/* $OpenBSD: rf_aselect.c,v 1.2 1999/02/16 00:02:23 niklas Exp $ */ /* $NetBSD: rf_aselect.c,v 1.3 1999/02/05 00:06:06 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland, William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /***************************************************************************** * * aselect.c -- algorithm selection code * *****************************************************************************/ #include "rf_archs.h" #include "rf_types.h" #include "rf_raid.h" #include "rf_dag.h" #include "rf_dagutils.h" #include "rf_dagfuncs.h" #include "rf_general.h" #include "rf_desc.h" #include "rf_map.h" #if (defined(__NetBSD__) || defined(__OpenBSD__)) && defined(_KERNEL) /* the function below is not used... so don't define it! */ #else static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *); #endif static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int); static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *); int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t); /****************************************************************************** * * Create and Initialiaze a dag header and termination node * *****************************************************************************/ static int InitHdrNode(hdr, raidPtr, memChunkEnable) RF_DagHeader_t **hdr; RF_Raid_t *raidPtr; int memChunkEnable; { /* create and initialize dag hdr */ *hdr = rf_AllocDAGHeader(); rf_MakeAllocList((*hdr)->allocList); if ((*hdr)->allocList == NULL) { rf_FreeDAGHeader(*hdr); return (ENOMEM); } (*hdr)->status = rf_enable; (*hdr)->numSuccedents = 0; (*hdr)->raidPtr = raidPtr; (*hdr)->next = NULL; return (0); } /****************************************************************************** * * Transfer allocation list and mem chunks from one dag to another * *****************************************************************************/ #if (defined(__NetBSD__) || defined(__OpenBSD__)) && defined(_KERNEL) /* the function below is not used... so don't define it! */ #else static void TransferDagMemory(daga, dagb) RF_DagHeader_t *daga; RF_DagHeader_t *dagb; { RF_AccessStripeMapHeader_t *end; RF_AllocListElem_t *p; int i, memChunksXfrd = 0, xtraChunksXfrd = 0; /* transfer allocList from dagb to daga */ for (p = dagb->allocList; p; p = p->next) { for (i = 0; i < p->numPointers; i++) { rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]); p->pointers[i] = NULL; p->sizes[i] = 0; } p->numPointers = 0; } /* transfer chunks from dagb to daga */ while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) { /* stuff chunks into daga's memChunk array */ if (memChunksXfrd < dagb->chunkIndex) { daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd]; dagb->memChunk[memChunksXfrd++] = NULL; } else { daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd]; dagb->xtraMemChunk[xtraChunksXfrd++] = NULL; } } /* use escape hatch to hold excess chunks */ while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) { if (memChunksXfrd < dagb->chunkIndex) { daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd]; dagb->memChunk[memChunksXfrd++] = NULL; } else { daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd]; dagb->xtraMemChunk[xtraChunksXfrd++] = NULL; } } RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex)); RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS); RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt); dagb->chunkIndex = 0; dagb->xtraChunkIndex = 0; /* transfer asmList from dagb to daga */ if (dagb->asmList) { if (daga->asmList) { end = daga->asmList; while (end->next) end = end->next; end->next = dagb->asmList; } else daga->asmList = dagb->asmList; dagb->asmList = NULL; } } #endif /* __NetBSD__ || __OpenBSD__ */ /***************************************************************************************** * * Ensure that all node->dagHdr fields in a dag are consistent * * IMPORTANT: This routine recursively searches all succedents of the node. If a * succedent is encountered whose dagHdr ptr does not require adjusting, that node's * succedents WILL NOT BE EXAMINED. * ****************************************************************************************/ static void UpdateNodeHdrPtr(hdr, node) RF_DagHeader_t *hdr; RF_DagNode_t *node; { int i; RF_ASSERT(hdr != NULL && node != NULL); for (i = 0; i < node->numSuccedents; i++) if (node->succedents[i]->dagHdr != hdr) UpdateNodeHdrPtr(hdr, node->succedents[i]); node->dagHdr = hdr; } /****************************************************************************** * * Create a DAG to do a read or write operation. * * create an array of dagLists, one list per parity stripe. * return the lists in the array desc->dagArray. * * Normally, each list contains one dag for the entire stripe. In some * tricky cases, we break this into multiple dags, either one per stripe * unit or one per block (sector). When this occurs, these dags are returned * as a linked list (dagList) which is executed sequentially (to preserve * atomic parity updates in the stripe). * * dags which operate on independent parity goups (stripes) are returned in * independent dagLists (distinct elements in desc->dagArray) and may be * executed concurrently. * * Finally, if the SelectionFunc fails to create a dag for a block, we punt * and return 1. * * The above process is performed in two phases: * 1) create an array(s) of creation functions (eg stripeFuncs) * 2) create dags and concatenate/merge to form the final dag. * * Because dag's are basic blocks (single entry, single exit, unconditional * control flow, we can add the following optimizations (future work): * first-pass optimizer to allow max concurrency (need all data dependencies) * second-pass optimizer to eliminate common subexpressions (need true * data dependencies) * third-pass optimizer to eliminate dead code (need true data dependencies) *****************************************************************************/ #define MAXNSTRIPES 50 int rf_SelectAlgorithm(desc, flags) RF_RaidAccessDesc_t *desc; RF_RaidAccessFlags_t flags; { RF_AccessStripeMapHeader_t *asm_h = desc->asmap; RF_IoType_t type = desc->type; RF_Raid_t *raidPtr = desc->raidPtr; void *bp = desc->bp; RF_AccessStripeMap_t *asmap = asm_h->stripeMap; RF_AccessStripeMap_t *asm_p; RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h; int i, j, k; RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES]; RF_AccessStripeMap_t *asm_up, *asm_bp; RF_AccessStripeMapHeader_t ***asmh_u, *endASMList; RF_AccessStripeMapHeader_t ***asmh_b; RF_VoidFuncPtr **stripeUnitFuncs, uFunc; RF_VoidFuncPtr **blockFuncs, bFunc; int numStripesBailed = 0, cantCreateDAGs = RF_FALSE; int numStripeUnitsBailed = 0; int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0; RF_StripeNum_t numStripeUnits; RF_SectorNum_t numBlocks; RF_RaidAddr_t address; int length; RF_PhysDiskAddr_t *physPtr; caddr_t buffer; lastdag_h = NULL; asmh_u = asmh_b = NULL; stripeUnitFuncs = NULL; blockFuncs = NULL; /* get an array of dag-function creation pointers, try to avoid * calling malloc */ if (asm_h->numStripes <= MAXNSTRIPES) stripeFuncs = normalStripeFuncs; else RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *)); /* walk through the asm list once collecting information */ /* attempt to find a single creation function for each stripe */ desc->numStripes = 0; for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) { desc->numStripes++; (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]); /* check to see if we found a creation func for this stripe */ if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) { /* could not find creation function for entire stripe * so, let's see if we can find one for each stripe * unit in the stripe */ if (numStripesBailed == 0) { /* one stripe map header for each stripe we * bail on */ RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***)); /* create an array of ptrs to arrays of * stripeFuncs */ RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **)); } /* create an array of creation funcs (called * stripeFuncs) for this stripe */ numStripeUnits = asm_p->numStripeUnitsAccessed; RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *)); RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **)); /* lookup array of stripeUnitFuncs for this stripe */ for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) { /* remap for series of single stripe-unit * accesses */ address = physPtr->raidAddress; length = physPtr->numSector; buffer = physPtr->bufPtr; asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP); asm_up = asmh_u[numStripesBailed][j]->stripeMap; /* get the creation func for this stripe unit */ (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j])); /* check to see if we found a creation func * for this stripe unit */ if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) { /* could not find creation function * for stripe unit so, let's see if we * can find one for each block in the * stripe unit */ if (numStripeUnitsBailed == 0) { /* one stripe map header for * each stripe unit we bail on */ RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***)); /* create an array of ptrs to * arrays of blockFuncs */ RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **)); } /* create an array of creation funcs * (called blockFuncs) for this stripe * unit */ numBlocks = physPtr->numSector; numBlockDags += numBlocks; RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *)); RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **)); /* lookup array of blockFuncs for this * stripe unit */ for (k = 0; k < numBlocks; k++) { /* remap for series of single * stripe-unit accesses */ address = physPtr->raidAddress + k; length = 1; buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector)); asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP); asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap; /* get the creation func for * this stripe unit */ (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k])); /* check to see if we found a * creation func for this * stripe unit */ if (blockFuncs[numStripeUnitsBailed][k] == NULL) cantCreateDAGs = RF_TRUE; } numStripeUnitsBailed++; } else { numUnitDags++; } } RF_ASSERT(j == numStripeUnits); numStripesBailed++; } } if (cantCreateDAGs) { /* free memory and punt */ if (asm_h->numStripes > MAXNSTRIPES) RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); if (numStripesBailed > 0) { stripeNum = 0; for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) if (stripeFuncs[i] == NULL) { numStripeUnits = asm_p->numStripeUnitsAccessed; for (j = 0; j < numStripeUnits; j++) rf_FreeAccessStripeMap(asmh_u[stripeNum][j]); RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *)); RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr)); stripeNum++; } RF_ASSERT(stripeNum == numStripesBailed); RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **)); } return (1); } else { /* begin dag creation */ stripeNum = 0; stripeUnitNum = 0; /* create an array of dagLists and fill them in */ RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList); for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) { /* grab dag header for this stripe */ dag_h = NULL; desc->dagArray[i].desc = desc; if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) { /* use bailout functions for this stripe */ for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) { uFunc = stripeUnitFuncs[stripeNum][j]; if (uFunc == (RF_VoidFuncPtr) NULL) { /* use bailout functions for * this stripe unit */ for (k = 0; k < physPtr->numSector; k++) { /* create a dag for * this block */ InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks); desc->dagArray[i].numDags++; if (dag_h == NULL) { dag_h = tempdag_h; } else { lastdag_h->next = tempdag_h; } lastdag_h = tempdag_h; bFunc = blockFuncs[stripeUnitNum][k]; RF_ASSERT(bFunc); asm_bp = asmh_b[stripeUnitNum][k]->stripeMap; (*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList); } stripeUnitNum++; } else { /* create a dag for this unit */ InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks); desc->dagArray[i].numDags++; if (dag_h == NULL) { dag_h = tempdag_h; } else { lastdag_h->next = tempdag_h; } lastdag_h = tempdag_h; asm_up = asmh_u[stripeNum][j]->stripeMap; (*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList); } } RF_ASSERT(j == asm_p->numStripeUnitsAccessed); /* merge linked bailout dag to existing dag * collection */ stripeNum++; } else { /* Create a dag for this parity stripe */ InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks); desc->dagArray[i].numDags++; if (dag_h == NULL) { dag_h = tempdag_h; } else { lastdag_h->next = tempdag_h; } lastdag_h = tempdag_h; (stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList); } desc->dagArray[i].dags = dag_h; } RF_ASSERT(i == desc->numStripes); /* free memory */ if (asm_h->numStripes > MAXNSTRIPES) RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) { stripeNum = 0; stripeUnitNum = 0; if (dag_h->asmList) { endASMList = dag_h->asmList; while (endASMList->next) endASMList = endASMList->next; } else endASMList = NULL; /* walk through io, stripe by stripe */ for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) if (stripeFuncs[i] == NULL) { numStripeUnits = asm_p->numStripeUnitsAccessed; /* walk through stripe, stripe unit by * stripe unit */ for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) { if (stripeUnitFuncs[stripeNum][j] == NULL) { numBlocks = physPtr->numSector; /* walk through stripe * unit, block by * block */ for (k = 0; k < numBlocks; k++) if (dag_h->asmList == NULL) { dag_h->asmList = asmh_b[stripeUnitNum][k]; endASMList = dag_h->asmList; } else { endASMList->next = asmh_b[stripeUnitNum][k]; endASMList = endASMList->next; } RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *)); RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr)); stripeUnitNum++; } if (dag_h->asmList == NULL) { dag_h->asmList = asmh_u[stripeNum][j]; endASMList = dag_h->asmList; } else { endASMList->next = asmh_u[stripeNum][j]; endASMList = endASMList->next; } } RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *)); RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr)); stripeNum++; } RF_ASSERT(stripeNum == numStripesBailed); RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **)); if (numStripeUnitsBailed > 0) { RF_ASSERT(stripeUnitNum == numStripeUnitsBailed); RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr)); RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **)); } } return (0); } }