/* $OpenBSD: ubsec.c,v 1.59 2001/06/18 10:23:45 deraadt Exp $ */ /* * Copyright (c) 2000 Jason L. Wright (jason@thought.net) * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Jason L. Wright * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #undef UBSEC_DEBUG /* * uBsec 5[56]01, 580x hardware crypto accelerator */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Prototypes and count for the pci_device structure */ int ubsec_probe __P((struct device *, void *, void *)); void ubsec_attach __P((struct device *, struct device *, void *)); struct cfattach ubsec_ca = { sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, }; struct cfdriver ubsec_cd = { 0, "ubsec", DV_DULL }; int ubsec_intr __P((void *)); int ubsec_newsession __P((u_int32_t *, struct cryptoini *)); int ubsec_freesession __P((u_int64_t)); int ubsec_process __P((struct cryptop *)); void ubsec_callback __P((struct ubsec_softc *, struct ubsec_q *)); int ubsec_feed __P((struct ubsec_softc *)); void ubsec_mcopy __P((struct mbuf *, struct mbuf *, int, int)); void ubsec_callback2 __P((struct ubsec_softc *, struct ubsec_q2 *)); int ubsec_feed2 __P((struct ubsec_softc *)); void ubsec_rng __P((void *)); int ubsec_dma_malloc __P((struct ubsec_softc *, bus_size_t, struct ubsec_dma_alloc *, int)); void ubsec_dma_free __P((struct ubsec_softc *, struct ubsec_dma_alloc *)); #define READ_REG(sc,r) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) #define WRITE_REG(sc,reg,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) #define SWAP32(x) (x) = swap32((x)) int ubsec_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5501 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601)) return (1); if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5820)) return (1); return (0); } void ubsec_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct ubsec_softc *sc = (struct ubsec_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_size_t iosize; u_int32_t cmd; SIMPLEQ_INIT(&sc->sc_queue); SIMPLEQ_INIT(&sc->sc_qchip); SIMPLEQ_INIT(&sc->sc_queue2); SIMPLEQ_INIT(&sc->sc_qchip2); sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR; if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601) || (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805)) sc->sc_flags |= UBS_FLAGS_KEY; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5820) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_LONGCTX; cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); cmd |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd); cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!(cmd & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping\n"); return; } if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_st, &sc->sc_sh, NULL, &iosize, 0)) { printf(": can't find mem space\n"); return; } sc->sc_dmat = pa->pa_dmat; if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf(": couldn't map interrupt\n"); bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); return; } sc->sc_cid = crypto_get_driverid(); if (sc->sc_cid < 0) { pci_intr_disestablish(pc, sc->sc_ih); bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); return; } crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, ubsec_newsession, ubsec_freesession, ubsec_process); crypto_register(sc->sc_cid, CRYPTO_DES_CBC, NULL, NULL, NULL); crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, NULL, NULL, NULL); crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, NULL, NULL, NULL); if (sc->sc_flags & UBS_FLAGS_KEY) { sc->sc_statmask |= BS_STAT_MCR2_DONE; timeout_set(&sc->sc_rngto, ubsec_rng, sc); if (hz >= 100) sc->sc_rnghz = hz / 100; else sc->sc_rnghz = 1; timeout_add(&sc->sc_rngto, sc->sc_rnghz); printf(", rng"); } WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) | BS_CTRL_MCR1INT | BS_CTRL_DMAERR | ((sc->sc_flags & UBS_FLAGS_KEY) ? BS_CTRL_MCR2INT : 0)); printf(": %s\n", intrstr); } int ubsec_intr(arg) void *arg; { struct ubsec_softc *sc = arg; volatile u_int32_t stat, a; struct ubsec_q *q; struct ubsec_q2 *q2; struct ubsec_mcr *mcr; int npkts = 0, i; stat = READ_REG(sc, BS_STAT); stat &= sc->sc_statmask; if (stat == 0) return (0); WRITE_REG(sc, BS_STAT, stat); /* IACK */ if ((stat & BS_STAT_MCR1_DONE)) { while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); #ifdef UBSEC_DEBUG printf("mcr_flags %x %x %x\n", q->q_mcr, q->q_mcr->mcr_flags, READ_REG(sc, BS_ERR)); #endif if ((q->q_mcr->mcr_flags & UBS_MCR_DONE) == 0) break; npkts++; SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next); #ifdef UBSEC_DEBUG printf("intr: callback q %08x flags %04x\n", q, q->q_mcr->mcr_flags); #endif mcr = q->q_mcr; ubsec_callback(sc, q); /* * search for further sc_qchip ubsec_q's that share * the same MCR, and complete them too, they must be * at the top. */ for (i = 1; i < mcr->mcr_pkts; i++) { q = SIMPLEQ_FIRST(&sc->sc_qchip); if (q && q->q_mcr == mcr) { #ifdef UBSEC_DEBUG printf("found shared mcr %d out of %d\n", i, mcr->mcr_pkts); #endif SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next); ubsec_callback(sc, q); } else { printf("HUH!\n"); break; } } free(mcr, M_DEVBUF); } #ifdef UBSEC_DEBUG if (npkts > 1) printf("intr: %d pkts\n", npkts); #endif ubsec_feed(sc); } if ((sc->sc_flags & UBS_FLAGS_KEY) && (stat & BS_STAT_MCR2_DONE)) { while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) { q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; if ((mcr->mcr_flags & UBS_MCR_DONE) == 0) { bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); break; } SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next); ubsec_callback2(sc, q2); ubsec_feed2(sc); } } if (stat & BS_STAT_DMAERR) { a = READ_REG(sc, BS_ERR); printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname, (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR); } return (1); } int ubsec_feed(sc) struct ubsec_softc *sc; { #ifdef UBSEC_DEBUG static int max; #endif struct ubsec_q *q; struct ubsec_mcr *mcr; int npkts, i, l; void *v, *mcr2; npkts = sc->sc_nqueue; if (npkts > 5) npkts = 5; if (npkts < 2) goto feed1; goto feed1; if (READ_REG(sc, BS_STAT) & BS_STAT_MCR1_FULL) return (0); mcr = (struct ubsec_mcr *)malloc(sizeof(struct ubsec_mcr) + (npkts-1) * sizeof(struct ubsec_mcr_add), M_DEVBUF, M_NOWAIT); if (mcr == NULL) goto feed1; #ifdef UBSEC_DEBUG printf("merging %d records\n", npkts); /* XXX temporary aggregation statistics reporting code */ if (max < npkts) { max = npkts; printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max); } #endif for (mcr2 = mcr, i = 0; i < npkts; i++) { q = SIMPLEQ_FIRST(&sc->sc_queue); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next); --sc->sc_nqueue; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); /* * first packet contains a full mcr, others contain * a shortened one */ if (i == 0) { v = q->q_mcr; l = sizeof(struct ubsec_mcr); } else { v = ((void *)q->q_mcr) + sizeof(struct ubsec_mcr) - sizeof(struct ubsec_mcr_add); l = sizeof(struct ubsec_mcr_add); } #ifdef UBSEC_DEBUG printf("copying %d from %x (mcr %x)\n", l, v, q->q_mcr); #endif bcopy(v, mcr2, l); mcr2 += l; free(q->q_mcr, M_DEVBUF); q->q_mcr = mcr; } mcr->mcr_pkts = npkts; WRITE_REG(sc, BS_MCR1, (u_int32_t)vtophys(mcr)); return (0); feed1: while (!SIMPLEQ_EMPTY(&sc->sc_queue)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR1_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue); WRITE_REG(sc, BS_MCR1, (u_int32_t)vtophys(q->q_mcr)); #ifdef UBSEC_DEBUG printf("feed: q->chip %08x %08x\n", q, (u_int32_t)vtophys(q->q_mcr)); #endif SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next); --sc->sc_nqueue; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); } return (0); } /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. */ int ubsec_newsession(sidp, cri) u_int32_t *sidp; struct cryptoini *cri; { struct cryptoini *c, *encini = NULL, *macini = NULL; struct ubsec_softc *sc = NULL; struct ubsec_session *ses = NULL; MD5_CTX md5ctx; SHA1_CTX sha1ctx; int i, sesn; if (sidp == NULL || cri == NULL) return (EINVAL); for (i = 0; i < ubsec_cd.cd_ndevs; i++) { sc = ubsec_cd.cd_devs[i]; if (sc == NULL || sc->sc_cid == (*sidp)) break; } if (sc == NULL) return (EINVAL); for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC || c->cri_alg == CRYPTO_SHA1_HMAC) { if (macini) return (EINVAL); macini = c; } else if (c->cri_alg == CRYPTO_DES_CBC || c->cri_alg == CRYPTO_3DES_CBC) { if (encini) return (EINVAL); encini = c; } else return (EINVAL); } if (encini == NULL && macini == NULL) return (EINVAL); if (sc->sc_sessions == NULL) { ses = sc->sc_sessions = (struct ubsec_session *)malloc( sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); sesn = 0; sc->sc_nsessions = 1; } else { for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = (struct ubsec_session *)malloc((sesn + 1) * sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); bcopy(sc->sc_sessions, ses, sesn * sizeof(struct ubsec_session)); bzero(sc->sc_sessions, sesn * sizeof(struct ubsec_session)); free(sc->sc_sessions, M_DEVBUF); sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } } bzero(ses, sizeof(struct ubsec_session)); ses->ses_used = 1; if (encini) { /* get an IV, network byte order */ get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv)); /* Go ahead and compute key in ubsec's byte order */ if (encini->cri_alg == CRYPTO_DES_CBC) { bcopy(encini->cri_key, &ses->ses_deskey[0], 8); bcopy(encini->cri_key, &ses->ses_deskey[2], 8); bcopy(encini->cri_key, &ses->ses_deskey[4], 8); } else bcopy(encini->cri_key, ses->ses_deskey, 24); SWAP32(ses->ses_deskey[0]); SWAP32(ses->ses_deskey[1]); SWAP32(ses->ses_deskey[2]); SWAP32(ses->ses_deskey[3]); SWAP32(ses->ses_deskey[4]); SWAP32(ses->ses_deskey[5]); } if (macini) { for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_IPAD_VAL; if (macini->cri_alg == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_ipad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(sha1ctx.state, ses->ses_hminner, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (macini->cri_alg == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_opad_buffer, HMAC_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(sha1ctx.state, ses->ses_hmouter, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_OPAD_VAL; } *sidp = UBSEC_SID(sc->sc_dv.dv_unit, sesn); return (0); } /* * Deallocate a session. */ int ubsec_freesession(tid) u_int64_t tid; { struct ubsec_softc *sc; int card, session; u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; card = UBSEC_CARD(sid); if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL) return (EINVAL); sc = ubsec_cd.cd_devs[card]; session = UBSEC_SESSION(sid); bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); return (0); } int ubsec_process(crp) struct cryptop *crp; { struct ubsec_q *q = NULL; int card, err, i, j, s, nicealign; struct ubsec_softc *sc; struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; int encoffset = 0, macoffset = 0, cpskip, cpoffset; int sskip, dskip, stheend, dtheend; int16_t coffset; struct ubsec_session *ses; struct ubsec_pktctx ctx; if (crp == NULL || crp->crp_callback == NULL) return (EINVAL); card = UBSEC_CARD(crp->crp_sid); if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL) return (EINVAL); sc = ubsec_cd.cd_devs[card]; s = splnet(); if (sc->sc_nqueue >= UBS_MAX_NQUEUE) { splx(s); err = ENOMEM; goto errout; } splx(s); q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q), M_DEVBUF, M_NOWAIT); if (q == NULL) { err = ENOMEM; goto errout; } bzero(q, sizeof(struct ubsec_q)); bzero(&ctx, sizeof(ctx)); q->q_sesn = UBSEC_SESSION(crp->crp_sid); ses = &sc->sc_sessions[q->q_sesn]; if (crp->crp_flags & CRYPTO_F_IMBUF) { q->q_src_m = (struct mbuf *)crp->crp_buf; q->q_dst_m = (struct mbuf *)crp->crp_buf; } else if (crp->crp_flags & CRYPTO_F_IOV) { q->q_src_io = (struct uio *)crp->crp_buf; q->q_dst_io = (struct uio *)crp->crp_buf; } else { err = EINVAL; goto errout; /* XXX only handle mbufs right now */ } q->q_mcr = (struct ubsec_mcr *)malloc(sizeof(struct ubsec_mcr), M_DEVBUF, M_NOWAIT); if (q->q_mcr == NULL) { err = ENOMEM; goto errout; } bzero(q->q_mcr, sizeof(struct ubsec_mcr)); q->q_mcr->mcr_pkts = 1; q->q_mcr->mcr_flags = 0; q->q_crp = crp; crd1 = crp->crp_desc; if (crd1 == NULL) { err = EINVAL; goto errout; } crd2 = crd1->crd_next; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) { maccrd = crd1; enccrd = NULL; } else if (crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC) { maccrd = NULL; enccrd = crd1; } else { err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) && (crd2->crd_alg == CRYPTO_DES_CBC || crd2->crd_alg == CRYPTO_3DES_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC || crd2->crd_alg == CRYPTO_SHA1_HMAC) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { /* * We cannot order the ubsec as requested */ err = EINVAL; goto errout; } } if (enccrd) { encoffset = enccrd->crd_skip; ctx.pc_flags |= UBS_PKTCTX_ENC_3DES; if (enccrd->crd_flags & CRD_F_ENCRYPT) { q->q_flags |= UBSEC_QFLAGS_COPYOUTIV; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, ctx.pc_iv, 8); else { ctx.pc_iv[0] = ses->ses_iv[0]; ctx.pc_iv[1] = ses->ses_iv[1]; } if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { if (crp->crp_flags & CRYPTO_F_IMBUF) m_copyback(q->q_src_m, enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv); else if (crp->crp_flags & CRYPTO_F_IOV) { if (crp->crp_iv == NULL) bzero((caddr_t)ctx.pc_iv, 8); else bcopy(crp->crp_iv, (caddr_t)ctx.pc_iv, 8); } } } else { ctx.pc_flags |= UBS_PKTCTX_INBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, ctx.pc_iv, 8); else if (crp->crp_flags & CRYPTO_F_IMBUF) m_copydata(q->q_src_m, enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv); else if (crp->crp_flags & CRYPTO_F_IOV) { if (crp->crp_iv == NULL) bzero((caddr_t)ctx.pc_iv, 8); else bcopy(crp->crp_iv, (caddr_t)ctx.pc_iv, 8); } } ctx.pc_deskey[0] = ses->ses_deskey[0]; ctx.pc_deskey[1] = ses->ses_deskey[1]; ctx.pc_deskey[2] = ses->ses_deskey[2]; ctx.pc_deskey[3] = ses->ses_deskey[3]; ctx.pc_deskey[4] = ses->ses_deskey[4]; ctx.pc_deskey[5] = ses->ses_deskey[5]; SWAP32(ctx.pc_iv[0]); SWAP32(ctx.pc_iv[1]); } if (maccrd) { macoffset = maccrd->crd_skip; if (maccrd->crd_alg == CRYPTO_MD5_HMAC) ctx.pc_flags |= UBS_PKTCTX_AUTH_MD5; else ctx.pc_flags |= UBS_PKTCTX_AUTH_SHA1; for (i = 0; i < 5; i++) { ctx.pc_hminner[i] = ses->ses_hminner[i]; ctx.pc_hmouter[i] = ses->ses_hmouter[i]; } } if (enccrd && maccrd) { /* * ubsec cannot handle packets where the end of encryption * and authentication are not the same, or where the * encrypted part begins before the authenticated part. */ if (((encoffset + enccrd->crd_len) != (macoffset + maccrd->crd_len)) || (enccrd->crd_skip < maccrd->crd_skip)) { err = EINVAL; goto errout; } sskip = maccrd->crd_skip; cpskip = dskip = enccrd->crd_skip; stheend = maccrd->crd_len; dtheend = enccrd->crd_len; coffset = enccrd->crd_skip - maccrd->crd_skip; cpoffset = cpskip + dtheend; #ifdef UBSEC_DEBUG printf("mac: skip %d, len %d, inject %d\n", maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); printf("enc: skip %d, len %d, inject %d\n", enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); printf("src: skip %d, len %d\n", sskip, stheend); printf("dst: skip %d, len %d\n", dskip, dtheend); printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n", coffset, stheend, cpskip, cpoffset); #endif } else { cpskip = dskip = sskip = macoffset + encoffset; dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len; cpoffset = cpskip + dtheend; coffset = 0; } ctx.pc_offset = coffset >> 2; if (crp->crp_flags & CRYPTO_F_IMBUF) q->q_src_l = mbuf2pages(q->q_src_m, &q->q_src_npa, q->q_src_packp, q->q_src_packl, MAX_SCATTER, &nicealign); else if (crp->crp_flags & CRYPTO_F_IOV) q->q_src_l = iov2pages(q->q_src_io, &q->q_src_npa, q->q_src_packp, q->q_src_packl, MAX_SCATTER, &nicealign); if (q->q_src_l == 0) { err = ENOMEM; goto errout; } q->q_mcr->mcr_pktlen = stheend; #ifdef UBSEC_DEBUG printf("src skip: %d\n", sskip); #endif for (i = j = 0; i < q->q_src_npa; i++) { struct ubsec_pktbuf *pb; #ifdef UBSEC_DEBUG printf(" src[%d->%d]: %d@%x\n", i, j, q->q_src_packl[i], q->q_src_packp[i]); #endif if (sskip) { if (sskip >= q->q_src_packl[i]) { sskip -= q->q_src_packl[i]; continue; } q->q_src_packp[i] += sskip; q->q_src_packl[i] -= sskip; sskip = 0; } if (j == 0) pb = &q->q_mcr->mcr_ipktbuf; else pb = &q->q_srcpkt[j - 1]; #ifdef UBSEC_DEBUG printf(" pb v %08x p %08x\n", pb, vtophys(pb)); #endif pb->pb_addr = q->q_src_packp[i]; if (stheend) { if (q->q_src_packl[i] > stheend) { pb->pb_len = stheend; stheend = 0; } else { pb->pb_len = q->q_src_packl[i]; stheend -= pb->pb_len; } } else pb->pb_len = q->q_src_packl[i]; if ((i + 1) == q->q_src_npa) pb->pb_next = 0; else pb->pb_next = vtophys(&q->q_srcpkt[j]); j++; } #ifdef UBSEC_DEBUG printf(" buf[%x]: %d@%x -> %x\n", vtophys(q->q_mcr), q->q_mcr->mcr_ipktbuf.pb_len, q->q_mcr->mcr_ipktbuf.pb_addr, q->q_mcr->mcr_ipktbuf.pb_next); for (i = 0; i < j - 1; i++) { printf(" buf[%x]: %d@%x -> %x\n", vtophys(&q->q_srcpkt[i]), q->q_srcpkt[i].pb_len, q->q_srcpkt[i].pb_addr, q->q_srcpkt[i].pb_next); } #endif if (enccrd == NULL && maccrd != NULL) { q->q_mcr->mcr_opktbuf.pb_addr = 0; q->q_mcr->mcr_opktbuf.pb_len = 0; q->q_mcr->mcr_opktbuf.pb_next = (u_int32_t)vtophys(q->q_macbuf); #ifdef UBSEC_DEBUG printf("opkt: %x %x %x\n", q->q_mcr->mcr_opktbuf.pb_addr, q->q_mcr->mcr_opktbuf.pb_len, q->q_mcr->mcr_opktbuf.pb_next); #endif } else { if (!nicealign && (crp->crp_flags & CRYPTO_F_IOV)) { err = EINVAL; goto errout; } else if (!nicealign && (crp->crp_flags & CRYPTO_F_IMBUF)) { int totlen, len; struct mbuf *m, *top, **mp; totlen = q->q_dst_l = q->q_src_l; if (q->q_src_m->m_flags & M_PKTHDR) { len = MHLEN; MGETHDR(m, M_DONTWAIT, MT_DATA); } else { len = MLEN; MGET(m, M_DONTWAIT, MT_DATA); } if (m == NULL) { err = ENOMEM; goto errout; } if (len == MHLEN) M_DUP_PKTHDR(m, q->q_src_m); if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) len = MCLBYTES; } m->m_len = len; top = NULL; mp = ⊤ while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(top); err = ENOMEM; goto errout; } len = MLEN; } if (top && totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) len = MCLBYTES; } m->m_len = len = min(totlen, len); totlen -= len; *mp = m; mp = &m->m_next; } q->q_dst_m = top; ubsec_mcopy(q->q_src_m, q->q_dst_m, cpskip, cpoffset); } else q->q_dst_m = q->q_src_m; if (crp->crp_flags & CRYPTO_F_IMBUF) q->q_dst_l = mbuf2pages(q->q_dst_m, &q->q_dst_npa, q->q_dst_packp, q->q_dst_packl, MAX_SCATTER, NULL); else if (crp->crp_flags & CRYPTO_F_IOV) q->q_dst_l = iov2pages(q->q_dst_io, &q->q_dst_npa, q->q_dst_packp, q->q_dst_packl, MAX_SCATTER, NULL); #ifdef UBSEC_DEBUG printf("dst skip: %d\n", dskip); #endif for (i = j = 0; i < q->q_dst_npa; i++) { struct ubsec_pktbuf *pb; #ifdef UBSEC_DEBUG printf(" dst[%d->%d]: %d@%x\n", i, j, q->q_dst_packl[i], q->q_dst_packp[i]); #endif if (dskip) { if (dskip >= q->q_dst_packl[i]) { dskip -= q->q_dst_packl[i]; continue; } q->q_dst_packp[i] += dskip; q->q_dst_packl[i] -= dskip; dskip = 0; } if (j == 0) pb = &q->q_mcr->mcr_opktbuf; else pb = &q->q_dstpkt[j - 1]; #ifdef UBSEC_DEBUG printf(" pb v %08x p %08x\n", pb, vtophys(pb)); #endif pb->pb_addr = q->q_dst_packp[i]; if (dtheend) { if (q->q_dst_packl[i] > dtheend) { pb->pb_len = dtheend; dtheend = 0; } else { pb->pb_len = q->q_dst_packl[i]; dtheend -= pb->pb_len; } } else pb->pb_len = q->q_dst_packl[i]; if ((i + 1) == q->q_dst_npa) { if (maccrd) pb->pb_next = vtophys(q->q_macbuf); else pb->pb_next = 0; } else pb->pb_next = vtophys(&q->q_dstpkt[j]); j++; } #ifdef UBSEC_DEBUG printf(" buf[%d, %x]: %d@%x -> %x\n", 0, vtophys(q->q_mcr), q->q_mcr->mcr_opktbuf.pb_len, q->q_mcr->mcr_opktbuf.pb_addr, q->q_mcr->mcr_opktbuf.pb_next); for (i = 0; i < j - 1; i++) { printf(" buf[%d, %x]: %d@%x -> %x\n", i+1, vtophys(&q->q_dstpkt[i]), q->q_dstpkt[i].pb_len, q->q_dstpkt[i].pb_addr, q->q_dstpkt[i].pb_next); } #endif } if (ubsec_dma_malloc(sc, MAX(sizeof(struct ubsec_pktctx_long), sizeof(struct ubsec_pktctx)), &q->q_ctx_dma, 0)) { err = ENOMEM; goto errout; } q->q_mcr->mcr_cmdctxp = q->q_ctx_dma.dma_paddr; if (sc->sc_flags & UBS_FLAGS_LONGCTX) { struct ubsec_pktctx_long *ctxl; ctxl = (struct ubsec_pktctx_long *)q->q_ctx_dma.dma_vaddr; /* transform small context into long context */ ctxl->pc_len = sizeof(struct ubsec_pktctx_long); ctxl->pc_type = UBS_PKTCTX_TYPE_IPSEC; ctxl->pc_flags = ctx.pc_flags; ctxl->pc_offset = ctx.pc_offset; for (i = 0; i < 6; i++) ctxl->pc_deskey[i] = ctx.pc_deskey[i]; for (i = 0; i < 5; i++) ctxl->pc_hminner[i] = ctx.pc_hminner[i]; for (i = 0; i < 5; i++) ctxl->pc_hmouter[i] = ctx.pc_hmouter[i]; ctxl->pc_iv[0] = ctx.pc_iv[0]; ctxl->pc_iv[1] = ctx.pc_iv[1]; } else bcopy(&ctx, q->q_ctx_dma.dma_vaddr, sizeof(struct ubsec_pktctx)); bus_dmamap_sync(sc->sc_dmat, q->q_ctx_dma.dma_map, BUS_DMASYNC_PREREAD); s = splnet(); SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next); sc->sc_nqueue++; ubsec_feed(sc); splx(s); return (0); errout: if (q != NULL) { if (q->q_mcr != NULL) free(q->q_mcr, M_DEVBUF); if (q->q_ctx_dma.dma_map != NULL) ubsec_dma_free(sc, &q->q_ctx_dma); if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) m_freem(q->q_dst_m); free(q, M_DEVBUF); } crp->crp_etype = err; crp->crp_callback(crp); return (0); } void ubsec_callback(sc, q) struct ubsec_softc *sc; struct ubsec_q *q; { struct cryptop *crp = (struct cryptop *)q->q_crp; struct cryptodesc *crd; bus_dmamap_sync(sc->sc_dmat, q->q_ctx_dma.dma_map, BUS_DMASYNC_POSTREAD); ubsec_dma_free(sc, &q->q_ctx_dma); if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) { m_freem(q->q_src_m); crp->crp_buf = (caddr_t)q->q_dst_m; } /* copy out IV for future use */ if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) { for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (crd->crd_alg != CRYPTO_DES_CBC && crd->crd_alg != CRYPTO_3DES_CBC) continue; if (crp->crp_flags & CRYPTO_F_IMBUF) m_copydata((struct mbuf *)crp->crp_buf, crd->crd_skip + crd->crd_len - 8, 8, (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv); else if (crp->crp_flags & CRYPTO_F_IOV) { cuio_copydata((struct uio *)crp->crp_buf, crd->crd_skip + crd->crd_len - 8, 8, (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv); } break; } } for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (crd->crd_alg != CRYPTO_MD5_HMAC && crd->crd_alg != CRYPTO_SHA1_HMAC) continue; if (crp->crp_flags & CRYPTO_F_IMBUF) m_copyback((struct mbuf *)crp->crp_buf, crd->crd_inject, 12, (caddr_t)q->q_macbuf); else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) bcopy((caddr_t)q->q_macbuf, crp->crp_mac, 12); break; } /* * note that q->q_mcr is not freed, because ubsec_intr() has to * deal with possible sharing */ free(q, M_DEVBUF); crypto_done(crp); } void ubsec_mcopy(srcm, dstm, hoffset, toffset) struct mbuf *srcm, *dstm; int hoffset, toffset; { int i, j, dlen, slen; caddr_t dptr, sptr; j = 0; sptr = srcm->m_data; slen = srcm->m_len; dptr = dstm->m_data; dlen = dstm->m_len; while (1) { for (i = 0; i < min(slen, dlen); i++) { if (j < hoffset || j >= toffset) *dptr++ = *sptr++; slen--; dlen--; j++; } if (slen == 0) { srcm = srcm->m_next; if (srcm == NULL) return; sptr = srcm->m_data; slen = srcm->m_len; } if (dlen == 0) { dstm = dstm->m_next; if (dstm == NULL) return; dptr = dstm->m_data; dlen = dstm->m_len; } } } /* * feed the key generator, must be called at splnet() or higher. */ int ubsec_feed2(sc) struct ubsec_softc *sc; { struct ubsec_q2 *q; while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue2); bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, BUS_DMASYNC_PREREAD); WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next); --sc->sc_nqueue2; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next); } return (0); } void ubsec_callback2(sc, q) struct ubsec_softc *sc; struct ubsec_q2 *q; { struct ubsec_ctx_keyop *ctx; ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr; bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, BUS_DMASYNC_POSTREAD); switch (ctx->ctx_op) { case UBS_CTXOP_RNGBYPASS: { struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q; u_int32_t *p; int i; bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, BUS_DMASYNC_POSTWRITE); p = (u_int32_t *)rng->rng_buf.dma_vaddr; for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++) add_true_randomness(*p); rng->rng_used = 0; timeout_add(&sc->sc_rngto, sc->sc_rnghz); break; } default: printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname, ctx->ctx_op); break; } } void ubsec_rng(vsc) void *vsc; { struct ubsec_softc *sc = vsc; struct ubsec_q2_rng *rng = &sc->sc_rng; struct ubsec_mcr *mcr; struct ubsec_ctx_rngbypass *ctx; int s; s = splnet(); if (rng->rng_used) { splx(s); return; } sc->sc_nqueue2++; if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE) goto out; if (rng->rng_q.q_mcr.dma_map == NULL) { if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &rng->rng_q.q_mcr, 0)) goto out; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass), &rng->rng_q.q_ctx, 0)) { ubsec_dma_free(sc, &rng->rng_q.q_mcr); goto out; } if (ubsec_dma_malloc(sc, sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ, &rng->rng_buf, 0)) { ubsec_dma_free(sc, &rng->rng_q.q_ctx); ubsec_dma_free(sc, &rng->rng_q.q_mcr); goto out; } } mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr; ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr; mcr->mcr_pkts = 1; mcr->mcr_flags = 0; mcr->mcr_cmdctxp = rng->rng_q.q_ctx.dma_paddr; mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0; mcr->mcr_ipktbuf.pb_len = 0; mcr->mcr_reserved = mcr->mcr_pktlen = 0; mcr->mcr_opktbuf.pb_addr = rng->rng_buf.dma_paddr; mcr->mcr_opktbuf.pb_len = ((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) & UBS_PKTBUF_LEN; mcr->mcr_opktbuf.pb_next = 0; ctx->rbp_len = sizeof(struct ubsec_ctx_rngbypass); ctx->rbp_op = UBS_CTXOP_RNGBYPASS; bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, BUS_DMASYNC_PREWRITE); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, (struct ubsec_q2 *)rng, q_next); rng->rng_used = 1; ubsec_feed2(sc); splx(s); return; out: /* * Something weird happened, generate our own call back. */ sc->sc_nqueue2--; splx(s); timeout_add(&sc->sc_rngto, sc->sc_rnghz); } int ubsec_dma_malloc(sc, size, dma, mapflags) struct ubsec_softc *sc; bus_size_t size; struct ubsec_dma_alloc *dma; int mapflags; { int r; if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0) goto fail_0; if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0) goto fail_1; if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->dma_map)) != 0) goto fail_2; if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, size, NULL, BUS_DMA_NOWAIT)) != 0) goto fail_3; dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; dma->dma_size = size; return (0); fail_3: bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); fail_2: bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); fail_1: bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); fail_0: dma->dma_map = NULL; return (r); } void ubsec_dma_free(sc, dma) struct ubsec_softc *sc; struct ubsec_dma_alloc *dma; { bus_dmamap_unload(sc->sc_dmat, dma->dma_map); bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); }