/* $OpenBSD: sv.c,v 1.30 2013/11/15 16:46:27 brad Exp $ */ /* * Copyright (c) 1998 Constantine Paul Sapuntzakis * All rights reserved * * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The author's name or those of the contributors may be used to * endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * S3 SonicVibes driver * Heavily based on the eap driver by Lennart Augustsson */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __OpenBSD__ struct cfdriver sv_cd = { NULL, "sv", DV_DULL }; #endif #ifdef AUDIO_DEBUG #define DPRINTF(x) if (svdebug) printf x #define DPRINTFN(n,x) if (svdebug>(n)) printf x static int svdebug = 100; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif int sv_match(struct device *, void *, void *); static void sv_attach(struct device *, struct device *, void *); int sv_intr(void *); struct sv_dma { bus_dmamap_t map; caddr_t addr; bus_dma_segment_t segs[1]; int nsegs; size_t size; struct sv_dma *next; }; #define DMAADDR(map) ((map)->segs[0].ds_addr) #define KERNADDR(map) ((void *)((map)->addr)) enum { SV_DMAA_CONFIGURED = 1, SV_DMAC_CONFIGURED = 2, SV_DMAA_TRIED_CONFIGURE = 4, SV_DMAC_TRIED_CONFIGURE = 8 }; struct sv_softc { struct device sc_dev; /* base device */ void *sc_ih; /* interrupt vectoring */ pci_chipset_tag_t sc_pci_chipset_tag; pcitag_t sc_pci_tag; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_space_handle_t sc_dmaa_ioh; bus_space_handle_t sc_dmac_ioh; bus_dma_tag_t sc_dmatag; /* DMA tag */ struct sv_dma *sc_dmas; void (*sc_pintr)(void *); /* dma completion intr handler */ void *sc_parg; /* arg for sc_intr() */ void (*sc_rintr)(void *); /* dma completion intr handler */ void *sc_rarg; /* arg for sc_intr() */ char sc_enable; char sc_trd; char sc_dma_configured; u_int sc_record_source; /* recording source mask */ }; struct cfattach sv_ca = { sizeof(struct sv_softc), sv_match, sv_attach }; struct audio_device sv_device = { "S3 SonicVibes", "", "sv" }; #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) int sv_allocmem(struct sv_softc *, size_t, size_t, struct sv_dma *); int sv_freemem(struct sv_softc *, struct sv_dma *); int sv_open(void *, int); void sv_close(void *); int sv_query_encoding(void *, struct audio_encoding *); int sv_set_params(void *, int, int, struct audio_params *, struct audio_params *); int sv_round_blocksize(void *, int); int sv_dma_init_output(void *, void *, int); int sv_dma_init_input(void *, void *, int); int sv_dma_output(void *, void *, int, void (*)(void *), void *); int sv_dma_input(void *, void *, int, void (*)(void *), void *); int sv_halt_in_dma(void *); int sv_halt_out_dma(void *); int sv_getdev(void *, struct audio_device *); int sv_mixer_set_port(void *, mixer_ctrl_t *); int sv_mixer_get_port(void *, mixer_ctrl_t *); int sv_query_devinfo(void *, mixer_devinfo_t *); void *sv_malloc(void *, int, size_t, int, int); void sv_free(void *, void *, int); paddr_t sv_mappage(void *, void *, off_t, int); int sv_get_props(void *); void sv_dumpregs(struct sv_softc *sc); struct audio_hw_if sv_hw_if = { sv_open, sv_close, NULL, sv_query_encoding, sv_set_params, sv_round_blocksize, NULL, sv_dma_init_output, sv_dma_init_input, sv_dma_output, sv_dma_input, sv_halt_out_dma, sv_halt_in_dma, NULL, sv_getdev, NULL, sv_mixer_set_port, sv_mixer_get_port, sv_query_devinfo, sv_malloc, sv_free, NULL, sv_mappage, sv_get_props, NULL, NULL, NULL }; static __inline__ u_int8_t sv_read(struct sv_softc *, u_int8_t); static __inline__ u_int8_t sv_read_indirect(struct sv_softc *, u_int8_t); static __inline__ void sv_write(struct sv_softc *, u_int8_t, u_int8_t ); static __inline__ void sv_write_indirect(struct sv_softc *, u_int8_t, u_int8_t ); static void sv_init_mixer(struct sv_softc *); static __inline__ void sv_write (struct sv_softc *sc, u_int8_t reg, u_int8_t val) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); } static __inline__ u_int8_t sv_read (struct sv_softc *sc, u_int8_t reg) { return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg)); } static __inline__ u_int8_t sv_read_indirect (struct sv_softc *sc, u_int8_t reg) { u_int8_t iaddr = 0; if (sc->sc_trd > 0) iaddr |= SV_IADDR_TRD; iaddr |= (reg & SV_IADDR_MASK); sv_write (sc, SV_CODEC_IADDR, iaddr); return (sv_read(sc, SV_CODEC_IDATA)); } static __inline__ void sv_write_indirect (struct sv_softc *sc, u_int8_t reg, u_int8_t val) { u_int8_t iaddr = 0; #ifdef DIAGNOSTIC if (reg > 0x3f) { printf ("Invalid register\n"); return; } #endif if (reg == SV_DMA_DATA_FORMAT) iaddr |= SV_IADDR_MCE; if (sc->sc_trd > 0) iaddr |= SV_IADDR_TRD; iaddr |= (reg & SV_IADDR_MASK); sv_write (sc, SV_CODEC_IADDR, iaddr); sv_write (sc, SV_CODEC_IDATA, val); } int sv_match(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) return (1); return (0); } static void sv_attach(struct device *parent, struct device *self, void *aux) { struct sv_softc *sc = (struct sv_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; bus_size_t iosize; char const *intrstr; u_int32_t dmareg, dmaio; u_int8_t reg; sc->sc_pci_chipset_tag = pc; sc->sc_pci_tag = pa->pa_tag; /* Map the enhanced port only */ if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, PCI_MAPREG_TYPE_IO, 0, &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0)) { printf (": Couldn't map enhanced synth I/O range\n"); return; } sc->sc_dmatag = pa->pa_dmat; dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF); iosize = 0x10; dmaio = dmareg & ~(iosize - 1); if (dmaio) { dmareg &= 0xF; if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmaa_ioh)) { /* The BIOS assigned us some bad I/O address! Make sure to clear and disable this DMA before we enable the device */ pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, 0); printf (": can't map DMA i/o space\n"); goto enable; } pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAA_CONFIG_OFF, dmaio | dmareg | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); sc->sc_dma_configured |= SV_DMAA_CONFIGURED; } dmareg = pci_conf_read(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF); dmaio = dmareg & ~(iosize - 1); if (dmaio) { dmareg &= 0xF; if (bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmac_ioh)) { /* The BIOS assigned us some bad I/O address! Make sure to clear and disable this DMA before we enable the device */ pci_conf_write (pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, dmareg & ~SV_DMA_CHANNEL_ENABLE); printf (": can't map DMA i/o space\n"); goto enable; } pci_conf_write(pa->pa_pc, pa->pa_tag, SV_DMAC_CONFIG_OFF, dmaio | dmareg | SV_DMA_CHANNEL_ENABLE); sc->sc_dma_configured |= SV_DMAC_CONFIGURED; } /* Enable the device. */ enable: sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); /* initialize codec registers */ reg = sv_read(sc, SV_CODEC_CONTROL); reg |= SV_CTL_RESET; sv_write(sc, SV_CODEC_CONTROL, reg); delay(50); reg = sv_read(sc, SV_CODEC_CONTROL); reg &= ~SV_CTL_RESET; reg |= SV_CTL_INTA | SV_CTL_ENHANCED; /* This write clears the reset */ sv_write(sc, SV_CODEC_CONTROL, reg); delay(50); /* This write actually shoves the new values in */ sv_write(sc, SV_CODEC_CONTROL, reg); DPRINTF (("reg: %x\n", sv_read(sc, SV_CODEC_CONTROL))); /* Enable DMA interrupts */ reg = sv_read(sc, SV_CODEC_INTMASK); reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; sv_write(sc, SV_CODEC_INTMASK, reg); sv_read(sc, SV_CODEC_STATUS); sc->sc_trd = 0; sc->sc_enable = 0; /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO | IPL_MPSAFE, sv_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s\n", intrstr); sv_init_mixer(sc); audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); } #ifdef AUDIO_DEBUG void sv_dumpregs(struct sv_softc *sc) { int idx; { int idx; for (idx = 0; idx < 0x50; idx += 4) { printf ("%02x = %x\n", idx, pci_conf_read(sc->sc_pci_chipset_tag, sc->sc_pci_tag, idx)); } } for (idx = 0; idx < 6; idx++) { printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); } for (idx = 0; idx < 0x32; idx++) { printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); } for (idx = 0; idx < 0x10; idx++) { printf ("DMA %02x = %02x\n", idx, bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); } return; } #endif int sv_intr(void *p) { struct sv_softc *sc = p; u_int8_t intr; mtx_enter(&audio_lock); intr = sv_read(sc, SV_CODEC_STATUS); if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) { mtx_leave(&audio_lock); return (0); } if (intr & SV_INTSTATUS_DMAA) { if (sc->sc_pintr) sc->sc_pintr(sc->sc_parg); } if (intr & SV_INTSTATUS_DMAC) { if (sc->sc_rintr) sc->sc_rintr(sc->sc_rarg); } mtx_leave(&audio_lock); return (1); } int sv_allocmem(struct sv_softc *sc, size_t size, size_t align, struct sv_dma *p) { int error; p->size = size; error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT); if (error) return (error); error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); if (error) goto free; error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 0, BUS_DMA_NOWAIT, &p->map); if (error) goto unmap; error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, BUS_DMA_NOWAIT); if (error) goto destroy; return (0); destroy: bus_dmamap_destroy(sc->sc_dmatag, p->map); unmap: bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); free: bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return (error); } int sv_freemem(struct sv_softc *sc, struct sv_dma *p) { bus_dmamap_unload(sc->sc_dmatag, p->map); bus_dmamap_destroy(sc->sc_dmatag, p->map); bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return (0); } int sv_open(void *addr, int flags) { struct sv_softc *sc = addr; int intr_mask = 0; u_int8_t reg; /* Map the DMA channels, if necessary */ if (!(sc->sc_dma_configured & SV_DMAA_CONFIGURED)) { /* XXX - there seems to be no general way to find an I/O range */ int dmaio; int iosize = 0x10; if (sc->sc_dma_configured & SV_DMAA_TRIED_CONFIGURE) return (ENXIO); for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmaa_ioh)) { goto found_dmaa; } } sc->sc_dma_configured |= SV_DMAA_TRIED_CONFIGURE; return (ENXIO); found_dmaa: pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, SV_DMAA_CONFIG_OFF, dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); sc->sc_dma_configured |= SV_DMAA_CONFIGURED; intr_mask = 1; } if (!(sc->sc_dma_configured & SV_DMAC_CONFIGURED)) { /* XXX - there seems to be no general way to find an I/O range */ int dmaio; int iosize = 0x10; if (sc->sc_dma_configured & SV_DMAC_TRIED_CONFIGURE) return (ENXIO); for (dmaio = 0xa000; dmaio < 0xb000; dmaio += iosize) { if (!bus_space_map(sc->sc_iot, dmaio, iosize, 0, &sc->sc_dmac_ioh)) { goto found_dmac; } } sc->sc_dma_configured |= SV_DMAC_TRIED_CONFIGURE; return (ENXIO); found_dmac: pci_conf_write(sc->sc_pci_chipset_tag, sc->sc_pci_tag, SV_DMAC_CONFIG_OFF, dmaio | SV_DMA_CHANNEL_ENABLE); sc->sc_dma_configured |= SV_DMAC_CONFIGURED; intr_mask = 1; } /* Make sure DMA interrupts are enabled */ if (intr_mask) { reg = sv_read(sc, SV_CODEC_INTMASK); reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; sv_write(sc, SV_CODEC_INTMASK, reg); } sc->sc_pintr = 0; sc->sc_rintr = 0; return (0); } /* * Close function is called at splaudio(). */ void sv_close(void *addr) { struct sv_softc *sc = addr; sv_halt_in_dma(sc); sv_halt_out_dma(sc); sc->sc_pintr = 0; sc->sc_rintr = 0; } int sv_query_encoding(void *addr, struct audio_encoding *fp) { switch (fp->index) { case 0: strlcpy(fp->name, AudioEulinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; break; case 1: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 2: strlcpy(fp->name, AudioEalaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 3: strlcpy(fp->name, AudioEslinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 4: strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; break; case 5: strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 6: strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 7: strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; default: return (EINVAL); } fp->bps = AUDIO_BPS(fp->precision); fp->msb = 1; return (0); } int sv_set_params(void *addr, int setmode, int usemode, struct audio_params *p, struct audio_params *r) { struct sv_softc *sc = addr; void (*pswcode)(void *, u_char *buf, int cnt); void (*rswcode)(void *, u_char *buf, int cnt); u_int32_t mode, val; u_int8_t reg; pswcode = rswcode = 0; switch (p->encoding) { case AUDIO_ENCODING_SLINEAR_BE: if (p->precision == 16) rswcode = pswcode = swap_bytes; else pswcode = rswcode = change_sign8; break; case AUDIO_ENCODING_SLINEAR_LE: if (p->precision != 16) pswcode = rswcode = change_sign8; break; case AUDIO_ENCODING_ULINEAR_BE: if (p->precision == 16) { pswcode = swap_bytes_change_sign16_le; rswcode = change_sign16_swap_bytes_le; } break; case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 16) pswcode = rswcode = change_sign16_le; break; case AUDIO_ENCODING_ULAW: pswcode = mulaw_to_ulinear8; rswcode = ulinear8_to_mulaw; break; case AUDIO_ENCODING_ALAW: pswcode = alaw_to_ulinear8; rswcode = ulinear8_to_alaw; break; default: return (EINVAL); } if (p->precision == 16) mode = SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16; else mode = 0; if (p->channels > 2) p->channels = 2; if (p->channels == 2) mode |= SV_DMAA_STEREO | SV_DMAC_STEREO; if (p->sample_rate < 2000) p->sample_rate = 2000; if (p->sample_rate > 48000) p->sample_rate = 48000; p->sw_code = pswcode; r->sw_code = rswcode; p->bps = AUDIO_BPS(p->precision); r->bps = AUDIO_BPS(r->precision); p->msb = r->msb = 1; /* Set the encoding */ reg = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); reg &= ~(SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16 | SV_DMAA_STEREO | SV_DMAC_STEREO); reg |= (mode); sv_write_indirect(sc, SV_DMA_DATA_FORMAT, reg); val = p->sample_rate * 65536 / 48000; sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, (val & 0xff)); sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, (val >> 8)); #define F_REF 24576000 if (setmode & AUMODE_RECORD) { /* The ADC reference frequency (f_out) is 512 * the sample rate */ /* f_out is dervied from the 24.576MHZ crystal by three values: M & N & R. The equation is as follows: f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) with the constraint that: 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150MHz and n, m >= 1 */ int goal_f_out = 512 * r->sample_rate; int a, n, m, best_n, best_m, best_error = 10000000; int pll_sample; for (a = 0; a < 8; a++) { if ((goal_f_out * (1 << a)) >= 80000000) break; } /* a != 8 because sample_rate >= 2000 */ for (n = 33; n > 2; n--) { int error; m = (goal_f_out * n * (1 << a)) / F_REF; if ((m > 257) || (m < 3)) continue; pll_sample = (m * F_REF) / (n * (1 << a)); pll_sample /= 512; /* Threshold might be good here */ error = pll_sample - r->sample_rate; error = abs(error); if (error < best_error) { best_error = error; best_n = n; best_m = m; if (error == 0) break; } } best_n -= 2; best_m -= 2; sv_write_indirect(sc, SV_ADC_PLL_M, best_m); sv_write_indirect(sc, SV_ADC_PLL_N, best_n | (a << SV_PLL_R_SHIFT)); } return (0); } int sv_round_blocksize(void *addr, int blk) { return ((blk + 31) & -32); /* keep good alignment */ } int sv_dma_init_input(void *addr, void *buf, int cc) { struct sv_softc *sc = addr; struct sv_dma *p; int dma_count; DPRINTF(("sv_dma_init_input: dma start loop input addr=%p cc=%d\n", buf, cc)); for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) ; if (!p) { printf("sv_dma_init_input: bad addr %p\n", buf); return (EINVAL); } dma_count = (cc >> 1) - 1; bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, DMAADDR(p)); bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, dma_count); bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, DMA37MD_WRITE | DMA37MD_LOOP); return (0); } int sv_dma_init_output(void *addr, void *buf, int cc) { struct sv_softc *sc = addr; struct sv_dma *p; int dma_count; DPRINTF(("sv: dma start loop output buf=%p cc=%d\n", buf, cc)); for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) ; if (!p) { printf("sv_dma_init_output: bad addr %p\n", buf); return (EINVAL); } dma_count = cc - 1; bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, DMAADDR(p)); bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, dma_count); bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, DMA37MD_READ | DMA37MD_LOOP); return (0); } int sv_dma_output(void *addr, void *p, int cc, void (*intr)(void *), void *arg) { struct sv_softc *sc = addr; u_int8_t mode; DPRINTFN(1, ("sv_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg)); sc->sc_pintr = intr; sc->sc_parg = arg; if (!(sc->sc_enable & SV_PLAY_ENABLE)) { int dma_count = cc - 1; sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); sv_write_indirect(sc, SV_DMAA_COUNT0, (dma_count & 0xFF)); mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); mode |= SV_PLAY_ENABLE; sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); sc->sc_enable |= SV_PLAY_ENABLE; } return (0); } int sv_dma_input(void *addr, void *p, int cc, void (*intr)(void *), void *arg) { struct sv_softc *sc = addr; u_int8_t mode; DPRINTFN(1, ("sv_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg)); sc->sc_rintr = intr; sc->sc_rarg = arg; if (!(sc->sc_enable & SV_RECORD_ENABLE)) { int dma_count = (cc >> 1) - 1; sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); sv_write_indirect(sc, SV_DMAC_COUNT0, (dma_count & 0xFF)); mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); mode |= SV_RECORD_ENABLE; sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); sc->sc_enable |= SV_RECORD_ENABLE; } return (0); } int sv_halt_out_dma(void *addr) { struct sv_softc *sc = addr; u_int8_t mode; DPRINTF(("sv: sv_halt_out_dma\n")); mtx_enter(&audio_lock); mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); mode &= ~SV_PLAY_ENABLE; sc->sc_enable &= ~SV_PLAY_ENABLE; sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); mtx_leave(&audio_lock); return (0); } int sv_halt_in_dma(void *addr) { struct sv_softc *sc = addr; u_int8_t mode; DPRINTF(("sv: sv_halt_in_dma\n")); mtx_enter(&audio_lock); mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); mode &= ~SV_RECORD_ENABLE; sc->sc_enable &= ~SV_RECORD_ENABLE; sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode); mtx_leave(&audio_lock); return (0); } int sv_getdev(void *addr, struct audio_device *retp) { *retp = sv_device; return (0); } /* * Mixer related code is here * */ #define SV_INPUT_CLASS 0 #define SV_OUTPUT_CLASS 1 #define SV_RECORD_CLASS 2 #define SV_LAST_CLASS 2 static const char *mixer_classes[] = { AudioCinputs, AudioCoutputs, AudioCrecord }; static const struct { u_int8_t l_port; u_int8_t r_port; u_int8_t mask; u_int8_t class; const char *audio; } ports[] = { { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, SV_INPUT_CLASS, "aux1" }, { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, SV_INPUT_CLASS, AudioNcd }, { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, SV_INPUT_CLASS, AudioNline }, { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, SV_INPUT_CLASS, "aux2" }, { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, SV_INPUT_CLASS, AudioNdac }, { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } }; static const struct { int idx; const char *name; } record_sources[] = { { SV_REC_CD, AudioNcd }, { SV_REC_DAC, AudioNdac }, { SV_REC_AUX2, "aux2" }, { SV_REC_LINE, AudioNline }, { SV_REC_AUX1, "aux1" }, { SV_REC_MIC, AudioNmicrophone }, { SV_REC_MIXER, AudioNmixerout } }; #define SV_DEVICES_PER_PORT 2 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) #define SV_MIC_BOOST (SV_LAST_MIXER + 2) #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) #define SV_SRS_MODE (SV_LAST_MIXER + 4) int sv_query_devinfo(void *addr, mixer_devinfo_t *dip) { if (dip->index < 0) return (ENXIO); /* It's a class */ if (dip->index <= SV_LAST_CLASS) { dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = dip->index; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, mixer_classes[dip->index], sizeof dip->label.name); return (0); } if (dip->index >= SV_FIRST_MIXER && dip->index <= SV_LAST_MIXER) { int off = dip->index - SV_FIRST_MIXER; int mute = (off % SV_DEVICES_PER_PORT); int idx = off / SV_DEVICES_PER_PORT; dip->mixer_class = ports[idx].class; strlcpy(dip->label.name, ports[idx].audio, sizeof dip->label.name); if (!mute) { dip->type = AUDIO_MIXER_VALUE; dip->prev = AUDIO_MIXER_LAST; dip->next = dip->index + 1; if (ports[idx].r_port != 0) dip->un.v.num_channels = 2; else dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); } else { dip->type = AUDIO_MIXER_ENUM; dip->prev = dip->index - 1; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNoff, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNon, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; } return (0); } switch (dip->index) { case SV_RECORD_SOURCE: dip->mixer_class = SV_RECORD_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = SV_RECORD_GAIN; strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = ARRAY_SIZE(record_sources); { int idx; for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { strlcpy(dip->un.e.member[idx].label.name, record_sources[idx].name, sizeof dip->un.e.member[idx].label.name); dip->un.e.member[idx].ord = record_sources[idx].idx; } } return (0); case SV_RECORD_GAIN: dip->mixer_class = SV_RECORD_CLASS; dip->prev = SV_RECORD_SOURCE; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, "gain", sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case SV_MIC_BOOST: dip->mixer_class = SV_RECORD_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, "micboost", sizeof dip->label.name); goto on_off; case SV_SRS_MODE: dip->mixer_class = SV_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNspatial, sizeof dip->label.name); on_off: dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNoff, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNon, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; return (0); } return (ENXIO); } int sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) { struct sv_softc *sc = addr; u_int8_t reg; int idx; if (cp->dev >= SV_FIRST_MIXER && cp->dev <= SV_LAST_MIXER) { int off = cp->dev - SV_FIRST_MIXER; int mute = (off % SV_DEVICES_PER_PORT); idx = off / SV_DEVICES_PER_PORT; if (mute) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); reg = sv_read_indirect(sc, ports[idx].l_port); if (cp->un.ord) reg |= SV_MUTE_BIT; else reg &= ~SV_MUTE_BIT; sv_write_indirect(sc, ports[idx].l_port, reg); if (ports[idx].r_port) { reg = sv_read_indirect(sc, ports[idx].r_port); if (cp->un.ord) reg |= SV_MUTE_BIT; else reg &= ~SV_MUTE_BIT; sv_write_indirect(sc, ports[idx].r_port, reg); } } else { int lval, rval; if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1 && cp->un.value.num_channels != 2) return (EINVAL); if (ports[idx].r_port == 0) { if (cp->un.value.num_channels != 1) return (EINVAL); lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; } else { if (cp->un.value.num_channels != 2) return (EINVAL); lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; } sc->sc_trd = 1; reg = sv_read_indirect(sc, ports[idx].l_port); reg &= ~(ports[idx].mask); lval = ((AUDIO_MAX_GAIN - lval) * ports[idx].mask) / AUDIO_MAX_GAIN; reg |= lval; sv_write_indirect(sc, ports[idx].l_port, reg); if (ports[idx].r_port != 0) { reg = sv_read_indirect(sc, ports[idx].r_port); reg &= ~(ports[idx].mask); rval = ((AUDIO_MAX_GAIN - rval) * ports[idx].mask) / AUDIO_MAX_GAIN; reg |= rval; sv_write_indirect(sc, ports[idx].r_port, reg); } sc->sc_trd = 0; sv_read_indirect(sc, ports[idx].l_port); } return (0); } switch (cp->dev) { case SV_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { if (record_sources[idx].idx == cp->un.ord) goto found; } return (EINVAL); found: reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); reg &= ~SV_REC_SOURCE_MASK; reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); reg &= ~SV_REC_SOURCE_MASK; reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); return (0); case SV_RECORD_GAIN: { int val; if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1) return (EINVAL); val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN; reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); reg &= ~SV_REC_GAIN_MASK; reg |= val; sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); reg &= ~SV_REC_GAIN_MASK; reg |= val; sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); } return (0); case SV_MIC_BOOST: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); if (cp->un.ord) { reg |= SV_MIC_BOOST_BIT; } else { reg &= ~SV_MIC_BOOST_BIT; } sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); return (0); case SV_SRS_MODE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); if (cp->un.ord) { reg &= ~SV_SRS_SPACE_ONOFF; } else { reg |= SV_SRS_SPACE_ONOFF; } sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); return (0); } return (EINVAL); } int sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) { struct sv_softc *sc = addr; int val; u_int8_t reg; if (cp->dev >= SV_FIRST_MIXER && cp->dev <= SV_LAST_MIXER) { int off = cp->dev - SV_FIRST_MIXER; int mute = (off % 2); int idx = off / 2; if (mute) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); reg = sv_read_indirect(sc, ports[idx].l_port); cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); } else { if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1 && cp->un.value.num_channels != 2) return (EINVAL); if ((ports[idx].r_port == 0 && cp->un.value.num_channels != 1) || (ports[idx].r_port != 0 && cp->un.value.num_channels != 2)) return (EINVAL); reg = sv_read_indirect(sc, ports[idx].l_port); reg &= ports[idx].mask; val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); if (ports[idx].r_port != 0) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; reg = sv_read_indirect(sc, ports[idx].r_port); reg &= ports[idx].mask; val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; } else cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; } return (0); } switch (cp->dev) { case SV_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); return (0); case SV_RECORD_GAIN: if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1) return (EINVAL); reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; return (0); case SV_MIC_BOOST: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); return (0); case SV_SRS_MODE: if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); return (0); } return (EINVAL); } static void sv_init_mixer(struct sv_softc *sc) { mixer_ctrl_t cp; int idx; cp.type = AUDIO_MIXER_ENUM; cp.dev = SV_SRS_MODE; cp.un.ord = 0; sv_mixer_set_port(sc, &cp); for (idx = 0; idx < ARRAY_SIZE(ports); idx++) { if (strcmp(ports[idx].audio, AudioNdac) == 0) { cp.type = AUDIO_MIXER_ENUM; cp.dev = SV_FIRST_MIXER + idx * SV_DEVICES_PER_PORT + 1; cp.un.ord = 0; sv_mixer_set_port(sc, &cp); break; } } } void * sv_malloc(void *addr, int direction, size_t size, int pool, int flags) { struct sv_softc *sc = addr; struct sv_dma *p; int error; p = malloc(sizeof(*p), pool, flags); if (!p) return (0); error = sv_allocmem(sc, size, 16, p); if (error) { free(p, pool); return (0); } p->next = sc->sc_dmas; sc->sc_dmas = p; return (KERNADDR(p)); } void sv_free(void *addr, void *ptr, int pool) { struct sv_softc *sc = addr; struct sv_dma **p; for (p = &sc->sc_dmas; *p; p = &(*p)->next) { if (KERNADDR(*p) == ptr) { sv_freemem(sc, *p); *p = (*p)->next; free(*p, pool); return; } } } paddr_t sv_mappage(void *addr, void *mem, off_t off, int prot) { struct sv_softc *sc = addr; struct sv_dma *p; for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) ; if (!p) return (-1); return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, off, prot, BUS_DMA_WAITOK)); } int sv_get_props(void *addr) { return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX); }