/* $OpenBSD: rf_openbsdkintf.c,v 1.55 2010/04/23 23:59:11 krw Exp $ */ /* $NetBSD: rf_netbsdkintf.c,v 1.109 2001/07/27 03:30:07 oster Exp $ */ /*- * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Greg Oster; Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1988 University of Utah. * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: cd.c 1.6 90/11/28$ * * @(#)cd.c 8.2 (Berkeley) 11/16/93 */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Authors: Mark Holland, Jim Zelenka * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /***************************************************************************** * * rf_kintf.c -- The kernel interface routines for RAIDframe. * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "raid.h" #include "rf_raid.h" #include "rf_raidframe.h" #include "rf_copyback.h" #include "rf_dag.h" #include "rf_dagflags.h" #include "rf_desc.h" #include "rf_diskqueue.h" #include "rf_engine.h" #include "rf_acctrace.h" #include "rf_etimer.h" #include "rf_general.h" #include "rf_debugMem.h" #include "rf_kintf.h" #include "rf_options.h" #include "rf_driver.h" #include "rf_parityscan.h" #include "rf_debugprint.h" #include "rf_threadstuff.h" #include "rf_configure.h" int rf_kdebug_level = 0; #ifdef RAIDDEBUG #define db1_printf(a) do { if (rf_kdebug_level > 0) printf a; } while(0) #else /* RAIDDEBUG */ #define db1_printf(a) (void)0 #endif /* ! RAIDDEBUG */ static RF_Raid_t **raidPtrs; /* Global raid device descriptors. */ RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex); /* Requests to install a spare table. */ static RF_SparetWait_t *rf_sparet_wait_queue; /* Responses from installation process. */ static RF_SparetWait_t *rf_sparet_resp_queue; /* Prototypes. */ void rf_KernelWakeupFunc(struct buf *); void rf_InitBP(struct buf *, struct vnode *, unsigned, dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*)(struct buf *), void *, int, struct proc *); void raidinit(RF_Raid_t *); void raidattach(int); daddr64_t raidsize(dev_t); int raidopen(dev_t, int, int, struct proc *); int raidclose(dev_t, int, int, struct proc *); int raidioctl(dev_t, u_long, caddr_t, int, struct proc *); int raidwrite(dev_t, struct uio *, int); int raidread(dev_t, struct uio *, int); void raidstrategy(struct buf *); int raiddump(dev_t, daddr64_t, caddr_t, size_t); /* * Pilfered from ccd.c */ struct raidbuf { struct buf rf_buf; /* New I/O buf. MUST BE FIRST!!! */ struct buf *rf_obp; /* Ptr. to original I/O buf. */ int rf_flags; /* Miscellaneous flags. */ RF_DiskQueueData_t *req; /* The request that this was part of. */ }; #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT) #define RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp) /* * Some port (like i386) use a swapgeneric that wants to snoop around * in this raid_cd structure. It is preserved (for now) to remain * compatible with such practice. */ struct cfdriver raid_cd = { NULL, "raid", DV_DISK }; /* * XXX Not sure if the following should be replacing the raidPtrs above, * or if it should be used in conjunction with that... */ struct raid_softc { int sc_flags; /* Flags. */ int sc_cflags; /* Configuration flags. */ size_t sc_size; /* Size of the raid device. */ char sc_xname[20]; /* XXX external name. */ struct disk sc_dkdev; /* Generic disk device info. */ struct pool sc_cbufpool; /* Component buffer pool. */ struct buf sc_q; /* Used for the device queue. */ }; /* sc_flags */ #define RAIDF_INITED 0x01 /* Unit has been initialized. */ #define RAIDF_WLABEL 0x02 /* Label area is writable. */ #define RAIDF_LABELLING 0x04 /* Unit is currently being labelled. */ #define RAIDF_WANTED 0x40 /* Someone is waiting to obtain a lock. */ #define RAIDF_LOCKED 0x80 /* Unit is locked. */ int numraid = 0; /* * Here we define a cfattach structure for inserting any new raid device * into the device tree. This is needed by some archs that look for * bootable devices in there. */ int rf_probe(struct device *, void *, void *); void rf_attach(struct device *, struct device *, void *); int rf_detach(struct device *, int); int rf_activate(struct device *, int); struct cfattach raid_ca = { sizeof(struct raid_softc), rf_probe, rf_attach, rf_detach, rf_activate }; /* * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device. * Be aware that large numbers can allow the driver to consume a lot of * kernel memory, especially on writes, and in degraded mode reads. * * For example: with a stripe width of 64 blocks (32k) and 5 disks, * a single 64K write will typically require 64K for the old data, * 64K for the old parity, and 64K for the new parity, for a total * of 192K (if the parity buffer is not re-used immediately). * Even it if is used immedately, that's still 128K, which when multiplied * by say 10 requests, is 1280K, *on top* of the 640K of incoming data. * * Now in degraded mode, for example, a 64K read on the above setup may * require data reconstruction, which will require *all* of the 4 remaining * disks to participate -- 4 * 32K/disk == 128K again. */ #ifndef RAIDOUTSTANDING #define RAIDOUTSTANDING 6 #endif /* Declared here, and made public, for the benefit of KVM stuff... */ struct raid_softc *raid_softc; struct raid_softc **raid_scPtrs; void rf_shutdown_hook(RF_ThreadArg_t); void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *, struct disklabel *); int raidgetdisklabel(dev_t, struct raid_softc *, struct disklabel *, int); int raidlock(struct raid_softc *); void raidunlock(struct raid_softc *); void rf_markalldirty(RF_Raid_t *); struct device *raidrootdev; int findblkmajor(struct device *dv); char *findblkname(int); void rf_ReconThread(struct rf_recon_req *); /* XXX what I want is: */ /*void rf_ReconThread(RF_Raid_t *raidPtr);*/ void rf_RewriteParityThread(RF_Raid_t *raidPtr); void rf_CopybackThread(RF_Raid_t *raidPtr); void rf_ReconstructInPlaceThread(struct rf_recon_req *); #ifdef RAID_AUTOCONFIG void rf_autoconfig_startuphook(void *); void rf_buildroothack(void *); int rf_reasonable_label(RF_ComponentLabel_t *); #endif /* RAID_AUTOCONFIG */ RF_AutoConfig_t *rf_find_raid_components(void); RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *); int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *); void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *); int rf_set_autoconfig(RF_Raid_t *, int); int rf_set_rootpartition(RF_Raid_t *, int); void rf_release_all_vps(RF_ConfigSet_t *); void rf_cleanup_config_set(RF_ConfigSet_t *); int rf_have_enough_components(RF_ConfigSet_t *); int rf_auto_config_set(RF_ConfigSet_t *, int *); int rf_probe(struct device *parent, void *match_, void *aux) { return 0; } void rf_attach(struct device *parent, struct device *self, void *aux) { /*struct raid_softc *raid = (void *)self;*/ } int rf_detach(struct device *self, int flags) { return 0; } int rf_activate(struct device *self, int act) { return 0; } void raidattach(int num) { int raidID; int i, rc; db1_printf(("raidattach: Asked for %d units\n", num)); if (num <= 0) { #ifdef DIAGNOSTIC panic("raidattach: count <= 0"); #endif /* DIAGNOSTIC */ return; } /* This is where all the initialization stuff gets done. */ numraid = num; /* Make some space for requested number of units... */ RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **)); if (raidPtrs == NULL) { panic("raidPtrs is NULL!!"); } rc = rf_mutex_init(&rf_sparet_wait_mutex); if (rc) { RF_PANIC(); } rf_sparet_wait_queue = rf_sparet_resp_queue = NULL; for (i = 0; i < num; i++) raidPtrs[i] = NULL; rc = rf_BootRaidframe(); if (rc == 0) printf("Kernelized RAIDframe activated\n"); else panic("Serious error booting RAID !!!"); /* * Put together some datastructures like the CCD device does... * This lets us lock the device and what-not when it gets opened. */ raid_softc = malloc(num * sizeof(struct raid_softc), M_RAIDFRAME, M_NOWAIT | M_ZERO); if (raid_softc == NULL) { printf("WARNING: no memory for RAIDframe driver\n"); return; } raid_scPtrs = malloc(num * sizeof(struct raid_softc *), M_RAIDFRAME, M_NOWAIT | M_ZERO); if (raid_scPtrs == NULL) { printf("WARNING: no memory for RAIDframe driver\n"); return; } raidrootdev = (struct device *)malloc(num * sizeof(struct device), M_RAIDFRAME, M_NOWAIT); if (raidrootdev == NULL) { panic("No memory for RAIDframe driver!!?!?!"); } for (raidID = 0; raidID < num; raidID++) { #if 0 SIMPLEQ_INIT(&raid_softc[raidID].sc_q); #endif raidrootdev[raidID].dv_class = DV_DISK; raidrootdev[raidID].dv_cfdata = NULL; raidrootdev[raidID].dv_unit = raidID; raidrootdev[raidID].dv_parent = NULL; raidrootdev[raidID].dv_flags = 0; snprintf(raidrootdev[raidID].dv_xname, sizeof raidrootdev[raidID].dv_xname,"raid%d",raidID); RF_Calloc(raidPtrs[raidID], 1, sizeof (RF_Raid_t), (RF_Raid_t *)); if (raidPtrs[raidID] == NULL) { printf("WARNING: raidPtrs[%d] is NULL\n", raidID); numraid = raidID; return; } } raid_cd.cd_devs = (void **) raid_scPtrs; raid_cd.cd_ndevs = num; #ifdef RAID_AUTOCONFIG startuphook_establish(rf_autoconfig_startuphook, NULL); #endif } #ifdef RAID_AUTOCONFIG void rf_autoconfig_startuphook(void *param) { RF_AutoConfig_t *ac_list; /* Autoconfig list. */ RF_ConfigSet_t *config_sets; /* 1. Locate all RAID components on the system. */ #ifdef RAIDDEBUG printf("Searching for raid components...\n"); #endif /* RAIDDEBUG */ ac_list = rf_find_raid_components(); /* 2. Sort them into their respective sets. */ config_sets = rf_create_auto_sets(ac_list); /* * 3. Evaluate each set and configure the valid ones * This gets done in rf_buildroothack(). */ rf_buildroothack(config_sets); } void rf_buildroothack(void *arg) { RF_ConfigSet_t *config_sets = arg; RF_ConfigSet_t *cset; RF_ConfigSet_t *next_cset; int retcode; int raidID; int rootID; int num_root; int majdev; rootID = 0; num_root = 0; cset = config_sets; while(cset != NULL ) { next_cset = cset->next; if (rf_have_enough_components(cset) && cset->ac->clabel->autoconfigure==1) { retcode = rf_auto_config_set(cset,&raidID); if (!retcode) { if (cset->rootable) { rootID = raidID; #ifdef RAIDDEBUG printf("eligible root device %d:" " raid%d\n", num_root, rootID); #endif /* RAIDDEBUG */ num_root++; } } else { /* The autoconfig didn't work :( */ #ifdef RAIDDEBUG printf("Autoconfig failed with code %d for" " raid%d\n", retcode, raidID); #endif /* RAIDDEBUG */ rf_release_all_vps(cset); } } else { /* * We're not autoconfiguring this set... * Release the associated resources. */ rf_release_all_vps(cset); } /* Cleanup. */ rf_cleanup_config_set(cset); cset = next_cset; } if (boothowto & RB_ASKNAME) { /* We don't auto-config... */ } else { /* They didn't ask, and we found something bootable... */ if (num_root == 1) { majdev = findblkmajor(&raidrootdev[rootID]); if (majdev < 0) boothowto |= RB_ASKNAME; else { rootdev = MAKEDISKDEV(majdev,rootID,0); boothowto |= RB_DFLTROOT; } } else if (num_root > 1) { /* We can't guess... Require the user to answer... */ boothowto |= RB_ASKNAME; } } } #endif /* RAID_AUTOCONFIG */ void rf_shutdown_hook(RF_ThreadArg_t arg) { int unit; struct raid_softc *rs; RF_Raid_t *raidPtr; /* Don't do it if we are not "safe". */ if (boothowto & RB_NOSYNC) return; raidPtr = (RF_Raid_t *) arg; unit = raidPtr->raidid; rs = &raid_softc[unit]; /* Shutdown the system. */ if (rf_hook_cookies != NULL && rf_hook_cookies[unit] != NULL) rf_hook_cookies[unit] = NULL; rf_Shutdown(raidPtr); pool_destroy(&rs->sc_cbufpool); /* It's no longer initialized... */ rs->sc_flags &= ~RAIDF_INITED; /* config_detach the device. */ config_detach(device_lookup(&raid_cd, unit), 0); /* Detach the disk. */ disk_detach(&rs->sc_dkdev); } daddr64_t raidsize(dev_t dev) { struct raid_softc *rs; struct disklabel *lp; int part, unit, omask, size; unit = DISKUNIT(dev); if (unit >= numraid) return (-1); rs = &raid_softc[unit]; if ((rs->sc_flags & RAIDF_INITED) == 0) return (-1); part = DISKPART(dev); omask = rs->sc_dkdev.dk_openmask & (1 << part); lp = rs->sc_dkdev.dk_label; if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc)) return (-1); if (lp->d_partitions[part].p_fstype != FS_SWAP) size = -1; else size = DL_GETPSIZE(&lp->d_partitions[part]) * (lp->d_secsize / DEV_BSIZE); if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc)) return (-1); return (size); } int raiddump(dev_t dev, daddr64_t blkno, caddr_t va, size_t size) { /* Not implemented. */ return (ENXIO); } /* ARGSUSED */ int raidopen(dev_t dev, int flags, int fmt, struct proc *p) { int unit = DISKUNIT(dev); struct raid_softc *rs; int part,pmask; int error = 0; if (unit >= numraid) return (ENXIO); rs = &raid_softc[unit]; if ((error = raidlock(rs)) != 0) return (error); part = DISKPART(dev); pmask = (1 << part); db1_printf( ("Opening raid device number: %d partition: %d\n", unit, part)); if ((rs->sc_flags & RAIDF_INITED) && (rs->sc_dkdev.dk_openmask == 0)) raidgetdisklabel(dev, rs, rs->sc_dkdev.dk_label, 0); /* Make sure that this partition exists. */ if (part != RAW_PART) { db1_printf(("Not a raw partition..\n")); if (((rs->sc_flags & RAIDF_INITED) == 0) || ((part >= rs->sc_dkdev.dk_label->d_npartitions) || (rs->sc_dkdev.dk_label->d_partitions[part].p_fstype == FS_UNUSED))) { error = ENXIO; raidunlock(rs); db1_printf(("Bailing out...\n")); return (error); } } /* Prevent this unit from being unconfigured while opened. */ switch (fmt) { case S_IFCHR: rs->sc_dkdev.dk_copenmask |= pmask; break; case S_IFBLK: rs->sc_dkdev.dk_bopenmask |= pmask; break; } if ((rs->sc_dkdev.dk_openmask == 0) && ((rs->sc_flags & RAIDF_INITED) != 0)) { /* * First one... Mark things as dirty... Note that we *MUST* * have done a configure before this. I DO NOT WANT TO BE * SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED * THAT THEY BELONG TOGETHER!!!!! */ /* * XXX should check to see if we're only open for reading * here... If so, we needn't do this, but then need some * other way of keeping track of what's happened... */ rf_markalldirty( raidPtrs[unit] ); } rs->sc_dkdev.dk_openmask = rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; raidunlock(rs); return (error); } /* ARGSUSED */ int raidclose(dev_t dev, int flags, int fmt, struct proc *p) { int unit = DISKUNIT(dev); struct raid_softc *rs; int error = 0; int part; if (unit >= numraid) return (ENXIO); rs = &raid_softc[unit]; if ((error = raidlock(rs)) != 0) return (error); part = DISKPART(dev); /* ...that much closer to allowing unconfiguration... */ switch (fmt) { case S_IFCHR: rs->sc_dkdev.dk_copenmask &= ~(1 << part); break; case S_IFBLK: rs->sc_dkdev.dk_bopenmask &= ~(1 << part); break; } rs->sc_dkdev.dk_openmask = rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; if ((rs->sc_dkdev.dk_openmask == 0) && ((rs->sc_flags & RAIDF_INITED) != 0)) { /* * Last one... Device is not unconfigured yet. * Device shutdown has taken care of setting the * clean bits if RAIDF_INITED is not set. * Mark things as clean... */ db1_printf(("Last one on raid%d. Updating status.\n",unit)); rf_update_component_labels(raidPtrs[unit], RF_FINAL_COMPONENT_UPDATE); } raidunlock(rs); return (0); } void raidstrategy(struct buf *bp) { int s; unsigned int raidID = DISKUNIT(bp->b_dev); RF_Raid_t *raidPtr; struct raid_softc *rs = &raid_softc[raidID]; struct disklabel *lp; int wlabel; s = splbio(); if ((rs->sc_flags & RAIDF_INITED) ==0) { bp->b_error = ENXIO; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; biodone(bp); goto raidstrategy_end; } if (raidID >= numraid || !raidPtrs[raidID]) { bp->b_error = ENODEV; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; biodone(bp); goto raidstrategy_end; } raidPtr = raidPtrs[raidID]; if (!raidPtr->valid) { bp->b_error = ENODEV; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; biodone(bp); goto raidstrategy_end; } if (bp->b_bcount == 0) { db1_printf(("b_bcount is zero..\n")); biodone(bp); goto raidstrategy_end; } lp = rs->sc_dkdev.dk_label; /* * Do bounds checking and adjust transfer. If there's an * error, the bounds check will flag that for us. */ wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING); if (bounds_check_with_label(bp, lp, wlabel) <= 0) { db1_printf(("Bounds check failed!!:%d %d\n", (int)bp->b_blkno, (int)wlabel)); biodone(bp); goto raidstrategy_end; } bp->b_resid = 0; bp->b_actf = rs->sc_q.b_actf; rs->sc_q.b_actf = bp; rs->sc_q.b_active++; raidstart(raidPtrs[raidID]); raidstrategy_end: splx(s); } /* ARGSUSED */ int raidread(dev_t dev, struct uio *uio, int flags) { int unit = DISKUNIT(dev); struct raid_softc *rs; int part; if (unit >= numraid) return (ENXIO); rs = &raid_softc[unit]; if ((rs->sc_flags & RAIDF_INITED) == 0) return (ENXIO); part = DISKPART(dev); db1_printf(("raidread: unit: %d partition: %d\n", unit, part)); return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio)); } /* ARGSUSED */ int raidwrite(dev_t dev, struct uio *uio, int flags) { int unit = DISKUNIT(dev); struct raid_softc *rs; if (unit >= numraid) return (ENXIO); rs = &raid_softc[unit]; if ((rs->sc_flags & RAIDF_INITED) == 0) return (ENXIO); db1_printf(("raidwrite\n")); return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio)); } int raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { int unit = DISKUNIT(dev); int error = 0; int part, pmask; struct raid_softc *rs; struct disklabel *lp; RF_Config_t *k_cfg, *u_cfg; RF_Raid_t *raidPtr; RF_RaidDisk_t *diskPtr; RF_AccTotals_t *totals; RF_DeviceConfig_t *d_cfg, **ucfgp; u_char *specific_buf; int retcode = 0; int row; int column; struct rf_recon_req *rrcopy, *rr; RF_ComponentLabel_t *clabel; RF_ComponentLabel_t ci_label; RF_ComponentLabel_t **clabel_ptr; RF_SingleComponent_t *sparePtr,*componentPtr; RF_SingleComponent_t hot_spare; RF_SingleComponent_t component; RF_ProgressInfo_t progressInfo, **progressInfoPtr; int i, j, d; if (unit >= numraid) return (ENXIO); rs = &raid_softc[unit]; raidPtr = raidPtrs[unit]; db1_printf(("raidioctl: %d %d %d %d\n", (int)dev, (int)DISKPART(dev), (int)unit, (int)cmd)); /* Must be open for writes for these commands... */ switch (cmd) { case DIOCSDINFO: case DIOCWDINFO: case DIOCWLABEL: if ((flag & FWRITE) == 0) return (EBADF); } /* Must be initialized for these... */ switch (cmd) { case DIOCGDINFO: case DIOCSDINFO: case DIOCWDINFO: case DIOCGPART: case DIOCWLABEL: case DIOCRLDINFO: case DIOCGPDINFO: case RAIDFRAME_SHUTDOWN: case RAIDFRAME_REWRITEPARITY: case RAIDFRAME_GET_INFO: case RAIDFRAME_RESET_ACCTOTALS: case RAIDFRAME_GET_ACCTOTALS: case RAIDFRAME_KEEP_ACCTOTALS: case RAIDFRAME_GET_SIZE: case RAIDFRAME_FAIL_DISK: case RAIDFRAME_COPYBACK: case RAIDFRAME_CHECK_RECON_STATUS: case RAIDFRAME_CHECK_RECON_STATUS_EXT: case RAIDFRAME_GET_COMPONENT_LABEL: case RAIDFRAME_SET_COMPONENT_LABEL: case RAIDFRAME_ADD_HOT_SPARE: case RAIDFRAME_REMOVE_HOT_SPARE: case RAIDFRAME_INIT_LABELS: case RAIDFRAME_REBUILD_IN_PLACE: case RAIDFRAME_CHECK_PARITY: case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: case RAIDFRAME_CHECK_COPYBACK_STATUS: case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: case RAIDFRAME_SET_AUTOCONFIG: case RAIDFRAME_SET_ROOT: case RAIDFRAME_DELETE_COMPONENT: case RAIDFRAME_INCORPORATE_HOT_SPARE: if ((rs->sc_flags & RAIDF_INITED) == 0) return (ENXIO); } switch (cmd) { /* Configure the system. */ case RAIDFRAME_CONFIGURE: if (raidPtr->valid) { /* There is a valid RAID set running on this unit ! */ printf("raid%d: Device already configured!\n",unit); return(EINVAL); } /* * Copy-in the configuration information. * data points to a pointer to the configuration structure. */ u_cfg = *((RF_Config_t **)data); RF_Malloc(k_cfg, sizeof (RF_Config_t), (RF_Config_t *)); if (k_cfg == NULL) { return (ENOMEM); } retcode = copyin((caddr_t)u_cfg, (caddr_t)k_cfg, sizeof (RF_Config_t)); if (retcode) { RF_Free(k_cfg, sizeof(RF_Config_t)); return (retcode); } /* * Allocate a buffer for the layout-specific data, * and copy it in. */ if (k_cfg->layoutSpecificSize) { if (k_cfg->layoutSpecificSize > 10000) { /* Sanity check. */ RF_Free(k_cfg, sizeof(RF_Config_t)); return (EINVAL); } RF_Malloc(specific_buf, k_cfg->layoutSpecificSize, (u_char *)); if (specific_buf == NULL) { RF_Free(k_cfg, sizeof (RF_Config_t)); return (ENOMEM); } retcode = copyin(k_cfg->layoutSpecific, (caddr_t)specific_buf, k_cfg->layoutSpecificSize); if (retcode) { RF_Free(k_cfg, sizeof(RF_Config_t)); RF_Free(specific_buf, k_cfg->layoutSpecificSize); return (retcode); } } else specific_buf = NULL; k_cfg->layoutSpecific = specific_buf; /* * We should do some kind of sanity check on the * configuration. * Store the sum of all the bytes in the last byte ? */ /* * Clear the entire RAID descriptor, just to make sure * there is no stale data left in the case of a * reconfiguration. */ bzero((char *) raidPtr, sizeof(RF_Raid_t)); /* Configure the system. */ raidPtr->raidid = unit; retcode = rf_Configure(raidPtr, k_cfg, NULL); if (retcode == 0) { /* * Allow this many simultaneous IO's to * this RAID device. */ raidPtr->openings = RAIDOUTSTANDING; raidinit(raidPtr); rf_markalldirty(raidPtr); } /* Free the buffers. No return code here. */ if (k_cfg->layoutSpecificSize) { RF_Free(specific_buf, k_cfg->layoutSpecificSize); } RF_Free(k_cfg, sizeof (RF_Config_t)); return (retcode); case RAIDFRAME_SHUTDOWN: /* Shutdown the system. */ if ((error = raidlock(rs)) != 0) return (error); /* * If somebody has a partition mounted, we shouldn't * shutdown. */ part = DISKPART(dev); pmask = (1 << part); if ((rs->sc_dkdev.dk_openmask & ~pmask) || ((rs->sc_dkdev.dk_bopenmask & pmask) && (rs->sc_dkdev.dk_copenmask & pmask))) { raidunlock(rs); return (EBUSY); } if ((retcode = rf_Shutdown(raidPtr)) == 0) { pool_destroy(&rs->sc_cbufpool); /* It's no longer initialized... */ rs->sc_flags &= ~RAIDF_INITED; /* config_detach the device. */ config_detach(device_lookup(&raid_cd, unit), 0); /* Detach the disk. */ disk_detach(&rs->sc_dkdev); } raidunlock(rs); return (retcode); case RAIDFRAME_GET_COMPONENT_LABEL: clabel_ptr = (RF_ComponentLabel_t **) data; /* * We need to read the component label for the disk indicated * by row,column in clabel. */ /* * For practice, let's get it directly from disk, rather * than from the in-core copy. */ RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ), (RF_ComponentLabel_t *)); if (clabel == NULL) return (ENOMEM); bzero((char *) clabel, sizeof(RF_ComponentLabel_t)); retcode = copyin( *clabel_ptr, clabel, sizeof(RF_ComponentLabel_t)); if (retcode) { RF_Free( clabel, sizeof(RF_ComponentLabel_t)); return(retcode); } row = clabel->row; column = clabel->column; if ((row < 0) || (row >= raidPtr->numRow) || (column < 0) || (column >= raidPtr->numCol)) { RF_Free( clabel, sizeof(RF_ComponentLabel_t)); return(EINVAL); } raidread_component_label(raidPtr->Disks[row][column].dev, raidPtr->raid_cinfo[row][column].ci_vp, clabel ); retcode = copyout((caddr_t) clabel, (caddr_t) *clabel_ptr, sizeof(RF_ComponentLabel_t)); RF_Free( clabel, sizeof(RF_ComponentLabel_t)); return (retcode); case RAIDFRAME_SET_COMPONENT_LABEL: clabel = (RF_ComponentLabel_t *) data; /* XXX check the label for valid stuff... */ /* * Note that some things *should not* get modified -- * the user should be re-initing the labels instead of * trying to patch things. */ #ifdef RAIDDEBUG printf("Got component label:\n"); printf("Version: %d\n",clabel->version); printf("Serial Number: %d\n",clabel->serial_number); printf("Mod counter: %d\n",clabel->mod_counter); printf("Row: %d\n", clabel->row); printf("Column: %d\n", clabel->column); printf("Num Rows: %d\n", clabel->num_rows); printf("Num Columns: %d\n", clabel->num_columns); printf("Clean: %d\n", clabel->clean); printf("Status: %d\n", clabel->status); #endif /* RAIDDEBUG */ row = clabel->row; column = clabel->column; if ((row < 0) || (row >= raidPtr->numRow) || (column < 0) || (column >= raidPtr->numCol)) { return(EINVAL); } /* XXX this isn't allowed to do anything for now :-) */ #if 0 raidwrite_component_label(raidPtr->Disks[row][column].dev, raidPtr->raid_cinfo[row][column].ci_vp, clabel ); #endif return (0); case RAIDFRAME_INIT_LABELS: clabel = (RF_ComponentLabel_t *) data; /* * We only want the serial number from the above. * We get all the rest of the information from * the config that was used to create this RAID * set. */ raidPtr->serial_number = clabel->serial_number; raid_init_component_label(raidPtr, &ci_label); ci_label.serial_number = clabel->serial_number; for(row=0;rownumRow;row++) { ci_label.row = row; for(column=0;columnnumCol;column++) { diskPtr = &raidPtr->Disks[row][column]; if (!RF_DEAD_DISK(diskPtr->status)) { ci_label.partitionSize = diskPtr->partitionSize; ci_label.column = column; raidwrite_component_label( raidPtr->Disks[row][column].dev, raidPtr->raid_cinfo[row][column].ci_vp, &ci_label ); } } } return (retcode); case RAIDFRAME_REWRITEPARITY: if (raidPtr->Layout.map->faultsTolerated == 0) { /* Parity for RAID 0 is trivially correct. */ raidPtr->parity_good = RF_RAID_CLEAN; return(0); } if (raidPtr->parity_rewrite_in_progress == 1) { /* Re-write is already in progress ! */ return(EINVAL); } retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread, rf_RewriteParityThread, raidPtr,"raid_parity"); return (retcode); case RAIDFRAME_SET_AUTOCONFIG: d = rf_set_autoconfig(raidPtr, *(int *) data); db1_printf(("New autoconfig value is: %d\n", d)); *(int *) data = d; return (retcode); case RAIDFRAME_SET_ROOT: d = rf_set_rootpartition(raidPtr, *(int *) data); db1_printf(("New rootpartition value is: %d\n", d)); *(int *) data = d; return (retcode); case RAIDFRAME_ADD_HOT_SPARE: sparePtr = (RF_SingleComponent_t *) data; memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t)); retcode = rf_add_hot_spare(raidPtr, &hot_spare); return(retcode); case RAIDFRAME_REMOVE_HOT_SPARE: return(retcode); case RAIDFRAME_DELETE_COMPONENT: componentPtr = (RF_SingleComponent_t *)data; memcpy( &component, componentPtr, sizeof(RF_SingleComponent_t)); retcode = rf_delete_component(raidPtr, &component); return(retcode); case RAIDFRAME_INCORPORATE_HOT_SPARE: componentPtr = (RF_SingleComponent_t *)data; memcpy( &component, componentPtr, sizeof(RF_SingleComponent_t)); retcode = rf_incorporate_hot_spare(raidPtr, &component); return(retcode); case RAIDFRAME_REBUILD_IN_PLACE: if (raidPtr->Layout.map->faultsTolerated == 0) { /* Can't do this on a RAID 0 !! */ return(EINVAL); } if (raidPtr->recon_in_progress == 1) { /* A reconstruct is already in progress ! */ return(EINVAL); } componentPtr = (RF_SingleComponent_t *) data; memcpy( &component, componentPtr, sizeof(RF_SingleComponent_t)); row = component.row; column = component.column; db1_printf(("Rebuild: %d %d\n",row, column)); if ((row < 0) || (row >= raidPtr->numRow) || (column < 0) || (column >= raidPtr->numCol)) { return(EINVAL); } RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); if (rrcopy == NULL) return(ENOMEM); rrcopy->raidPtr = (void *) raidPtr; rrcopy->row = row; rrcopy->col = column; retcode = RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconstructInPlaceThread, rrcopy,"raid_reconip"); return (retcode); case RAIDFRAME_GET_INFO: if (!raidPtr->valid) return (ENODEV); ucfgp = (RF_DeviceConfig_t **) data; RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t), (RF_DeviceConfig_t *)); if (d_cfg == NULL) return (ENOMEM); bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t)); d_cfg->rows = raidPtr->numRow; d_cfg->cols = raidPtr->numCol; d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol; if (d_cfg->ndevs >= RF_MAX_DISKS) { RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); return (ENOMEM); } d_cfg->nspares = raidPtr->numSpare; if (d_cfg->nspares >= RF_MAX_DISKS) { RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); return (ENOMEM); } d_cfg->maxqdepth = raidPtr->maxQueueDepth; d = 0; for (i = 0; i < d_cfg->rows; i++) { for (j = 0; j < d_cfg->cols; j++) { d_cfg->devs[d] = raidPtr->Disks[i][j]; d++; } } for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) { d_cfg->spares[i] = raidPtr->Disks[0][j]; } retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp, sizeof(RF_DeviceConfig_t)); RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); return (retcode); case RAIDFRAME_CHECK_PARITY: *(int *) data = raidPtr->parity_good; return (0); case RAIDFRAME_RESET_ACCTOTALS: bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals)); return (0); case RAIDFRAME_GET_ACCTOTALS: totals = (RF_AccTotals_t *) data; *totals = raidPtr->acc_totals; return (0); case RAIDFRAME_KEEP_ACCTOTALS: raidPtr->keep_acc_totals = *(int *)data; return (0); case RAIDFRAME_GET_SIZE: *(int *) data = raidPtr->totalSectors; return (0); /* Fail a disk & optionally start reconstruction. */ case RAIDFRAME_FAIL_DISK: rr = (struct rf_recon_req *)data; if (rr->row < 0 || rr->row >= raidPtr->numRow || rr->col < 0 || rr->col >= raidPtr->numCol) return (EINVAL); db1_printf(("raid%d: Failing the disk: row: %d col: %d\n", unit, rr->row, rr->col)); /* * Make a copy of the recon request so that we don't * rely on the user's buffer. */ RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); if (rrcopy == NULL) return(ENOMEM); bcopy(rr, rrcopy, sizeof(*rr)); rrcopy->raidPtr = (void *)raidPtr; retcode = RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread, rrcopy,"raid_recon"); return (0); /* * Invoke a copyback operation after recon on whatever * disk needs it, if any. */ case RAIDFRAME_COPYBACK: if (raidPtr->Layout.map->faultsTolerated == 0) { /* This makes no sense on a RAID 0 !! */ return(EINVAL); } if (raidPtr->copyback_in_progress == 1) { /* Copyback is already in progress ! */ return(EINVAL); } retcode = RF_CREATE_THREAD(raidPtr->copyback_thread, rf_CopybackThread, raidPtr,"raid_copyback"); return (retcode); /* Return the percentage completion of reconstruction. */ case RAIDFRAME_CHECK_RECON_STATUS: if (raidPtr->Layout.map->faultsTolerated == 0) { /* * This makes no sense on a RAID 0, so tell the * user it's done. */ *(int *) data = 100; return(0); } row = 0; /* XXX we only consider a single row... */ if (raidPtr->status[row] != rf_rs_reconstructing) *(int *)data = 100; else *(int *)data = raidPtr->reconControl[row]->percentComplete; return (0); case RAIDFRAME_CHECK_RECON_STATUS_EXT: progressInfoPtr = (RF_ProgressInfo_t **) data; row = 0; /* XXX we only consider a single row... */ if (raidPtr->status[row] != rf_rs_reconstructing) { progressInfo.remaining = 0; progressInfo.completed = 100; progressInfo.total = 100; } else { progressInfo.total = raidPtr->reconControl[row]->numRUsTotal; progressInfo.completed = raidPtr->reconControl[row]->numRUsComplete; progressInfo.remaining = progressInfo.total - progressInfo.completed; } retcode = copyout((caddr_t) &progressInfo, (caddr_t) *progressInfoPtr, sizeof(RF_ProgressInfo_t)); return (retcode); case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: if (raidPtr->Layout.map->faultsTolerated == 0) { /* * This makes no sense on a RAID 0, so tell the * user it's done. */ *(int *) data = 100; return(0); } if (raidPtr->parity_rewrite_in_progress == 1) { *(int *) data = 100 * raidPtr->parity_rewrite_stripes_done / raidPtr->Layout.numStripe; } else { *(int *) data = 100; } return (0); case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: progressInfoPtr = (RF_ProgressInfo_t **) data; if (raidPtr->parity_rewrite_in_progress == 1) { progressInfo.total = raidPtr->Layout.numStripe; progressInfo.completed = raidPtr->parity_rewrite_stripes_done; progressInfo.remaining = progressInfo.total - progressInfo.completed; } else { progressInfo.remaining = 0; progressInfo.completed = 100; progressInfo.total = 100; } retcode = copyout((caddr_t) &progressInfo, (caddr_t) *progressInfoPtr, sizeof(RF_ProgressInfo_t)); return (retcode); case RAIDFRAME_CHECK_COPYBACK_STATUS: if (raidPtr->Layout.map->faultsTolerated == 0) { /* This makes no sense on a RAID 0 !! */ *(int *) data = 100; return(0); } if (raidPtr->copyback_in_progress == 1) { *(int *) data = 100 * raidPtr->copyback_stripes_done / raidPtr->Layout.numStripe; } else { *(int *) data = 100; } return (0); case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: progressInfoPtr = (RF_ProgressInfo_t **) data; if (raidPtr->copyback_in_progress == 1) { progressInfo.total = raidPtr->Layout.numStripe; progressInfo.completed = raidPtr->copyback_stripes_done; progressInfo.remaining = progressInfo.total - progressInfo.completed; } else { progressInfo.remaining = 0; progressInfo.completed = 100; progressInfo.total = 100; } retcode = copyout((caddr_t) &progressInfo, (caddr_t) *progressInfoPtr, sizeof(RF_ProgressInfo_t)); return (retcode); #if 0 case RAIDFRAME_SPARET_WAIT: /* * The sparetable daemon calls this to wait for the * kernel to need a spare table. * This ioctl does not return until a spare table is needed. * XXX -- Calling mpsleep here in the ioctl code is almost * certainly wrong and evil. -- XXX * XXX -- I should either compute the spare table in the * kernel, or have a different. -- XXX * XXX -- Interface (a different character device) for * delivering the table. -- XXX */ RF_LOCK_MUTEX(rf_sparet_wait_mutex); while (!rf_sparet_wait_queue) mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *)simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE); waitreq = rf_sparet_wait_queue; rf_sparet_wait_queue = rf_sparet_wait_queue->next; RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); *((RF_SparetWait_t *)data) = *waitreq; RF_Free(waitreq, sizeof *waitreq); return (0); case RAIDFRAME_ABORT_SPARET_WAIT: /* * Wakes up a process waiting on SPARET_WAIT and puts an * error code in it that will cause the dameon to exit. */ RF_Malloc(waitreq, sizeof (*waitreq), (RF_SparetWait_t *)); waitreq->fcol = -1; RF_LOCK_MUTEX(rf_sparet_wait_mutex); waitreq->next = rf_sparet_wait_queue; rf_sparet_wait_queue = waitreq; RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); wakeup(&rf_sparet_wait_queue); return (0); case RAIDFRAME_SEND_SPARET: /* * Used by the spare table daemon to deliver a spare table * into the kernel. */ /* Install the spare table. */ retcode = rf_SetSpareTable(raidPtr,*(void **)data); /* * Respond to the requestor. The return status of the * spare table installation is passed in the "fcol" field. */ RF_Malloc(waitreq, sizeof *waitreq, (RF_SparetWait_t *)); waitreq->fcol = retcode; RF_LOCK_MUTEX(rf_sparet_wait_mutex); waitreq->next = rf_sparet_resp_queue; rf_sparet_resp_queue = waitreq; wakeup(&rf_sparet_resp_queue); RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); return (retcode); #endif /* Fall through to the os-specific code below. */ default: break; } if (!raidPtr->valid) return (EINVAL); /* * Add support for "regular" device ioctls here. */ switch (cmd) { case DIOCRLDINFO: lp = malloc(sizeof(*lp), M_TEMP, M_WAITOK); raidgetdisklabel(dev, rs, lp, 0); bcopy(lp, rs->sc_dkdev.dk_label, sizeof(*lp)); free(lp, M_TEMP); break; case DIOCGDINFO: *(struct disklabel *)data = *(rs->sc_dkdev.dk_label); break; case DIOCGPART: ((struct partinfo *)data)->disklab = rs->sc_dkdev.dk_label; ((struct partinfo *)data)->part = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)]; break; case DIOCWDINFO: case DIOCSDINFO: { struct disklabel *lp; lp = (struct disklabel *)data; if ((error = raidlock(rs)) != 0) return (error); rs->sc_flags |= RAIDF_LABELLING; error = setdisklabel(rs->sc_dkdev.dk_label, lp, 0); if (error == 0) { if (cmd == DIOCWDINFO) error = writedisklabel(DISKLABELDEV(dev), raidstrategy, rs->sc_dkdev.dk_label); } rs->sc_flags &= ~RAIDF_LABELLING; raidunlock(rs); if (error) return (error); break; } case DIOCWLABEL: if (*(int *)data != 0) rs->sc_flags |= RAIDF_WLABEL; else rs->sc_flags &= ~RAIDF_WLABEL; break; case DIOCGPDINFO: raidgetdisklabel(dev, rs, (struct disklabel *)data, 1); break; default: retcode = ENOTTY; } return (retcode); } /* * raidinit -- Complete the rest of the initialization for the * RAIDframe device. */ void raidinit(RF_Raid_t *raidPtr) { struct raid_softc *rs; struct cfdata *cf; int unit; unit = raidPtr->raidid; rs = &raid_softc[unit]; pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0, 0, 0, "raidpl", NULL); /* XXX should check return code first... */ rs->sc_flags |= RAIDF_INITED; /* XXX doesn't check bounds. */ snprintf(rs->sc_xname, sizeof rs->sc_xname, "raid%d", unit); rs->sc_dkdev.dk_name = rs->sc_xname; /* * disk_attach actually creates space for the CPU disklabel, among * other things, so it's critical to call this *BEFORE* we try * putzing with disklabels. */ disk_attach(&rs->sc_dkdev); /* * XXX There may be a weird interaction here between this, and * protectedSectors, as used in RAIDframe. */ rs->sc_size = raidPtr->totalSectors; /* * config_attach the raid device into the device tree. * For autoconf rootdev selection... */ cf = malloc(sizeof(struct cfdata), M_RAIDFRAME, M_NOWAIT | M_ZERO); if (cf == NULL) { printf("WARNING: no memory for cfdata struct\n"); return; } cf->cf_attach = &raid_ca; cf->cf_driver = &raid_cd; cf->cf_unit = unit; config_attach(NULL, cf, NULL, NULL); } /* * Wake up the daemon & tell it to get us a spare table. * XXX * The entries in the queues should be tagged with the raidPtr so that * in the extremely rare case that two recons happen at once, we know * which devices were requesting a spare table. * XXX * * XXX This code is not currently used. GO */ int rf_GetSpareTableFromDaemon(RF_SparetWait_t *req) { int retcode; RF_LOCK_MUTEX(rf_sparet_wait_mutex); req->next = rf_sparet_wait_queue; rf_sparet_wait_queue = req; wakeup(&rf_sparet_wait_queue); /* mpsleep unlocks the mutex. */ while (!rf_sparet_resp_queue) { tsleep(&rf_sparet_resp_queue, PRIBIO, "RAIDframe getsparetable", 0); } req = rf_sparet_resp_queue; rf_sparet_resp_queue = req->next; RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); retcode = req->fcol; /* This is not the same req as we alloc'd. */ RF_Free(req, sizeof *req); return (retcode); } /* * A wrapper around rf_DoAccess that extracts appropriate info from the * bp and passes it down. * Any calls originating in the kernel must use non-blocking I/O. * Do some extra sanity checking to return "appropriate" error values for * certain conditions (to make some standard utilities work). * * Formerly known as: rf_DoAccessKernel */ void raidstart(RF_Raid_t *raidPtr) { RF_SectorCount_t num_blocks, pb, sum; RF_RaidAddr_t raid_addr; int retcode; struct partition *pp; daddr64_t blocknum; int unit; struct raid_softc *rs; int do_async; struct buf *bp; unit = raidPtr->raidid; rs = &raid_softc[unit]; /* Quick check to see if anything has died recently. */ RF_LOCK_MUTEX(raidPtr->mutex); if (raidPtr->numNewFailures > 0) { rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); raidPtr->numNewFailures--; } RF_UNLOCK_MUTEX(raidPtr->mutex); /* Check to see if we're at the limit... */ RF_LOCK_MUTEX(raidPtr->mutex); while (raidPtr->openings > 0) { RF_UNLOCK_MUTEX(raidPtr->mutex); bp = rs->sc_q.b_actf; if (bp == NULL) { /* Nothing more to do. */ return; } rs->sc_q.b_actf = bp->b_actf; /* * Ok, for the bp we have here, bp->b_blkno is relative to the * partition... We need to make it absolute to the underlying * device... */ blocknum = bp->b_blkno; if (DISKPART(bp->b_dev) != RAW_PART) { pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)]; blocknum += DL_GETPOFFSET(pp); } db1_printf(("Blocks: %d, %lld\n", (int) bp->b_blkno, blocknum)); db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount)); db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid)); /* * *THIS* is where we adjust what block we're going to... * But DO NOT TOUCH bp->b_blkno !!! */ raid_addr = blocknum; num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector; pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0; sum = raid_addr + num_blocks + pb; if (1 || rf_debugKernelAccess) { db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d)" " (%d)\n", (int)raid_addr, (int)sum, (int)num_blocks, (int)pb, (int)bp->b_resid)); } if ((sum > raidPtr->totalSectors) || (sum < raid_addr) || (sum < num_blocks) || (sum < pb)) { bp->b_error = ENOSPC; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; /* db1_printf(("%s: Calling biodone on 0x%x\n", __func__, bp)); */ splassert(IPL_BIO); biodone(bp); RF_LOCK_MUTEX(raidPtr->mutex); continue; } /* * XXX rf_DoAccess() should do this, not just DoAccessKernel(). */ if (bp->b_bcount & raidPtr->sectorMask) { bp->b_error = EINVAL; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; /* db1_printf(("%s: Calling biodone on 0x%x\n", __func__, bp)); */ splassert(IPL_BIO); biodone(bp); RF_LOCK_MUTEX(raidPtr->mutex); continue; } db1_printf(("Calling DoAccess..\n")); RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->openings--; RF_UNLOCK_MUTEX(raidPtr->mutex); /* * Everything is async. */ do_async = 1; disk_busy(&rs->sc_dkdev); /* * XXX we're still at splbio() here... Do we *really* * need to be ? */ /* * Don't ever condition on bp->b_flags & B_WRITE. * Always condition on B_READ instead. */ retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ? RF_IO_TYPE_READ : RF_IO_TYPE_WRITE, do_async, raid_addr, num_blocks, bp->b_data, bp, NULL, NULL, RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL); RF_LOCK_MUTEX(raidPtr->mutex); } RF_UNLOCK_MUTEX(raidPtr->mutex); } /* Invoke an I/O from kernel mode. Disk queue should be locked upon entry. */ int rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req) { int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE; struct buf *bp; struct raidbuf *raidbp = NULL; struct raid_softc *rs; int unit; /*int s = splbio();*/ /* Want to test this. */ /* * XXX along with the vnode, we also need the softc associated with * this device... */ req->queue = queue; unit = queue->raidPtr->raidid; db1_printf(("DispatchKernelIO unit: %d\n", unit)); if (unit >= numraid) { printf("Invalid unit number: %d %d\n", unit, numraid); panic("Invalid Unit number in rf_DispatchKernelIO"); } rs = &raid_softc[unit]; bp = req->bp; #if 1 /* * XXX When there is a physical disk failure, someone is passing * us a buffer that contains old stuff !! Attempt to deal with * this problem without taking a performance hit... * (not sure where the real bug is; it's buried in RAIDframe * somewhere) :-( GO ) */ if (bp->b_flags & B_ERROR) { bp->b_flags &= ~B_ERROR; } if (bp->b_error!=0) { bp->b_error = 0; } #endif raidbp = RAIDGETBUF(rs); raidbp->rf_flags = 0; /* XXX not really used anywhere... */ /* * Context for raidiodone. */ raidbp->rf_obp = bp; raidbp->req = req; LIST_INIT(&raidbp->rf_buf.b_dep); switch (req->type) { case RF_IO_TYPE_NOP: /* Used primarily to unlock a locked queue. */ db1_printf(("rf_DispatchKernelIO: NOP to r %d c %d\n", queue->row, queue->col)); /* XXX need to do something extra here... */ /* * I'm leaving this in, as I've never actually seen it * used, and I'd like folks to report it... GO */ db1_printf(("WAKEUP CALLED\n")); queue->numOutstanding++; /* XXX need to glue the original buffer into this ?? */ rf_KernelWakeupFunc(&raidbp->rf_buf); break; case RF_IO_TYPE_READ: case RF_IO_TYPE_WRITE: if (req->tracerec) { RF_ETIMER_START(req->tracerec->timer); } rf_InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp, op | bp->b_flags, queue->rf_cinfo->ci_dev, req->sectorOffset, req->numSector, req->buf, rf_KernelWakeupFunc, (void *)req, queue->raidPtr->logBytesPerSector, req->b_proc); if (rf_debugKernelAccess) { db1_printf(("dispatch: bp->b_blkno = %ld\n", (long)bp->b_blkno)); } queue->numOutstanding++; queue->last_deq_sector = req->sectorOffset; /* * Acc wouldn't have been let in if there were any * pending reqs at any other priority. */ queue->curPriority = req->priority; db1_printf(("Going for %c to unit %d row %d col %d\n", req->type, unit, queue->row, queue->col)); db1_printf(("sector %d count %d (%d bytes) %d\n", (int)req->sectorOffset, (int)req->numSector, (int)(req->numSector << queue->raidPtr->logBytesPerSector), (int)queue->raidPtr->logBytesPerSector)); if ((raidbp->rf_buf.b_flags & B_READ) == 0) { raidbp->rf_buf.b_vp->v_numoutput++; } VOP_STRATEGY(&raidbp->rf_buf); break; default: panic("bad req->type in rf_DispatchKernelIO"); } db1_printf(("Exiting from DispatchKernelIO\n")); /*splx(s);*/ /* want to test this */ return (0); } /* * This is the callback function associated with a I/O invoked from * kernel code. */ void rf_KernelWakeupFunc(struct buf *vbp) { RF_DiskQueueData_t *req = NULL; RF_DiskQueue_t *queue; struct raidbuf *raidbp = (struct raidbuf *)vbp; struct buf *bp; struct raid_softc *rs; int unit; int s; s = splbio(); db1_printf(("recovering the request queue:\n")); req = raidbp->req; bp = raidbp->rf_obp; queue = (RF_DiskQueue_t *)req->queue; if (raidbp->rf_buf.b_flags & B_ERROR) { bp->b_flags |= B_ERROR; bp->b_error = raidbp->rf_buf.b_error ? raidbp->rf_buf.b_error : EIO; } #if 1 /* XXX Methinks this could be wrong... */ bp->b_resid = raidbp->rf_buf.b_resid; #endif if (req->tracerec) { RF_ETIMER_STOP(req->tracerec->timer); RF_ETIMER_EVAL(req->tracerec->timer); RF_LOCK_MUTEX(rf_tracing_mutex); req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer); req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer); req->tracerec->num_phys_ios++; RF_UNLOCK_MUTEX(rf_tracing_mutex); } bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */ unit = queue->raidPtr->raidid; /* *Much* simpler :-> */ /* * XXX Ok, let's get aggressive... If B_ERROR is set, let's go * ballistic, and mark the component as hosed... */ if (bp->b_flags & B_ERROR) { /* Mark the disk as dead but only mark it once... */ if (queue->raidPtr->Disks[queue->row][queue->col].status == rf_ds_optimal) { printf("raid%d: IO Error. Marking %s as failed.\n", unit, queue->raidPtr-> Disks[queue->row][queue->col].devname); queue->raidPtr->Disks[queue->row][queue->col].status = rf_ds_failed; queue->raidPtr->status[queue->row] = rf_rs_degraded; queue->raidPtr->numFailures++; queue->raidPtr->numNewFailures++; } else { /* Disk is already dead... */ /* printf("Disk already marked as dead!\n"); */ } } rs = &raid_softc[unit]; RAIDPUTBUF(rs, raidbp); rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0); (req->CompleteFunc)(req->argument, (bp->b_flags & B_ERROR) ? 1 : 0); splx(s); } /* * Initialize a buf structure for doing an I/O in the kernel. */ void rf_InitBP( struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev, RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf, void (*cbFunc)(struct buf *), void *cbArg, int logBytesPerSector, struct proc *b_proc ) { /*bp->b_flags = B_PHYS | rw_flag;*/ bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too ??? */ bp->b_bcount = numSect << logBytesPerSector; bp->b_bufsize = bp->b_bcount; bp->b_error = 0; bp->b_dev = dev; bp->b_data = buf; bp->b_blkno = startSect; bp->b_resid = bp->b_bcount; /* XXX is this right !??!?!! */ if (bp->b_bcount == 0) { panic("bp->b_bcount is zero in rf_InitBP!!"); } bp->b_proc = b_proc; bp->b_iodone = cbFunc; bp->b_vp = b_vp; LIST_INIT(&bp->b_dep); } void raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs, struct disklabel *lp) { db1_printf(("Building a default label...\n")); bzero(lp, sizeof(*lp)); /* Fabricate a label... */ DL_SETDSIZE(lp, raidPtr->totalSectors); lp->d_secsize = raidPtr->bytesPerSector; lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe; lp->d_ntracks = 4 * raidPtr->numCol; lp->d_ncylinders = raidPtr->totalSectors / (lp->d_nsectors * lp->d_ntracks); lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; strncpy(lp->d_typename, "raid", sizeof(lp->d_typename)); lp->d_type = DTYPE_RAID; strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); lp->d_flags = 0; lp->d_version = 1; DL_SETPOFFSET(&lp->d_partitions[RAW_PART], 0); DL_SETPSIZE(&lp->d_partitions[RAW_PART], raidPtr->totalSectors); lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = MAXPARTITIONS; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label); } /* * Read the disklabel from the raid device. * If one is not present, fake one up. */ int raidgetdisklabel(dev_t dev, struct raid_softc *rs, struct disklabel *lp, int spoofonly) { int unit = DISKUNIT(dev); RF_Raid_t *raidPtr; int error, i; struct partition *pp; db1_printf(("Getting the disklabel...\n")); bzero(lp, sizeof(*lp)); raidPtr = raidPtrs[unit]; raidgetdefaultlabel(raidPtr, rs, lp); /* * Call the generic disklabel extraction routine. */ error = readdisklabel(DISKLABELDEV(dev), raidstrategy, lp, spoofonly); if (error) return (error); /* * Sanity check whether the found disklabel is valid. * * This is necessary since total size of the raid device * may vary when an interleave is changed even though exactly * same componets are used, and old disklabel may used * if that is found. */ #ifdef RAIDDEBUG if (DL_GETDSIZE(lp) != rs->sc_size) printf("WARNING: %s: " "total sector size in disklabel (%d) != " "the size of raid (%ld)\n", rs->sc_xname, DL_GETDSIZE(lp), (long) rs->sc_size); #endif /* RAIDDEBUG */ for (i = 0; i < lp->d_npartitions; i++) { pp = &lp->d_partitions[i]; if (DL_GETPOFFSET(pp) + DL_GETPSIZE(pp) > rs->sc_size) printf("WARNING: %s: end of partition `%c' " "exceeds the size of raid (%ld)\n", rs->sc_xname, 'a' + i, (long) rs->sc_size); } return (0); } /* * Lookup the provided name in the filesystem. If the file exists, * is a valid block device, and isn't being used by anyone else, * set *vpp to the file's vnode. * You'll find the original of this in ccd.c */ int raidlookup(char *path, struct proc *p, struct vnode **vpp /* result */) { struct nameidata nd; struct vnode *vp; struct vattr va; int error; NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p); if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0) { #ifdef RAIDDEBUG printf("RAIDframe: vn_open returned %d\n", error); #endif /* RAIDDEBUG */ return (error); } vp = nd.ni_vp; if (vp->v_usecount > 1) { VOP_UNLOCK(vp, 0, p); (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p); return (EBUSY); } if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) { VOP_UNLOCK(vp, 0, p); (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p); return (error); } /* XXX: eventually we should handle VREG, too. */ if (va.va_type != VBLK) { VOP_UNLOCK(vp, 0, p); (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p); return (ENOTBLK); } VOP_UNLOCK(vp, 0, p); *vpp = vp; return (0); } /* * Wait interruptibly for an exclusive lock. * * XXX * Several drivers do this; it should be abstracted and made MP-safe. * (Hmm... where have we seen this warning before :-> GO ) */ int raidlock(struct raid_softc *rs) { int error; while ((rs->sc_flags & RAIDF_LOCKED) != 0) { rs->sc_flags |= RAIDF_WANTED; if ((error = tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0) return (error); } rs->sc_flags |= RAIDF_LOCKED; return (0); } /* * Unlock and wake up any waiters. */ void raidunlock(struct raid_softc *rs) { rs->sc_flags &= ~RAIDF_LOCKED; if ((rs->sc_flags & RAIDF_WANTED) != 0) { rs->sc_flags &= ~RAIDF_WANTED; wakeup(rs); } } #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */ #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */ int raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter) { RF_ComponentLabel_t clabel; raidread_component_label(dev, b_vp, &clabel); clabel.mod_counter = mod_counter; clabel.clean = RF_RAID_CLEAN; raidwrite_component_label(dev, b_vp, &clabel); return(0); } int raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter) { RF_ComponentLabel_t clabel; raidread_component_label(dev, b_vp, &clabel); clabel.mod_counter = mod_counter; clabel.clean = RF_RAID_DIRTY; raidwrite_component_label(dev, b_vp, &clabel); return(0); } /* ARGSUSED */ int raidread_component_label(dev_t dev, struct vnode *b_vp, RF_ComponentLabel_t *clabel) { struct buf *bp; int error; /* * XXX should probably ensure that we don't try to do this if * someone has changed rf_protected_sectors. */ if (b_vp == NULL) { /* * For whatever reason, this component is not valid. * Don't try to read a component label from it. */ return(EINVAL); } /* Get a block of the appropriate size... */ bp = geteblk((int)RF_COMPONENT_INFO_SIZE); bp->b_dev = dev; /* Get our ducks in a row for the read. */ bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; bp->b_bcount = RF_COMPONENT_INFO_SIZE; bp->b_flags |= (B_READ | B_RAW); bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; (*bdevsw[major(bp->b_dev)].d_strategy)(bp); error = biowait(bp); if (!error) { memcpy(clabel, bp->b_data, sizeof(RF_ComponentLabel_t)); #if 0 rf_print_component_label( clabel ); #endif } else { db1_printf(("Failed to read RAID component label!\n")); } brelse(bp); return(error); } /* ARGSUSED */ int raidwrite_component_label(dev_t dev, struct vnode *b_vp, RF_ComponentLabel_t *clabel) { struct buf *bp; int error; /* Get a block of the appropriate size... */ bp = geteblk((int)RF_COMPONENT_INFO_SIZE); bp->b_dev = dev; /* Get our ducks in a row for the write. */ bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; bp->b_bcount = RF_COMPONENT_INFO_SIZE; bp->b_flags |= (B_WRITE | B_RAW); bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE ); memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t)); (*bdevsw[major(bp->b_dev)].d_strategy)(bp); error = biowait(bp); brelse(bp); if (error) { printf("Failed to write RAID component info!\n"); } return(error); } void rf_markalldirty(RF_Raid_t *raidPtr) { RF_ComponentLabel_t clabel; int r,c; raidPtr->mod_counter++; for (r = 0; r < raidPtr->numRow; r++) { for (c = 0; c < raidPtr->numCol; c++) { /* * We don't want to touch (at all) a disk that has * failed. */ if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) { raidread_component_label( raidPtr->Disks[r][c].dev, raidPtr->raid_cinfo[r][c].ci_vp, &clabel); if (clabel.status == rf_ds_spared) { /* * XXX do something special... * But whatever you do, don't * try to access it !!! */ } else { #if 0 clabel.status = raidPtr->Disks[r][c].status; raidwrite_component_label( raidPtr->Disks[r][c].dev, raidPtr->raid_cinfo[r][c].ci_vp, &clabel); #endif raidmarkdirty( raidPtr->Disks[r][c].dev, raidPtr->raid_cinfo[r][c].ci_vp, raidPtr->mod_counter); } } } } /*printf("Component labels marked dirty.\n");*/ #if 0 for( c = 0; c < raidPtr->numSpare ; c++) { sparecol = raidPtr->numCol + c; if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) { /* * XXX This is where we get fancy and map this spare * into it's correct spot in the array. */ /* * We claim this disk is "optimal" if it's * rf_ds_used_spare, as that means it should be * directly substitutable for the disk it replaced. * We note that too... */ for(i=0;inumRow;i++) { for(j=0;jnumCol;j++) { if ((raidPtr->Disks[i][j].spareRow == r) && (raidPtr->Disks[i][j].spareCol == sparecol)) { srow = r; scol = sparecol; break; } } } raidread_component_label( raidPtr->Disks[r][sparecol].dev, raidPtr->raid_cinfo[r][sparecol].ci_vp, &clabel); /* Make sure status is noted. */ clabel.version = RF_COMPONENT_LABEL_VERSION; clabel.mod_counter = raidPtr->mod_counter; clabel.serial_number = raidPtr->serial_number; clabel.row = srow; clabel.column = scol; clabel.num_rows = raidPtr->numRow; clabel.num_columns = raidPtr->numCol; clabel.clean = RF_RAID_DIRTY; /* Changed in a bit. */ clabel.status = rf_ds_optimal; raidwrite_component_label( raidPtr->Disks[r][sparecol].dev, raidPtr->raid_cinfo[r][sparecol].ci_vp, &clabel); raidmarkclean( raidPtr->Disks[r][sparecol].dev, raidPtr->raid_cinfo[r][sparecol].ci_vp); } } #endif } void rf_update_component_labels(RF_Raid_t *raidPtr, int final) { RF_ComponentLabel_t clabel; int sparecol; int r,c; int i,j; int srow, scol; srow = -1; scol = -1; /* * XXX should do extra checks to make sure things really are clean, * rather than blindly setting the clean bit... */ raidPtr->mod_counter++; for (r = 0; r < raidPtr->numRow; r++) { for (c = 0; c < raidPtr->numCol; c++) { if (raidPtr->Disks[r][c].status == rf_ds_optimal) { raidread_component_label( raidPtr->Disks[r][c].dev, raidPtr->raid_cinfo[r][c].ci_vp, &clabel); /* Make sure status is noted. */ clabel.status = rf_ds_optimal; /* Bump the counter. */ clabel.mod_counter = raidPtr->mod_counter; raidwrite_component_label( raidPtr->Disks[r][c].dev, raidPtr->raid_cinfo[r][c].ci_vp, &clabel); if (final == RF_FINAL_COMPONENT_UPDATE) { if (raidPtr->parity_good == RF_RAID_CLEAN) { raidmarkclean( raidPtr->Disks[r][c].dev, raidPtr-> raid_cinfo[r][c].ci_vp, raidPtr->mod_counter); } } } /* Else we don't touch it... */ } } for( c = 0; c < raidPtr->numSpare ; c++) { sparecol = raidPtr->numCol + c; if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) { /* * We claim this disk is "optimal" if it's * rf_ds_used_spare, as that means it should be * directly substitutable for the disk it replaced. * We note that too... */ for(i=0;inumRow;i++) { for(j=0;jnumCol;j++) { if ((raidPtr->Disks[i][j].spareRow == 0) && (raidPtr->Disks[i][j].spareCol == sparecol)) { srow = i; scol = j; break; } } } /* XXX Shouldn't *really* need this... */ raidread_component_label( raidPtr->Disks[0][sparecol].dev, raidPtr->raid_cinfo[0][sparecol].ci_vp, &clabel); /* Make sure status is noted. */ raid_init_component_label(raidPtr, &clabel); clabel.mod_counter = raidPtr->mod_counter; clabel.row = srow; clabel.column = scol; clabel.status = rf_ds_optimal; raidwrite_component_label( raidPtr->Disks[0][sparecol].dev, raidPtr->raid_cinfo[0][sparecol].ci_vp, &clabel); if (final == RF_FINAL_COMPONENT_UPDATE) { if (raidPtr->parity_good == RF_RAID_CLEAN) { raidmarkclean(raidPtr-> Disks[0][sparecol].dev, raidPtr-> raid_cinfo[0][sparecol].ci_vp, raidPtr->mod_counter); } } } } /*printf("Component labels updated\n");*/ } void rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured) { struct proc *p = curproc; if (vp != NULL) { if (auto_configured == 1) { /* component was opened by rf_find_raid_components() */ VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, p); vrele(vp); } else { /* component was opened by raidlookup() */ (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); } } else { printf("vnode was NULL\n"); } } void rf_UnconfigureVnodes(RF_Raid_t *raidPtr) { int r,c; struct vnode *vp; int acd; /* We take this opportunity to close the vnodes like we should... */ for (r = 0; r < raidPtr->numRow; r++) { for (c = 0; c < raidPtr->numCol; c++) { db1_printf(("Closing vnode for row: %d col: %d\n", r, c)); vp = raidPtr->raid_cinfo[r][c].ci_vp; acd = raidPtr->Disks[r][c].auto_configured; rf_close_component(raidPtr, vp, acd); raidPtr->raid_cinfo[r][c].ci_vp = NULL; raidPtr->Disks[r][c].auto_configured = 0; } } for (r = 0; r < raidPtr->numSpare; r++) { db1_printf(("Closing vnode for spare: %d\n", r)); vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp; acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured; rf_close_component(raidPtr, vp, acd); raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL; raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0; } } void rf_ReconThread(struct rf_recon_req *req) { int s; RF_Raid_t *raidPtr; s = splbio(); raidPtr = (RF_Raid_t *) req->raidPtr; raidPtr->recon_in_progress = 1; rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col, ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0)); /* XXX Get rid of this! we don't need it at all... */ RF_Free(req, sizeof(*req)); raidPtr->recon_in_progress = 0; splx(s); /* That's all... */ kthread_exit(0); /* Does not return. */ } void rf_RewriteParityThread(RF_Raid_t *raidPtr) { int retcode; int s; s = splbio(); raidPtr->parity_rewrite_in_progress = 1; retcode = rf_RewriteParity(raidPtr); if (retcode) { printf("raid%d: Error re-writing parity!\n",raidPtr->raidid); } else { /* * Set the clean bit ! If we shutdown correctly, * the clean bit on each component label will get * set. */ raidPtr->parity_good = RF_RAID_CLEAN; } raidPtr->parity_rewrite_in_progress = 0; splx(s); /* Anyone waiting for us to stop ? If so, inform them... */ if (raidPtr->waitShutdown) { wakeup(&raidPtr->parity_rewrite_in_progress); } /* That's all... */ kthread_exit(0); /* Does not return. */ } void rf_CopybackThread(RF_Raid_t *raidPtr) { int s; s = splbio(); raidPtr->copyback_in_progress = 1; rf_CopybackReconstructedData(raidPtr); raidPtr->copyback_in_progress = 0; splx(s); /* That's all... */ kthread_exit(0); /* Does not return. */ } void rf_ReconstructInPlaceThread(struct rf_recon_req *req) { int retcode; int s; RF_Raid_t *raidPtr; s = splbio(); raidPtr = req->raidPtr; raidPtr->recon_in_progress = 1; retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col); RF_Free(req, sizeof(*req)); raidPtr->recon_in_progress = 0; splx(s); /* That's all... */ kthread_exit(0); /* Does not return. */ } RF_AutoConfig_t * rf_find_raid_components(void) { #ifdef RAID_AUTOCONFIG int major; struct vnode *vp; struct disklabel label; struct device *dv; dev_t dev; int error; int i; int good_one; RF_ComponentLabel_t *clabel; RF_AutoConfig_t *ac; #endif /* RAID_AUTOCONFIG */ RF_AutoConfig_t *ac_list; /* Initialize the AutoConfig list. */ ac_list = NULL; #ifdef RAID_AUTOCONFIG /* We begin by trolling through *all* the devices on the system. */ TAILQ_FOREACH(dv, &alldevs, dv_list) { /* We are only interested in disks... */ if (dv->dv_class != DV_DISK) continue; /* We don't care about floppies... */ if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) { continue; } /* * We need to find the device_name_to_block_device_major * stuff. */ major = findblkmajor(dv); /* Get a vnode for the raw partition of this disk. */ dev = MAKEDISKDEV(major, dv->dv_unit, RAW_PART); if (bdevvp(dev, &vp)) panic("RAID can't alloc vnode"); error = VOP_OPEN(vp, FREAD, NOCRED, 0); if (error) { /* * "Who cares." Continue looking * for something that exists. */ vput(vp); continue; } /* Ok, the disk exists. Go get the disklabel. */ error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, 0); if (error) { /* * XXX can't happen - open() would * have errored out (or faked up one). */ printf("can't get label for dev %s%c (%d)!?!?\n", dv->dv_xname, 'a' + RAW_PART, error); } /* * We don't need this any more. We'll allocate it again * a little later if we really do... */ VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); vrele(vp); for (i=0; i < label.d_npartitions; i++) { /* * We only support partitions marked as RAID. * Except on sparc/sparc64 where FS_RAID doesn't * fit in the SUN disklabel and we need to look * into each and every partition !!! */ #if !defined(__sparc__) && !defined(__sparc64__) && !defined(__sun3__) if (label.d_partitions[i].p_fstype != FS_RAID) continue; #else /* !__sparc__ && !__sparc64__ && !__sun3__ */ if (label.d_partitions[i].p_fstype == FS_SWAP || label.d_partitions[i].p_fstype == FS_UNUSED) continue; #endif /* __sparc__ || __sparc64__ || __sun3__ */ dev = MAKEDISKDEV(major, dv->dv_unit, i); if (bdevvp(dev, &vp)) panic("RAID can't alloc vnode"); error = VOP_OPEN(vp, FREAD, NOCRED, 0); if (error) { /* Whatever... */ vput(vp); continue; } good_one = 0; clabel = (RF_ComponentLabel_t *) malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT); if (clabel == NULL) { /* XXX CLEANUP HERE. */ printf("RAID auto config: out of memory!\n"); return(NULL); /* XXX probably should panic ? */ } if (!raidread_component_label(dev, vp, clabel)) { /* Got the label. Does it look reasonable ? */ if (rf_reasonable_label(clabel) && (clabel->partitionSize <= DL_GETPSIZE(&label.d_partitions[i]))) { #ifdef RAIDDEBUG printf("Component on: %s%c: %d\n", dv->dv_xname, 'a'+i, DL_GETPSIZE(&label.d_partitions[i])); rf_print_component_label(clabel); #endif /* RAIDDEBUG */ /* * If it's reasonable, add it, * else ignore it. */ ac = (RF_AutoConfig_t *) malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME, M_NOWAIT); if (ac == NULL) { /* XXX should panic ??? */ return(NULL); } snprintf(ac->devname, sizeof ac->devname, "%s%c", dv->dv_xname, 'a'+i); ac->dev = dev; ac->vp = vp; ac->clabel = clabel; ac->next = ac_list; ac_list = ac; good_one = 1; } } if (!good_one) { /* Cleanup. */ free(clabel, M_RAIDFRAME); VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); vrele(vp); } } } #endif /* RAID_AUTOCONFIG */ return(ac_list); } #ifdef RAID_AUTOCONFIG int rf_reasonable_label(RF_ComponentLabel_t *clabel) { if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) || (clabel->version==RF_COMPONENT_LABEL_VERSION)) && ((clabel->clean == RF_RAID_CLEAN) || (clabel->clean == RF_RAID_DIRTY)) && clabel->row >=0 && clabel->column >= 0 && clabel->num_rows > 0 && clabel->num_columns > 0 && clabel->row < clabel->num_rows && clabel->column < clabel->num_columns && clabel->blockSize > 0 && clabel->numBlocks > 0) { /* Label looks reasonable enough... */ return(1); } return(0); } #endif /* RAID_AUTOCONFIG */ void rf_print_component_label(RF_ComponentLabel_t *clabel) { printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n", clabel->row, clabel->column, clabel->num_rows, clabel->num_columns); printf(" Version: %d Serial Number: %d Mod Counter: %d\n", clabel->version, clabel->serial_number, clabel->mod_counter); printf(" Clean: %s Status: %d\n", clabel->clean ? "Yes" : "No", clabel->status ); printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n", clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU); printf(" RAID Level: %c blocksize: %d numBlocks: %d\n", (char) clabel->parityConfig, clabel->blockSize, clabel->numBlocks); printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" ); printf(" Contains root partition: %s\n", clabel->root_partition ? "Yes" : "No" ); printf(" Last configured as: raid%d\n", clabel->last_unit ); #if 0 printf(" Config order: %d\n", clabel->config_order); #endif } RF_ConfigSet_t * rf_create_auto_sets(RF_AutoConfig_t *ac_list) { RF_AutoConfig_t *ac; RF_ConfigSet_t *config_sets; RF_ConfigSet_t *cset; RF_AutoConfig_t *ac_next; config_sets = NULL; /* * Go through the AutoConfig list, and figure out which components * belong to what sets. */ ac = ac_list; while(ac!=NULL) { /* * We're going to putz with ac->next, so save it here * for use at the end of the loop. */ ac_next = ac->next; if (config_sets == NULL) { /* We will need at least this one... */ config_sets = (RF_ConfigSet_t *) malloc(sizeof(RF_ConfigSet_t), M_RAIDFRAME, M_NOWAIT); if (config_sets == NULL) { panic("rf_create_auto_sets: No memory!"); } /* This one is easy :) */ config_sets->ac = ac; config_sets->next = NULL; config_sets->rootable = 0; ac->next = NULL; } else { /* Which set does this component fit into ? */ cset = config_sets; while(cset!=NULL) { if (rf_does_it_fit(cset, ac)) { /* Looks like it matches... */ ac->next = cset->ac; cset->ac = ac; break; } cset = cset->next; } if (cset==NULL) { /* Didn't find a match above... new set... */ cset = (RF_ConfigSet_t *) malloc(sizeof(RF_ConfigSet_t), M_RAIDFRAME, M_NOWAIT); if (cset == NULL) { panic("rf_create_auto_sets: No memory!"); } cset->ac = ac; ac->next = NULL; cset->next = config_sets; cset->rootable = 0; config_sets = cset; } } ac = ac_next; } return(config_sets); } int rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac) { RF_ComponentLabel_t *clabel1, *clabel2; /* * If this one matches the *first* one in the set, that's good * enough, since the other members of the set would have been * through here too... */ /* * Note that we are not checking partitionSize here... * * Note that we are also not checking the mod_counters here. * If everything else matches except the mod_counter, that's * good enough for this test. We will deal with the mod_counters * a little later in the autoconfiguration process. * * (clabel1->mod_counter == clabel2->mod_counter) && * * The reason we don't check for this is that failed disks * will have lower modification counts. If those disks are * not added to the set they used to belong to, then they will * form their own set, which may result in 2 different sets, * for example, competing to be configured at raid0, and * perhaps competing to be the root filesystem set. If the * wrong ones get configured, or both attempt to become /, * weird behaviour and or serious lossage will occur. Thus we * need to bring them into the fold here, and kick them out at * a later point. */ clabel1 = cset->ac->clabel; clabel2 = ac->clabel; if ((clabel1->version == clabel2->version) && (clabel1->serial_number == clabel2->serial_number) && (clabel1->num_rows == clabel2->num_rows) && (clabel1->num_columns == clabel2->num_columns) && (clabel1->sectPerSU == clabel2->sectPerSU) && (clabel1->SUsPerPU == clabel2->SUsPerPU) && (clabel1->SUsPerRU == clabel2->SUsPerRU) && (clabel1->parityConfig == clabel2->parityConfig) && (clabel1->maxOutstanding == clabel2->maxOutstanding) && (clabel1->blockSize == clabel2->blockSize) && (clabel1->numBlocks == clabel2->numBlocks) && (clabel1->autoconfigure == clabel2->autoconfigure) && (clabel1->root_partition == clabel2->root_partition) && (clabel1->last_unit == clabel2->last_unit) && (clabel1->config_order == clabel2->config_order)) { /* If it get's here, it almost *has* to be a match. */ } else { /* It's not consistent with somebody in the set... Punt. */ return(0); } /* All was fine.. It must fit... */ return(1); } int rf_have_enough_components(RF_ConfigSet_t *cset) { RF_AutoConfig_t *ac; RF_AutoConfig_t *auto_config; RF_ComponentLabel_t *clabel; int r,c; int num_rows; int num_cols; int num_missing; int mod_counter; int mod_counter_found; int even_pair_failed; char parity_type; /* * Check to see that we have enough 'live' components * of this set. If so, we can configure it if necessary. */ num_rows = cset->ac->clabel->num_rows; num_cols = cset->ac->clabel->num_columns; parity_type = cset->ac->clabel->parityConfig; /* XXX Check for duplicate components !?!?!? */ /* Determine what the mod_counter is supposed to be for this set. */ mod_counter_found = 0; mod_counter = 0; ac = cset->ac; while(ac!=NULL) { if (mod_counter_found==0) { mod_counter = ac->clabel->mod_counter; mod_counter_found = 1; } else { if (ac->clabel->mod_counter > mod_counter) { mod_counter = ac->clabel->mod_counter; } } ac = ac->next; } num_missing = 0; auto_config = cset->ac; for(r=0; rclabel->row == r) && (ac->clabel->column == c) && (ac->clabel->mod_counter == mod_counter)) { /* It's this one... */ #ifdef RAIDDEBUG printf("Found: %s at %d,%d\n", ac->devname,r,c); #endif /* RAIDDEBUG */ break; } ac=ac->next; } if (ac==NULL) { /* Didn't find one here! */ /* * Special case for RAID 1, especially * where there are more than 2 * components (where RAIDframe treats * things a little differently :( ) */ if (parity_type == '1') { if (c%2 == 0) { /* Even component. */ even_pair_failed = 1; } else { /* * Odd component. * If we're failed, * and so is the even * component, it's * "Good Night, Charlie" */ if (even_pair_failed == 1) { return(0); } } } else { /* Normal accounting. */ num_missing++; } } if ((parity_type == '1') && (c%2 == 1)) { /* * Just did an even component, and we didn't * bail... Reset the even_pair_failed flag, * and go on to the next component... */ even_pair_failed = 0; } } } clabel = cset->ac->clabel; if (((clabel->parityConfig == '0') && (num_missing > 0)) || ((clabel->parityConfig == '4') && (num_missing > 1)) || ((clabel->parityConfig == '5') && (num_missing > 1))) { /* XXX This needs to be made *much* more general. */ /* Too many failures. */ return(0); } /* * Otherwise, all is well, and we've got enough to take a kick * at autoconfiguring this set. */ return(1); } void rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config, RF_Raid_t *raidPtr) { RF_ComponentLabel_t *clabel; int i; clabel = ac->clabel; /* 1. Fill in the common stuff. */ config->numRow = clabel->num_rows; config->numCol = clabel->num_columns; config->numSpare = 0; /* XXX Should this be set here ? */ config->sectPerSU = clabel->sectPerSU; config->SUsPerPU = clabel->SUsPerPU; config->SUsPerRU = clabel->SUsPerRU; config->parityConfig = clabel->parityConfig; /* XXX... */ strlcpy(config->diskQueueType,"fifo", sizeof config->diskQueueType); config->maxOutstandingDiskReqs = clabel->maxOutstanding; config->layoutSpecificSize = 0; /* XXX ?? */ while(ac!=NULL) { /* * row/col values will be in range due to the checks * in reasonable_label(). */ strlcpy(config->devnames[ac->clabel->row][ac->clabel->column], ac->devname, sizeof config->devnames[ac->clabel->row][ac->clabel->column]); ac = ac->next; } for(i=0;idebugVars[i][0] = NULL; } #ifdef RAID_DEBUG_ALL #ifdef RF_DBG_OPTION #undef RF_DBG_OPTION #endif /* RF_DBG_OPTION */ #ifdef __STDC__ #define RF_DBG_OPTION(_option_,_val_) do { \ snprintf(&(config->debugVars[i++][0]), 50, "%s %ld", \ #_option_, _val_); \ } while (0) #else /* __STDC__ */ #define RF_DBG_OPTION(_option_,_val_) do { \ snprintf(&(config->debugVars[i++][0]), 50, "%s %ld", \ "/**/_option_/**/", _val_); \ } while (0) #endif /* __STDC__ */ i = 0; /* RF_DBG_OPTION(accessDebug, 0); */ /* RF_DBG_OPTION(accessTraceBufSize, 0); */ RF_DBG_OPTION(cscanDebug, 1); /* Debug CSCAN sorting. */ RF_DBG_OPTION(dagDebug, 1); /* RF_DBG_OPTION(debugPrintUseBuffer, 0); */ RF_DBG_OPTION(degDagDebug, 1); RF_DBG_OPTION(disableAsyncAccs, 1); RF_DBG_OPTION(diskDebug, 1); RF_DBG_OPTION(enableAtomicRMW, 0); /* * This debug variable enables locking of the * disk arm during small-write operations. * Setting this variable to anything other than * 0 will result in deadlock. (wvcii) */ RF_DBG_OPTION(engineDebug, 1); RF_DBG_OPTION(fifoDebug, 1); /* Debug fifo queueing. */ /* RF_DBG_OPTION(floatingRbufDebug, 1); */ /* RF_DBG_OPTION(forceHeadSepLimit, -1); */ /* RF_DBG_OPTION(forceNumFloatingReconBufs, -1); */ /* * Wire down the number of extra recon buffers * to use. */ /* RF_DBG_OPTION(keepAccTotals, 1); */ /* Turn on keep_acc_totals. */ RF_DBG_OPTION(lockTableSize, RF_DEFAULT_LOCK_TABLE_SIZE); RF_DBG_OPTION(mapDebug, 1); RF_DBG_OPTION(maxNumTraces, -1); /* RF_DBG_OPTION(memChunkDebug, 1); */ /* RF_DBG_OPTION(memDebug, 1); */ /* RF_DBG_OPTION(memDebugAddress, 1); */ /* RF_DBG_OPTION(numBufsToAccumulate, 1); */ /* * Number of buffers to accumulate before * doing XOR. */ RF_DBG_OPTION(prReconSched, 0); RF_DBG_OPTION(printDAGsDebug, 1); RF_DBG_OPTION(printStatesDebug, 1); RF_DBG_OPTION(protectedSectors, 64L); /* * Number of sectors at start of disk to exclude * from RAID address space. */ RF_DBG_OPTION(pssDebug, 1); RF_DBG_OPTION(queueDebug, 1); RF_DBG_OPTION(quiesceDebug, 1); RF_DBG_OPTION(raidSectorOffset, 0); /* * Value added to all incoming sectors to debug * alignment problems. */ RF_DBG_OPTION(reconDebug, 1); RF_DBG_OPTION(reconbufferDebug, 1); RF_DBG_OPTION(scanDebug, 1); /* Debug SCAN sorting. */ RF_DBG_OPTION(showXorCallCounts, 0); /* Show n-way Xor call counts. */ RF_DBG_OPTION(shutdownDebug, 1); /* Show shutdown calls. */ RF_DBG_OPTION(sizePercentage, 100); RF_DBG_OPTION(sstfDebug, 1); /* Turn on debugging info for sstf queueing. */ RF_DBG_OPTION(stripeLockDebug, 1); RF_DBG_OPTION(suppressLocksAndLargeWrites, 0); RF_DBG_OPTION(suppressTraceDelays, 0); RF_DBG_OPTION(useMemChunks, 1); RF_DBG_OPTION(validateDAGDebug, 1); RF_DBG_OPTION(validateVisitedDebug, 1); /* XXX turn to zero by default ? */ RF_DBG_OPTION(verifyParityDebug, 1); RF_DBG_OPTION(debugKernelAccess, 1); /* DoAccessKernel debugging. */ #if RF_INCLUDE_PARITYLOGGING > 0 RF_DBG_OPTION(forceParityLogReint, 0); RF_DBG_OPTION(numParityRegions, 0); /* Number of regions in the array. */ RF_DBG_OPTION(numReintegrationThreads, 1); RF_DBG_OPTION(parityLogDebug, 1); /* If nonzero, enables debugging of parity logging. */ RF_DBG_OPTION(totalInCoreLogCapacity, 1024 * 1024); /* Target bytes available for in-core logs. */ #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ #endif /* RAID_DEBUG_ALL */ } int rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value) { RF_ComponentLabel_t clabel; struct vnode *vp; dev_t dev; int row, column; raidPtr->autoconfigure = new_value; for(row=0; rownumRow; row++) { for(column=0; columnnumCol; column++) { if (raidPtr->Disks[row][column].status == rf_ds_optimal) { dev = raidPtr->Disks[row][column].dev; vp = raidPtr->raid_cinfo[row][column].ci_vp; raidread_component_label(dev, vp, &clabel); clabel.autoconfigure = new_value; raidwrite_component_label(dev, vp, &clabel); } } } return(new_value); } int rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value) { RF_ComponentLabel_t clabel; struct vnode *vp; dev_t dev; int row, column; raidPtr->root_partition = new_value; for(row=0; rownumRow; row++) { for(column=0; columnnumCol; column++) { if (raidPtr->Disks[row][column].status == rf_ds_optimal) { dev = raidPtr->Disks[row][column].dev; vp = raidPtr->raid_cinfo[row][column].ci_vp; raidread_component_label(dev, vp, &clabel); clabel.root_partition = new_value; raidwrite_component_label(dev, vp, &clabel); } } } return(new_value); } void rf_release_all_vps(RF_ConfigSet_t *cset) { RF_AutoConfig_t *ac; ac = cset->ac; while(ac!=NULL) { /* Close the vp, and give it back. */ if (ac->vp) { VOP_CLOSE(ac->vp, FREAD, NOCRED, 0); vrele(ac->vp); ac->vp = NULL; } ac = ac->next; } } void rf_cleanup_config_set(RF_ConfigSet_t *cset) { RF_AutoConfig_t *ac; RF_AutoConfig_t *next_ac; ac = cset->ac; while(ac!=NULL) { next_ac = ac->next; /* Nuke the label. */ free(ac->clabel, M_RAIDFRAME); /* Cleanup the config structure. */ free(ac, M_RAIDFRAME); /* "next..." */ ac = next_ac; } /* And, finally, nuke the config set. */ free(cset, M_RAIDFRAME); } void raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel) { /* Current version number. */ clabel->version = RF_COMPONENT_LABEL_VERSION; clabel->serial_number = raidPtr->serial_number; clabel->mod_counter = raidPtr->mod_counter; clabel->num_rows = raidPtr->numRow; clabel->num_columns = raidPtr->numCol; clabel->clean = RF_RAID_DIRTY; /* Not clean. */ clabel->status = rf_ds_optimal; /* "It's good !" */ clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; clabel->SUsPerPU = raidPtr->Layout.SUsPerPU; clabel->SUsPerRU = raidPtr->Layout.SUsPerRU; clabel->blockSize = raidPtr->bytesPerSector; clabel->numBlocks = raidPtr->sectorsPerDisk; /* XXX Not portable. */ clabel->parityConfig = raidPtr->Layout.map->parityConfig; clabel->maxOutstanding = raidPtr->maxOutstanding; clabel->autoconfigure = raidPtr->autoconfigure; clabel->root_partition = raidPtr->root_partition; clabel->last_unit = raidPtr->raidid; clabel->config_order = raidPtr->config_order; } int rf_auto_config_set(RF_ConfigSet_t *cset, int *unit) { RF_Raid_t *raidPtr; RF_Config_t *config; int raidID; int retcode; db1_printf(("RAID autoconfigure\n")); retcode = 0; *unit = -1; /* 1. Create a config structure. */ config = malloc(sizeof(RF_Config_t), M_RAIDFRAME, M_NOWAIT | M_ZERO); if (config==NULL) { printf("Out of mem!?!?\n"); /* XXX Do something more intelligent here. */ return(1); } /* XXX raidID needs to be set correctly... */ /* * 2. Figure out what RAID ID this one is supposed to live at. * See if we can get the same RAID dev that it was configured * on last time... */ raidID = cset->ac->clabel->last_unit; if ((raidID < 0) || (raidID >= numraid)) { /* Let's not wander off into lala land. */ raidID = numraid - 1; } if (raidPtrs[raidID]->valid != 0) { /* * Nope... Go looking for an alternative... * Start high so we don't immediately use raid0 if that's * not taken. */ for(raidID = numraid - 1; raidID >= 0; raidID--) { if (raidPtrs[raidID]->valid == 0) { /* We can use this one ! */ break; } } } if (raidID < 0) { /* Punt... */ printf("Unable to auto configure this set!\n"); printf("(Out of RAID devs!)\n"); return(1); } raidPtr = raidPtrs[raidID]; /* XXX All this stuff should be done SOMEWHERE ELSE ! */ raidPtr->raidid = raidID; raidPtr->openings = RAIDOUTSTANDING; /* 3. Build the configuration structure. */ rf_create_configuration(cset->ac, config, raidPtr); /* 4. Do the configuration. */ retcode = rf_Configure(raidPtr, config, cset->ac); if (retcode == 0) { raidinit(raidPtrs[raidID]); rf_markalldirty(raidPtrs[raidID]); raidPtrs[raidID]->autoconfigure = 1; /* XXX Do this here ? */ if (cset->ac->clabel->root_partition==1) { /* * Everything configured just fine. Make a note * that this set is eligible to be root. */ cset->rootable = 1; /* XXX Do this here ? */ raidPtrs[raidID]->root_partition = 1; } } printf(": (%s) total number of sectors is %lu (%lu MB)%s\n", (raidPtrs[raidID]->Layout).map->configName, (unsigned long) raidPtrs[raidID]->totalSectors, (unsigned long) (raidPtrs[raidID]->totalSectors / 1024 * (1 << raidPtrs[raidID]->logBytesPerSector) / 1024), raidPtrs[raidID]->root_partition ? " as root" : ""); /* 5. Cleanup. */ free(config, M_RAIDFRAME); *unit = raidID; return(retcode); } void rf_disk_unbusy(RF_RaidAccessDesc_t *desc) { struct buf *bp; bp = (struct buf *)desc->bp; disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev, (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); }