/* $OpenBSD: ubsec.c,v 1.16 2000/06/20 05:40:45 jason Exp $ */ /* * Copyright (c) 2000 Jason L. Wright (jason@thought.net) * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Jason L. Wright * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * uBsec 5[56]01 hardware crypto accelerator */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Prototypes and count for the pci_device structure */ int ubsec_probe __P((struct device *, void *, void *)); void ubsec_attach __P((struct device *, struct device *, void *)); struct cfattach ubsec_ca = { sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, }; struct cfdriver ubsec_cd = { 0, "ubsec", DV_DULL }; int ubsec_intr __P((void *)); int ubsec_newsession __P((u_int32_t *, struct cryptoini *)); int ubsec_freesession __P((u_int64_t)); int ubsec_process __P((struct cryptop *)); void ubsec_callback __P((struct ubsec_q *)); int ubsec_feed __P((struct ubsec_softc *)); #define READ_REG(sc,r) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) #define WRITE_REG(sc,reg,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) #define SWAP32(x) (x) = swap32((x)) int ubsec_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5501) return (1); if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601) return (1); if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805) return (1); return (0); } void ubsec_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct ubsec_softc *sc = (struct ubsec_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_addr_t iobase; bus_size_t iosize; u_int32_t cmd; SIMPLEQ_INIT(&sc->sc_queue); SIMPLEQ_INIT(&sc->sc_qchip); sc->sc_intrmask = BS_CTRL_MCR1INT | BS_CTRL_DMAERR; if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601) || (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805)) { sc->sc_intrmask |= BS_CTRL_MCR2INT; sc->sc_5601 = 1; } cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); cmd |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd); cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!(cmd & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping\n"); return; } if (pci_mem_find(pc, pa->pa_tag, BS_BAR, &iobase, &iosize, NULL)) { printf(": can't find mem space\n"); return; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sc_sh)) { printf(": can't map mem space\n"); return; } sc->sc_st = pa->pa_memt; sc->sc_dmat = pa->pa_dmat; if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt\n"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } sc->sc_cid = crypto_get_driverid(); if (sc->sc_cid < 0) return; crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, ubsec_newsession, ubsec_freesession, ubsec_process); crypto_register(sc->sc_cid, CRYPTO_DES_CBC, NULL, NULL, NULL); crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC96, NULL, NULL, NULL); crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC96, NULL, NULL, NULL); WRITE_REG(sc, BS_CTRL, BS_CTRL_MCR1INT | BS_CTRL_DMAERR); printf(": %s\n", intrstr); } int ubsec_intr(arg) void *arg; { struct ubsec_softc *sc = arg; volatile u_int32_t stat, a; struct ubsec_q *q; int npkts = 0; stat = READ_REG(sc, BS_STAT); stat &= (BS_STAT_MCR1_DONE | BS_STAT_MCR2_DONE | BS_STAT_DMAERR); if (stat == 0) return (0); WRITE_REG(sc, BS_STAT, stat); /* IACK */ if (stat & BS_STAT_MCR1_DONE) { while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); if ((q->q_mcr.mcr_flags & UBS_MCR_DONE) == 0) break; npkts++; SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next); #ifdef UBSEC_DEBUG printf("intr: callback q %08x flags %04x\n", q, q->q_mcr.mcr_flags); #endif ubsec_callback(q); } #ifdef UBSEC_DEBUG if (npkts > 1) printf("intr: %d pkts\n", npkts); #endif } if (stat & BS_STAT_DMAERR) { a = READ_REG(sc, BS_ERR); printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname, (a & BS_ERR_READ) ? "read" : "write", a & ~BS_ERR_READ); } ubsec_feed(sc); return (1); } int ubsec_feed(sc) struct ubsec_softc *sc; { struct ubsec_q *q; while (!SIMPLEQ_EMPTY(&sc->sc_queue)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR1_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue); WRITE_REG(sc, BS_MCR1, (u_int32_t)vtophys(&q->q_mcr)); #ifdef UBSEC_DEBUG printf("feed: q->chip %08x %08x\n", q, (u_int32_t)vtophys(&q->q_mcr)); #endif SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next); --sc->sc_nqueue; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); } return (0); } /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. * XXX No allocation actually done here, all sessions are the same. */ int ubsec_newsession(sidp, cri) u_int32_t *sidp; struct cryptoini *cri; { struct cryptoini *c; struct ubsec_softc *sc = NULL; char mac = 0, cry = 0; int i; if (sidp == NULL || cri == NULL) return (EINVAL); for (i = 0; i < ubsec_cd.cd_ndevs; i++) { sc = ubsec_cd.cd_devs[i]; if (sc == NULL || sc->sc_cid == (*sidp)) break; } if (sc == NULL) return (EINVAL); for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC96 || c->cri_alg == CRYPTO_SHA1_HMAC96) { if (mac) return (EINVAL); mac = 1; } else if (c->cri_alg == CRYPTO_DES_CBC || c->cri_alg == CRYPTO_3DES_CBC) { if (cry) return (EINVAL); cry = 1; } else return (EINVAL); } if (mac == 0 && cry == 0) return (EINVAL); *sidp = UBSEC_SID(sc->sc_dv.dv_unit, 0); return (0); } /* * Deallocate a session. * XXX Nothing to do yet. */ int ubsec_freesession(sid) u_int64_t sid; { return (0); } int ubsec_process(crp) struct cryptop *crp; { MD5_CTX md5ctx; SHA1_CTX sha1ctx; struct ubsec_q *q = NULL; int card, err, i, j, s, nicealign; struct ubsec_softc *sc; struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; int encoffset = 0, macoffset = 0, sskip, dskip, stheend, dtheend; int16_t coffset; if (crp == NULL || crp->crp_callback == NULL) return (EINVAL); card = UBSEC_CARD(crp->crp_sid); if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL) { err = EINVAL; goto errout; } sc = ubsec_cd.cd_devs[card]; s = splnet(); if (sc->sc_nqueue == UBS_MAX_NQUEUE) { splx(s); err = ENOMEM; goto errout; } splx(s); q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q), M_DEVBUF, M_NOWAIT); if (q == NULL) { err = ENOMEM; goto errout; } bzero(q, sizeof(struct ubsec_q)); q->q_mcr.mcr_pkts = 1; q->q_mcr.mcr_flags = 0; q->q_mcr.mcr_cmdctxp = vtophys(&q->q_ctx); q->q_sc = sc; q->q_crp = crp; if (crp->crp_flags & CRYPTO_F_IMBUF) { q->q_src_m = (struct mbuf *)crp->crp_buf; q->q_dst_m = (struct mbuf *)crp->crp_buf; } else { err = EINVAL; goto errout; /* XXX only handle mbufs right now */ } crd1 = crp->crp_desc; if (crd1 == NULL) { err = EINVAL; goto errout; } crd2 = crd1->crd_next; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC96 || crd1->crd_alg == CRYPTO_SHA1_HMAC96) { maccrd = crd1; enccrd = NULL; } else if (crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC) { maccrd = NULL; enccrd = crd1; } else { err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC96 || crd1->crd_alg == CRYPTO_SHA1_HMAC96) && (crd2->crd_alg == CRYPTO_DES_CBC || crd2->crd_alg == CRYPTO_3DES_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC96 || crd2->crd_alg == CRYPTO_SHA1_HMAC96) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { /* * We cannot order the ubsec as requested */ err = EINVAL; goto errout; } } if (enccrd) { encoffset = enccrd->crd_skip; q->q_ctx.pc_flags |= UBS_PKTCTX_ENC_3DES; if (enccrd->crd_flags & CRD_F_ENCRYPT) { if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, &q->q_ctx.pc_iv[0], 8); else get_random_bytes(&q->q_ctx.pc_iv[0], 8); m_copyback(q->q_src_m, enccrd->crd_inject, 8, (caddr_t)&q->q_ctx.pc_iv); if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) m_copyback(q->q_src_m, enccrd->crd_inject, 8, (caddr_t)&q->q_ctx.pc_iv[0]); } else { q->q_ctx.pc_flags |= UBS_PKTCTX_INBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, &q->q_ctx.pc_iv[0], 8); else m_copydata(q->q_src_m, enccrd->crd_inject, 8, (caddr_t)&q->q_ctx.pc_iv[0]); } if (enccrd->crd_alg == CRYPTO_DES_CBC) { /* Cheat: des == 3des with two of the keys the same */ bcopy(enccrd->crd_key, &q->q_ctx.pc_deskey[0], 8); bcopy(enccrd->crd_key, &q->q_ctx.pc_deskey[2], 8); bcopy(enccrd->crd_key, &q->q_ctx.pc_deskey[4], 8); } else bcopy(enccrd->crd_key, &q->q_ctx.pc_deskey[0], 24); SWAP32(q->q_ctx.pc_iv[0]); SWAP32(q->q_ctx.pc_iv[1]); SWAP32(q->q_ctx.pc_deskey[0]); SWAP32(q->q_ctx.pc_deskey[1]); SWAP32(q->q_ctx.pc_deskey[2]); SWAP32(q->q_ctx.pc_deskey[3]); SWAP32(q->q_ctx.pc_deskey[4]); SWAP32(q->q_ctx.pc_deskey[5]); } if (maccrd) { macoffset = maccrd->crd_skip; for (i = 0; i < maccrd->crd_klen / 8; i++) maccrd->crd_key[i] ^= HMAC_IPAD_VAL; if (maccrd->crd_alg == CRYPTO_MD5_HMAC96) { q->q_ctx.pc_flags |= UBS_PKTCTX_AUTH_MD5; MD5Init(&md5ctx); MD5Update(&md5ctx, maccrd->crd_key, maccrd->crd_klen / 8); MD5Update(&md5ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (maccrd->crd_klen / 8)); bcopy(md5ctx.state, q->q_ctx.pc_hminner, sizeof(md5ctx.state)); } else { q->q_ctx.pc_flags |= UBS_PKTCTX_AUTH_SHA1; SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, maccrd->crd_key, maccrd->crd_klen / 8); SHA1Update(&sha1ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (maccrd->crd_klen / 8)); bcopy(sha1ctx.state, q->q_ctx.pc_hminner, sizeof(sha1ctx.state)); } for (i = 0; i < maccrd->crd_klen / 8; i++) maccrd->crd_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (maccrd->crd_alg == CRYPTO_MD5_HMAC96) { MD5Init(&md5ctx); MD5Update(&md5ctx, maccrd->crd_key, maccrd->crd_klen / 8); MD5Update(&md5ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (maccrd->crd_klen / 8)); bcopy(md5ctx.state, q->q_ctx.pc_hmouter, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, maccrd->crd_key, maccrd->crd_klen / 8); SHA1Update(&sha1ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (maccrd->crd_klen / 8)); bcopy(sha1ctx.state, q->q_ctx.pc_hmouter, sizeof(sha1ctx.state)); } for (i = 0; i < maccrd->crd_klen / 8; i++) maccrd->crd_key[i] ^= HMAC_OPAD_VAL; } if (enccrd && maccrd) { dskip = sskip = (macoffset > encoffset) ? encoffset : macoffset; coffset = macoffset - encoffset; if (coffset < 0) coffset = -coffset; if ((encoffset + enccrd->crd_len) > (macoffset + maccrd->crd_len)) stheend = dtheend = enccrd->crd_len; else stheend = dtheend = maccrd->crd_len; } else { dskip = sskip = macoffset + encoffset; dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len; coffset = 0; } q->q_ctx.pc_offset = coffset << 2; q->q_src_l = mbuf2pages(q->q_src_m, &q->q_src_npa, q->q_src_packp, q->q_src_packl, MAX_SCATTER, &nicealign); if (q->q_src_l == 0) { err = ENOMEM; goto errout; } q->q_mcr.mcr_pktlen = stheend; #ifdef UBSEC_DEBUG printf("src skip: %d\n", sskip); #endif for (i = j = 0; i < q->q_src_npa; i++) { struct ubsec_pktbuf *pb; #ifdef UBSEC_DEBUG printf(" src[%d->%d]: %d@%x\n", i, j, q->q_src_packl[i], q->q_src_packp[i]); #endif if (sskip) { if (sskip >= q->q_src_packl[i]) { sskip -= q->q_src_packl[i]; continue; } q->q_src_packp[i] += sskip; q->q_src_packl[i] -= sskip; sskip = 0; } if (j == 0) pb = &q->q_mcr.mcr_ipktbuf; else pb = &q->q_srcpkt[j - 1]; #ifdef UBSEC_DEBUG printf(" pb v %08x p %08x\n", pb, vtophys(pb)); #endif pb->pb_addr = q->q_src_packp[i]; if (stheend) { if (q->q_src_packl[i] > stheend) { pb->pb_len = stheend; stheend = 0; } else { pb->pb_len = q->q_src_packl[i]; stheend -= pb->pb_len; } } else pb->pb_len = q->q_src_packl[i]; if ((i + 1) == q->q_src_npa) pb->pb_next = 0; else pb->pb_next = vtophys(&q->q_srcpkt[j]); j++; } #ifdef UBSEC_DEBUG printf(" buf[%x]: %d@%x -> %x\n", vtophys(&q->q_mcr), q->q_mcr.mcr_ipktbuf.pb_len, q->q_mcr.mcr_ipktbuf.pb_addr, q->q_mcr.mcr_ipktbuf.pb_next); for (i = 0; i < j - 1; i++) { printf(" buf[%x]: %d@%x -> %x\n", vtophys(&q->q_srcpkt[i]), q->q_srcpkt[i].pb_len, q->q_srcpkt[i].pb_addr, q->q_srcpkt[i].pb_next); } #endif if (enccrd == NULL && maccrd != NULL) { q->q_mcr.mcr_opktbuf.pb_addr = 0; q->q_mcr.mcr_opktbuf.pb_len = 0; q->q_mcr.mcr_opktbuf.pb_next = (u_int32_t)vtophys(&q->q_macbuf[0]); printf("opkt: %x %x %x\n", q->q_mcr.mcr_opktbuf.pb_addr, q->q_mcr.mcr_opktbuf.pb_len, q->q_mcr.mcr_opktbuf.pb_next); } else { if (!nicealign) { int totlen, len; struct mbuf *m, *top, **mp; totlen = q->q_dst_l = q->q_src_l; if (q->q_src_m->m_flags & M_PKTHDR) { MGETHDR(m, M_DONTWAIT, MT_DATA); M_COPY_PKTHDR(m, q->q_src_m); len = MHLEN; } else { MGET(m, M_DONTWAIT, MT_DATA); len = MLEN; } if (m == NULL) { err = ENOMEM; goto errout; } if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) len = MCLBYTES; } m->m_len = len; top = NULL; mp = ⊤ while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(top); err = ENOMEM; goto errout; } len = MLEN; } if (top && totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) len = MCLBYTES; } m->m_len = len = min(totlen, len); totlen -= len; *mp = m; mp = &m->m_next; } q->q_dst_m = top; } else q->q_dst_m = q->q_src_m; q->q_dst_l = mbuf2pages(q->q_dst_m, &q->q_dst_npa, q->q_dst_packp, q->q_dst_packl, MAX_SCATTER, NULL); #ifdef UBSEC_DEBUG printf("dst skip: %d\n", dskip); #endif for (i = j = 0; i < q->q_dst_npa; i++) { struct ubsec_pktbuf *pb; #ifdef UBSEC_DEBUG printf(" dst[%d->%d]: %d@%x\n", i, j, q->q_dst_packl[i], q->q_dst_packp[i]); #endif if (dskip) { if (dskip >= q->q_dst_packl[i]) { dskip -= q->q_dst_packl[i]; continue; } q->q_dst_packp[i] += dskip; q->q_dst_packl[i] -= dskip; dskip = 0; } if (j == 0) pb = &q->q_mcr.mcr_opktbuf; else pb = &q->q_dstpkt[j - 1]; #ifdef UBSEC_DEBUG printf(" pb v %08x p %08x\n", pb, vtophys(pb)); #endif pb->pb_addr = q->q_dst_packp[i]; pb->pb_len = q->q_dst_packl[i]; if ((i + 1) == q->q_dst_npa) { if (maccrd) pb->pb_next = vtophys(&q->q_macbuf[0]); else pb->pb_next = 0; } else pb->pb_next = vtophys(&q->q_dstpkt[j]); j++; } #ifdef UBSEC_DEBUG printf(" buf[%d, %x]: %d@%x -> %x\n", 0, vtophys(&q->q_mcr), q->q_mcr.mcr_opktbuf.pb_len, q->q_mcr.mcr_opktbuf.pb_addr, q->q_mcr.mcr_opktbuf.pb_next); for (i = 0; i < j - 1; i++) { printf(" buf[%d, %x]: %d@%x -> %x\n", i+1, vtophys(&q->q_dstpkt[i]), q->q_dstpkt[i].pb_len, q->q_dstpkt[i].pb_addr, q->q_dstpkt[i].pb_next); } #endif } s = splnet(); SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next); sc->sc_nqueue++; ubsec_feed(sc); splx(s); return (0); errout: if (q != NULL) { if (q->q_src_m != q->q_dst_m) m_freem(q->q_dst_m); free(q, M_DEVBUF); } crp->crp_etype = err; crp->crp_callback(crp); return (0); } void ubsec_callback(q) struct ubsec_q *q; { struct cryptop *crp = (struct cryptop *)q->q_crp; struct cryptodesc *crd; if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) { m_freem(q->q_src_m); crp->crp_buf = (caddr_t)q->q_dst_m; } for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (crd->crd_alg != CRYPTO_MD5_HMAC96 && crd->crd_alg != CRYPTO_SHA1_HMAC96) continue; m_copyback((struct mbuf *)crp->crp_buf, crd->crd_inject, 12, (u_int8_t *)&q->q_macbuf[0]); break; } free(q, M_DEVBUF); crypto_done(crp); }