG); v &= ~(SAFE_PE_DMACFG_PEMODE | SAFE_PE_DMACFG_ESPACKET); v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */ | SAFE_PE_DMACFG_ESSA /* endian-swap SA data */ ; WRITE_REG(sc, SAFE_PE_DMACFG, v); WRITE_REG(sc, SAFE_CRYPTO_CTRL, SAFE_CRYPTO_CTRL_PKEY | SAFE_CRYPTO_CTRL_3DES | SAFE_CRYPTO_CTRL_RNG); #if BYTE_ORDER == LITTLE_ENDIAN WRITE_REG(sc, SAFE_ENDIAN, SAFE_ENDIAN_TGT_PASS|SAFE_ENDIAN_DMA_PASS); #elif BYTE_ORDER == BIG_ENDIAN WRITE_REG(sc, SAFE_ENDIAN, SAFE_ENDIAN_TGT_PASS|SAFE_ENDIAN_DMA_SWAB); #endif if (sc->sc_chiprev == SAFE_REV(1,0)) { /* * Avoid large PCI DMA transfers. Rev 1.0 has a bug where * "target mode transfers" done while the chip is DMA'ing * >1020 bytes cause the hardware to lockup. To avoid this * we reduce the max PCI transfer size and use small source * particle descriptors (<= 256 bytes). */ WRITE_REG(sc, SAFE_DMA_CFG, 256); printf("%s: Reduce max DMA size to %u words for rev %u.%u WAR\n", sc->sc_dev.dv_xname, (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff, SAFE_REV_MAJ(sc->sc_chiprev), SAFE_REV_MIN(sc->sc_chiprev)); } /* NB: operands+results are overlaid */ WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr); /* * Configure ring entry size and number of items in the ring. */ KASSERT_X((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0, ("PE ring entry not 32-bit aligned!")); dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t); WRITE_REG(sc, SAFE_PE_RINGCFG, (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE); WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */ WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_PARTSIZE, (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART); /* * NB: destination particles are fixed size. We use * an mbuf cluster and require all results go to * clusters or smaller. */ WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE); WRITE_REG(sc, SAFE_HI_CLR, SAFE_INT_PE_CDONE | SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR | SAFE_INT_PE_ODONE); /* it's now safe to enable PE mode, do it */ WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE); /* * Configure hardware to use level-triggered interrupts and * to interrupt after each descriptor is processed. */ DELAY(1000); WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL); DELAY(1000); WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR); DELAY(1000); WRITE_REG(sc, SAFE_HI_DESC_CNT, 1); DELAY(1000); } /* * Init PCI registers */ void safe_init_pciregs(struct safe_softc *sc) { } int safe_dma_malloc(struct safe_softc *sc, bus_size_t size, struct safe_dma_alloc *dma, int mapflags) { int r; if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0) goto fail_0; if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0) goto fail_1; if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->dma_map)) != 0) goto fail_2; if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, size, NULL, BUS_DMA_NOWAIT)) != 0) goto fail_3; dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; dma->dma_size = size; return (0); fail_3: bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); fail_2: bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); fail_1: bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); fail_0: dma->dma_map = NULL; return (r); } void safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma) { bus_dmamap_unload(sc->sc_dmat, dma->dma_map); bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); } #define SAFE_RNG_MAXWAIT 1000 void safe_rng_init(struct safe_softc *sc) { u_int32_t w, v; int i; WRITE_REG(sc, SAFE_RNG_CTRL, 0); /* use default value according to the manual */ WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); /* * There is a bug in rev 1.0 of the 1140 that when the RNG * is brought out of reset the ready status flag does not * work until the RNG has finished its internal initialization. * * So in order to determine the device is through its * initialization we must read the data register, using the * status reg in the read in case it is initialized. Then read * the data register until it changes from the first read. * Once it changes read the data register until it changes * again. At this time the RNG is considered initialized. * This could take between 750ms - 1000ms in time. */ i = 0; w = READ_REG(sc, SAFE_RNG_OUT); do { v = READ_REG(sc, SAFE_RNG_OUT); if (v != w) { w = v; break; } DELAY(10); } while (++i < SAFE_RNG_MAXWAIT); /* Wait Until data changes again */ i = 0; do { v = READ_REG(sc, SAFE_RNG_OUT); if (v != w) break; DELAY(10); } while (++i < SAFE_RNG_MAXWAIT); } __inline u_int32_t safe_rng_read(struct safe_softc *sc) { int i; i = 0; while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT) ; return (READ_REG(sc, SAFE_RNG_OUT)); } void safe_rng(void *arg) { struct safe_softc *sc = arg; u_int32_t buf[SAFE_RNG_MAXBUFSIZ]; /* NB: maybe move to softc */ u_int maxwords; int i; safestats.st_rng++; /* * Fetch the next block of data. */ maxwords = safe_rngbufsize; if (maxwords > SAFE_RNG_MAXBUFSIZ) maxwords = SAFE_RNG_MAXBUFSIZ; retry: for (i = 0; i < maxwords; i++) buf[i] = safe_rng_read(sc); /* * Check the comparator alarm count and reset the h/w if * it exceeds our threshold. This guards against the * hardware oscillators resonating with external signals. */ if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) { u_int32_t freq_inc, w; DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__, READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm)); safestats.st_rngalarm++; WRITE_REG(sc, SAFE_RNG_CTRL, READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN); freq_inc = 18; for (i = 0; i < 64; i++) { w = READ_REG(sc, SAFE_RNG_CNFG); freq_inc = ((w + freq_inc) & 0x3fL); w = ((w & ~0x3fL) | freq_inc); WRITE_REG(sc, SAFE_RNG_CNFG, w); WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); (void) safe_rng_read(sc); DELAY(25); if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) { WRITE_REG(sc, SAFE_RNG_CTRL, READ_REG(sc, SAFE_RNG_CTRL) & ~SAFE_RNG_CTRL_SHORTEN); goto retry; } freq_inc = 1; } WRITE_REG(sc, SAFE_RNG_CTRL, READ_REG(sc, SAFE_RNG_CTRL) & ~SAFE_RNG_CTRL_SHORTEN); } else WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); for (i = 0; i < maxwords; i++) add_true_randomness(buf[i]); timeout_add(&sc->sc_rngto, hz * safe_rnginterval); } /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. */ int safe_newsession(u_int32_t *sidp, struct cryptoini *cri) { struct cryptoini *c, *encini = NULL, *macini = NULL; struct safe_softc *sc = NULL; struct safe_session *ses = NULL; MD5_CTX md5ctx; SHA1_CTX sha1ctx; int i, sesn; if (sidp == NULL || cri == NULL) return (EINVAL); for (i = 0; i < safe_cd.cd_ndevs; i++) { sc = safe_cd.cd_devs[i]; if (sc == NULL || sc->sc_cid == (*sidp)) break; } if (sc == NULL) return (EINVAL); for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC || c->cri_alg == CRYPTO_SHA1_HMAC) { if (macini) return (EINVAL); macini = c; } else if (c->cri_alg == CRYPTO_DES_CBC || c->cri_alg == CRYPTO_3DES_CBC || c->cri_alg == CRYPTO_AES_CBC) { if (encini) return (EINVAL); encini = c; } else return (EINVAL); } if (encini == NULL && macini == NULL) return (EINVAL); if (encini) { /* validate key length */ switch (encini->cri_alg) { case CRYPTO_DES_CBC: if (encini->cri_klen != 64) return (EINVAL); break; case CRYPTO_3DES_CBC: if (encini->cri_klen != 192) return (EINVAL); break; case CRYPTO_AES_CBC: if (encini->cri_klen != 128 && encini->cri_klen != 192 && encini->cri_klen != 256) return (EINVAL); break; } } if (sc->sc_sessions == NULL) { ses = sc->sc_sessions = (struct safe_session *)malloc( sizeof(struct safe_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); sesn = 0; sc->sc_nsessions = 1; } else { for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = (struct safe_session *)malloc((sesn + 1) * sizeof(struct safe_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); bcopy(sc->sc_sessions, ses, sesn * sizeof(struct safe_session)); bzero(sc->sc_sessions, sesn * sizeof(struct safe_session)); free(sc->sc_sessions, M_DEVBUF); sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } } bzero(ses, sizeof(struct safe_session)); ses->ses_used = 1; if (encini) { /* get an IV */ get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv)); ses->ses_klen = encini->cri_klen; bcopy(encini->cri_key, ses->ses_key, ses->ses_klen / 8); for (i = 0; i < sizeof(ses->ses_key)/sizeof(ses->ses_key[0]); i++) ses->ses_key[i] = htole32(ses->ses_key[i]); } if (macini) { for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_IPAD_VAL; if (macini->cri_alg == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(sha1ctx.state, ses->ses_hminner, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (macini->cri_alg == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(sha1ctx.state, ses->ses_hmouter, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_OPAD_VAL; /* PE is little-endian, insure proper byte order */ for (i = 0; i < sizeof(ses->ses_hminner)/sizeof(ses->ses_hminner[0]); i++) { ses->ses_hminner[i] = htole32(ses->ses_hminner[i]); ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]); } } *sidp = SAFE_SID(sc->sc_dev.dv_unit, sesn); return (0); } /* * Deallocate a session. */ int safe_freesession(u_int64_t tid) { struct safe_softc *sc; int session, ret, card; u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; card = SAFE_CARD(sid); if (card >= safe_cd.cd_ndevs || safe_cd.cd_devs[card] == NULL) return (EINVAL); sc = safe_cd.cd_devs[card]; if (sc == NULL) return (EINVAL); session = SAFE_SESSION(sid); if (session < sc->sc_nsessions) { bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); ret = 0; } else ret = EINVAL; return (ret); } /* * Is the operand suitable aligned for direct DMA. Each * segment must be aligned on a 32-bit boundary and all * but the last segment must be a multiple of 4 bytes. */ int safe_dmamap_aligned(const struct safe_operand *op) { int i; for (i = 0; i < op->map->dm_nsegs; i++) { if (op->map->dm_segs[i].ds_addr & 3) return (0); if (i != (op->map->dm_nsegs - 1) && (op->map->dm_segs[i].ds_len & 3)) return (0); } return (1); } /* * Clean up after a chip crash. * It is assumed that the caller in splimp() */ void safe_cleanchip(struct safe_softc *sc) { if (sc->sc_nqchip != 0) { struct safe_ringentry *re = sc->sc_back; while (re != sc->sc_front) { if (re->re_desc.d_csr != 0) safe_free_entry(sc, re); if (++re == sc->sc_ringtop) re = sc->sc_ring; } sc->sc_back = re; sc->sc_nqchip = 0; } } /* * free a safe_q * It is assumed that the caller is within splimp(). */ int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re) { struct cryptop *crp; /* * Free header MCR */ if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m)) m_freem(re->re_dst_m); crp = (struct cryptop *)re->re_crp; re->re_desc.d_csr = 0; crp->crp_etype = EFAULT; crypto_done(crp); return (0); } /* * safe_feed() - post a request to chip */ void safe_feed(struct safe_softc *sc, struct safe_ringentry *re) { bus_dmamap_sync(sc->sc_dmat, re->re_src_map, 0, re->re_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (re->re_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, re->re_dst_map, 0, re->re_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); /* XXX have no smaller granularity */ safe_dma_sync(sc, &sc->sc_ringalloc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); safe_dma_sync(sc, &sc->sc_spalloc, BUS_DMASYNC_PREWRITE); safe_dma_sync(sc, &sc->sc_dpalloc, BUS_DMASYNC_PREWRITE); #ifdef SAFE_DEBUG if (safe_debug) { safe_dump_ringstate(sc, __func__); safe_dump_request(sc, __func__, re); } #endif sc->sc_nqchip++; if (sc->sc_nqchip > safestats.st_maxqchip) safestats.st_maxqchip = sc->sc_nqchip; /* poke h/w to check descriptor ring, any value can be written */ WRITE_REG(sc, SAFE_HI_RD_DESCR, 0); } /* * Is the operand suitable for direct DMA as the destination * of an operation. The hardware requires that each ``particle'' * but the last in an operation result have the same size. We * fix that size at SAFE_MAX_DSIZE bytes. This routine returns * 0 if some segment is not a multiple of of this size, 1 if all * segments are exactly this size, or 2 if segments are at worst * a multple of this size. */ int safe_dmamap_uniform(const struct safe_operand *op) { int result = 1, i; if (op->map->dm_nsegs <= 0) return (result); for (i = 0; i < op->map->dm_nsegs-1; i++) { if (op->map->dm_segs[i].ds_len % SAFE_MAX_DSIZE) return (0); if (op->map->dm_segs[i].ds_len != SAFE_MAX_DSIZE) result = 2; } return (result); } /* * Copy all data past offset from srcm to dstm. */ void safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset) { u_int j, dlen, slen; caddr_t dptr, sptr; /* * Advance src and dst to offset. */ j = offset; while (j >= 0) { if (srcm->m_len > j) break; j -= srcm->m_len; srcm = srcm->m_next; if (srcm == NULL) return; } sptr = mtod(srcm, caddr_t) + j; slen = srcm->m_len - j; j = offset; while (j >= 0) { if (dstm->m_len > j) break; j -= dstm->m_len; dstm = dstm->m_next; if (dstm == NULL) return; } dptr = mtod(dstm, caddr_t) + j; dlen = dstm->m_len - j; /* * Copy everything that remains. */ for (;;) { j = min(slen, dlen); bcopy(sptr, dptr, j); if (slen == j) { srcm = srcm->m_next; if (srcm == NULL) return; sptr = srcm->m_data; slen = srcm->m_len; } else sptr += j, slen -= j; if (dlen == j) { dstm = dstm->m_next; if (dstm == NULL) return; dptr = dstm->m_data; dlen = dstm->m_len; } else dptr += j, dlen -= j; } } void safe_callback(struct safe_softc *sc, struct safe_ringentry *re) { struct cryptop *crp = (struct cryptop *)re->re_crp; struct cryptodesc *crd; safestats.st_opackets++; safestats.st_obytes += (re->re_dst_map == NULL) ? re->re_src_mapsize : re->re_dst_mapsize; safe_dma_sync(sc, &sc->sc_ringalloc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) { printf("%s: csr 0x%x cmd0 0x%x cmd1 0x%x\n", sc->sc_dev.dv_xname, re->re_desc.d_csr, re->re_sa.sa_cmd0, re->re_sa.sa_cmd1); safestats.st_peoperr++; crp->crp_etype = EIO; /* something more meaningful? */ } if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) { bus_dmamap_sync(sc->sc_dmat, re->re_dst_map, 0, re->re_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, re->re_dst_map); bus_dmamap_destroy(sc->sc_dmat, re->re_dst_map); } bus_dmamap_sync(sc->sc_dmat, re->re_src_map, 0, re->re_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, re->re_src_map); bus_dmamap_destroy(sc->sc_dmat, re->re_src_map); /* * If result was written to a different mbuf chain, swap * it in as the return value and reclaim the original. */ if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) { m_freem(re->re_src_m); crp->crp_buf = (caddr_t)re->re_dst_m; } if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) { /* copy out IV for future use */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { int ivsize; if (crd->crd_alg == CRYPTO_DES_CBC || crd->crd_alg == CRYPTO_3DES_CBC) { ivsize = 2*sizeof(u_int32_t); } else if (crd->crd_alg == CRYPTO_AES_CBC) { ivsize = 4*sizeof(u_int32_t); } else continue; if (crp->crp_flags & CRYPTO_F_IMBUF) { m_copydata((struct mbuf *)crp->crp_buf, crd->crd_skip + crd->crd_len - ivsize, ivsize, (caddr_t) sc->sc_sessions[re->re_sesn].ses_iv); } else if (crp->crp_flags & CRYPTO_F_IOV) { cuio_copydata((struct uio *)crp->crp_buf, crd->crd_skip + crd->crd_len - ivsize, ivsize, (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv); } break; } } if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) { /* copy out ICV result */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (!(crd->crd_alg == CRYPTO_MD5_HMAC || crd->crd_alg == CRYPTO_SHA1_HMAC)) continue; if (crd->crd_alg == CRYPTO_SHA1_HMAC) { /* * SHA-1 ICV's are byte-swapped; fix 'em up * before copy them to their destination. */ bswap32(re->re_sastate.sa_saved_indigest[0]); bswap32(re->re_sastate.sa_saved_indigest[1]); bswap32(re->re_sastate.sa_saved_indigest[2]); } if (crp->crp_flags & CRYPTO_F_IMBUF) { m_copyback((struct mbuf *)crp->crp_buf, crd->crd_inject, 12, (caddr_t)re->re_sastate.sa_saved_indigest); } else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) { bcopy((caddr_t)re->re_sastate.sa_saved_indigest, crp->crp_mac, 12); } break; } } crypto_done(crp); } /* * SafeXcel Interrupt routine */ int safe_intr(void *arg) { struct safe_softc *sc = arg; volatile u_int32_t stat; stat = READ_REG(sc, SAFE_HM_STAT); if (stat == 0) /* shared irq, not for us */ return (0); WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */ if ((stat & SAFE_INT_PE_DDONE)) { /* * Descriptor(s) done; scan the ring and * process completed operations. */ while (sc->sc_back != sc->sc_front) { struct safe_ringentry *re = sc->sc_back; #ifdef SAFE_DEBUG if (safe_debug) { safe_dump_ringstate(sc, __func__); safe_dump_request(sc, __func__, re); } #endif /* * safe_process marks ring entries that were allocated * but not used with a csr of zero. This insures the * ring front pointer never needs to be set backwards * in the event that an entry is allocated but not used * because of a setup error. */ if (re->re_desc.d_csr != 0) { if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) break; if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) break; sc->sc_nqchip--; safe_callback(sc, re); } if (++(sc->sc_back) == sc->sc_ringtop) sc->sc_back = sc->sc_ring; } } return (1); } struct safe_softc * safe_kfind(struct cryptkop *krp) { struct safe_softc *sc; int i; for (i = 0; i < safe_cd.cd_ndevs; i++) { sc = safe_cd.cd_devs[i]; if (sc == NULL) continue; if (sc->sc_cid == krp->krp_hid) return (sc); } return (NULL); } int safe_kprocess(struct cryptkop *krp) { struct safe_softc *sc; struct safe_pkq *q; int s; if ((sc = safe_kfind(krp)) == NULL) { krp->krp_status = EINVAL; goto err; } if (krp->krp_op != CRK_MOD_EXP) { krp->krp_status = EOPNOTSUPP; goto err; } q = (struct safe_pkq *)malloc(sizeof(*q), M_DEVBUF, M_NOWAIT); if (q == NULL) { krp->krp_status = ENOMEM; goto err; } q->pkq_krp = krp; s = splnet(); SIMPLEQ_INSERT_TAIL(&sc->sc_pkq, q, pkq_next); safe_kfeed(sc); splx(s); return (0); err: crypto_kdone(krp); return (0); } #define SAFE_CRK_PARAM_BASE 0 #define SAFE_CRK_PARAM_EXP 1 #define SAFE_CRK_PARAM_MOD 2 int safe_kstart(struct safe_softc *sc) { struct cryptkop *krp = sc->sc_pkq_cur->pkq_krp; int exp_bits, mod_bits, base_bits; u_int32_t op, a_off, b_off, c_off, d_off; if (krp->krp_iparams < 3 || krp->krp_oparams != 1) { krp->krp_status = EINVAL; return (1); } base_bits = safe_ksigbits(&krp->krp_param[SAFE_CRK_PARAM_BASE]); if (base_bits > 2048) goto too_big; if (base_bits <= 0) /* 5. base not zero */ goto too_small; exp_bits = safe_ksigbits(&krp->krp_param[SAFE_CRK_PARAM_EXP]); if (exp_bits > 2048) goto too_big; if (exp_bits <= 0) /* 1. exponent word length > 0 */ goto too_small; /* 4. exponent not zero */ mod_bits = safe_ksigbits(&krp->krp_param[SAFE_CRK_PARAM_MOD]); if (mod_bits > 2048) goto too_big; if (mod_bits <= 32) /* 2. modulus word length > 1 */ goto too_small; /* 8. MSW of modulus != zero */ if (mod_bits < exp_bits) /* 3 modulus len >= exponent len */ goto too_small; if ((krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p[0] & 1) == 0) goto bad_domain; /* 6. modulus is odd */ if (mod_bits > krp->krp_param[krp->krp_iparams].crp_nbits) goto too_small; /* make sure result will fit */ /* 7. modulus > base */ if (mod_bits < base_bits) goto too_small; if (mod_bits == base_bits) { u_int8_t *basep, *modp; int i; basep = krp->krp_param[SAFE_CRK_PARAM_BASE].crp_p + ((base_bits + 7) / 8) - 1; modp = krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p + ((mod_bits + 7) / 8) - 1; for (i = 0; i < (mod_bits + 7) / 8; i++, basep--, modp--) { if (*modp < *basep) goto too_small; if (*modp > *basep) break; } } /* And on the 9th step, he rested. */ WRITE_REG(sc, SAFE_PK_A_LEN, (exp_bits + 31) / 32); WRITE_REG(sc, SAFE_PK_B_LEN, (mod_bits + 31) / 32); if (mod_bits > 1024) { op = SAFE_PK_FUNC_EXP4; a_off = 0x000; b_off = 0x100; c_off = 0x200; d_off = 0x300; } else { op = SAFE_PK_FUNC_EXP16; a_off = 0x000; b_off = 0x080; c_off = 0x100; d_off = 0x180; } sc->sc_pk_reslen = b_off - a_off; sc->sc_pk_resoff = d_off; /* A is exponent, B is modulus, C is base, D is result */ safe_kload_reg(sc, a_off, b_off - a_off, &krp->krp_param[SAFE_CRK_PARAM_EXP]); WRITE_REG(sc, SAFE_PK_A_ADDR, a_off >> 2); safe_kload_reg(sc, b_off, b_off - a_off, &krp->krp_param[SAFE_CRK_PARAM_MOD]); WRITE_REG(sc, SAFE_PK_B_ADDR, b_off >> 2); safe_kload_reg(sc, c_off, b_off - a_off, &krp->krp_param[SAFE_CRK_PARAM_BASE]); WRITE_REG(sc, SAFE_PK_C_ADDR, c_off >> 2); WRITE_REG(sc, SAFE_PK_D_ADDR, d_off >> 2); WRITE_REG(sc, SAFE_PK_FUNC, op | SAFE_PK_FUNC_RUN); return (0); too_big: krp->krp_status = E2BIG; return (1); too_small: krp->krp_status = ERANGE; return (1); bad_domain: krp->krp_status = EDOM; return (1); } int safe_ksigbits(struct crparam *cr) { u_int plen = (cr->crp_nbits + 7) / 8; int i, sig = plen * 8; u_int8_t c, *p = cr->crp_p; for (i = plen - 1; i >= 0; i--) { c = p[i]; if (c != 0) { while ((c & 0x80) == 0) { sig--; c <<= 1; } break; } sig -= 8; } return (sig); } void safe_kfeed(struct safe_softc *sc) { if (SIMPLEQ_EMPTY(&sc->sc_pkq) && sc->sc_pkq_cur == NULL) return; if (sc->sc_pkq_cur != NULL) return; while (!SIMPLEQ_EMPTY(&sc->sc_pkq)) { struct safe_pkq *q = SIMPLEQ_FIRST(&sc->sc_pkq); sc->sc_pkq_cur = q; SIMPLEQ_REMOVE_HEAD(&sc->sc_pkq, q, pkq_next); if (safe_kstart(sc) != 0) { crypto_kdone(q->pkq_krp); free(q, M_DEVBUF); sc->sc_pkq_cur = NULL; } else { /* op started, start polling */ timeout_add(&sc->sc_pkto, 1); break; } } } void safe_kpoll(void *vsc) { struct safe_softc *sc = vsc; struct safe_pkq *q; struct crparam *res; int s, i; u_int32_t buf[64]; s = splnet(); if (sc->sc_pkq_cur == NULL) goto out; if (READ_REG(sc, SAFE_PK_FUNC) & SAFE_PK_FUNC_RUN) { /* still running, check back later */ timeout_add(&sc->sc_pkto, 1); goto out; } q = sc->sc_pkq_cur; res = &q->pkq_krp->krp_param[q->pkq_krp->krp_iparams]; bzero(buf, sizeof(buf)); bzero(res->crp_p, (res->crp_nbits + 7) / 8); for (i = 0; i < sc->sc_pk_reslen >> 2; i++) buf[i] = letoh32(READ_REG(sc, SAFE_PK_RAM_START + sc->sc_pk_resoff + (i << 2))); bcopy(buf, res->crp_p, (res->crp_nbits + 7) / 8); res->crp_nbits = sc->sc_pk_reslen * 8; res->crp_nbits = safe_ksigbits(res); for (i = SAFE_PK_RAM_START; i < SAFE_PK_RAM_END; i += 4) WRITE_REG(sc, i, 0); crypto_kdone(q->pkq_krp); free(q, M_DEVBUF); sc->sc_pkq_cur = NULL; safe_kfeed(sc); out: splx(s); } void safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len, struct crparam *n) { u_int32_t buf[64], i; bzero(buf, sizeof(buf)); bcopy(n->crp_p, buf, (n->crp_nbits + 7) / 8); for (i = 0; i < len >> 2; i++) WRITE_REG(sc, SAFE_PK_RAM_START + off + (i << 2), htole32(buf[i])); } #ifdef SAFE_DEBUG void safe_dump_dmastatus(struct safe_softc *sc, const char *tag) { printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n", tag, READ_REG(sc, SAFE_DMA_ENDIAN), READ_REG(sc, SAFE_DMA_SRCADDR), READ_REG(sc, SAFE_DMA_DSTADDR), READ_REG(sc, SAFE_DMA_STAT)); } void safe_dump_intrstate(struct safe_softc *sc, const char *tag) { printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n", tag, READ_REG(sc, SAFE_HI_CFG), READ_REG(sc, SAFE_HI_MASK), READ_REG(sc, SAFE_HI_DESC_CNT), READ_REG(sc, SAFE_HU_STAT), READ_REG(sc, SAFE_HM_STAT)); } void safe_dump_ringstate(struct safe_softc *sc, const char *tag) { u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT); /* NB: assume caller has lock on ring */ printf("%s: ERNGSTAT %x (next %u) back %u front %u\n", tag, estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S), sc->sc_back - sc->sc_ring, sc->sc_front - sc->sc_ring); } void safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re) { int ix, nsegs; ix = re - sc->sc_ring; printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n", tag, re, ix, re->re_desc.d_csr, re->re_desc.d_src, re->re_desc.d_dst, re->re_desc.d_sa, re->re_desc.d_len); if (re->re_src_nsegs > 1) { ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) / sizeof(struct safe_pdesc); for (nsegs = re->re_src_nsegs; nsegs; nsegs--) { printf(" spd[%u] %p: %p size %u flags %x", ix, &sc->sc_spring[ix], (caddr_t)sc->sc_spring[ix].pd_addr, sc->sc_spring[ix].pd_size, sc->sc_spring[ix].pd_flags); if (sc->sc_spring[ix].pd_size == 0) printf(" (zero!)"); printf("\n"); if (++ix == SAFE_TOTAL_SPART) ix = 0; } } if (re->re_dst_nsegs > 1) { ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) / sizeof(struct safe_pdesc); for (nsegs = re->re_dst_nsegs; nsegs; nsegs--) { printf(" dpd[%u] %p: %p flags %x\n", ix, &sc->sc_dpring[ix], (caddr_t) sc->sc_dpring[ix].pd_addr, sc->sc_dpring[ix].pd_flags); if (++ix == SAFE_TOTAL_DPART) ix = 0; } } printf("sa: cmd0 %08x cmd1 %08x staterec %x\n", re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec); printf("sa: key %x %x %x %x %x %x %x %x\n", re->re_sa.sa_key[0], re->re_sa.sa_key[1], re->re_sa.sa_key[2], re->re_sa.sa_key[3], re->re_sa.sa_key[4], re->re_sa.sa_key[5], re->re_sa.sa_key[6], re->re_sa.sa_key[7]); printf("sa: indigest %x %x %x %x %x\n", re->re_sa.sa_indigest[0], re->re_sa.sa_indigest[1], re->re_sa.sa_indigest[2], re->re_sa.sa_indigest[3], re->re_sa.sa_indigest[4]); printf("sa: outdigest %x %x %x %x %x\n", re->re_sa.sa_outdigest[0], re->re_sa.sa_outdigest[1], re->re_sa.sa_outdigest[2], re->re_sa.sa_outdigest[3], re->re_sa.sa_outdigest[4]); printf("sr: iv %x %x %x %x\n", re->re_sastate.sa_saved_iv[0], re->re_sastate.sa_saved_iv[1], re->re_sastate.sa_saved_iv[2], re->re_sastate.sa_saved_iv[3]); printf("sr: hashbc %u indigest %x %x %x %x %x\n", re->re_sastate.sa_saved_hashbc, re->re_sastate.sa_saved_indigest[0], re->re_sastate.sa_saved_indigest[1], re->re_sastate.sa_saved_indigest[2], re->re_sastate.sa_saved_indigest[3], re->re_sastate.sa_saved_indigest[4]); } void safe_dump_ring(struct safe_softc *sc, const char *tag) { printf("\nSafeNet Ring State:\n"); safe_dump_intrstate(sc, tag); safe_dump_dmastatus(sc, tag); safe_dump_ringstate(sc, tag); if (sc->sc_nqchip) { struct safe_ringentry *re = sc->sc_back; do { safe_dump_request(sc, tag, re); if (++re == sc->sc_ringtop) re = sc->sc_ring; } while (re != sc->sc_front); } } #endif /* SAFE_DEBUG */