/* $OpenBSD: ubsec.c,v 1.166 2020/05/29 04:42:25 deraadt Exp $ */ /* * Copyright (c) 2000 Jason L. Wright (jason@thought.net) * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org) * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * */ #undef UBSEC_DEBUG /* * uBsec 5[56]01, 58xx hardware crypto accelerator */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Prototypes and count for the pci_device structure */ int ubsec_probe(struct device *, void *, void *); void ubsec_attach(struct device *, struct device *, void *); void ubsec_reset_board(struct ubsec_softc *); void ubsec_init_board(struct ubsec_softc *); void ubsec_init_pciregs(struct pci_attach_args *pa); void ubsec_cleanchip(struct ubsec_softc *); void ubsec_totalreset(struct ubsec_softc *); int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *); struct cfattach ubsec_ca = { sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, }; struct cfdriver ubsec_cd = { 0, "ubsec", DV_DULL }; int ubsec_intr(void *); int ubsec_newsession(u_int32_t *, struct cryptoini *); int ubsec_freesession(u_int64_t); int ubsec_process(struct cryptop *); void ubsec_callback(struct ubsec_softc *, struct ubsec_q *); void ubsec_feed(struct ubsec_softc *); void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *); void ubsec_feed2(struct ubsec_softc *); void ubsec_feed4(struct ubsec_softc *); void ubsec_rng(void *); int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t, struct ubsec_dma_alloc *, int); void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *); int ubsec_dmamap_aligned(bus_dmamap_t); #define READ_REG(sc,r) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) #define WRITE_REG(sc,reg,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) #define SWAP32(x) (x) = htole32(ntohl((x))) #define HTOLE32(x) (x) = htole32(x) struct ubsec_stats ubsecstats; const struct pci_matchid ubsec_devices[] = { { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501 }, { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862 }, { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K }, { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821 }, }; int ubsec_probe(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, ubsec_devices, nitems(ubsec_devices))); } void ubsec_attach(struct device *parent, struct device *self, void *aux) { struct ubsec_softc *sc = (struct ubsec_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; pcireg_t memtype; const char *intrstr = NULL; struct ubsec_dma *dmap; bus_size_t iosize; u_int32_t i; int algs[CRYPTO_ALGORITHM_MAX + 1]; SIMPLEQ_INIT(&sc->sc_queue); SIMPLEQ_INIT(&sc->sc_qchip); SIMPLEQ_INIT(&sc->sc_queue2); SIMPLEQ_INIT(&sc->sc_qchip2); SIMPLEQ_INIT(&sc->sc_queue4); SIMPLEQ_INIT(&sc->sc_qchip4); sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR; sc->sc_maxaggr = UBS_MIN_AGGR; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BLUESTEEL && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BLUESTEEL_5601) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5802 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5805)) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5820 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5822)) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY; if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5821) || (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_SCA1K || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_5821))) { sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY; sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY; } if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5823 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5825)) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5860 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5861 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_5862)) { sc->sc_maxaggr = UBS_MAX_AGGR; sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY | BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY; sc->sc_flags |= UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM | UBS_FLAGS_LONGCTX | UBS_FLAGS_AES | UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY; #if 0 /* The RNG is not yet supported */ sc->sc_flags |= UBS_FLAGS_RNG | UBS_FLAGS_RNG4; #endif } memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR); if (pci_mapreg_map(pa, BS_BAR, memtype, 0, &sc->sc_st, &sc->sc_sh, NULL, &iosize, 0)) { printf(": can't find mem space\n"); return; } sc->sc_dmat = pa->pa_dmat; if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); return; } sc->sc_cid = crypto_get_driverid(0); if (sc->sc_cid < 0) { pci_intr_disestablish(pc, sc->sc_ih); bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); return; } SIMPLEQ_INIT(&sc->sc_freequeue); dmap = sc->sc_dmaa; for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) { struct ubsec_q *q; q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q), M_DEVBUF, M_NOWAIT); if (q == NULL) { printf(": can't allocate queue buffers\n"); break; } if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk), &dmap->d_alloc, 0)) { printf(": can't allocate dma buffers\n"); free(q, M_DEVBUF, 0); break; } dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr; q->q_dma = dmap; sc->sc_queuea[i] = q; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); } bzero(algs, sizeof(algs)); algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; if (sc->sc_flags & UBS_FLAGS_AES) algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; crypto_register(sc->sc_cid, algs, ubsec_newsession, ubsec_freesession, ubsec_process); /* * Reset Broadcom chip */ ubsec_reset_board(sc); /* * Init Broadcom specific PCI settings */ ubsec_init_pciregs(pa); /* * Init Broadcom chip */ ubsec_init_board(sc); printf(": 3DES MD5 SHA1"); if (sc->sc_flags & UBS_FLAGS_AES) printf(" AES"); #ifndef UBSEC_NO_RNG if (sc->sc_flags & UBS_FLAGS_RNG) { if (sc->sc_flags & UBS_FLAGS_RNG4) sc->sc_statmask |= BS_STAT_MCR4_DONE; else sc->sc_statmask |= BS_STAT_MCR2_DONE; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &sc->sc_rng.rng_q.q_mcr, 0)) goto skip_rng; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass), &sc->sc_rng.rng_q.q_ctx, 0)) { ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); goto skip_rng; } if (ubsec_dma_malloc(sc, sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) { ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); goto skip_rng; } timeout_set(&sc->sc_rngto, ubsec_rng, sc); sc->sc_rngms = 10; timeout_add_msec(&sc->sc_rngto, sc->sc_rngms); printf(" RNG"); skip_rng: ; } #endif /* UBSEC_NO_RNG */ if (sc->sc_flags & UBS_FLAGS_KEY) { sc->sc_statmask |= BS_STAT_MCR2_DONE; } printf(", %s\n", intrstr); } /* * UBSEC Interrupt routine */ int ubsec_intr(void *arg) { struct ubsec_softc *sc = arg; volatile u_int32_t stat; struct ubsec_q *q; struct ubsec_dma *dmap; u_int16_t flags; int npkts = 0, i; stat = READ_REG(sc, BS_STAT); if ((stat & (BS_STAT_MCR1_DONE|BS_STAT_MCR2_DONE|BS_STAT_MCR4_DONE| BS_STAT_DMAERR)) == 0) return (0); stat &= sc->sc_statmask; WRITE_REG(sc, BS_STAT, stat); /* IACK */ /* * Check to see if we have any packets waiting for us */ if ((stat & BS_STAT_MCR1_DONE)) { while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); dmap = q->q_dma; if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0) break; SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next); npkts = q->q_nstacked_mcrs; /* * search for further sc_qchip ubsec_q's that share * the same MCR, and complete them too, they must be * at the top. */ for (i = 0; i < npkts; i++) { if(q->q_stacked_mcr[i]) ubsec_callback(sc, q->q_stacked_mcr[i]); else break; } ubsec_callback(sc, q); } /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed(sc); } /* * Check to see if we have any key setups/rng's waiting for us */ if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) && (stat & BS_STAT_MCR2_DONE)) { struct ubsec_q2 *q2; struct ubsec_mcr *mcr; while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) { q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; /* A bug in new devices requires to swap this field */ if (sc->sc_flags & UBS_FLAGS_MULTIMCR) flags = swap16(mcr->mcr_flags); else flags = mcr->mcr_flags; if ((flags & htole16(UBS_MCR_DONE)) == 0) { bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); break; } SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next); ubsec_callback2(sc, q2); /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed2(sc); } } if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) { struct ubsec_q2 *q2; struct ubsec_mcr *mcr; while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) { q2 = SIMPLEQ_FIRST(&sc->sc_qchip4); bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; /* A bug in new devices requires to swap this field */ flags = swap16(mcr->mcr_flags); if ((flags & htole16(UBS_MCR_DONE)) == 0) { bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 0, q2->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); break; } SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next); ubsec_callback2(sc, q2); /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed4(sc); } } /* * Check to see if we got any DMA Error */ if (stat & BS_STAT_DMAERR) { #ifdef UBSEC_DEBUG volatile u_int32_t a = READ_REG(sc, BS_ERR); printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname, (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR); #endif /* UBSEC_DEBUG */ ubsecstats.hst_dmaerr++; ubsec_totalreset(sc); ubsec_feed(sc); } return (1); } /* * ubsec_feed() - aggregate and post requests to chip * It is assumed that the caller set splnet() */ void ubsec_feed(struct ubsec_softc *sc) { #ifdef UBSEC_DEBUG static int max; #endif /* UBSEC_DEBUG */ struct ubsec_q *q, *q2; int npkts, i; void *v; u_int32_t stat; npkts = sc->sc_nqueue; if (npkts > sc->sc_maxaggr) npkts = sc->sc_maxaggr; if (npkts < 2) goto feed1; if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { if(stat & BS_STAT_DMAERR) { ubsec_totalreset(sc); ubsecstats.hst_dmaerr++; } return; } #ifdef UBSEC_DEBUG printf("merging %d records\n", npkts); /* XXX temporary aggregation statistics reporting code */ if (max < npkts) { max = npkts; printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max); } #endif /* UBSEC_DEBUG */ q = SIMPLEQ_FIRST(&sc->sc_queue); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next); --sc->sc_nqueue; bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (q->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */ for (i = 0; i < q->q_nstacked_mcrs; i++) { q2 = SIMPLEQ_FIRST(&sc->sc_queue); bus_dmamap_sync(sc->sc_dmat, q2->q_src_map, 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (q2->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map, 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next); --sc->sc_nqueue; v = ((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) - sizeof(struct ubsec_mcr_add); bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add)); q->q_stacked_mcr[i] = q2; } q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts); SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 0, q->q_dma->d_alloc.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_mcr)); return; feed1: while (!SIMPLEQ_EMPTY(&sc->sc_queue)) { if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { if(stat & BS_STAT_DMAERR) { ubsec_totalreset(sc); ubsecstats.hst_dmaerr++; } break; } q = SIMPLEQ_FIRST(&sc->sc_queue); bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (q->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 0, q->q_dma->d_alloc.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_mcr)); #ifdef UBSEC_DEBUG printf("feed: q->chip %p %08x\n", q, (u_int32_t)q->q_dma->d_alloc.dma_paddr); #endif /* UBSEC_DEBUG */ SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next); --sc->sc_nqueue; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); } } /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. */ int ubsec_newsession(u_int32_t *sidp, struct cryptoini *cri) { struct cryptoini *c, *encini = NULL, *macini = NULL; struct ubsec_softc *sc = NULL; struct ubsec_session *ses = NULL; MD5_CTX md5ctx; SHA1_CTX sha1ctx; int i, sesn; if (sidp == NULL || cri == NULL) return (EINVAL); for (i = 0; i < ubsec_cd.cd_ndevs; i++) { sc = ubsec_cd.cd_devs[i]; if (sc == NULL || sc->sc_cid == (*sidp)) break; } if (sc == NULL) return (EINVAL); for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC || c->cri_alg == CRYPTO_SHA1_HMAC) { if (macini) return (EINVAL); macini = c; } else if (c->cri_alg == CRYPTO_3DES_CBC || c->cri_alg == CRYPTO_AES_CBC) { if (encini) return (EINVAL); encini = c; } else return (EINVAL); } if (encini == NULL && macini == NULL) return (EINVAL); if (encini && encini->cri_alg == CRYPTO_AES_CBC) { switch (encini->cri_klen) { case 128: case 192: case 256: break; default: return (EINVAL); } } if (sc->sc_sessions == NULL) { ses = sc->sc_sessions = (struct ubsec_session *)malloc( sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); sesn = 0; sc->sc_nsessions = 1; } else { for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = mallocarray((sesn + 1), sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); bcopy(sc->sc_sessions, ses, sesn * sizeof(struct ubsec_session)); explicit_bzero(sc->sc_sessions, sesn * sizeof(struct ubsec_session)); free(sc->sc_sessions, M_DEVBUF, 0); sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } } bzero(ses, sizeof(struct ubsec_session)); ses->ses_used = 1; if (encini) { /* Go ahead and compute key in ubsec's byte order */ if (encini->cri_alg == CRYPTO_AES_CBC) { bcopy(encini->cri_key, ses->ses_key, encini->cri_klen / 8); } else bcopy(encini->cri_key, ses->ses_key, 24); SWAP32(ses->ses_key[0]); SWAP32(ses->ses_key[1]); SWAP32(ses->ses_key[2]); SWAP32(ses->ses_key[3]); SWAP32(ses->ses_key[4]); SWAP32(ses->ses_key[5]); SWAP32(ses->ses_key[6]); SWAP32(ses->ses_key[7]); } if (macini) { for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_IPAD_VAL; if (macini->cri_alg == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_ipad_buffer, HMAC_MD5_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_ipad_buffer, HMAC_SHA1_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(sha1ctx.state, ses->ses_hminner, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (macini->cri_alg == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, macini->cri_key, macini->cri_klen / 8); MD5Update(&md5ctx, hmac_opad_buffer, HMAC_MD5_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, macini->cri_key, macini->cri_klen / 8); SHA1Update(&sha1ctx, hmac_opad_buffer, HMAC_SHA1_BLOCK_LEN - (macini->cri_klen / 8)); bcopy(sha1ctx.state, ses->ses_hmouter, sizeof(sha1ctx.state)); } for (i = 0; i < macini->cri_klen / 8; i++) macini->cri_key[i] ^= HMAC_OPAD_VAL; } *sidp = UBSEC_SID(sc->sc_dv.dv_unit, sesn); return (0); } /* * Deallocate a session. */ int ubsec_freesession(u_int64_t tid) { struct ubsec_softc *sc; int card, session; u_int32_t sid = ((u_int32_t)tid) & 0xffffffff; card = UBSEC_CARD(sid); if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL) return (EINVAL); sc = ubsec_cd.cd_devs[card]; session = UBSEC_SESSION(sid); explicit_bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); return (0); } int ubsec_process(struct cryptop *crp) { struct ubsec_q *q = NULL; int card, err = 0, i, j, s, nicealign; struct ubsec_softc *sc; struct cryptodesc *crd1, *crd2 = NULL, *maccrd, *enccrd; int encoffset = 0, macoffset = 0, cpskip, cpoffset; int sskip, dskip, stheend, dtheend; int16_t coffset; struct ubsec_session *ses, key; struct ubsec_dma *dmap = NULL; u_int16_t flags = 0; int ivlen = 0, keylen = 0; if (crp == NULL || crp->crp_callback == NULL) { ubsecstats.hst_invalid++; return (EINVAL); } card = UBSEC_CARD(crp->crp_sid); if (card >= ubsec_cd.cd_ndevs || ubsec_cd.cd_devs[card] == NULL) { ubsecstats.hst_invalid++; return (EINVAL); } sc = ubsec_cd.cd_devs[card]; s = splnet(); if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) { ubsecstats.hst_queuefull++; splx(s); err = ENOMEM; goto errout2; } q = SIMPLEQ_FIRST(&sc->sc_freequeue); SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next); splx(s); dmap = q->q_dma; /* Save dma pointer */ bzero(q, sizeof(struct ubsec_q)); bzero(&key, sizeof(key)); q->q_sesn = UBSEC_SESSION(crp->crp_sid); q->q_dma = dmap; ses = &sc->sc_sessions[q->q_sesn]; if (crp->crp_flags & CRYPTO_F_IMBUF) { q->q_src_m = (struct mbuf *)crp->crp_buf; q->q_dst_m = (struct mbuf *)crp->crp_buf; } else if (crp->crp_flags & CRYPTO_F_IOV) { q->q_src_io = (struct uio *)crp->crp_buf; q->q_dst_io = (struct uio *)crp->crp_buf; } else { err = EINVAL; goto errout; /* XXX we don't handle contiguous blocks! */ } bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr)); dmap->d_dma->d_mcr.mcr_pkts = htole16(1); dmap->d_dma->d_mcr.mcr_flags = 0; q->q_crp = crp; if (crp->crp_ndesc < 1) { err = EINVAL; goto errout; } crd1 = &crp->crp_desc[0]; if (crp->crp_ndesc >= 2) crd2 = &crp->crp_desc[1]; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) { maccrd = crd1; enccrd = NULL; } else if (crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC) { maccrd = NULL; enccrd = crd1; } else { err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) && (crd2->crd_alg == CRYPTO_3DES_CBC || crd2->crd_alg == CRYPTO_AES_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC || crd2->crd_alg == CRYPTO_SHA1_HMAC) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { /* * We cannot order the ubsec as requested */ err = EINVAL; goto errout; } } if (enccrd) { if (enccrd->crd_alg == CRYPTO_AES_CBC) { if ((sc->sc_flags & UBS_FLAGS_AES) == 0) { err = EINVAL; goto errout; } flags |= htole16(UBS_PKTCTX_ENC_AES); switch (enccrd->crd_klen) { case 128: case 192: case 256: keylen = enccrd->crd_klen / 8; break; default: err = EINVAL; goto errout; } ivlen = 16; } else { flags |= htole16(UBS_PKTCTX_ENC_3DES); ivlen = 8; keylen = 24; } encoffset = enccrd->crd_skip; if (enccrd->crd_flags & CRD_F_ENCRYPT) { if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, key.ses_iv, ivlen); else arc4random_buf(key.ses_iv, ivlen); if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { if (crp->crp_flags & CRYPTO_F_IMBUF) err = m_copyback(q->q_src_m, enccrd->crd_inject, ivlen, key.ses_iv, M_NOWAIT); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copyback(q->q_src_io, enccrd->crd_inject, ivlen, key.ses_iv); if (err) goto errout; } } else { flags |= htole16(UBS_PKTCTX_INBOUND); if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, key.ses_iv, ivlen); else if (crp->crp_flags & CRYPTO_F_IMBUF) m_copydata(q->q_src_m, enccrd->crd_inject, ivlen, (caddr_t)key.ses_iv); else if (crp->crp_flags & CRYPTO_F_IOV) cuio_copydata(q->q_src_io, enccrd->crd_inject, ivlen, (caddr_t)key.ses_iv); } for (i = 0; i < (keylen / 4); i++) key.ses_key[i] = ses->ses_key[i]; for (i = 0; i < (ivlen / 4); i++) SWAP32(key.ses_iv[i]); } if (maccrd) { macoffset = maccrd->crd_skip; if (maccrd->crd_alg == CRYPTO_MD5_HMAC) flags |= htole16(UBS_PKTCTX_AUTH_MD5); else flags |= htole16(UBS_PKTCTX_AUTH_SHA1); for (i = 0; i < 5; i++) { key.ses_hminner[i] = ses->ses_hminner[i]; key.ses_hmouter[i] = ses->ses_hmouter[i]; HTOLE32(key.ses_hminner[i]); HTOLE32(key.ses_hmouter[i]); } } if (enccrd && maccrd) { /* * ubsec cannot handle packets where the end of encryption * and authentication are not the same, or where the * encrypted part begins before the authenticated part. */ if (((encoffset + enccrd->crd_len) != (macoffset + maccrd->crd_len)) || (enccrd->crd_skip < maccrd->crd_skip)) { err = EINVAL; goto errout; } sskip = maccrd->crd_skip; cpskip = dskip = enccrd->crd_skip; stheend = maccrd->crd_len; dtheend = enccrd->crd_len; coffset = enccrd->crd_skip - maccrd->crd_skip; cpoffset = cpskip + dtheend; #ifdef UBSEC_DEBUG printf("mac: skip %d, len %d, inject %d\n", maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); printf("enc: skip %d, len %d, inject %d\n", enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); printf("src: skip %d, len %d\n", sskip, stheend); printf("dst: skip %d, len %d\n", dskip, dtheend); printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n", coffset, stheend, cpskip, cpoffset); #endif } else { cpskip = dskip = sskip = macoffset + encoffset; dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len; cpoffset = cpskip + dtheend; coffset = 0; } if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) { err = ENOMEM; goto errout; } if (crp->crp_flags & CRYPTO_F_IMBUF) { if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map, q->q_src_m, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); q->q_src_map = NULL; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IOV) { if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map, q->q_src_io, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); q->q_src_map = NULL; err = ENOMEM; goto errout; } } nicealign = ubsec_dmamap_aligned(q->q_src_map); dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend); #ifdef UBSEC_DEBUG printf("src skip: %d\n", sskip); #endif for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) { struct ubsec_pktbuf *pb; bus_size_t packl = q->q_src_map->dm_segs[i].ds_len; bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr; if (sskip >= packl) { sskip -= packl; continue; } packl -= sskip; packp += sskip; sskip = 0; if (packl > 0xfffc) { err = EIO; goto errout; } if (j == 0) pb = &dmap->d_dma->d_mcr.mcr_ipktbuf; else pb = &dmap->d_dma->d_sbuf[j - 1]; pb->pb_addr = htole32(packp); if (stheend) { if (packl > stheend) { pb->pb_len = htole32(stheend); stheend = 0; } else { pb->pb_len = htole32(packl); stheend -= packl; } } else pb->pb_len = htole32(packl); if ((i + 1) == q->q_src_map->dm_nsegs) pb->pb_next = 0; else pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_sbuf[j])); j++; } if (enccrd == NULL && maccrd != NULL) { dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0; dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0; dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_macbuf[0])); #ifdef UBSEC_DEBUG printf("opkt: %x %x %x\n", dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr, dmap->d_dma->d_mcr.mcr_opktbuf.pb_len, dmap->d_dma->d_mcr.mcr_opktbuf.pb_next); #endif } else { if (crp->crp_flags & CRYPTO_F_IOV) { if (!nicealign) { err = EINVAL; goto errout; } if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_dst_map) != 0) { err = ENOMEM; goto errout; } if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map, q->q_dst_io, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); q->q_dst_map = NULL; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IMBUF) { if (nicealign) { q->q_dst_m = q->q_src_m; q->q_dst_map = q->q_src_map; } else { q->q_dst_m = m_dup_pkt(q->q_src_m, 0, M_NOWAIT); if (q->q_dst_m == NULL) { err = ENOMEM; goto errout; } if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_dst_map) != 0) { err = ENOMEM; goto errout; } if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_dst_map, q->q_dst_m, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); q->q_dst_map = NULL; err = ENOMEM; goto errout; } } } else { err = EINVAL; goto errout; } #ifdef UBSEC_DEBUG printf("dst skip: %d\n", dskip); #endif for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) { struct ubsec_pktbuf *pb; bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len; bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr; if (dskip >= packl) { dskip -= packl; continue; } packl -= dskip; packp += dskip; dskip = 0; if (packl > 0xfffc) { err = EIO; goto errout; } if (j == 0) pb = &dmap->d_dma->d_mcr.mcr_opktbuf; else pb = &dmap->d_dma->d_dbuf[j - 1]; pb->pb_addr = htole32(packp); if (dtheend) { if (packl > dtheend) { pb->pb_len = htole32(dtheend); dtheend = 0; } else { pb->pb_len = htole32(packl); dtheend -= packl; } } else pb->pb_len = htole32(packl); if ((i + 1) == q->q_dst_map->dm_nsegs) { if (maccrd) pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_macbuf[0])); else pb->pb_next = 0; } else pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_dbuf[j])); j++; } } dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_ctx)); if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) { struct ubsec_pktctx_aes128 *aes128; struct ubsec_pktctx_aes192 *aes192; struct ubsec_pktctx_aes256 *aes256; struct ubsec_pktctx_hdr *ph; u_int8_t *ctx; ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr + offsetof(struct ubsec_dmachunk, d_ctx)); ph = (struct ubsec_pktctx_hdr *)ctx; ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES); ph->ph_flags = flags; ph->ph_offset = htole16(coffset >> 2); switch (enccrd->crd_klen) { case 128: aes128 = (struct ubsec_pktctx_aes128 *)ctx; ph->ph_len = htole16(sizeof(*aes128)); ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128); for (i = 0; i < 4; i++) aes128->pc_aeskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) aes128->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) aes128->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 4; i++) aes128->pc_iv[i] = key.ses_iv[i]; break; case 192: aes192 = (struct ubsec_pktctx_aes192 *)ctx; ph->ph_len = htole16(sizeof(*aes192)); ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192); for (i = 0; i < 6; i++) aes192->pc_aeskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) aes192->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) aes192->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 4; i++) aes192->pc_iv[i] = key.ses_iv[i]; break; case 256: aes256 = (struct ubsec_pktctx_aes256 *)ctx; ph->ph_len = htole16(sizeof(*aes256)); ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256); for (i = 0; i < 8; i++) aes256->pc_aeskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) aes256->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) aes256->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 4; i++) aes256->pc_iv[i] = key.ses_iv[i]; break; } } else if (sc->sc_flags & UBS_FLAGS_LONGCTX) { struct ubsec_pktctx_3des *ctx; struct ubsec_pktctx_hdr *ph; ctx = (struct ubsec_pktctx_3des *) (dmap->d_alloc.dma_vaddr + offsetof(struct ubsec_dmachunk, d_ctx)); ph = (struct ubsec_pktctx_hdr *)ctx; ph->ph_len = htole16(sizeof(*ctx)); ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES); ph->ph_flags = flags; ph->ph_offset = htole16(coffset >> 2); for (i = 0; i < 6; i++) ctx->pc_deskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) ctx->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) ctx->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 2; i++) ctx->pc_iv[i] = key.ses_iv[i]; } else { struct ubsec_pktctx *ctx = (struct ubsec_pktctx *) (dmap->d_alloc.dma_vaddr + offsetof(struct ubsec_dmachunk, d_ctx)); ctx->pc_flags = flags; ctx->pc_offset = htole16(coffset >> 2); for (i = 0; i < 6; i++) ctx->pc_deskey[i] = key.ses_key[i]; for (i = 0; i < 5; i++) ctx->pc_hminner[i] = key.ses_hminner[i]; for (i = 0; i < 5; i++) ctx->pc_hmouter[i] = key.ses_hmouter[i]; for (i = 0; i < 2; i++) ctx->pc_iv[i] = key.ses_iv[i]; } s = splnet(); SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next); sc->sc_nqueue++; ubsecstats.hst_ipackets++; ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize; ubsec_feed(sc); splx(s); explicit_bzero(&key, sizeof(key)); return (0); errout: if (q != NULL) { if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) m_freem(q->q_dst_m); if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); } if (q->q_src_map != NULL) { bus_dmamap_unload(sc->sc_dmat, q->q_src_map); bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); } s = splnet(); SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); splx(s); } if (err == EINVAL) ubsecstats.hst_invalid++; else ubsecstats.hst_nomem++; errout2: crp->crp_etype = err; crypto_done(crp); explicit_bzero(&key, sizeof(key)); return (0); } void ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q) { struct cryptop *crp = (struct cryptop *)q->q_crp; struct cryptodesc *crd; struct ubsec_dma *dmap = q->q_dma; u_int8_t *ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr + offsetof(struct ubsec_dmachunk, d_ctx)); struct ubsec_pktctx_hdr *ph = (struct ubsec_pktctx_hdr *)ctx; int i; ubsecstats.hst_opackets++; ubsecstats.hst_obytes += dmap->d_alloc.dma_size; bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0, dmap->d_alloc.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); } bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, q->q_src_map); bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); explicit_bzero(ctx, ph->ph_len); if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) { m_freem(q->q_src_m); crp->crp_buf = (caddr_t)q->q_dst_m; } for (i = 0; i < crp->crp_ndesc; i++) { crd = &crp->crp_desc[i]; if (crd->crd_alg != CRYPTO_MD5_HMAC && crd->crd_alg != CRYPTO_SHA1_HMAC) continue; if (crp->crp_flags & CRYPTO_F_IMBUF) crp->crp_etype = m_copyback((struct mbuf *)crp->crp_buf, crd->crd_inject, 12, dmap->d_dma->d_macbuf, M_NOWAIT); else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) bcopy((caddr_t)dmap->d_dma->d_macbuf, crp->crp_mac, 12); break; } SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); crypto_done(crp); } /* * feed the key generator, must be called at splnet() or higher. */ void ubsec_feed2(struct ubsec_softc *sc) { struct ubsec_q2 *q; while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue2); bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0, q->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next); --sc->sc_nqueue2; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next); } } /* * feed the RNG (used instead of ubsec_feed2() on 5827+ devices) */ void ubsec_feed4(struct ubsec_softc *sc) { struct ubsec_q2 *q; while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue4); bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0, q->q_mcr.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next); --sc->sc_nqueue4; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next); } } /* * Callback for handling random numbers */ void ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q) { struct ubsec_ctx_keyop *ctx; ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr; bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); switch (q->q_type) { #ifndef UBSEC_NO_RNG case UBS_CTXOP_RNGSHA1: case UBS_CTXOP_RNGBYPASS: { struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q; u_int32_t *p; int i; bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); p = (u_int32_t *)rng->rng_buf.dma_vaddr; for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++) enqueue_randomness(*p); rng->rng_used = 0; timeout_add_msec(&sc->sc_rngto, sc->sc_rngms); break; } #endif default: printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname, letoh16(ctx->ctx_op)); break; } } #ifndef UBSEC_NO_RNG void ubsec_rng(void *vsc) { struct ubsec_softc *sc = vsc; struct ubsec_q2_rng *rng = &sc->sc_rng; struct ubsec_mcr *mcr; struct ubsec_ctx_rngbypass *ctx; int s, *nqueue; s = splnet(); if (rng->rng_used) { splx(s); return; } if (sc->sc_flags & UBS_FLAGS_RNG4) nqueue = &sc->sc_nqueue4; else nqueue = &sc->sc_nqueue2; (*nqueue)++; if (*nqueue >= UBS_MAX_NQUEUE) goto out; mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr; ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr; mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr); mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0; mcr->mcr_ipktbuf.pb_len = 0; mcr->mcr_reserved = mcr->mcr_pktlen = 0; mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr); mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) & UBS_PKTBUF_LEN); mcr->mcr_opktbuf.pb_next = 0; ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass)); ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1); rng->rng_q.q_type = UBS_CTXOP_RNGSHA1; bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); if (sc->sc_flags & UBS_FLAGS_RNG4) { SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next); rng->rng_used = 1; ubsec_feed4(sc); } else { SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next); rng->rng_used = 1; ubsec_feed2(sc); } splx(s); return; out: /* * Something weird happened, generate our own call back. */ (*nqueue)--; splx(s); timeout_add_msec(&sc->sc_rngto, sc->sc_rngms); } #endif /* UBSEC_NO_RNG */ int ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size, struct ubsec_dma_alloc *dma, int mapflags) { int r; if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0) goto fail_0; if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0) goto fail_1; if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->dma_map)) != 0) goto fail_2; if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, size, NULL, BUS_DMA_NOWAIT)) != 0) goto fail_3; dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; dma->dma_size = size; return (0); fail_3: bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); fail_2: bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); fail_1: bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); fail_0: dma->dma_map = NULL; return (r); } void ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma) { bus_dmamap_unload(sc->sc_dmat, dma->dma_map); bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); } /* * Resets the board. Values in the regesters are left as is * from the reset (i.e. initial values are assigned elsewhere). */ void ubsec_reset_board(struct ubsec_softc *sc) { volatile u_int32_t ctrl; /* Reset the device */ ctrl = READ_REG(sc, BS_CTRL); ctrl |= BS_CTRL_RESET; WRITE_REG(sc, BS_CTRL, ctrl); /* * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us */ DELAY(10); /* Enable RNG and interrupts on newer devices */ if (sc->sc_flags & UBS_FLAGS_MULTIMCR) { WRITE_REG(sc, BS_CFG, BS_CFG_RNG); WRITE_REG(sc, BS_INT, BS_INT_DMAINT); } } /* * Init Broadcom registers */ void ubsec_init_board(struct ubsec_softc *sc) { u_int32_t ctrl; ctrl = READ_REG(sc, BS_CTRL); ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64); ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT; if (sc->sc_flags & UBS_FLAGS_KEY) ctrl |= BS_CTRL_MCR2INT; else ctrl &= ~BS_CTRL_MCR2INT; if (sc->sc_flags & UBS_FLAGS_HWNORM) ctrl &= ~BS_CTRL_SWNORM; if (sc->sc_flags & UBS_FLAGS_MULTIMCR) { ctrl |= BS_CTRL_BSIZE240; ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */ if (sc->sc_flags & UBS_FLAGS_RNG4) ctrl |= BS_CTRL_MCR4INT; else ctrl &= ~BS_CTRL_MCR4INT; } WRITE_REG(sc, BS_CTRL, ctrl); } /* * Init Broadcom PCI registers */ void ubsec_init_pciregs(struct pci_attach_args *pa) { pci_chipset_tag_t pc = pa->pa_pc; u_int32_t misc; /* * This will set the cache line size to 1, this will * force the BCM58xx chip just to do burst read/writes. * Cache line read/writes are to slow */ misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG); misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT)) | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT); pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc); } /* * Clean up after a chip crash. * It is assumed that the caller is in splnet() */ void ubsec_cleanchip(struct ubsec_softc *sc) { struct ubsec_q *q; while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next); ubsec_free_q(sc, q); } } /* * free a ubsec_q * It is assumed that the caller is within splnet() */ int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q) { struct ubsec_q *q2; struct cryptop *crp; int npkts; int i; npkts = q->q_nstacked_mcrs; for (i = 0; i < npkts; i++) { if(q->q_stacked_mcr[i]) { q2 = q->q_stacked_mcr[i]; if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m)) m_freem(q2->q_dst_m); crp = (struct cryptop *)q2->q_crp; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next); crp->crp_etype = EFAULT; crypto_done(crp); } else { break; } } /* * Free header MCR */ if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) m_freem(q->q_dst_m); crp = (struct cryptop *)q->q_crp; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); crp->crp_etype = EFAULT; crypto_done(crp); return(0); } /* * Routine to reset the chip and clean up. * It is assumed that the caller is in splnet() */ void ubsec_totalreset(struct ubsec_softc *sc) { ubsec_reset_board(sc); ubsec_init_board(sc); ubsec_cleanchip(sc); } int ubsec_dmamap_aligned(bus_dmamap_t map) { int i; for (i = 0; i < map->dm_nsegs; i++) { if (map->dm_segs[i].ds_addr & 3) return (0); if ((i != (map->dm_nsegs - 1)) && (map->dm_segs[i].ds_len & 3)) return (0); } return (1); }