/* $OpenBSD: yds.c,v 1.9 2001/12/07 17:08:35 deraadt Exp $ */ /* $NetBSD: yds.c,v 1.5 2001/05/21 23:55:04 minoura Exp $ */ /* * Copyright (c) 2000, 2001 Kazuki Sakamoto and Minoura Makoto. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Yamaha YMF724[B-F]/740[B-C]/744/754 * * Documentation links: * - ftp://ftp.alsa-project.org/pub/manuals/yamaha/ * - ftp://ftp.alsa-project.org/pub/manuals/yamaha/pci/ * * TODO: * - FM synth volume (difficult: mixed before ac97) * - Digital in/out (SPDIF) support * - Effect?? */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef AUDIO_DEBUG #include /* for vtophys */ #include /* for vtophys */ #endif /* Debug */ #undef YDS_USE_REC_SLOT #define YDS_USE_P44 #ifdef AUDIO_DEBUG # define DPRINTF(x) if (ydsdebug) printf x # define DPRINTFN(n,x) if (ydsdebug>(n)) printf x int ydsdebug = 0; #else # define DPRINTF(x) # define DPRINTFN(n,x) #endif #ifdef YDS_USE_REC_SLOT # define YDS_INPUT_SLOT 0 /* REC slot = ADC + loopbacks */ #else # define YDS_INPUT_SLOT 1 /* ADC slot */ #endif int yds_match __P((struct device *, void *, void *)); void yds_attach __P((struct device *, struct device *, void *)); int yds_intr __P((void *)); #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) #define KERNADDR(p) ((void *)((p)->addr)) int yds_allocmem __P((struct yds_softc *, size_t, size_t, struct yds_dma *)); int yds_freemem __P((struct yds_softc *, struct yds_dma *)); #ifndef AUDIO_DEBUG #define YWRITE1(sc, r, x) bus_space_write_1((sc)->memt, (sc)->memh, (r), (x)) #define YWRITE2(sc, r, x) bus_space_write_2((sc)->memt, (sc)->memh, (r), (x)) #define YWRITE4(sc, r, x) bus_space_write_4((sc)->memt, (sc)->memh, (r), (x)) #define YREAD1(sc, r) bus_space_read_1((sc)->memt, (sc)->memh, (r)) #define YREAD2(sc, r) bus_space_read_2((sc)->memt, (sc)->memh, (r)) #define YREAD4(sc, r) bus_space_read_4((sc)->memt, (sc)->memh, (r)) #else u_int16_t YREAD2(struct yds_softc *sc,bus_size_t r); u_int32_t YREAD4(struct yds_softc *sc,bus_size_t r); void YWRITE1(struct yds_softc *sc,bus_size_t r,u_int8_t x); void YWRITE2(struct yds_softc *sc,bus_size_t r,u_int16_t x); void YWRITE4(struct yds_softc *sc,bus_size_t r,u_int32_t x); u_int16_t YREAD2(struct yds_softc *sc,bus_size_t r) { DPRINTFN(5, (" YREAD2(0x%lX)\n",(unsigned long)r)); return bus_space_read_2(sc->memt,sc->memh,r); } u_int32_t YREAD4(struct yds_softc *sc,bus_size_t r) { DPRINTFN(5, (" YREAD4(0x%lX)\n",(unsigned long)r)); return bus_space_read_4(sc->memt,sc->memh,r); } void YWRITE1(struct yds_softc *sc,bus_size_t r,u_int8_t x) { DPRINTFN(5, (" YWRITE1(0x%lX,0x%lX)\n",(unsigned long)r,(unsigned long)x)); bus_space_write_1(sc->memt,sc->memh,r,x); } void YWRITE2(struct yds_softc *sc,bus_size_t r,u_int16_t x) { DPRINTFN(5, (" YWRITE2(0x%lX,0x%lX)\n",(unsigned long)r,(unsigned long)x)); bus_space_write_2(sc->memt,sc->memh,r,x); } void YWRITE4(struct yds_softc *sc,bus_size_t r,u_int32_t x) { DPRINTFN(5, (" YWRITE4(0x%lX,0x%lX)\n",(unsigned long)r,(unsigned long)x)); bus_space_write_4(sc->memt,sc->memh,r,x); } #endif #define YWRITEREGION4(sc, r, x, c) \ bus_space_write_region_4((sc)->memt, (sc)->memh, (r), (x), (c) / 4) struct cfattach yds_ca = { sizeof(struct yds_softc), yds_match, yds_attach }; struct cfdriver yds_cd = { NULL, "yds", DV_DULL }; int yds_open __P((void *, int)); void yds_close __P((void *)); int yds_query_encoding __P((void *, struct audio_encoding *)); int yds_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); int yds_round_blocksize __P((void *, int)); int yds_trigger_output __P((void *, void *, void *, int, void (*)(void *), void *, struct audio_params *)); int yds_trigger_input __P((void *, void *, void *, int, void (*)(void *), void *, struct audio_params *)); int yds_halt_output __P((void *)); int yds_halt_input __P((void *)); int yds_getdev __P((void *, struct audio_device *)); int yds_mixer_set_port __P((void *, mixer_ctrl_t *)); int yds_mixer_get_port __P((void *, mixer_ctrl_t *)); void *yds_malloc __P((void *, u_long, int, int)); void yds_free __P((void *, void *, int)); u_long yds_round_buffersize __P((void *, u_long)); paddr_t yds_mappage __P((void *, void *, off_t, int)); int yds_get_props __P((void *)); int yds_query_devinfo __P((void *addr, mixer_devinfo_t *dip)); int yds_attach_codec __P((void *sc, struct ac97_codec_if *)); int yds_read_codec __P((void *sc, u_int8_t a, u_int16_t *d)); int yds_write_codec __P((void *sc, u_int8_t a, u_int16_t d)); void yds_reset_codec __P((void *sc)); int yds_get_portnum_by_name __P((struct yds_softc *, char *, char *, char *)); static u_int yds_get_dstype __P((int)); static int yds_download_mcode __P((struct yds_softc *)); static int yds_allocate_slots __P((struct yds_softc *)); static void yds_configure_legacy __P((struct device *arg)); static void yds_enable_dsp __P((struct yds_softc *)); static int yds_disable_dsp __P((struct yds_softc *)); static int yds_ready_codec __P((struct yds_codec_softc *)); static int yds_halt __P((struct yds_softc *)); static u_int32_t yds_get_lpfq __P((u_int)); static u_int32_t yds_get_lpfk __P((u_int)); static struct yds_dma *yds_find_dma __P((struct yds_softc *, void *)); #ifdef AUDIO_DEBUG static void yds_dump_play_slot __P((struct yds_softc *, int)); #define YDS_DUMP_PLAY_SLOT(n,sc,bank) \ if (ydsdebug > (n)) yds_dump_play_slot(sc, bank) #else #define YDS_DUMP_PLAY_SLOT(n,sc,bank) #endif /* AUDIO_DEBUG */ static struct audio_hw_if yds_hw_if = { yds_open, yds_close, NULL, yds_query_encoding, yds_set_params, yds_round_blocksize, NULL, NULL, NULL, NULL, NULL, yds_halt_output, yds_halt_input, NULL, yds_getdev, NULL, yds_mixer_set_port, yds_mixer_get_port, yds_query_devinfo, yds_malloc, yds_free, yds_round_buffersize, yds_mappage, yds_get_props, yds_trigger_output, yds_trigger_input }; struct audio_device yds_device = { "Yamaha DS-1", "", "yds" }; const static struct { u_int id; u_int flags; #define YDS_CAP_MCODE_1 0x0001 #define YDS_CAP_MCODE_1E 0x0002 #define YDS_CAP_LEGACY_SELECTABLE 0x0004 #define YDS_CAP_LEGACY_FLEXIBLE 0x0008 #define YDS_CAP_HAS_P44 0x0010 } yds_chip_capability_list[] = { { PCI_PRODUCT_YAMAHA_YMF724, YDS_CAP_MCODE_1|YDS_CAP_LEGACY_SELECTABLE }, /* 740[C] has only 32 slots. But anyway we use only 2 */ { PCI_PRODUCT_YAMAHA_YMF740, YDS_CAP_MCODE_1|YDS_CAP_LEGACY_SELECTABLE }, /* XXX NOT TESTED */ { PCI_PRODUCT_YAMAHA_YMF740C, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_SELECTABLE }, { PCI_PRODUCT_YAMAHA_YMF724F, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_SELECTABLE }, { PCI_PRODUCT_YAMAHA_YMF744, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_FLEXIBLE }, { PCI_PRODUCT_YAMAHA_YMF754, YDS_CAP_MCODE_1E|YDS_CAP_LEGACY_FLEXIBLE|YDS_CAP_HAS_P44 }, /* How about 734/737/738?? */ { 0, 0 } }; #ifdef AUDIO_DEBUG #define YDS_CAP_BITS "\020\005P44\004LEGFLEX\003LEGSEL\002MCODE1E\001MCODE1" #endif #ifdef AUDIO_DEBUG static void yds_dump_play_slot(sc, bank) struct yds_softc *sc; int bank; { int i, j; u_int32_t *p; u_int32_t num; struct yds_dma *dma; for (i = 0; i < N_PLAY_SLOTS; i++) { printf("pbankp[%d] = %p,", i*2, sc->pbankp[i*2]); printf("pbankp[%d] = %p\n", i*2+1, sc->pbankp[i*2+1]); } p = (u_int32_t*)sc->ptbl; for (i = 0; i < N_PLAY_SLOTS+1; i++) { printf("ptbl + %d:0x%x\n", i, *p); p++; } num = *(u_int32_t*)sc->ptbl; printf("num = %d\n", num); for (i = 0; i < num; i++) { p = (u_int32_t *)sc->pbankp[i]; dma = yds_find_dma(sc,(void*)p); printf(" pbankp[%d] : %p(%p)\n", i, p, (void*)vtophys((vaddr_t)p)); for (j = 0; j < sizeof(struct play_slot_ctrl_bank) / sizeof(u_int32_t); j++) { printf(" 0x%02x: 0x%08x\n", (unsigned) (j * sizeof(u_int32_t)), (unsigned) *p++); } /* p = (u_int32_t *)sc->pbankp[i*2 + 1]; printf(" pbankp[%d] : %p\n", i*2 + 1, p); for (j = 0; j < sizeof(struct play_slot_ctrl_bank) / sizeof(u_int32_t); j++) { printf(" 0x%02x: 0x%08x\n", j * sizeof(u_int32_t), *p++); delay(1); } */ } } #endif /* AUDIO_DEBUG */ static u_int yds_get_dstype(id) int id; { int i; for (i = 0; yds_chip_capability_list[i].id; i++) { if (PCI_PRODUCT(id) == yds_chip_capability_list[i].id) return yds_chip_capability_list[i].flags; } return -1; } static int yds_download_mcode(sc) struct yds_softc *sc; { u_int ctrl; const u_int32_t *p; size_t size; int dstype; static struct { const u_int32_t *mcode; size_t size; } ctrls[] = { {yds_ds1_ctrl_mcode, sizeof(yds_ds1_ctrl_mcode)}, {yds_ds1e_ctrl_mcode, sizeof(yds_ds1e_ctrl_mcode)}, }; if (sc->sc_flags & YDS_CAP_MCODE_1) dstype = YDS_DS_1; else if (sc->sc_flags & YDS_CAP_MCODE_1E) dstype = YDS_DS_1E; else return 1; /* unknown */ if (yds_disable_dsp(sc)) return 1; /* Software reset */ YWRITE4(sc, YDS_MODE, YDS_MODE_RESET); YWRITE4(sc, YDS_MODE, 0); YWRITE4(sc, YDS_MAPOF_REC, 0); YWRITE4(sc, YDS_MAPOF_EFFECT, 0); YWRITE4(sc, YDS_PLAY_CTRLBASE, 0); YWRITE4(sc, YDS_REC_CTRLBASE, 0); YWRITE4(sc, YDS_EFFECT_CTRLBASE, 0); YWRITE4(sc, YDS_WORK_BASE, 0); ctrl = YREAD2(sc, YDS_GLOBAL_CONTROL); YWRITE2(sc, YDS_GLOBAL_CONTROL, ctrl & ~0x0007); /* Download DSP microcode. */ p = yds_dsp_mcode; size = sizeof(yds_dsp_mcode); YWRITEREGION4(sc, YDS_DSP_INSTRAM, p, size); /* Download CONTROL microcode. */ p = ctrls[dstype].mcode; size = ctrls[dstype].size; YWRITEREGION4(sc, YDS_CTRL_INSTRAM, p, size); yds_enable_dsp(sc); delay(10*1000); /* nessesary on my 724F (??) */ return 0; } static int yds_allocate_slots(sc) struct yds_softc *sc; { size_t pcs, rcs, ecs, ws, memsize; void *mp; u_int32_t da; /* DMA address */ char *va; /* KVA */ off_t cb; int i; struct yds_dma *p; /* Alloc DSP Control Data */ pcs = YREAD4(sc, YDS_PLAY_CTRLSIZE) * sizeof(u_int32_t); rcs = YREAD4(sc, YDS_REC_CTRLSIZE) * sizeof(u_int32_t); ecs = YREAD4(sc, YDS_EFFECT_CTRLSIZE) * sizeof(u_int32_t); ws = WORK_SIZE; YWRITE4(sc, YDS_WORK_SIZE, ws / sizeof(u_int32_t)); DPRINTF(("play control size : %d\n", (unsigned int)pcs)); DPRINTF(("rec control size : %d\n", (unsigned int)rcs)); DPRINTF(("eff control size : %d\n", (unsigned int)ecs)); DPRINTF(("work size : %d\n", (unsigned int)ws)); #ifdef DIAGNOSTIC if (pcs != sizeof(struct play_slot_ctrl_bank)) { printf("%s: invalid play slot ctrldata %d != %d\n", sc->sc_dev.dv_xname, (unsigned int)pcs, (unsigned int)sizeof(struct play_slot_ctrl_bank)); } if (rcs != sizeof(struct rec_slot_ctrl_bank)) { printf("%s: invalid rec slot ctrldata %d != %d\n", sc->sc_dev.dv_xname, (unsigned int)rcs, (unsigned int)sizeof(struct rec_slot_ctrl_bank)); } #endif memsize = N_PLAY_SLOTS*N_PLAY_SLOT_CTRL_BANK*pcs + N_REC_SLOT_CTRL*N_REC_SLOT_CTRL_BANK*rcs + ws; memsize += (N_PLAY_SLOTS+1)*sizeof(u_int32_t); p = &sc->sc_ctrldata; i = yds_allocmem(sc, memsize, 16, p); if (i) { printf("%s: couldn't alloc/map DSP DMA buffer, reason %d\n", sc->sc_dev.dv_xname, i); free(p, M_DEVBUF); return 1; } mp = KERNADDR(p); da = DMAADDR(p); DPRINTF(("mp:%p, DMA addr:%p\n", mp, (void*) sc->sc_ctrldata.map->dm_segs[0].ds_addr)); bzero(mp, memsize); /* Work space */ cb = 0; va = (u_int8_t*)mp; YWRITE4(sc, YDS_WORK_BASE, da + cb); cb += ws; /* Play control data table */ sc->ptbl = (u_int32_t *)(va + cb); sc->ptbloff = cb; YWRITE4(sc, YDS_PLAY_CTRLBASE, da + cb); cb += (N_PLAY_SLOT_CTRL + 1) * sizeof(u_int32_t); /* Record slot control data */ sc->rbank = (struct rec_slot_ctrl_bank *)(va + cb); YWRITE4(sc, YDS_REC_CTRLBASE, da + cb); sc->rbankoff = cb; cb += N_REC_SLOT_CTRL * N_REC_SLOT_CTRL_BANK * rcs; #if 0 /* Effect slot control data -- unused */ YWRITE4(sc, YDS_EFFECT_CTRLBASE, da + cb); cb += N_EFFECT_SLOT_CTRL * N_EFFECT_SLOT_CTRL_BANK * ecs; #endif /* Play slot control data */ sc->pbankoff = da + cb; for (i=0; ipbankp[i*2] = (struct play_slot_ctrl_bank *)(va + cb); *(sc->ptbl + i+1) = da + cb; cb += pcs; sc->pbankp[i*2+1] = (struct play_slot_ctrl_bank *)(va + cb); cb += pcs; } /* Sync play control data table */ bus_dmamap_sync(sc->sc_dmatag, p->map, sc->ptbloff, (N_PLAY_SLOT_CTRL+1) * sizeof(u_int32_t), BUS_DMASYNC_PREWRITE); return 0; } static void yds_enable_dsp(sc) struct yds_softc *sc; { YWRITE4(sc, YDS_CONFIG, YDS_DSP_SETUP); } static int yds_disable_dsp(sc) struct yds_softc *sc; { int to; u_int32_t data; data = YREAD4(sc, YDS_CONFIG); if (data) YWRITE4(sc, YDS_CONFIG, YDS_DSP_DISABLE); for (to = 0; to < YDS_WORK_TIMEOUT; to++) { if ((YREAD4(sc, YDS_STATUS) & YDS_STAT_WORK) == 0) return 0; delay(1); } return 1; } int yds_match(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_YAMAHA: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_YAMAHA_YMF724: case PCI_PRODUCT_YAMAHA_YMF740: case PCI_PRODUCT_YAMAHA_YMF740C: case PCI_PRODUCT_YAMAHA_YMF724F: case PCI_PRODUCT_YAMAHA_YMF744: case PCI_PRODUCT_YAMAHA_YMF754: /* 734, 737, 738?? */ return (1); } break; } return (0); } /* * This routine is called after all the ISA devices are configured, * to avoid conflict. */ static void yds_configure_legacy (arg) struct device *arg; #define FLEXIBLE (sc->sc_flags & YDS_CAP_LEGACY_FLEXIBLE) #define SELECTABLE (sc->sc_flags & YDS_CAP_LEGACY_SELECTABLE) { struct yds_softc *sc = (struct yds_softc*) arg; pcireg_t reg; struct device *dev; int i; bus_addr_t opl_addrs[] = {0x388, 0x398, 0x3A0, 0x3A8}; bus_addr_t mpu_addrs[] = {0x330, 0x300, 0x332, 0x334}; if (!FLEXIBLE && !SELECTABLE) return; reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY); reg &= ~0x8133c03f; /* these bits are out of interest */ reg |= ((YDS_PCI_EX_LEGACY_IMOD) | (YDS_PCI_LEGACY_FMEN | YDS_PCI_LEGACY_MEN /*| YDS_PCI_LEGACY_MIEN*/)); if (FLEXIBLE) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg); delay(100*1000); } /* Look for OPL */ dev = 0; for (i = 0; i < sizeof(opl_addrs) / sizeof (bus_addr_t); i++) { if (SELECTABLE) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg | (i << (0+16))); delay(100*1000); /* wait 100ms */ } else pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_FM_BA, opl_addrs[i]); if (bus_space_map(sc->sc_opl_iot, opl_addrs[i], 4, 0, &sc->sc_opl_ioh) == 0) { struct audio_attach_args aa; aa.type = AUDIODEV_TYPE_OPL; aa.hwif = aa.hdl = NULL; dev = config_found(&sc->sc_dev, &aa, audioprint); if (dev == 0) bus_space_unmap(sc->sc_opl_iot, sc->sc_opl_ioh, 4); else { if (SELECTABLE) reg |= (i << (0+16)); break; } } } if (dev == 0) { reg &= ~YDS_PCI_LEGACY_FMEN; pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg); } else { /* Max. volume */ YWRITE4(sc, YDS_LEGACY_OUT_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_LEGACY_REC_VOLUME, 0x3fff3fff); } /* Look for MPU */ dev = 0; for (i = 0; i < sizeof(mpu_addrs) / sizeof (bus_addr_t); i++) { if (SELECTABLE) pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg | (i << (4+16))); else pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_MPU_BA, mpu_addrs[i]); if (bus_space_map(sc->sc_mpu_iot, mpu_addrs[i], 2, 0, &sc->sc_mpu_ioh) == 0) { struct audio_attach_args aa; aa.type = AUDIODEV_TYPE_MPU; aa.hwif = aa.hdl = NULL; dev = config_found(&sc->sc_dev, &aa, audioprint); if (dev == 0) bus_space_unmap(sc->sc_mpu_iot, sc->sc_mpu_ioh, 2); else { if (SELECTABLE) reg |= (i << (4+16)); break; } } } if (dev == 0) { reg &= ~(YDS_PCI_LEGACY_MEN | YDS_PCI_LEGACY_MIEN); pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_LEGACY, reg); } sc->sc_mpu = dev; } #undef FLEXIBLE #undef SELECTABLE void yds_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct yds_softc *sc = (struct yds_softc *)self; struct pci_attach_args *pa = (struct pci_attach_args *)aux; pci_chipset_tag_t pc = pa->pa_pc; char const *intrstr; pci_intr_handle_t ih; pcireg_t reg; struct yds_codec_softc *codec; char devinfo[256]; mixer_ctrl_t ctl; int i, r, to; int revision; int ac97_id2; pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo); revision = PCI_REVISION(pa->pa_class); printf(": %s (rev. 0x%02x)\n", devinfo, revision); /* Map register to memory */ if (pci_mapreg_map(pa, YDS_PCI_MBA, PCI_MAPREG_TYPE_MEM, 0, &sc->memt, &sc->memh, NULL, NULL, 0)) { printf("%s: can't map memory space\n", sc->sc_dev.dv_xname); return; } /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, yds_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s\n", intrstr); sc->sc_dmatag = pa->pa_dmat; sc->sc_pc = pc; sc->sc_pcitag = pa->pa_tag; sc->sc_id = pa->pa_id; sc->sc_flags = yds_get_dstype(sc->sc_id); #ifdef AUDIO_DEBUG if (ydsdebug) printf("%s: chip has %b\n", sc->sc_dev.dv_xname, YDS_CAP_BITS, sc->sc_flags); #endif /* Disable legacy mode */ reg = pci_conf_read(pc, pa->pa_tag, YDS_PCI_LEGACY); pci_conf_write(pc, pa->pa_tag, YDS_PCI_LEGACY, reg & YDS_PCI_LEGACY_LAD); /* Enable the device. */ reg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); reg |= (PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE); pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg); reg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); /* Mute all volumes */ for (i = 0x80; i < 0xc0; i += 2) YWRITE2(sc, i, 0); /* Download microcode */ if (yds_download_mcode(sc)) { printf("%s: download microcode failed\n", sc->sc_dev.dv_xname); return; } /* Allocate DMA buffers */ if (yds_allocate_slots(sc)) { printf("%s: could not allocate slots\n", sc->sc_dev.dv_xname); return; } /* Warm reset */ reg = pci_conf_read(pc, pa->pa_tag, YDS_PCI_DSCTRL); pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg | YDS_DSCTRL_WRST); delay(50000); /* * Detect primary/secondary AC97 * YMF754 Hardware Specification Rev 1.01 page 24 */ reg = pci_conf_read(pc, pa->pa_tag, YDS_PCI_DSCTRL); pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg & ~YDS_DSCTRL_CRST); delay(400000); /* Needed for 740C. */ /* Primary */ for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR1) & AC97_BUSY) == 0) break; delay(1); } if (to == AC97_TIMEOUT) { printf("%s: no AC97 avaliable\n", sc->sc_dev.dv_xname); return; } /* Secondary */ /* Secondary AC97 is used for 4ch audio. Currently unused. */ ac97_id2 = -1; if ((YREAD2(sc, YDS_ACTIVITY) & YDS_ACTIVITY_DOCKA) == 0) goto detected; #if 0 /* reset secondary... */ YWRITE2(sc, YDS_GPIO_OCTRL, YREAD2(sc, YDS_GPIO_OCTRL) & ~YDS_GPIO_GPO2); YWRITE2(sc, YDS_GPIO_FUNCE, (YREAD2(sc, YDS_GPIO_FUNCE)&(~YDS_GPIO_GPC2))|YDS_GPIO_GPE2); #endif for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR2) & AC97_BUSY) == 0) break; delay(1); } if (to < AC97_TIMEOUT) { /* detect id */ for (ac97_id2 = 1; ac97_id2 < 4; ac97_id2++) { YWRITE2(sc, AC97_CMD_ADDR, AC97_CMD_READ | AC97_ID(ac97_id2) | 0x28); for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR2) & AC97_BUSY) == 0) goto detected; delay(1); } } if (ac97_id2 == 4) ac97_id2 = -1; detected: ; } pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg | YDS_DSCTRL_CRST); delay (20); pci_conf_write(pc, pa->pa_tag, YDS_PCI_DSCTRL, reg & ~YDS_DSCTRL_CRST); delay (400000); for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc, AC97_STAT_ADDR1) & AC97_BUSY) == 0) break; delay(1); } /* * Attach ac97 codec */ for (i = 0; i < 2; i++) { static struct { int data; int addr; } statregs[] = { {AC97_STAT_DATA1, AC97_STAT_ADDR1}, {AC97_STAT_DATA2, AC97_STAT_ADDR2}, }; if (i == 1 && ac97_id2 == -1) break; /* secondary ac97 not available */ codec = &sc->sc_codec[i]; memcpy(&codec->sc_dev, &sc->sc_dev, sizeof(codec->sc_dev)); codec->sc = sc; codec->id = i == 1 ? ac97_id2 : 0; codec->status_data = statregs[i].data; codec->status_addr = statregs[i].addr; codec->host_if.arg = codec; codec->host_if.attach = yds_attach_codec; codec->host_if.read = yds_read_codec; codec->host_if.write = yds_write_codec; codec->host_if.reset = yds_reset_codec; if ((r = ac97_attach(&codec->host_if)) != 0) { printf("%s: can't attach codec (error 0x%X)\n", sc->sc_dev.dv_xname, r); return; } } /* Just enable the DAC and master volumes by default */ ctl.type = AUDIO_MIXER_ENUM; ctl.un.ord = 0; /* off */ ctl.dev = yds_get_portnum_by_name(sc, AudioCoutputs, AudioNmaster, AudioNmute); yds_mixer_set_port(sc, &ctl); ctl.dev = yds_get_portnum_by_name(sc, AudioCinputs, AudioNdac, AudioNmute); yds_mixer_set_port(sc, &ctl); ctl.dev = yds_get_portnum_by_name(sc, AudioCinputs, AudioNcd, AudioNmute); yds_mixer_set_port(sc, &ctl); ctl.dev = yds_get_portnum_by_name(sc, AudioCrecord, AudioNvolume, AudioNmute); yds_mixer_set_port(sc, &ctl); ctl.dev = yds_get_portnum_by_name(sc, AudioCrecord, AudioNsource, NULL); ctl.type = AUDIO_MIXER_ENUM; ctl.un.ord = 0; yds_mixer_set_port(sc, &ctl); /* Set a reasonable default volume */ ctl.type = AUDIO_MIXER_VALUE; ctl.un.value.num_channels = 2; ctl.un.value.level[AUDIO_MIXER_LEVEL_LEFT] = ctl.un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 127; ctl.dev = sc->sc_codec[0].codec_if->vtbl->get_portnum_by_name( sc->sc_codec[0].codec_if, AudioCoutputs, AudioNmaster, NULL); yds_mixer_set_port(sc, &ctl); audio_attach_mi(&yds_hw_if, sc, &sc->sc_dev); sc->sc_legacy_iot = pa->pa_iot; config_defer((struct device*) sc, yds_configure_legacy); } int yds_attach_codec(sc_, codec_if) void *sc_; struct ac97_codec_if *codec_if; { struct yds_codec_softc *sc = sc_; sc->codec_if = codec_if; return 0; } static int yds_ready_codec(sc) struct yds_codec_softc *sc; { int to; for (to = 0; to < AC97_TIMEOUT; to++) { if ((YREAD2(sc->sc, sc->status_addr) & AC97_BUSY) == 0) return 0; delay(1); } return 1; } int yds_read_codec(sc_, reg, data) void *sc_; u_int8_t reg; u_int16_t *data; { struct yds_codec_softc *sc = sc_; YWRITE2(sc->sc, AC97_CMD_ADDR, AC97_CMD_READ | AC97_ID(sc->id) | reg); if (yds_ready_codec(sc)) { printf("%s: yds_read_codec timeout\n", sc->sc->sc_dev.dv_xname); return EIO; } *data = YREAD2(sc->sc, sc->status_data); return 0; } int yds_write_codec(sc_, reg, data) void *sc_; u_int8_t reg; u_int16_t data; { struct yds_codec_softc *sc = sc_; YWRITE2(sc->sc, AC97_CMD_ADDR, AC97_CMD_WRITE | AC97_ID(sc->id) | reg); YWRITE2(sc->sc, AC97_CMD_DATA, data); if (yds_ready_codec(sc)) { printf("%s: yds_write_codec timeout\n", sc->sc->sc_dev.dv_xname); return EIO; } return 0; } /* * XXX: Must handle the secondary differntly!! */ void yds_reset_codec(sc_) void *sc_; { struct yds_codec_softc *codec = sc_; struct yds_softc *sc = codec->sc; pcireg_t reg; /* reset AC97 codec */ reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL); if (reg & 0x03) { pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL, reg & ~0x03); pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL, reg | 0x03); pci_conf_write(sc->sc_pc, sc->sc_pcitag, YDS_PCI_DSCTRL, reg & ~0x03); delay(50000); } yds_ready_codec(sc_); } int yds_intr(p) void *p; { struct yds_softc *sc = p; u_int status; status = YREAD4(sc, YDS_STATUS); DPRINTFN(1, ("yds_intr: status=%08x\n", status)); if ((status & (YDS_STAT_INT|YDS_STAT_TINT)) == 0) { #if NMPU > 0 if (sc->sc_mpu) return mpu_intr(sc->sc_mpu); #endif return 0; } if (status & YDS_STAT_TINT) { YWRITE4(sc, YDS_STATUS, YDS_STAT_TINT); printf ("yds_intr: timeout!\n"); } if (status & YDS_STAT_INT) { int nbank = (YREAD4(sc, YDS_CONTROL_SELECT) == 0); /* Clear interrupt flag */ YWRITE4(sc, YDS_STATUS, YDS_STAT_INT); /* Buffer for the next frame is always ready. */ YWRITE4(sc, YDS_MODE, YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV2); if (sc->sc_play.intr) { u_int dma, cpu, blk, len; /* Sync play slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->pbankoff, sizeof(struct play_slot_ctrl_bank)* (*sc->ptbl)* N_PLAY_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE| BUS_DMASYNC_POSTREAD); dma = sc->pbankp[nbank]->pgstart * sc->sc_play.factor; cpu = sc->sc_play.offset; blk = sc->sc_play.blksize; len = sc->sc_play.length; if (((dma > cpu) && (dma - cpu > blk * 2)) || ((cpu > dma) && (dma + len - cpu > blk * 2))) { /* We can fill the next block */ /* Sync ring buffer for previous write */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_play.dma->map, cpu, blk, BUS_DMASYNC_POSTWRITE); sc->sc_play.intr(sc->sc_play.intr_arg); sc->sc_play.offset += blk; if (sc->sc_play.offset >= len) { sc->sc_play.offset -= len; #ifdef DIAGNOSTIC if (sc->sc_play.offset != 0) printf ("Audio ringbuffer botch\n"); #endif } /* Sync ring buffer for next write */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_play.dma->map, cpu, blk, BUS_DMASYNC_PREWRITE); } } if (sc->sc_rec.intr) { u_int dma, cpu, blk, len; /* Sync rec slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->rbankoff, sizeof(struct rec_slot_ctrl_bank)* N_REC_SLOT_CTRL* N_REC_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE| BUS_DMASYNC_POSTREAD); dma = sc->rbank[YDS_INPUT_SLOT*2 + nbank].pgstartadr; cpu = sc->sc_rec.offset; blk = sc->sc_rec.blksize; len = sc->sc_rec.length; if (((dma > cpu) && (dma - cpu > blk * 2)) || ((cpu > dma) && (dma + len - cpu > blk * 2))) { /* We can drain the current block */ /* Sync ring buffer first */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_rec.dma->map, cpu, blk, BUS_DMASYNC_POSTREAD); sc->sc_rec.intr(sc->sc_rec.intr_arg); sc->sc_rec.offset += blk; if (sc->sc_rec.offset >= len) { sc->sc_rec.offset -= len; #ifdef DIAGNOSTIC if (sc->sc_rec.offset != 0) printf ("Audio ringbuffer botch\n"); #endif } /* Sync ring buffer for next read */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_rec.dma->map, cpu, blk, BUS_DMASYNC_PREREAD); } } } return 1; } int yds_allocmem(sc, size, align, p) struct yds_softc *sc; size_t size; size_t align; struct yds_dma *p; { int error; p->size = size; error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, p->segs, sizeof(p->segs)/sizeof(p->segs[0]), &p->nsegs, BUS_DMA_NOWAIT); if (error) return (error); error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); if (error) goto free; error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 0, BUS_DMA_NOWAIT, &p->map); if (error) goto unmap; error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, BUS_DMA_NOWAIT); if (error) goto destroy; return (0); destroy: bus_dmamap_destroy(sc->sc_dmatag, p->map); unmap: bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); free: bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return (error); } int yds_freemem(sc, p) struct yds_softc *sc; struct yds_dma *p; { bus_dmamap_unload(sc->sc_dmatag, p->map); bus_dmamap_destroy(sc->sc_dmatag, p->map); bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return 0; } int yds_open(addr, flags) void *addr; int flags; { struct yds_softc *sc = addr; int mode; /* Select bank 0. */ YWRITE4(sc, YDS_CONTROL_SELECT, 0); /* Start the DSP operation. */ mode = YREAD4(sc, YDS_MODE); mode |= YDS_MODE_ACTV; mode &= ~YDS_MODE_ACTV2; YWRITE4(sc, YDS_MODE, mode); return 0; } /* * Close function is called at splaudio(). */ void yds_close(addr) void *addr; { struct yds_softc *sc = addr; yds_halt_output(sc); yds_halt_input(sc); yds_halt(sc); } int yds_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { switch (fp->index) { case 0: strcpy(fp->name, AudioEulinear); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; return (0); case 1: strcpy(fp->name, AudioEmulaw); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 2: strcpy(fp->name, AudioEalaw); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 3: strcpy(fp->name, AudioEslinear); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 4: strcpy(fp->name, AudioEslinear_le); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; return (0); case 5: strcpy(fp->name, AudioEulinear_le); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 6: strcpy(fp->name, AudioEslinear_be); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 7: strcpy(fp->name, AudioEulinear_be); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); default: return (EINVAL); } } int yds_set_params(addr, setmode, usemode, play, rec) void *addr; int setmode, usemode; struct audio_params *play, *rec; { struct audio_params *p; int mode; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = mode == AUMODE_PLAY ? play : rec; if (p->sample_rate < 4000 || p->sample_rate > 48000 || (p->precision != 8 && p->precision != 16) || (p->channels != 1 && p->channels != 2)) return (EINVAL); p->factor = 1; p->sw_code = 0; switch (p->encoding) { case AUDIO_ENCODING_SLINEAR_BE: if (p->precision == 16) p->sw_code = swap_bytes; else p->sw_code = change_sign8; break; case AUDIO_ENCODING_SLINEAR_LE: if (p->precision != 16) p->sw_code = change_sign8; break; case AUDIO_ENCODING_ULINEAR_BE: if (p->precision == 16) { if (mode == AUMODE_PLAY) p->sw_code = swap_bytes_change_sign16_le; else p->sw_code = change_sign16_swap_bytes_le; } break; case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 16) p->sw_code = change_sign16_le; break; case AUDIO_ENCODING_ULAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->precision = 16; p->sw_code = mulaw_to_slinear16_le; } else p->sw_code = ulinear8_to_mulaw; break; case AUDIO_ENCODING_ALAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->precision = 16; p->sw_code = alaw_to_slinear16_le; } else p->sw_code = ulinear8_to_alaw; break; default: return (EINVAL); } } return 0; } int yds_round_blocksize(addr, blk) void *addr; int blk; { /* * Block size must be bigger than a frame. * That is 1024bytes at most, i.e. for 48000Hz, 16bit, 2ch. */ if (blk < 1024) blk = 1024; return blk & ~4; } static u_int32_t yds_get_lpfq(sample_rate) u_int sample_rate; { int i; static struct lpfqt { u_int rate; u_int32_t lpfq; } lpfqt[] = { {8000, 0x32020000}, {11025, 0x31770000}, {16000, 0x31390000}, {22050, 0x31c90000}, {32000, 0x33d00000}, {48000, 0x40000000}, {0, 0} }; if (sample_rate == 44100) /* for P44 slot? */ return 0x370A0000; for (i = 0; lpfqt[i].rate != 0; i++) if (sample_rate <= lpfqt[i].rate) break; return lpfqt[i].lpfq; } static u_int32_t yds_get_lpfk(sample_rate) u_int sample_rate; { int i; static struct lpfkt { u_int rate; u_int32_t lpfk; } lpfkt[] = { {8000, 0x18b20000}, {11025, 0x20930000}, {16000, 0x2b9a0000}, {22050, 0x35a10000}, {32000, 0x3eaa0000}, {48000, 0x40000000}, {0, 0} }; if (sample_rate == 44100) /* for P44 slot? */ return 0x46460000; for (i = 0; lpfkt[i].rate != 0; i++) if (sample_rate <= lpfkt[i].rate) break; return lpfkt[i].lpfk; } int yds_trigger_output(addr, start, end, blksize, intr, arg, param) void *addr; void *start, *end; int blksize; void (*intr) __P((void *)); void *arg; struct audio_params *param; #define P44 (sc->sc_flags & YDS_CAP_HAS_P44) { struct yds_softc *sc = addr; struct yds_dma *p; struct play_slot_ctrl_bank *psb; const u_int gain = 0x40000000; bus_addr_t s; size_t l; int i; int p44, channels; #ifdef DIAGNOSTIC if (sc->sc_play.intr) panic("yds_trigger_output: already running"); #endif sc->sc_play.intr = intr; sc->sc_play.intr_arg = arg; sc->sc_play.offset = 0; sc->sc_play.blksize = blksize; DPRINTFN(1, ("yds_trigger_output: sc=%p start=%p end=%p " "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); p = yds_find_dma(sc, start); if (!p) { printf("yds_trigger_output: bad addr %p\n", start); return (EINVAL); } sc->sc_play.dma = p; #ifdef DIAGNOSTIC { u_int32_t ctrlsize; if ((ctrlsize = YREAD4(sc, YDS_PLAY_CTRLSIZE)) != sizeof(struct play_slot_ctrl_bank) / sizeof(u_int32_t)) panic("%s: invalid play slot ctrldata %d %d", sc->sc_dev.dv_xname, ctrlsize, sizeof(struct play_slot_ctrl_bank)); } #endif #ifdef YDS_USE_P44 /* The document says the P44 SRC supports only stereo, 16bit PCM. */ if (P44) p44 = ((param->sample_rate == 44100) && (param->channels == 2) && (param->precision == 16)); else #endif p44 = 0; channels = p44 ? 1 : param->channels; s = DMAADDR(p); l = ((char *)end - (char *)start); sc->sc_play.length = l; *sc->ptbl = channels; /* Num of play */ sc->sc_play.factor = 1; if (param->channels == 2) sc->sc_play.factor *= 2; if (param->precision != 8) sc->sc_play.factor *= 2; l /= sc->sc_play.factor; psb = sc->pbankp[0]; memset(psb, 0, sizeof(*psb)); psb->format = ((channels == 2 ? PSLT_FORMAT_STEREO : 0) | (param->precision == 8 ? PSLT_FORMAT_8BIT : 0) | (p44 ? PSLT_FORMAT_SRC441 : 0)); psb->pgbase = s; psb->pgloopend = l; if (!p44) { psb->pgdeltaend = (param->sample_rate * 65536 / 48000) << 12; psb->lpfkend = yds_get_lpfk(param->sample_rate); psb->eggainend = gain; psb->lpfq = yds_get_lpfq(param->sample_rate); psb->pgdelta = psb->pgdeltaend; psb->lpfk = yds_get_lpfk(param->sample_rate); psb->eggain = gain; } for (i = 0; i < channels; i++) { /* i == 0: left or mono, i == 1: right */ psb = sc->pbankp[i*2]; if (i) /* copy from left */ *psb = *(sc->pbankp[0]); if (channels == 2) { /* stereo */ if (i == 0) { psb->lchgain = psb->lchgainend = gain; } else { psb->lchgain = psb->lchgainend = 0; psb->rchgain = psb->rchgainend = gain; psb->format |= PSLT_FORMAT_RCH; } } else if (!p44) { /* mono */ psb->lchgain = psb->rchgain = gain; psb->lchgainend = psb->rchgainend = gain; } /* copy to the other bank */ *(sc->pbankp[i*2+1]) = *psb; } YDS_DUMP_PLAY_SLOT(5, sc, 0); YDS_DUMP_PLAY_SLOT(5, sc, 1); if (p44) YWRITE4(sc, YDS_P44_OUT_VOLUME, 0x3fff3fff); else YWRITE4(sc, YDS_DAC_OUT_VOLUME, 0x3fff3fff); /* Now the play slot for the next frame is set up!! */ /* Sync play slot control data for both directions */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->ptbloff, sizeof(struct play_slot_ctrl_bank) * channels * N_PLAY_SLOT_CTRL_BANK, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, p->map, 0, blksize, BUS_DMASYNC_PREWRITE); /* HERE WE GO!! */ YWRITE4(sc, YDS_MODE, YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV | YDS_MODE_ACTV2); return 0; } #undef P44 int yds_trigger_input(addr, start, end, blksize, intr, arg, param) void *addr; void *start, *end; int blksize; void (*intr) __P((void *)); void *arg; struct audio_params *param; { struct yds_softc *sc = addr; struct yds_dma *p; u_int srate, format; struct rec_slot_ctrl_bank *rsb; bus_addr_t s; size_t l; #ifdef DIAGNOSTIC if (sc->sc_rec.intr) panic("yds_trigger_input: already running"); #endif sc->sc_rec.intr = intr; sc->sc_rec.intr_arg = arg; sc->sc_rec.offset = 0; sc->sc_rec.blksize = blksize; DPRINTFN(1, ("yds_trigger_input: " "sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); DPRINTFN(1, (" parameters: rate=%lu, precision=%u, channels=%u\n", param->sample_rate, param->precision, param->channels)); p = yds_find_dma(sc, start); if (!p) { printf("yds_trigger_input: bad addr %p\n", start); return (EINVAL); } sc->sc_rec.dma = p; #ifdef DIAGNOSTIC { u_int32_t ctrlsize; if ((ctrlsize = YREAD4(sc, YDS_REC_CTRLSIZE)) != sizeof(struct rec_slot) / sizeof(u_int32_t)) panic("%s: invalid rec slot ctrldata %d", sc->sc_dev.dv_xname, ctrlsize); } #endif s = DMAADDR(p); l = ((char *)end - (char *)start); sc->sc_rec.length = l; sc->sc_rec.factor = 1; if (param->channels == 2) sc->sc_rec.factor *= 2; if (param->precision != 8) sc->sc_rec.factor *= 2; rsb = &sc->rbank[0]; memset(rsb, 0, sizeof(*rsb)); rsb->pgbase = s; rsb->pgloopendadr = l; /* Seems all 4 banks must be set up... */ sc->rbank[1] = *rsb; sc->rbank[2] = *rsb; sc->rbank[3] = *rsb; YWRITE4(sc, YDS_ADC_IN_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_REC_IN_VOLUME, 0x3fff3fff); srate = 48000 * 4096 / param->sample_rate - 1; format = ((param->precision == 8 ? YDS_FORMAT_8BIT : 0) | (param->channels == 2 ? YDS_FORMAT_STEREO : 0)); DPRINTF(("srate=%d, format=%08x\n", srate, format)); #ifdef YDS_USE_REC_SLOT YWRITE4(sc, YDS_DAC_REC_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_P44_REC_VOLUME, 0x3fff3fff); YWRITE4(sc, YDS_MAPOF_REC, YDS_RECSLOT_VALID); YWRITE4(sc, YDS_REC_SAMPLE_RATE, srate); YWRITE4(sc, YDS_REC_FORMAT, format); #else YWRITE4(sc, YDS_MAPOF_REC, YDS_ADCSLOT_VALID); YWRITE4(sc, YDS_ADC_SAMPLE_RATE, srate); YWRITE4(sc, YDS_ADC_FORMAT, format); #endif /* Now the rec slot for the next frame is set up!! */ /* Sync record slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->rbankoff, sizeof(struct rec_slot_ctrl_bank)* N_REC_SLOT_CTRL* N_REC_SLOT_CTRL_BANK, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, p->map, 0, blksize, BUS_DMASYNC_PREREAD); /* HERE WE GO!! */ YWRITE4(sc, YDS_MODE, YREAD4(sc, YDS_MODE) | YDS_MODE_ACTV | YDS_MODE_ACTV2); return 0; } static int yds_halt(sc) struct yds_softc *sc; { u_int32_t mode; /* Stop the DSP operation. */ mode = YREAD4(sc, YDS_MODE); YWRITE4(sc, YDS_MODE, mode & ~(YDS_MODE_ACTV|YDS_MODE_ACTV2)); /* Paranoia... mute all */ YWRITE4(sc, YDS_P44_OUT_VOLUME, 0); YWRITE4(sc, YDS_DAC_OUT_VOLUME, 0); YWRITE4(sc, YDS_ADC_IN_VOLUME, 0); YWRITE4(sc, YDS_REC_IN_VOLUME, 0); YWRITE4(sc, YDS_DAC_REC_VOLUME, 0); YWRITE4(sc, YDS_P44_REC_VOLUME, 0); return 0; } int yds_halt_output(addr) void *addr; { struct yds_softc *sc = addr; DPRINTF(("yds: yds_halt_output\n")); if (sc->sc_play.intr) { sc->sc_play.intr = 0; /* Sync play slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->pbankoff, sizeof(struct play_slot_ctrl_bank)* (*sc->ptbl)*N_PLAY_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD); /* Stop the play slot operation */ sc->pbankp[0]->status = sc->pbankp[1]->status = sc->pbankp[2]->status = sc->pbankp[3]->status = 1; /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_play.dma->map, 0, sc->sc_play.length, BUS_DMASYNC_POSTWRITE); } return 0; } int yds_halt_input(addr) void *addr; { struct yds_softc *sc = addr; DPRINTF(("yds: yds_halt_input\n")); sc->sc_rec.intr = NULL; if (sc->sc_rec.intr) { /* Stop the rec slot operation */ YWRITE4(sc, YDS_MAPOF_REC, 0); sc->sc_rec.intr = 0; /* Sync rec slot control data */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_ctrldata.map, sc->rbankoff, sizeof(struct rec_slot_ctrl_bank)* N_REC_SLOT_CTRL*N_REC_SLOT_CTRL_BANK, BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD); /* Sync ring buffer */ bus_dmamap_sync(sc->sc_dmatag, sc->sc_rec.dma->map, 0, sc->sc_rec.length, BUS_DMASYNC_POSTREAD); } return 0; } int yds_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = yds_device; return 0; } int yds_mixer_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct yds_softc *sc = addr; return (sc->sc_codec[0].codec_if->vtbl->mixer_set_port( sc->sc_codec[0].codec_if, cp)); } int yds_mixer_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct yds_softc *sc = addr; return (sc->sc_codec[0].codec_if->vtbl->mixer_get_port( sc->sc_codec[0].codec_if, cp)); } int yds_query_devinfo(addr, dip) void *addr; mixer_devinfo_t *dip; { struct yds_softc *sc = addr; return (sc->sc_codec[0].codec_if->vtbl->query_devinfo( sc->sc_codec[0].codec_if, dip)); } int yds_get_portnum_by_name(sc, class, device, qualifier) struct yds_softc *sc; char *class, *device, *qualifier; { return (sc->sc_codec[0].codec_if->vtbl->get_portnum_by_name( sc->sc_codec[0].codec_if, class, device, qualifier)); } void * yds_malloc(addr, size, pool, flags) void *addr; u_long size; int pool, flags; { struct yds_softc *sc = addr; struct yds_dma *p; int error; p = malloc(sizeof(*p), pool, flags); if (!p) return (0); error = yds_allocmem(sc, size, 16, p); if (error) { free(p, pool); return (0); } p->next = sc->sc_dmas; sc->sc_dmas = p; return (KERNADDR(p)); } void yds_free(addr, ptr, pool) void *addr; void *ptr; int pool; { struct yds_softc *sc = addr; struct yds_dma **pp, *p; for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { if (KERNADDR(p) == ptr) { yds_freemem(sc, p); *pp = p->next; free(p, pool); return; } } } static struct yds_dma * yds_find_dma(sc, addr) struct yds_softc *sc; void *addr; { struct yds_dma *p; for (p = sc->sc_dmas; p && KERNADDR(p) != addr; p = p->next) ; return p; } u_long yds_round_buffersize(addr, size) void *addr; u_long size; { /* * Buffer size should be at least twice as bigger as a frame. */ if (size < 1024 * 3) size = 1024 * 3; return (size); } paddr_t yds_mappage(addr, mem, off, prot) void *addr; void *mem; off_t off; int prot; { struct yds_softc *sc = addr; struct yds_dma *p; if (off < 0) return (-1); p = yds_find_dma(sc, mem); if (!p) return (-1); return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, off, prot, BUS_DMA_WAITOK)); } int yds_get_props(addr) void *addr; { return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); }