/* $OpenBSD: rf_parityscan.c,v 1.3 1999/03/02 21:53:50 niklas Exp $ */ /* $NetBSD: rf_parityscan.c,v 1.3 1999/02/05 00:06:14 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /***************************************************************************** * * rf_parityscan.c -- misc utilities related to parity verification * *****************************************************************************/ #include "rf_types.h" #include "rf_raid.h" #include "rf_dag.h" #include "rf_dagfuncs.h" #include "rf_dagutils.h" #include "rf_mcpair.h" #include "rf_general.h" #include "rf_engine.h" #include "rf_parityscan.h" #include "rf_map.h" #include "rf_sys.h" /***************************************************************************************** * * walk through the entire arry and write new parity. * This works by creating two DAGs, one to read a stripe of data and one to * write new parity. The first is executed, the data is xored together, and * then the second is executed. To avoid constantly building and tearing down * the DAGs, we create them a priori and fill them in with the mapping * information as we go along. * * there should never be more than one thread running this. * ****************************************************************************************/ int rf_RewriteParity(raidPtr) RF_Raid_t *raidPtr; { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_AccessStripeMapHeader_t *asm_h; int old_pctg, new_pctg, rc; RF_PhysDiskAddr_t pda; RF_SectorNum_t i; pda.startSector = 0; pda.numSector = raidPtr->Layout.sectorsPerStripeUnit; old_pctg = -1; /* rf_verifyParityDebug=1; */ for (i = 0; i < raidPtr->totalSectors; i += layoutPtr->dataSectorsPerStripe) { asm_h = rf_MapAccess(raidPtr, i, layoutPtr->dataSectorsPerStripe, NULL, RF_DONT_REMAP); rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0); /* printf("Parity verified: rc=%d\n",rc); */ switch (rc) { case RF_PARITY_OKAY: case RF_PARITY_CORRECTED: break; case RF_PARITY_BAD: printf("Parity bad during correction\n"); return (1); break; case RF_PARITY_COULD_NOT_CORRECT: printf("Could not correct bad parity\n"); return (1); break; case RF_PARITY_COULD_NOT_VERIFY: printf("Could not verify parity\n"); return (1); break; default: printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc); RF_PANIC(); } rf_FreeAccessStripeMap(asm_h); new_pctg = i * 1000 / raidPtr->totalSectors; if (new_pctg != old_pctg) { } old_pctg = new_pctg; } #if 1 return (0); /* XXX nothing was here.. GO */ #endif } /***************************************************************************************** * * verify that the parity in a particular stripe is correct. * we validate only the range of parity defined by parityPDA, since * this is all we have locked. The way we do this is to create an asm * that maps the whole stripe and then range-restrict it to the parity * region defined by the parityPDA. * ****************************************************************************************/ int rf_VerifyParity(raidPtr, aasm, correct_it, flags) RF_Raid_t *raidPtr; RF_AccessStripeMap_t *aasm; int correct_it; RF_RaidAccessFlags_t flags; { RF_PhysDiskAddr_t *parityPDA; RF_AccessStripeMap_t *doasm; RF_LayoutSW_t *lp; int lrc, rc; lp = raidPtr->Layout.map; if (lp->faultsTolerated == 0) { /* * There isn't any parity. Call it "okay." */ return (RF_PARITY_OKAY); } rc = RF_PARITY_OKAY; if (lp->VerifyParity) { for (doasm = aasm; doasm; doasm = doasm->next) { for (parityPDA = doasm->parityInfo; parityPDA; parityPDA = parityPDA->next) { lrc = lp->VerifyParity(raidPtr, doasm->raidAddress, parityPDA, correct_it, flags); if (lrc > rc) { /* see rf_parityscan.h for why this * works */ rc = lrc; } } } } else { rc = RF_PARITY_COULD_NOT_VERIFY; } return (rc); } int rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags) RF_Raid_t *raidPtr; RF_RaidAddr_t raidAddr; RF_PhysDiskAddr_t *parityPDA; int correct_it; RF_RaidAccessFlags_t flags; { RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); RF_SectorCount_t numsector = parityPDA->numSector; int numbytes = rf_RaidAddressToByte(raidPtr, numsector); int bytesPerStripe = numbytes * layoutPtr->numDataCol; RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */ RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock; RF_AccessStripeMapHeader_t *asm_h; RF_AccessStripeMap_t *asmap; RF_AllocListElem_t *alloclist; RF_PhysDiskAddr_t *pda; char *pbuf, *buf, *end_p, *p; int i, retcode; RF_ReconUnitNum_t which_ru; RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; RF_AccTraceEntry_t tracerec; RF_MCPair_t *mcpair; retcode = RF_PARITY_OKAY; mcpair = rf_AllocMCPair(); rf_MakeAllocList(alloclist); RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist); RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make * sure buffer is zeroed */ end_p = buf + bytesPerStripe; rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY); blockNode = rd_dag_h->succedents[0]; unblockNode = blockNode->succedents[0]->succedents[0]; /* map the stripe and fill in the PDAs in the dag */ asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP); asmap = asm_h->stripeMap; for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { RF_ASSERT(pda); rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); RF_ASSERT(pda->numSector != 0); if (rf_TryToRedirectPDA(raidPtr, pda, 0)) goto out; /* no way to verify parity if disk is * dead. return w/ good status */ blockNode->succedents[i]->params[0].p = pda; blockNode->succedents[i]->params[2].v = psID; blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); } RF_ASSERT(!asmap->parityInfo->next); rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1); RF_ASSERT(asmap->parityInfo->numSector != 0); if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1)) goto out; blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo; /* fire off the DAG */ bzero((char *) &tracerec, sizeof(tracerec)); rd_dag_h->tracerec = &tracerec; if (rf_verifyParityDebug) { printf("Parity verify read dag:\n"); rf_PrintDAGList(rd_dag_h); } RF_LOCK_MUTEX(mcpair->mutex); mcpair->flag = 0; rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) mcpair); while (!mcpair->flag) RF_WAIT_COND(mcpair->cond, mcpair->mutex); RF_UNLOCK_MUTEX(mcpair->mutex); if (rd_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to verify parity: can't read the stripe\n"); retcode = RF_PARITY_COULD_NOT_VERIFY; goto out; } for (p = buf; p < end_p; p += numbytes) { rf_bxor(p, pbuf, numbytes, NULL); } for (i = 0; i < numbytes; i++) { #if 0 if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) { printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]); } #endif if (pbuf[i] != buf[bytesPerStripe + i]) { if (!correct_it) RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n", i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]); retcode = RF_PARITY_BAD; break; } } if (retcode && correct_it) { wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY); wrBlock = wr_dag_h->succedents[0]; wrUnblock = wrBlock->succedents[0]->succedents[0]; wrBlock->succedents[0]->params[0].p = asmap->parityInfo; wrBlock->succedents[0]->params[2].v = psID; wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); bzero((char *) &tracerec, sizeof(tracerec)); wr_dag_h->tracerec = &tracerec; if (rf_verifyParityDebug) { printf("Parity verify write dag:\n"); rf_PrintDAGList(wr_dag_h); } RF_LOCK_MUTEX(mcpair->mutex); mcpair->flag = 0; rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) mcpair); while (!mcpair->flag) RF_WAIT_COND(mcpair->cond, mcpair->mutex); RF_UNLOCK_MUTEX(mcpair->mutex); if (wr_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n"); retcode = RF_PARITY_COULD_NOT_CORRECT; } rf_FreeDAG(wr_dag_h); if (retcode == RF_PARITY_BAD) retcode = RF_PARITY_CORRECTED; } out: rf_FreeAccessStripeMap(asm_h); rf_FreeAllocList(alloclist); rf_FreeDAG(rd_dag_h); rf_FreeMCPair(mcpair); return (retcode); } int rf_TryToRedirectPDA(raidPtr, pda, parity) RF_Raid_t *raidPtr; RF_PhysDiskAddr_t *pda; int parity; { if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) { if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) { if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { RF_RowCol_t or = pda->row, oc = pda->col; RF_SectorNum_t os = pda->startSector; if (parity) { (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP); if (rf_verifyParityDebug) printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n", or, oc, (long) os, pda->row, pda->col, (long) pda->startSector); } else { (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP); if (rf_verifyParityDebug) printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n", or, oc, (long) os, pda->row, pda->col, (long) pda->startSector); } } else { RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow; RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol; pda->row = spRow; pda->col = spCol; } } } if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status)) return (1); return (0); } /***************************************************************************************** * * currently a stub. * * takes as input an ASM describing a write operation and containing one failure, and * verifies that the parity was correctly updated to reflect the write. * * if it's a data unit that's failed, we read the other data units in the stripe and * the parity unit, XOR them together, and verify that we get the data intended for * the failed disk. Since it's easy, we also validate that the right data got written * to the surviving data disks. * * If it's the parity that failed, there's really no validation we can do except the * above verification that the right data got written to all disks. This is because * the new data intended for the failed disk is supplied in the ASM, but this is of * course not the case for the new parity. * ****************************************************************************************/ int rf_VerifyDegrModeWrite(raidPtr, asmh) RF_Raid_t *raidPtr; RF_AccessStripeMapHeader_t *asmh; { return (0); } /* creates a simple DAG with a header, a block-recon node at level 1, * nNodes nodes at level 2, an unblock-recon node at level 3, and * a terminator node at level 4. The stripe address field in * the block and unblock nodes are not touched, nor are the pda * fields in the second-level nodes, so they must be filled in later. * * commit point is established at unblock node - this means that any * failure during dag execution causes the dag to fail */ RF_DagHeader_t * rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority) RF_Raid_t *raidPtr; int nNodes; int bytesPerSU; char *databuf; int (*doFunc) (RF_DagNode_t * node); int (*undoFunc) (RF_DagNode_t * node); char *name; /* node names at the second level */ RF_AllocListElem_t *alloclist; RF_RaidAccessFlags_t flags; int priority; { RF_DagHeader_t *dag_h; RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode; int i; /* create the nodes, the block & unblock nodes, and the terminator * node */ RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist); blockNode = &nodes[nNodes]; unblockNode = blockNode + 1; termNode = unblockNode + 1; dag_h = rf_AllocDAGHeader(); dag_h->raidPtr = (void *) raidPtr; dag_h->allocList = NULL;/* we won't use this alloc list */ dag_h->status = rf_enable; dag_h->numSuccedents = 1; dag_h->creator = "SimpleDAG"; /* this dag can not commit until the unblock node is reached errors * prior to the commit point imply the dag has failed */ dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->succedents[0] = blockNode; rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist); rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist); unblockNode->succedents[0] = termNode; for (i = 0; i < nNodes; i++) { blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i]; unblockNode->antType[i] = rf_control; rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist); nodes[i].succedents[0] = unblockNode; nodes[i].antecedents[0] = blockNode; nodes[i].antType[0] = rf_control; nodes[i].params[1].p = (databuf + (i * bytesPerSU)); } rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist); termNode->antecedents[0] = unblockNode; termNode->antType[0] = rf_control; return (dag_h); }