/* $OpenBSD: viaenv.c,v 1.4 2004/09/26 12:36:56 grange Exp $ */ /* $NetBSD: viaenv.c,v 1.9 2002/10/02 16:51:59 thorpej Exp $ */ /* * Copyright (c) 2000 Johan Danielsson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of author nor the names of any contributors may * be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* driver for the hardware monitoring part of the VIA VT82C686A */ #include #include #include #include #include #include #include #ifdef __HAVE_TIMECOUNTER #include #endif #include #include #include #include #ifdef VIAENV_DEBUG unsigned int viaenv_debug = 0; #define DPRINTF(X) do { if(viaenv_debug) printf X ; } while(0) #else #define DPRINTF(X) #endif #define VIANUMSENSORS 10 /* three temp, two fan, five voltage */ struct viaenv_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_space_handle_t sc_pm_ioh; int sc_fan_div[2]; /* fan RPM divisor */ struct sensor sc_data[VIANUMSENSORS]; }; int viaenv_match(struct device *, void *, void *); void viaenv_attach(struct device *, struct device *, void *); int val_to_uK(unsigned int); int val_to_rpm(unsigned int, int); long val_to_uV(unsigned int, int); void viaenv_refresh_sensor_data(struct viaenv_softc *); void viaenv_refresh(void *); #ifdef __HAVE_TIMECOUNTER u_int viaenv_get_timecount(struct timecounter *tc); struct timecounter viaenv_timecounter = { viaenv_get_timecount, /* get_timecount */ 0, /* no poll_pps */ 0xffffff, /* counter_mask */ 3579545, /* frequency */ "VIAPM", /* name */ 1000 /* quality */ }; #endif /* __HAVE_TIMECOUNTER */ struct cfattach viaenv_ca = { sizeof(struct viaenv_softc), viaenv_match, viaenv_attach }; struct cfdriver viaenv_cd = { NULL, "viaenv", DV_DULL }; struct timeout viaenv_timeout; int viaenv_match(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT82C686A_SMB || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT8231_PWR)) return (1); return (0); } /* * XXX there doesn't seem to exist much hard documentation on how to * convert the raw values to usable units, this code is more or less * stolen from the Linux driver, but changed to suit our conditions */ /* * lookup-table to translate raw values to uK, this is the same table * used by the Linux driver (modulo units); there is a fifth degree * polynomial that supposedly been used to generate this table, but I * haven't been able to figure out how -- it doesn't give the same values */ static const long val_to_temp[] = { 20225, 20435, 20645, 20855, 21045, 21245, 21425, 21615, 21785, 21955, 22125, 22285, 22445, 22605, 22755, 22895, 23035, 23175, 23315, 23445, 23565, 23695, 23815, 23925, 24045, 24155, 24265, 24365, 24465, 24565, 24665, 24765, 24855, 24945, 25025, 25115, 25195, 25275, 25355, 25435, 25515, 25585, 25655, 25725, 25795, 25865, 25925, 25995, 26055, 26115, 26175, 26235, 26295, 26355, 26405, 26465, 26515, 26575, 26625, 26675, 26725, 26775, 26825, 26875, 26925, 26975, 27025, 27065, 27115, 27165, 27205, 27255, 27295, 27345, 27385, 27435, 27475, 27515, 27565, 27605, 27645, 27685, 27735, 27775, 27815, 27855, 27905, 27945, 27985, 28025, 28065, 28105, 28155, 28195, 28235, 28275, 28315, 28355, 28405, 28445, 28485, 28525, 28565, 28615, 28655, 28695, 28735, 28775, 28825, 28865, 28905, 28945, 28995, 29035, 29075, 29125, 29165, 29205, 29245, 29295, 29335, 29375, 29425, 29465, 29505, 29555, 29595, 29635, 29685, 29725, 29765, 29815, 29855, 29905, 29945, 29985, 30035, 30075, 30125, 30165, 30215, 30255, 30305, 30345, 30385, 30435, 30475, 30525, 30565, 30615, 30655, 30705, 30755, 30795, 30845, 30885, 30935, 30975, 31025, 31075, 31115, 31165, 31215, 31265, 31305, 31355, 31405, 31455, 31505, 31545, 31595, 31645, 31695, 31745, 31805, 31855, 31905, 31955, 32005, 32065, 32115, 32175, 32225, 32285, 32335, 32395, 32455, 32515, 32575, 32635, 32695, 32755, 32825, 32885, 32955, 33025, 33095, 33155, 33235, 33305, 33375, 33455, 33525, 33605, 33685, 33765, 33855, 33935, 34025, 34115, 34205, 34295, 34395, 34495, 34595, 34695, 34805, 34905, 35015, 35135, 35245, 35365, 35495, 35615, 35745, 35875, 36015, 36145, 36295, 36435, 36585, 36745, 36895, 37065, 37225, 37395, 37575, 37755, 37935, 38125, 38325, 38525, 38725, 38935, 39155, 39375, 39605, 39835, 40075, 40325, 40575, 40835, 41095, 41375, 41655, 41935, }; /* use above table to convert values to temperatures in micro-Kelvins */ int val_to_uK(unsigned int val) { int i = val / 4; int j = val % 4; assert(i >= 0 && i <= 255); if (j == 0 || i == 255) return val_to_temp[i] * 10000; /* is linear interpolation ok? */ return (val_to_temp[i] * (4 - j) + val_to_temp[i + 1] * j) * 2500 /* really: / 4 * 10000 */ ; } int val_to_rpm(unsigned int val, int div) { if (val == 0) return 0; return 1350000 / val / div; } long val_to_uV(unsigned int val, int index) { static const long mult[] = {1250000, 1250000, 1670000, 2600000, 6300000}; assert(index >= 0 && index <= 4); return (25LL * val + 133) * mult[index] / 2628; } #define VIAENV_TSENS3 0x1f #define VIAENV_TSENS1 0x20 #define VIAENV_TSENS2 0x21 #define VIAENV_VSENS1 0x22 #define VIAENV_VSENS2 0x23 #define VIAENV_VCORE 0x24 #define VIAENV_VSENS3 0x25 #define VIAENV_VSENS4 0x26 #define VIAENV_FAN1 0x29 #define VIAENV_FAN2 0x2a #define VIAENV_FANCONF 0x47 /* fan configuration */ #define VIAENV_TLOW 0x49 /* temperature low order value */ #define VIAENV_TIRQ 0x4b /* temperature interrupt configuration */ #define VIAENV_GENCFG 0x40 /* general configuration */ #define VIAENV_GENCFG_TMR32 (1 << 11) /* 32-bit PM timer */ #define VIAENV_GENCFG_PMEN (1 << 15) /* enable PM I/O space */ #define VIAENV_PMBASE 0x48 /* power management I/O space base */ #define VIAENV_PMSIZE 128 /* power management I/O space size */ #define VIAENV_PM_TMR 0x08 /* PM timer */ void viaenv_refresh_sensor_data(struct viaenv_softc *sc) { int i; u_int8_t v, v2; /* temperature */ v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TIRQ); v2 = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TSENS1); DPRINTF(("TSENS1 = %d\n", (v2 << 2) | (v >> 6))); sc->sc_data[0].value = val_to_uK((v2 << 2) | (v >> 6)); v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TLOW); v2 = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TSENS2); DPRINTF(("TSENS2 = %d\n", (v2 << 2) | ((v >> 4) & 0x3))); sc->sc_data[1].value = val_to_uK((v2 << 2) | ((v >> 4) & 0x3)); v2 = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_TSENS3); DPRINTF(("TSENS3 = %d\n", (v2 << 2) | (v >> 6))); sc->sc_data[2].value = val_to_uK((v2 << 2) | (v >> 6)); v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_FANCONF); sc->sc_fan_div[0] = 1 << ((v >> 4) & 0x3); sc->sc_fan_div[1] = 1 << ((v >> 6) & 0x3); /* fan */ for (i = 3; i <= 4; i++) { v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_FAN1 + i - 3); DPRINTF(("FAN%d = %d / %d\n", i - 3, v, sc->sc_fan_div[i - 3])); sc->sc_data[i].value = val_to_rpm(v, sc->sc_fan_div[i - 3]); } /* voltage */ for (i = 5; i <= 9; i++) { v = bus_space_read_1(sc->sc_iot, sc->sc_ioh, VIAENV_VSENS1 + i - 5); DPRINTF(("V%d = %d\n", i - 5, v)); sc->sc_data[i].value = val_to_uV(v, i - 5); } } void viaenv_attach(struct device * parent, struct device * self, void *aux) { struct viaenv_softc *sc = (struct viaenv_softc *) self; struct pci_attach_args *pa = aux; pcireg_t iobase, control; int i; iobase = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x70); control = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x74); if ((iobase & 0xff80) == 0 || (control & 1) == 0) { printf(": disabled\n"); return; } sc->sc_iot = pa->pa_iot; if (bus_space_map(sc->sc_iot, iobase & 0xff80, 128, 0, &sc->sc_ioh)) { printf(": failed to map i/o\n"); return; } #ifdef __HAVE_TIMECOUNTER /* Check if power management I/O space is enabled */ control = pci_conf_read(pa->pa_pc, pa->pa_tag, VIAENV_GENCFG); if ((control & VIAENV_GENCFG_PMEN) == 0) { printf(": PM disabled"); goto nopm; } /* Map power management I/O space */ iobase = pci_conf_read(pa->pa_pc, pa->pa_tag, VIAENV_PMBASE); if (bus_space_map(sc->sc_iot, PCI_MAPREG_IO_ADDR(iobase), VIAENV_PMSIZE, 0, &sc->sc_pm_ioh)) { printf(": failed to map PM I/O space"); goto nopm; } /* Check for 32-bit PM timer */ if (control & VIAENV_GENCFG_TMR32) { printf(": 32-bit PM timer"); viaenv_timecounter.tc_counter_mask = 0xffffffff; } /* Register new timecounter */ viaenv_timecounter.tc_priv = sc; tc_init(&viaenv_timecounter); nopm: #endif /* __HAVE_TIMECOUNTER */ printf("\n"); /* Initialize sensors */ for (i = 0; i < VIANUMSENSORS; ++i) { strlcpy(sc->sc_data[i].device, sc->sc_dev.dv_xname, sizeof(sc->sc_data[i].device)); SENSOR_ADD(&sc->sc_data[i]); } for (i = 0; i <= 2; i++) { sc->sc_data[i].type = SENSOR_TEMP; } strlcpy(sc->sc_data[0].desc, "TSENS1", sizeof(sc->sc_data[0].desc)); strlcpy(sc->sc_data[1].desc, "TSENS2", sizeof(sc->sc_data[1].desc)); strlcpy(sc->sc_data[2].desc, "TSENS3", sizeof(sc->sc_data[2].desc)); for (i = 3; i <= 4; i++) { sc->sc_data[i].type = SENSOR_FANRPM; } strlcpy(sc->sc_data[3].desc, "FAN1", sizeof(sc->sc_data[3].desc)); strlcpy(sc->sc_data[4].desc, "FAN2", sizeof(sc->sc_data[4].desc)); for (i = 5; i <= 9; ++i) { sc->sc_data[i].type = SENSOR_VOLTS_DC; sc->sc_data[i].rfact = 1; /* what is this used for? */ } strlcpy(sc->sc_data[5].desc, "VSENS1", sizeof(sc->sc_data[5].desc)); /* CPU core (2V) */ strlcpy(sc->sc_data[6].desc, "VSENS2", sizeof(sc->sc_data[6].desc)); /* NB core? (2.5V) */ strlcpy(sc->sc_data[7].desc, "Vcore", sizeof(sc->sc_data[7].desc)); /* Vcore (3.3V) */ strlcpy(sc->sc_data[8].desc, "VSENS3", sizeof(sc->sc_data[8].desc)); /* VSENS3 (5V) */ strlcpy(sc->sc_data[9].desc, "VSENS4", sizeof(sc->sc_data[9].desc)); /* VSENS4 (12V) */ /* Get initial set of sensor values. */ viaenv_refresh_sensor_data(sc); /* Refresh sensors data every 1.5 seconds */ timeout_set(&viaenv_timeout, viaenv_refresh, sc); timeout_add(&viaenv_timeout, (15 * hz) / 10); } #if 0 int viaenv_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred) { struct viaenv_softc *sc = sme->sme_cookie; simple_lock(&sc->sc_slock); viaenv_refresh_sensor_data(sc); *tred = sc->sc_data[tred->sensor]; simple_unlock(&sc->sc_slock); return (0); } int viaenv_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo) { /* XXX Not implemented */ binfo->validflags = 0; return (0); } #endif void viaenv_refresh(void *arg) { struct viaenv_softc *sc = (struct viaenv_softc *)arg; viaenv_refresh_sensor_data(sc); timeout_add(&viaenv_timeout, (15 * hz) / 10); } #ifdef __HAVE_TIMECOUNTER u_int viaenv_get_timecount(struct timecounter *tc) { struct viaenv_softc *sc = tc->tc_priv; u_int u1, u2, u3; u2 = bus_space_read_4(sc->sc_iot, sc->sc_pm_ioh, VIAENV_PM_TMR); u3 = bus_space_read_4(sc->sc_iot, sc->sc_pm_ioh, VIAENV_PM_TMR); do { u1 = u2; u2 = u3; u3 = bus_space_read_4(sc->sc_iot, sc->sc_pm_ioh, VIAENV_PM_TMR); } while (u1 > u2 || u2 > u3); return (u2); } #endif /* __HAVE_TIMECOUNTER */