/* $OpenBSD: rf_reconstruct.c,v 1.2 1999/02/16 00:03:22 niklas Exp $ */ /* $NetBSD: rf_reconstruct.c,v 1.4 1999/02/05 00:06:16 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /************************************************************ * * rf_reconstruct.c -- code to perform on-line reconstruction * ************************************************************/ #include "rf_types.h" #include #include #include #include "rf_raid.h" #include "rf_reconutil.h" #include "rf_revent.h" #include "rf_reconbuffer.h" #include "rf_threadid.h" #include "rf_acctrace.h" #include "rf_etimer.h" #include "rf_dag.h" #include "rf_desc.h" #include "rf_general.h" #include "rf_freelist.h" #include "rf_debugprint.h" #include "rf_driver.h" #include "rf_utils.h" #include "rf_cpuutil.h" #include "rf_shutdown.h" #include "rf_sys.h" #include "rf_kintf.h" /* setting these to -1 causes them to be set to their default values if not set by debug options */ #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) #define Dprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h)) #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) #define DDprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) #define DDprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) #define DDprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) #define DDprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) #define DDprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) #define DDprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h)) static RF_Thread_t recon_thr_handle; static int recon_thread_initialized = 0; static RF_FreeList_t *rf_recond_freelist; #define RF_MAX_FREE_RECOND 4 #define RF_RECOND_INC 1 static RF_RaidReconDesc_t * AllocRaidReconDesc(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); static int ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_ReconEvent_t * event); static int IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); static int ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); static int ReconReadDoneProc(void *arg, int status); static int ReconWriteDoneProc(void *arg, int status); static void CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_HeadSepLimit_t hsCtr); static int CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, RF_ReconUnitNum_t which_ru); static int CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, RF_ReconUnitNum_t which_ru); static void ForceReconReadDoneProc(void *arg, int status); static void rf_ShutdownReconstruction(void *); struct RF_ReconDoneProc_s { void (*proc) (RF_Raid_t *, void *); void *arg; RF_ReconDoneProc_t *next; }; static RF_FreeList_t *rf_rdp_freelist; #define RF_MAX_FREE_RDP 4 #define RF_RDP_INC 1 static void SignalReconDone(RF_Raid_t * raidPtr) { RF_ReconDoneProc_t *p; RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); for (p = raidPtr->recon_done_procs; p; p = p->next) { p->proc(raidPtr, p->arg); } RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); } int rf_RegisterReconDoneProc( RF_Raid_t * raidPtr, void (*proc) (RF_Raid_t *, void *), void *arg, RF_ReconDoneProc_t ** handlep) { RF_ReconDoneProc_t *p; RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); if (p == NULL) return (ENOMEM); p->proc = proc; p->arg = arg; RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); p->next = raidPtr->recon_done_procs; raidPtr->recon_done_procs = p; RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); if (handlep) *handlep = p; return (0); } /***************************************************************************************** * * sets up the parameters that will be used by the reconstruction process * currently there are none, except for those that the layout-specific * configuration (e.g. rf_ConfigureDeclustered) routine sets up. * * in the kernel, we fire off the recon thread. * ****************************************************************************************/ static void rf_ShutdownReconstruction(ignored) void *ignored; { RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); } int rf_ConfigureReconstruction(listp) RF_ShutdownList_t **listp; { int rc; RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); if (rf_recond_freelist == NULL) return (ENOMEM); RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); if (rf_rdp_freelist == NULL) { RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); return (ENOMEM); } rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); if (rc) { RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, __LINE__, rc); rf_ShutdownReconstruction(NULL); return (rc); } if (!recon_thread_initialized) { RF_CREATE_THREAD(recon_thr_handle, rf_ReconKernelThread, NULL); recon_thread_initialized = 1; } return (0); } static RF_RaidReconDesc_t * AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) RF_Raid_t *raidPtr; RF_RowCol_t row; RF_RowCol_t col; RF_RaidDisk_t *spareDiskPtr; int numDisksDone; RF_RowCol_t srow; RF_RowCol_t scol; { RF_RaidReconDesc_t *reconDesc; RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); reconDesc->raidPtr = raidPtr; reconDesc->row = row; reconDesc->col = col; reconDesc->spareDiskPtr = spareDiskPtr; reconDesc->numDisksDone = numDisksDone; reconDesc->srow = srow; reconDesc->scol = scol; reconDesc->state = 0; reconDesc->next = NULL; return (reconDesc); } static void FreeReconDesc(reconDesc) RF_RaidReconDesc_t *reconDesc; { #if RF_RECON_STATS > 0 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); #endif /* RF_RECON_STATS > 0 */ printf("RAIDframe: %lu max exec ticks\n", (long) reconDesc->maxReconExecTicks); #if (RF_RECON_STATS > 0) || defined(KERNEL) printf("\n"); #endif /* (RF_RECON_STATS > 0) || KERNEL */ RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); } /***************************************************************************************** * * primary routine to reconstruct a failed disk. This should be called from * within its own thread. It won't return until reconstruction completes, * fails, or is aborted. ****************************************************************************************/ int rf_ReconstructFailedDisk(raidPtr, row, col) RF_Raid_t *raidPtr; RF_RowCol_t row; RF_RowCol_t col; { RF_LayoutSW_t *lp; int rc; lp = raidPtr->Layout.map; if (lp->SubmitReconBuffer) { /* * The current infrastructure only supports reconstructing one * disk at a time for each array. */ RF_LOCK_MUTEX(raidPtr->mutex); while (raidPtr->reconInProgress) { RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); } raidPtr->reconInProgress++; RF_UNLOCK_MUTEX(raidPtr->mutex); rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); } else { RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", lp->parityConfig); rc = EIO; } RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); RF_SIGNAL_COND(raidPtr->waitForReconCond); wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be * needed at some point... GO */ return (rc); } int rf_ReconstructFailedDiskBasic(raidPtr, row, col) RF_Raid_t *raidPtr; RF_RowCol_t row; RF_RowCol_t col; { RF_RaidDisk_t *spareDiskPtr = NULL; RF_RaidReconDesc_t *reconDesc; RF_RowCol_t srow, scol; int numDisksDone = 0, rc; /* first look for a spare drive onto which to reconstruct the data */ /* spare disk descriptors are stored in row 0. This may have to * change eventually */ RF_LOCK_MUTEX(raidPtr->mutex); RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { if (raidPtr->status[row] != rf_rs_degraded) { RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); RF_UNLOCK_MUTEX(raidPtr->mutex); return (EINVAL); } srow = row; scol = (-1); } else { srow = 0; for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { spareDiskPtr = &raidPtr->Disks[srow][scol]; spareDiskPtr->status = rf_ds_used_spare; break; } } if (!spareDiskPtr) { RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); RF_UNLOCK_MUTEX(raidPtr->mutex); return (ENOSPC); } printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); } RF_UNLOCK_MUTEX(raidPtr->mutex); reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); raidPtr->reconDesc = (void *) reconDesc; #if RF_RECON_STATS > 0 reconDesc->hsStallCount = 0; reconDesc->numReconExecDelays = 0; reconDesc->numReconEventWaits = 0; #endif /* RF_RECON_STATS > 0 */ reconDesc->reconExecTimerRunning = 0; reconDesc->reconExecTicks = 0; reconDesc->maxReconExecTicks = 0; rc = rf_ContinueReconstructFailedDisk(reconDesc); return (rc); } int rf_ContinueReconstructFailedDisk(reconDesc) RF_RaidReconDesc_t *reconDesc; { RF_Raid_t *raidPtr = reconDesc->raidPtr; RF_RowCol_t row = reconDesc->row; RF_RowCol_t col = reconDesc->col; RF_RowCol_t srow = reconDesc->srow; RF_RowCol_t scol = reconDesc->scol; RF_ReconMap_t *mapPtr; RF_ReconEvent_t *event; struct timeval etime, elpsd; unsigned long xor_s, xor_resid_us; int retcode, i, ds; switch (reconDesc->state) { case 0: raidPtr->accumXorTimeUs = 0; /* create one trace record per physical disk */ RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); /* quiesce the array prior to starting recon. this is needed * to assure no nasty interactions with pending user writes. * We need to do this before we change the disk or row status. */ reconDesc->state = 1; Dprintf("RECON: begin request suspend\n"); retcode = rf_SuspendNewRequestsAndWait(raidPtr); Dprintf("RECON: end request suspend\n"); rf_StartUserStats(raidPtr); /* zero out the stats kept on * user accs */ /* fall through to state 1 */ case 1: RF_LOCK_MUTEX(raidPtr->mutex); /* create the reconstruction control pointer and install it in * the right slot */ raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); mapPtr = raidPtr->reconControl[row]->reconMap; raidPtr->status[row] = rf_rs_reconstructing; raidPtr->Disks[row][col].status = rf_ds_reconstructing; raidPtr->Disks[row][col].spareRow = srow; raidPtr->Disks[row][col].spareCol = scol; RF_UNLOCK_MUTEX(raidPtr->mutex); RF_GETTIME(raidPtr->reconControl[row]->starttime); /* now start up the actual reconstruction: issue a read for * each surviving disk */ rf_start_cpu_monitor(); reconDesc->numDisksDone = 0; for (i = 0; i < raidPtr->numCol; i++) { if (i != col) { /* find and issue the next I/O on the * indicated disk */ if (IssueNextReadRequest(raidPtr, row, i)) { Dprintf2("RECON: done issuing for r%d c%d\n", row, i); reconDesc->numDisksDone++; } } } case 2: Dprintf("RECON: resume requests\n"); rf_ResumeNewRequests(raidPtr); reconDesc->state = 3; case 3: /* process reconstruction events until all disks report that * they've completed all work */ mapPtr = raidPtr->reconControl[row]->reconMap; while (reconDesc->numDisksDone < raidPtr->numCol - 1) { event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); RF_ASSERT(event); if (ProcessReconEvent(raidPtr, row, event)) reconDesc->numDisksDone++; raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); if (rf_prReconSched) { rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); } } reconDesc->state = 4; case 4: mapPtr = raidPtr->reconControl[row]->reconMap; if (rf_reconDebug) { printf("RECON: all reads completed\n"); } /* at this point all the reads have completed. We now wait * for any pending writes to complete, and then we're done */ while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); RF_ASSERT(event); (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); if (rf_prReconSched) { rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); } } reconDesc->state = 5; case 5: rf_stop_cpu_monitor(); /* Success: mark the dead disk as reconstructed. We quiesce * the array here to assure no nasty interactions with pending * user accesses when we free up the psstatus structure as * part of FreeReconControl() */ reconDesc->state = 6; retcode = rf_SuspendNewRequestsAndWait(raidPtr); rf_StopUserStats(raidPtr); rf_PrintUserStats(raidPtr); /* print out the stats on user * accs accumulated during * recon */ /* fall through to state 6 */ case 6: RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->numFailures--; ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; RF_UNLOCK_MUTEX(raidPtr->mutex); RF_GETTIME(etime); RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); /* XXX -- why is state 7 different from state 6 if there is no * return() here? -- XXX Note that I set elpsd above & use it * below, so if you put a return here you'll have to fix this. * (also, FreeReconControl is called below) */ case 7: rf_ResumeNewRequests(raidPtr); printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col); xor_s = raidPtr->accumXorTimeUs / 1000000; xor_resid_us = raidPtr->accumXorTimeUs % 1000000; printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", (int) raidPtr->reconControl[row]->starttime.tv_sec, (int) raidPtr->reconControl[row]->starttime.tv_usec, (int) etime.tv_sec, (int) etime.tv_usec); rf_print_cpu_util("reconstruction"); #if RF_RECON_STATS > 0 printf("Total head-sep stall count was %d\n", (int) reconDesc->hsStallCount); #endif /* RF_RECON_STATS > 0 */ rf_FreeReconControl(raidPtr, row); RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); FreeReconDesc(reconDesc); } SignalReconDone(raidPtr); return (0); } /***************************************************************************************** * do the right thing upon each reconstruction event. * returns nonzero if and only if there is nothing left unread on the indicated disk ****************************************************************************************/ static int ProcessReconEvent(raidPtr, frow, event) RF_Raid_t *raidPtr; RF_RowCol_t frow; RF_ReconEvent_t *event; { int retcode = 0, submitblocked; RF_ReconBuffer_t *rbuf; RF_SectorCount_t sectorsPerRU; Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); switch (event->type) { /* a read I/O has completed */ case RF_REVENT_READDONE: rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", frow, event->col, rbuf->parityStripeID); Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); Dprintf1("RECON: submitblocked=%d\n", submitblocked); if (!submitblocked) retcode = IssueNextReadRequest(raidPtr, frow, event->col); break; /* a write I/O has completed */ case RF_REVENT_WRITEDONE: if (rf_floatingRbufDebug) { rf_CheckFloatingRbufCount(raidPtr, 1); } sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; rbuf = (RF_ReconBuffer_t *) event->arg; rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); if (rbuf->type == RF_RBUF_TYPE_FLOATING) { RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); raidPtr->numFullReconBuffers--; rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); } else if (rbuf->type == RF_RBUF_TYPE_FORCED) rf_FreeReconBuffer(rbuf); else RF_ASSERT(0); break; case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been * cleared */ Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); RF_ASSERT(!submitblocked); /* we wouldn't have gotten the * BUFCLEAR event if we * couldn't submit */ retcode = IssueNextReadRequest(raidPtr, frow, event->col); break; case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction * blockage has been cleared */ DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); retcode = TryToRead(raidPtr, frow, event->col); break; case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation * reconstruction blockage has been * cleared */ Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); retcode = TryToRead(raidPtr, frow, event->col); break; /* a buffer has become ready to write */ case RF_REVENT_BUFREADY: Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); retcode = IssueNextWriteRequest(raidPtr, frow); if (rf_floatingRbufDebug) { rf_CheckFloatingRbufCount(raidPtr, 1); } break; /* we need to skip the current RU entirely because it got * recon'd while we were waiting for something else to happen */ case RF_REVENT_SKIP: DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); retcode = IssueNextReadRequest(raidPtr, frow, event->col); break; /* a forced-reconstruction read access has completed. Just * submit the buffer */ case RF_REVENT_FORCEDREADDONE: rbuf = (RF_ReconBuffer_t *) event->arg; rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); RF_ASSERT(!submitblocked); break; default: RF_PANIC(); } rf_FreeReconEventDesc(event); return (retcode); } /***************************************************************************************** * * find the next thing that's needed on the indicated disk, and issue a read * request for it. We assume that the reconstruction buffer associated with this * process is free to receive the data. If reconstruction is blocked on the * indicated RU, we issue a blockage-release request instead of a physical disk * read request. If the current disk gets too far ahead of the others, we issue * a head-separation wait request and return. * * ctrl->{ru_count, curPSID, diskOffset} and rbuf->failedDiskSectorOffset are * maintained to point the the unit we're currently accessing. Note that this deviates * from the standard C idiom of having counters point to the next thing to be * accessed. This allows us to easily retry when we're blocked by head separation * or reconstruction-blockage events. * * returns nonzero if and only if there is nothing left unread on the indicated disk ****************************************************************************************/ static int IssueNextReadRequest(raidPtr, row, col) RF_Raid_t *raidPtr; RF_RowCol_t row; RF_RowCol_t col; { RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_ReconBuffer_t *rbuf = ctrl->rbuf; RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; int do_new_check = 0, retcode = 0, status; /* if we are currently the slowest disk, mark that we have to do a new * check */ if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) do_new_check = 1; while (1) { ctrl->ru_count++; if (ctrl->ru_count < RUsPerPU) { ctrl->diskOffset += sectorsPerRU; rbuf->failedDiskSectorOffset += sectorsPerRU; } else { ctrl->curPSID++; ctrl->ru_count = 0; /* code left over from when head-sep was based on * parity stripe id */ if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); return (1); /* finito! */ } /* find the disk offsets of the start of the parity * stripe on both the current disk and the failed * disk. skip this entire parity stripe if either disk * does not appear in the indicated PS */ status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); if (status) { ctrl->ru_count = RUsPerPU - 1; continue; } } rbuf->which_ru = ctrl->ru_count; /* skip this RU if it's already been reconstructed */ if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); continue; } break; } ctrl->headSepCounter++; if (do_new_check) CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ /* at this point, we have definitely decided what to do, and we have * only to see if we can actually do it now */ rbuf->parityStripeID = ctrl->curPSID; rbuf->which_ru = ctrl->ru_count; bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); raidPtr->recon_tracerecs[col].reconacc = 1; RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); retcode = TryToRead(raidPtr, row, col); return (retcode); } /* tries to issue the next read on the indicated disk. We may be blocked by (a) the heads being too * far apart, or (b) recon on the indicated RU being blocked due to a write by a user thread. * In this case, we issue a head-sep or blockage wait request, which will cause this same routine * to be invoked again later when the blockage has cleared. */ static int TryToRead(raidPtr, row, col) RF_Raid_t *raidPtr; RF_RowCol_t row; RF_RowCol_t col; { RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; RF_StripeNum_t psid = ctrl->curPSID; RF_ReconUnitNum_t which_ru = ctrl->ru_count; RF_DiskQueueData_t *req; int status, created = 0; RF_ReconParityStripeStatus_t *pssPtr; /* if the current disk is too far ahead of the others, issue a * head-separation wait and return */ if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) return (0); RF_LOCK_PSS_MUTEX(raidPtr, row, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); /* if recon is blocked on the indicated parity stripe, issue a * block-wait request and return. this also must mark the indicated RU * in the stripe as under reconstruction if not blocked. */ status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); if (status == RF_PSS_RECON_BLOCKED) { Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); goto out; } else if (status == RF_PSS_FORCED_ON_WRITE) { rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); goto out; } /* make one last check to be sure that the indicated RU didn't get * reconstructed while we were waiting for something else to happen. * This is unfortunate in that it causes us to make this check twice * in the normal case. Might want to make some attempt to re-work * this so that we only do this check if we've definitely blocked on * one of the above checks. When this condition is detected, we may * have just created a bogus status entry, which we need to delete. */ if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); if (created) rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); goto out; } /* found something to read. issue the I/O */ Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); /* should be ok to use a NULL proc pointer here, all the bufs we use * should be in kernel space */ req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- fix this -- XXX */ ctrl->rbuf->arg = (void *) req; rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); pssPtr->issued[col] = 1; out: RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (0); } /* given a parity stripe ID, we want to find out whether both the current disk and the * failed disk exist in that parity stripe. If not, we want to skip this whole PS. * If so, we want to find the disk offset of the start of the PS on both the current * disk and the failed disk. * * this works by getting a list of disks comprising the indicated parity stripe, and * searching the list for the current and failed disks. Once we've decided they both * exist in the parity stripe, we need to decide whether each is data or parity, * so that we'll know which mapping function to call to get the corresponding disk * offsets. * * this is kind of unpleasant, but doing it this way allows the reconstruction code * to use parity stripe IDs rather than physical disks address to march through the * failed disk, which greatly simplifies a lot of code, as well as eliminating the * need for a reverse-mapping function. I also think it will execute faster, since * the calls to the mapping module are kept to a minimum. * * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING THE STRIPE * IN THE CORRECT ORDER */ static int ComputePSDiskOffsets( RF_Raid_t * raidPtr, /* raid descriptor */ RF_StripeNum_t psid, /* parity stripe identifier */ RF_RowCol_t row, /* row and column of disk to find the offsets * for */ RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ RF_RowCol_t * spCol, RF_SectorNum_t * spOffset) { /* OUT: offset into disk containing spare unit */ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ RF_RowCol_t *diskids; u_int i, j, k, i_offset, j_offset; RF_RowCol_t prow, pcol; int testcol, testrow; RF_RowCol_t stripe; RF_SectorNum_t poffset; char i_is_parity = 0, j_is_parity = 0; RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; /* get a listing of the disks comprising that stripe */ sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); RF_ASSERT(diskids); /* reject this entire parity stripe if it does not contain the * indicated disk or it does not contain the failed disk */ if (row != stripe) goto skipit; for (i = 0; i < stripeWidth; i++) { if (col == diskids[i]) break; } if (i == stripeWidth) goto skipit; for (j = 0; j < stripeWidth; j++) { if (fcol == diskids[j]) break; } if (j == stripeWidth) { goto skipit; } /* find out which disk the parity is on */ (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); /* find out if either the current RU or the failed RU is parity */ /* also, if the parity occurs in this stripe prior to the data and/or * failed col, we need to decrement i and/or j */ for (k = 0; k < stripeWidth; k++) if (diskids[k] == pcol) break; RF_ASSERT(k < stripeWidth); i_offset = i; j_offset = j; if (k < i) i_offset--; else if (k == i) { i_is_parity = 1; i_offset = 0; } /* set offsets to zero to disable multiply * below */ if (k < j) j_offset--; else if (k == j) { j_is_parity = 1; j_offset = 0; } /* at this point, [ij]_is_parity tells us whether the [current,failed] * disk is parity at the start of this RU, and, if data, "[ij]_offset" * tells us how far into the stripe the [current,failed] disk is. */ /* call the mapping routine to get the offset into the current disk, * repeat for failed disk. */ if (i_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); RF_ASSERT(row == testrow && col == testcol); if (j_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); RF_ASSERT(row == testrow && fcol == testcol); /* now locate the spare unit for the failed unit */ if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { if (j_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); } else { *spRow = raidPtr->reconControl[row]->spareRow; *spCol = raidPtr->reconControl[row]->spareCol; *spOffset = *outFailedDiskSectorOffset; } return (0); skipit: Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", psid, row, col); return (1); } /* this is called when a buffer has become ready to write to the replacement disk */ static int IssueNextWriteRequest(raidPtr, row) RF_Raid_t *raidPtr; RF_RowCol_t row; { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; RF_ReconBuffer_t *rbuf; RF_DiskQueueData_t *req; rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); RF_ASSERT(rbuf); /* there must be one available, or we wouldn't * have gotten the event that sent us here */ RF_ASSERT(rbuf->pssPtr); rbuf->pssPtr->writeRbuf = rbuf; rbuf->pssPtr = NULL; Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); /* should be ok to use a NULL b_proc here b/c all addrs should be in * kernel space */ req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, sectorsPerRU, rbuf->buffer, rbuf->parityStripeID, rbuf->which_ru, ReconWriteDoneProc, (void *) rbuf, NULL, &raidPtr->recon_tracerecs[fcol], (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- fix this -- XXX */ rbuf->arg = (void *) req; rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); return (0); } /* this gets called upon the completion of a reconstruction read operation * the arg is a pointer to the per-disk reconstruction control structure * for the process that just finished a read. * * called at interrupt context in the kernel, so don't do anything illegal here. */ static int ReconReadDoneProc(arg, status) void *arg; int status; { RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; if (status) { /* * XXX */ printf("Recon read failed!\n"); RF_PANIC(); } RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); return (0); } /* this gets called upon the completion of a reconstruction write operation. * the arg is a pointer to the rbuf that was just written * * called at interrupt context in the kernel, so don't do anything illegal here. */ static int ReconWriteDoneProc(arg, status) void *arg; int status; { RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); if (status) { printf("Recon write failed!\n"); /* fprintf(stderr,"Recon * write failed!\n"); */ RF_PANIC(); } rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); return (0); } /* computes a new minimum head sep, and wakes up anyone who needs to be woken as a result */ static void CheckForNewMinHeadSep(raidPtr, row, hsCtr) RF_Raid_t *raidPtr; RF_RowCol_t row; RF_HeadSepLimit_t hsCtr; { RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; RF_HeadSepLimit_t new_min; RF_RowCol_t i; RF_CallbackDesc_t *p; RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition * of a minimum */ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ for (i = 0; i < raidPtr->numCol; i++) if (i != reconCtrlPtr->fcol) { if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; } /* set the new minimum and wake up anyone who can now run again */ if (new_min != reconCtrlPtr->minHeadSepCounter) { reconCtrlPtr->minHeadSepCounter = new_min; Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); while (reconCtrlPtr->headSepCBList) { if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) break; p = reconCtrlPtr->headSepCBList; reconCtrlPtr->headSepCBList = p->next; p->next = NULL; rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); rf_FreeCallbackDesc(p); } } RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); } /* checks to see that the maximum head separation will not be violated * if we initiate a reconstruction I/O on the indicated disk. Limiting the * maximum head separation between two disks eliminates the nasty buffer-stall * conditions that occur when one disk races ahead of the others and consumes * all of the floating recon buffers. This code is complex and unpleasant * but it's necessary to avoid some very nasty, albeit fairly rare, * reconstruction behavior. * * returns non-zero if and only if we have to stop working on the indicated disk * due to a head-separation delay. */ static int CheckHeadSeparation( RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, RF_ReconUnitNum_t which_ru) { RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; RF_CallbackDesc_t *cb, *p, *pt; int retval = 0, tid; /* if we're too far ahead of the slowest disk, stop working on this * disk until the slower ones catch up. We do this by scheduling a * wakeup callback for the time when the slowest disk has caught up. * We define "caught up" with 20% hysteresis, i.e. the head separation * must have fallen to at most 80% of the max allowable head * separation before we'll wake up. * */ rf_get_threadid(tid); RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); if ((raidPtr->headSepLimit >= 0) && ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { Dprintf6("[%d] RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", tid, row, col, ctrl->headSepCounter, reconCtrlPtr->minHeadSepCounter, raidPtr->headSepLimit); cb = rf_AllocCallbackDesc(); /* the minHeadSepCounter value we have to get to before we'll * wake up. build in 20% hysteresis. */ cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); cb->row = row; cb->col = col; cb->next = NULL; /* insert this callback descriptor into the sorted list of * pending head-sep callbacks */ p = reconCtrlPtr->headSepCBList; if (!p) reconCtrlPtr->headSepCBList = cb; else if (cb->callbackArg.v < p->callbackArg.v) { cb->next = reconCtrlPtr->headSepCBList; reconCtrlPtr->headSepCBList = cb; } else { for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); cb->next = p; pt->next = cb; } retval = 1; #if RF_RECON_STATS > 0 ctrl->reconCtrl->reconDesc->hsStallCount++; #endif /* RF_RECON_STATS > 0 */ } RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); return (retval); } /* checks to see if reconstruction has been either forced or blocked by a user operation. * if forced, we skip this RU entirely. * else if blocked, put ourselves on the wait list. * else return 0. * * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY */ static int CheckForcedOrBlockedReconstruction( RF_Raid_t * raidPtr, RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, RF_ReconUnitNum_t which_ru) { RF_CallbackDesc_t *cb; int retcode = 0; if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) retcode = RF_PSS_FORCED_ON_WRITE; else if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); cb = rf_AllocCallbackDesc(); /* append ourselves to * the blockage-wait * list */ cb->row = row; cb->col = col; cb->next = pssPtr->blockWaitList; pssPtr->blockWaitList = cb; retcode = RF_PSS_RECON_BLOCKED; } if (!retcode) pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under * reconstruction */ return (retcode); } /* if reconstruction is currently ongoing for the indicated stripeID, reconstruction * is forced to completion and we return non-zero to indicate that the caller must * wait. If not, then reconstruction is blocked on the indicated stripe and the * routine returns zero. If and only if we return non-zero, we'll cause the cbFunc * to get invoked with the cbArg when the reconstruction has completed. */ int rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) RF_Raid_t *raidPtr; RF_AccessStripeMap_t *asmap; void (*cbFunc) (RF_Raid_t *, void *); void *cbArg; { RF_RowCol_t row = asmap->physInfo->row; /* which row of the array * we're working on */ RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're * forcing recon on */ RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity * stripe status structure */ RF_StripeNum_t psid; /* parity stripe id */ RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk * offset */ RF_RowCol_t *diskids; RF_RowCol_t stripe; int tid; RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ RF_RowCol_t fcol, diskno, i; RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ RF_CallbackDesc_t *cb; int created = 0, nPromoted; rf_get_threadid(tid); psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); RF_LOCK_PSS_MUTEX(raidPtr, row, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); /* if recon is not ongoing on this PS, just return */ if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (0); } /* otherwise, we have to wait for reconstruction to complete on this * RU. */ /* In order to avoid waiting for a potentially large number of * low-priority accesses to complete, we force a normal-priority (i.e. * not low-priority) reconstruction on this RU. */ if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { DDprintf1("Forcing recon on psid %ld\n", psid); pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under * forced recon */ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage * that we just set */ fcol = raidPtr->reconControl[row]->fcol; /* get a listing of the disks comprising the indicated stripe */ (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); RF_ASSERT(row == stripe); /* For previously issued reads, elevate them to normal * priority. If the I/O has already completed, it won't be * found in the queue, and hence this will be a no-op. For * unissued reads, allocate buffers and issue new reads. The * fact that we've set the FORCED bit means that the regular * recon procs will not re-issue these reqs */ for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) if ((diskno = diskids[i]) != fcol) { if (pssPtr->issued[diskno]) { nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); if (rf_reconDebug && nPromoted) printf("[%d] promoted read from row %d col %d\n", tid, row, diskno); } else { new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare * location */ new_rbuf->parityStripeID = psid; /* fill in the buffer */ new_rbuf->which_ru = which_ru; new_rbuf->failedDiskSectorOffset = fd_offset; new_rbuf->priority = RF_IO_NORMAL_PRIORITY; /* use NULL b_proc b/c all addrs * should be in kernel space */ req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, NULL, (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- fix this -- * XXX */ new_rbuf->arg = req; rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ Dprintf3("[%d] Issued new read req on row %d col %d\n", tid, row, diskno); } } /* if the write is sitting in the disk queue, elevate its * priority */ if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) printf("[%d] promoted write to row %d col %d\n", tid, row, fcol); } /* install a callback descriptor to be invoked when recon completes on * this parity stripe. */ cb = rf_AllocCallbackDesc(); /* XXX the following is bogus.. These functions don't really match!! * GO */ cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; cb->callbackArg.p = (void *) cbArg; cb->next = pssPtr->procWaitList; pssPtr->procWaitList = cb; DDprintf2("[%d] Waiting for forced recon on psid %ld\n", tid, psid); RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (1); } /* called upon the completion of a forced reconstruction read. * all we do is schedule the FORCEDREADONE event. * called at interrupt context in the kernel, so don't do anything illegal here. */ static void ForceReconReadDoneProc(arg, status) void *arg; int status; { RF_ReconBuffer_t *rbuf = arg; if (status) { printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced * recon read * failed!\n"); */ RF_PANIC(); } rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); } /* releases a block on the reconstruction of the indicated stripe */ int rf_UnblockRecon(raidPtr, asmap) RF_Raid_t *raidPtr; RF_AccessStripeMap_t *asmap; { RF_RowCol_t row = asmap->origRow; RF_StripeNum_t stripeID = asmap->stripeID; RF_ReconParityStripeStatus_t *pssPtr; RF_ReconUnitNum_t which_ru; RF_StripeNum_t psid; int tid, created = 0; RF_CallbackDesc_t *cb; rf_get_threadid(tid); psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); RF_LOCK_PSS_MUTEX(raidPtr, row, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); /* When recon is forced, the pss desc can get deleted before we get * back to unblock recon. But, this can _only_ happen when recon is * forced. It would be good to put some kind of sanity check here, but * how to decide if recon was just forced or not? */ if (!pssPtr) { /* printf("Warning: no pss descriptor upon unblock on psid %ld * RU %d\n",psid,which_ru); */ if (rf_reconDebug || rf_pssDebug) printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); goto out; } pssPtr->blockCount--; Dprintf3("[%d] unblocking recon on psid %ld: blockcount is %d\n", tid, psid, pssPtr->blockCount); if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ /* unblock recon before calling CauseReconEvent in case * CauseReconEvent causes us to try to issue a new read before * returning here. */ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; while (pssPtr->blockWaitList) { /* spin through the block-wait * list and release all the * waiters */ cb = pssPtr->blockWaitList; pssPtr->blockWaitList = cb->next; cb->next = NULL; rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); rf_FreeCallbackDesc(cb); } if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* if no recon was * requested while recon * was blocked */ rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); } } out: RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (0); }