/* $OpenBSD: rf_reconstruct.c,v 1.18 2011/06/21 16:46:00 tedu Exp $ */ /* $NetBSD: rf_reconstruct.c,v 1.26 2000/06/04 02:05:13 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /************************************************************** * * rf_reconstruct.c -- Code to perform on-line reconstruction. * **************************************************************/ #include "rf_types.h" #include #include #include #include #include #include #include #include #include #include #if __NETBSD__ #include #endif #include "rf_raid.h" #include "rf_reconutil.h" #include "rf_revent.h" #include "rf_reconbuffer.h" #include "rf_acctrace.h" #include "rf_etimer.h" #include "rf_dag.h" #include "rf_desc.h" #include "rf_general.h" #include "rf_freelist.h" #include "rf_debugprint.h" #include "rf_driver.h" #include "rf_utils.h" #include "rf_shutdown.h" #include "rf_kintf.h" /* * Setting these to -1 causes them to be set to their default values if not set * by debug options. */ #define Dprintf(s) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL); \ } while (0) #define Dprintf1(s,a) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ NULL, NULL, NULL, NULL, NULL, NULL, NULL); \ } while (0) #define Dprintf2(s,a,b) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ (void *)((unsigned long)b), \ NULL, NULL, NULL, NULL, NULL, NULL); \ } while (0) #define Dprintf3(s,a,b,c) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ (void *)((unsigned long)b), \ (void *)((unsigned long)c), \ NULL, NULL, NULL, NULL, NULL); \ } while (0) #define Dprintf4(s,a,b,c,d) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ (void *)((unsigned long)b), \ (void *)((unsigned long)c), \ (void *)((unsigned long)d), \ NULL, NULL, NULL, NULL); \ } while (0) #define Dprintf5(s,a,b,c,d,e) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ (void *)((unsigned long)b), \ (void *)((unsigned long)c), \ (void *)((unsigned long)d), \ (void *)((unsigned long)e), \ NULL, NULL, NULL); \ } while (0) #define Dprintf6(s,a,b,c,d,e,f) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ (void *)((unsigned long)b), \ (void *)((unsigned long)c), \ (void *)((unsigned long)d), \ (void *)((unsigned long)e), \ (void *)((unsigned long)f), \ NULL, NULL); \ } while (0) #define Dprintf7(s,a,b,c,d,e,f,g) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ (void *)((unsigned long)b), \ (void *)((unsigned long)c), \ (void *)((unsigned long)d), \ (void *)((unsigned long)e), \ (void *)((unsigned long)f), \ (void *)((unsigned long)g), \ NULL); \ } while (0) #define DDprintf1(s,a) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ NULL, NULL, NULL, NULL, NULL, NULL, NULL); \ } while (0) #define DDprintf2(s,a,b) \ do { \ if (rf_reconDebug) \ rf_debug_printf(s, \ (void *)((unsigned long)a), \ (void *)((unsigned long)b), \ NULL, NULL, NULL, NULL, NULL, NULL); \ } while (0) static RF_FreeList_t *rf_recond_freelist; #define RF_MAX_FREE_RECOND 4 #define RF_RECOND_INC 1 RF_RaidReconDesc_t *rf_AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, RF_RowCol_t, RF_RaidDisk_t *, int, RF_RowCol_t, RF_RowCol_t); int rf_ProcessReconEvent(RF_Raid_t *, RF_RowCol_t, RF_ReconEvent_t *); int rf_IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t, RF_RowCol_t); int rf_TryToRead(RF_Raid_t *, RF_RowCol_t, RF_RowCol_t); int rf_ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, RF_RowCol_t, RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, RF_RowCol_t *, RF_SectorNum_t *); int rf_ReconReadDoneProc(void *, int); int rf_ReconWriteDoneProc(void *, int); void rf_CheckForNewMinHeadSep(RF_Raid_t *, RF_RowCol_t, RF_HeadSepLimit_t); int rf_CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, RF_RowCol_t, RF_RowCol_t, RF_HeadSepLimit_t, RF_ReconUnitNum_t); void rf_ForceReconReadDoneProc(void *, int); void rf_ShutdownReconstruction(void *); /* * These functions are inlined on gcc. If they are used more than * once, it is strongly advised to un-line them. */ void rf_FreeReconDesc(RF_RaidReconDesc_t *); int rf_IssueNextWriteRequest(RF_Raid_t *, RF_RowCol_t); int rf_CheckForcedOrBlockedReconstruction(RF_Raid_t *, RF_ReconParityStripeStatus_t *, RF_PerDiskReconCtrl_t *, RF_RowCol_t, RF_RowCol_t, RF_StripeNum_t, RF_ReconUnitNum_t); void rf_SignalReconDone(RF_Raid_t *); struct RF_ReconDoneProc_s { void (*proc) (RF_Raid_t *, void *); void *arg; RF_ReconDoneProc_t *next; }; static RF_FreeList_t *rf_rdp_freelist; #define RF_MAX_FREE_RDP 4 #define RF_RDP_INC 1 void rf_SignalReconDone(RF_Raid_t *raidPtr) { RF_ReconDoneProc_t *p; RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); for (p = raidPtr->recon_done_procs; p; p = p->next) { p->proc(raidPtr, p->arg); } RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); } int rf_RegisterReconDoneProc(RF_Raid_t *raidPtr, void (*proc) (RF_Raid_t *, void *), void *arg, RF_ReconDoneProc_t **handlep) { RF_ReconDoneProc_t *p; RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); if (p == NULL) return (ENOMEM); p->proc = proc; p->arg = arg; RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); p->next = raidPtr->recon_done_procs; raidPtr->recon_done_procs = p; RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); if (handlep) *handlep = p; return (0); } /***************************************************************************** * * Sets up the parameters that will be used by the reconstruction process. * Currently there are none, except for those that the layout-specific * configuration (e.g. rf_ConfigureDeclustered) routine sets up. * * In the kernel, we fire off the recon thread. * *****************************************************************************/ void rf_ShutdownReconstruction(void *ignored) { RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); } int rf_ConfigureReconstruction(RF_ShutdownList_t **listp) { int rc; RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); if (rf_recond_freelist == NULL) return (ENOMEM); RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); if (rf_rdp_freelist == NULL) { RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); return (ENOMEM); } rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); if (rc) { RF_ERRORMSG3("Unable to add to shutdown list file %s line %d" " rc=%d.\n", __FILE__, __LINE__, rc); rf_ShutdownReconstruction(NULL); return (rc); } return (0); } RF_RaidReconDesc_t * rf_AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t *spareDiskPtr, int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol) { RF_RaidReconDesc_t *reconDesc; RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); reconDesc->raidPtr = raidPtr; reconDesc->row = row; reconDesc->col = col; reconDesc->spareDiskPtr = spareDiskPtr; reconDesc->numDisksDone = numDisksDone; reconDesc->srow = srow; reconDesc->scol = scol; reconDesc->state = 0; reconDesc->next = NULL; return (reconDesc); } void rf_FreeReconDesc(RF_RaidReconDesc_t *reconDesc) { #if RF_RECON_STATS > 0 printf("RAIDframe: %qu recon event waits, %qu recon delays.\n", reconDesc->numReconEventWaits, reconDesc->numReconExecDelays); #endif /* RF_RECON_STATS > 0 */ printf("RAIDframe: %qu max exec ticks.\n", reconDesc->maxReconExecTicks); #if (RF_RECON_STATS > 0) || defined(_KERNEL) printf("\n"); #endif /* (RF_RECON_STATS > 0) || _KERNEL */ RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); } /***************************************************************************** * * Primary routine to reconstruct a failed disk. This should be called from * within its own thread. It won't return until reconstruction completes, * fails, or is aborted. * *****************************************************************************/ int rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col) { RF_LayoutSW_t *lp; int rc; lp = raidPtr->Layout.map; if (lp->SubmitReconBuffer) { /* * The current infrastructure only supports reconstructing one * disk at a time for each array. */ RF_LOCK_MUTEX(raidPtr->mutex); while (raidPtr->reconInProgress) { RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); } raidPtr->reconInProgress++; RF_UNLOCK_MUTEX(raidPtr->mutex); rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); } else { RF_ERRORMSG1("RECON: no way to reconstruct failed disk for" " arch %c.\n", lp->parityConfig); rc = EIO; } RF_SIGNAL_COND(raidPtr->waitForReconCond); wakeup(&raidPtr->waitForReconCond); /* * XXX Methinks this will be * needed at some point... GO */ return (rc); } int rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col) { RF_ComponentLabel_t c_label; RF_RaidDisk_t *spareDiskPtr = NULL; RF_RaidReconDesc_t *reconDesc; RF_RowCol_t srow, scol; int numDisksDone = 0, rc; /* First look for a spare drive onto which to reconstruct the data. */ /* * Spare disk descriptors are stored in row 0. This may have to * change eventually. */ RF_LOCK_MUTEX(raidPtr->mutex); RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { if (raidPtr->status[row] != rf_rs_degraded) { RF_ERRORMSG2("Unable to reconstruct disk at row %d" " col %d because status not degraded.\n", row, col); RF_UNLOCK_MUTEX(raidPtr->mutex); return (EINVAL); } srow = row; scol = (-1); } else { srow = 0; for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { spareDiskPtr = &raidPtr->Disks[srow][scol]; spareDiskPtr->status = rf_ds_used_spare; break; } } if (!spareDiskPtr) { RF_ERRORMSG2("Unable to reconstruct disk at row %d" " col %d because no spares are available.\n", row, col); RF_UNLOCK_MUTEX(raidPtr->mutex); return (ENOSPC); } printf("RECON: initiating reconstruction on row %d col %d" " -> spare at row %d col %d.\n", row, col, srow, scol); } RF_UNLOCK_MUTEX(raidPtr->mutex); reconDesc = rf_AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); raidPtr->reconDesc = (void *) reconDesc; #if RF_RECON_STATS > 0 reconDesc->hsStallCount = 0; reconDesc->numReconExecDelays = 0; reconDesc->numReconEventWaits = 0; #endif /* RF_RECON_STATS > 0 */ reconDesc->reconExecTimerRunning = 0; reconDesc->reconExecTicks = 0; reconDesc->maxReconExecTicks = 0; rc = rf_ContinueReconstructFailedDisk(reconDesc); if (!rc) { /* Fix up the component label. */ /* Don't actually need the read here... */ raidread_component_label( raidPtr->raid_cinfo[srow][scol].ci_dev, raidPtr->raid_cinfo[srow][scol].ci_vp, &c_label); raid_init_component_label(raidPtr, &c_label); c_label.row = row; c_label.column = col; c_label.clean = RF_RAID_DIRTY; c_label.status = rf_ds_optimal; /* XXXX MORE NEEDED HERE. */ raidwrite_component_label( raidPtr->raid_cinfo[srow][scol].ci_dev, raidPtr->raid_cinfo[srow][scol].ci_vp, &c_label); } return (rc); } /* * * Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, * and you don't get a spare until the next Monday. With this function * (and hot-swappable drives) you can now put your new disk containing * /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to * rebuild the data "on the spot". * */ int rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col) { RF_RaidDisk_t *spareDiskPtr = NULL; RF_RaidReconDesc_t *reconDesc; RF_LayoutSW_t *lp; RF_RaidDisk_t *badDisk; RF_ComponentLabel_t c_label; int numDisksDone = 0, rc; struct partinfo dpart; struct vnode *vp; struct vattr va; struct proc *proc; int retcode; int ac; lp = raidPtr->Layout.map; if (lp->SubmitReconBuffer) { /* * The current infrastructure only supports reconstructing one * disk at a time for each array. */ RF_LOCK_MUTEX(raidPtr->mutex); if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && (raidPtr->numFailures > 0)) { /* XXX 0 above shouldn't be constant !!! */ /* * Some component other than this has failed. * Let's not make things worse than they already * are... */ #ifdef RAIDDEBUG printf("RAIDFRAME: Unable to reconstruct to disk at:\n" " Row: %d Col: %d Too many failures.\n", row, col); #endif /* RAIDDEBUG */ RF_UNLOCK_MUTEX(raidPtr->mutex); return (EINVAL); } if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { #ifdef RAIDDEBUG printf("RAIDFRAME: Unable to reconstruct to disk at:\n" " Row: %d Col: %d Reconstruction already" " occurring !\n", row, col); #endif /* RAIDDEBUG */ RF_UNLOCK_MUTEX(raidPtr->mutex); return (EINVAL); } if (raidPtr->Disks[row][col].status != rf_ds_failed) { /* "It's gone..." */ raidPtr->numFailures++; raidPtr->Disks[row][col].status = rf_ds_failed; raidPtr->status[row] = rf_rs_degraded; rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); } while (raidPtr->reconInProgress) { RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); } raidPtr->reconInProgress++; /* * First look for a spare drive onto which to reconstruct * the data. Spare disk descriptors are stored in row 0. * This may have to change eventually. */ /* * Actually, we don't care if it's failed or not... * On a RAID set with correct parity, this function * should be callable on any component without ill effects. */ /* * RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); */ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { RF_ERRORMSG2("Unable to reconstruct to disk at row %d" " col %d: operation not supported for" " RF_DISTRIBUTE_SPARE.\n", row, col); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return (EINVAL); } /* * XXX Need goop here to see if the disk is alive, * and, if not, make it so... */ badDisk = &raidPtr->Disks[row][col]; proc = raidPtr->recon_thread; /* * This device may have been opened successfully the * first time. Close it before trying to open it again... */ if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { printf("Closing the opened device: %s\n", raidPtr->Disks[row][col].devname); vp = raidPtr->raid_cinfo[row][col].ci_vp; ac = raidPtr->Disks[row][col].auto_configured; rf_close_component(raidPtr, vp, ac); raidPtr->raid_cinfo[row][col].ci_vp = NULL; } /* * Note that this disk was *not* auto_configured (any longer). */ raidPtr->Disks[row][col].auto_configured = 0; printf("About to (re-)open the device for rebuilding: %s\n", raidPtr->Disks[row][col].devname); retcode = raidlookup(raidPtr->Disks[row][col].devname, proc, &vp); if (retcode) { printf("raid%d: rebuilding: raidlookup on device: %s" " failed: %d !\n", raidPtr->raidid, raidPtr->Disks[row][col].devname, retcode); /* * XXX the component isn't responding properly... * Must still be dead :-( */ raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return(retcode); } else { /* * Ok, so we can at least do a lookup... * How about actually getting a vp for it ? */ if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return(retcode); } retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, FREAD, proc->p_ucred, proc); if (retcode) { raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return(retcode); } raidPtr->Disks[row][col].blockSize = dpart.disklab->d_secsize; raidPtr->Disks[row][col].numBlocks = DL_GETPSIZE(dpart.part) - rf_protectedSectors; raidPtr->raid_cinfo[row][col].ci_vp = vp; raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; raidPtr->Disks[row][col].dev = va.va_rdev; /* * We allow the user to specify that only a * fraction of the disks should be used this is * just for debug: it speeds up the parity scan. */ raidPtr->Disks[row][col].numBlocks = raidPtr->Disks[row][col].numBlocks * rf_sizePercentage / 100; } spareDiskPtr = &raidPtr->Disks[row][col]; spareDiskPtr->status = rf_ds_used_spare; printf("RECON: Initiating in-place reconstruction on\n"); printf(" row %d col %d -> spare at row %d col %d.\n", row, col, row, col); RF_UNLOCK_MUTEX(raidPtr->mutex); reconDesc = rf_AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, row, col); raidPtr->reconDesc = (void *) reconDesc; #if RF_RECON_STATS > 0 reconDesc->hsStallCount = 0; reconDesc->numReconExecDelays = 0; reconDesc->numReconEventWaits = 0; #endif /* RF_RECON_STATS > 0 */ reconDesc->reconExecTimerRunning = 0; reconDesc->reconExecTicks = 0; reconDesc->maxReconExecTicks = 0; rc = rf_ContinueReconstructFailedDisk(reconDesc); RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); } else { RF_ERRORMSG1("RECON: no way to reconstruct failed disk for" " arch %c.\n", lp->parityConfig); rc = EIO; } RF_LOCK_MUTEX(raidPtr->mutex); if (!rc) { /* * Need to set these here, as at this point it'll be claiming * that the disk is in rf_ds_spared ! But we know better :-) */ raidPtr->Disks[row][col].status = rf_ds_optimal; raidPtr->status[row] = rf_rs_optimal; /* Fix up the component label. */ /* Don't actually need the read here... */ raidread_component_label( raidPtr->raid_cinfo[row][col].ci_dev, raidPtr->raid_cinfo[row][col].ci_vp, &c_label); raid_init_component_label(raidPtr, &c_label); c_label.row = row; c_label.column = col; raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, raidPtr->raid_cinfo[row][col].ci_vp, &c_label); } RF_UNLOCK_MUTEX(raidPtr->mutex); RF_SIGNAL_COND(raidPtr->waitForReconCond); wakeup(&raidPtr->waitForReconCond); return (rc); } int rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) { RF_Raid_t *raidPtr = reconDesc->raidPtr; RF_RowCol_t row = reconDesc->row; RF_RowCol_t col = reconDesc->col; RF_RowCol_t srow = reconDesc->srow; RF_RowCol_t scol = reconDesc->scol; RF_ReconMap_t *mapPtr; RF_ReconEvent_t *event; struct timeval etime, elpsd; unsigned long xor_s, xor_resid_us; int retcode, i, ds; switch (reconDesc->state) { case 0: raidPtr->accumXorTimeUs = 0; /* Create one trace record per physical disk. */ RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); /* * Quiesce the array prior to starting recon. This is needed * to assure no nasty interactions with pending user writes. * We need to do this before we change the disk or row status. */ reconDesc->state = 1; Dprintf("RECON: begin request suspend.\n"); retcode = rf_SuspendNewRequestsAndWait(raidPtr); Dprintf("RECON: end request suspend.\n"); rf_StartUserStats(raidPtr); /* * Zero out the stats kept on * user accs. */ /* Fall through to state 1. */ case 1: RF_LOCK_MUTEX(raidPtr->mutex); /* * Create the reconstruction control pointer and install it in * the right slot. */ raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); mapPtr = raidPtr->reconControl[row]->reconMap; raidPtr->status[row] = rf_rs_reconstructing; raidPtr->Disks[row][col].status = rf_ds_reconstructing; raidPtr->Disks[row][col].spareRow = srow; raidPtr->Disks[row][col].spareCol = scol; RF_UNLOCK_MUTEX(raidPtr->mutex); RF_GETTIME(raidPtr->reconControl[row]->starttime); /* * Now start up the actual reconstruction: issue a read for * each surviving disk. */ reconDesc->numDisksDone = 0; for (i = 0; i < raidPtr->numCol; i++) { if (i != col) { /* * Find and issue the next I/O on the * indicated disk. */ if (rf_IssueNextReadRequest(raidPtr, row, i)) { Dprintf2("RECON: done issuing for r%d" " c%d.\n", row, i); reconDesc->numDisksDone++; } } } reconDesc->state = 2; case 2: Dprintf("RECON: resume requests.\n"); rf_ResumeNewRequests(raidPtr); reconDesc->state = 3; case 3: /* * Process reconstruction events until all disks report that * they've completed all work. */ mapPtr = raidPtr->reconControl[row]->reconMap; while (reconDesc->numDisksDone < raidPtr->numCol - 1) { event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); RF_ASSERT(event); if (rf_ProcessReconEvent(raidPtr, row, event)) reconDesc->numDisksDone++; raidPtr->reconControl[row]->numRUsTotal = mapPtr->totalRUs; raidPtr->reconControl[row]->numRUsComplete = mapPtr->totalRUs - rf_UnitsLeftToReconstruct(mapPtr); raidPtr->reconControl[row]->percentComplete = (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); if (rf_prReconSched) { rf_PrintReconSchedule( raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); } } reconDesc->state = 4; case 4: mapPtr = raidPtr->reconControl[row]->reconMap; if (rf_reconDebug) { printf("RECON: all reads completed.\n"); } /* * At this point all the reads have completed. We now wait * for any pending writes to complete, and then we're done. */ while (rf_UnitsLeftToReconstruct( raidPtr->reconControl[row]->reconMap) > 0) { event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); RF_ASSERT(event); /* Ignore return code. */ (void) rf_ProcessReconEvent(raidPtr, row, event); raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); if (rf_prReconSched) { rf_PrintReconSchedule( raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); } } reconDesc->state = 5; case 5: /* * Success: mark the dead disk as reconstructed. We quiesce * the array here to assure no nasty interactions with pending * user accesses, when we free up the psstatus structure as * part of FreeReconControl(). */ reconDesc->state = 6; retcode = rf_SuspendNewRequestsAndWait(raidPtr); rf_StopUserStats(raidPtr); rf_PrintUserStats(raidPtr); /* * Print out the stats on user * accs accumulated during * recon. */ /* Fall through to state 6. */ case 6: RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->numFailures--; ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; RF_UNLOCK_MUTEX(raidPtr->mutex); RF_GETTIME(etime); RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); /* * XXX -- Why is state 7 different from state 6 if there is no * return() here ? -- XXX Note that I set elpsd above & use it * below, so if you put a return here you'll have to fix this. * (also, FreeReconControl is called below). */ case 7: rf_ResumeNewRequests(raidPtr); printf("Reconstruction of disk at row %d col %d completed.\n", row, col); xor_s = raidPtr->accumXorTimeUs / 1000000; xor_resid_us = raidPtr->accumXorTimeUs % 1000000; printf("Recon time was %d.%06d seconds, accumulated XOR time" " was %ld us (%ld.%06ld).\n", (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); printf(" (start time %d sec %d usec, end time %d sec %d" " usec)\n", (int) raidPtr->reconControl[row]->starttime.tv_sec, (int) raidPtr->reconControl[row]->starttime.tv_usec, (int) etime.tv_sec, (int) etime.tv_usec); #if RF_RECON_STATS > 0 printf("Total head-sep stall count was %d.\n", (int) reconDesc->hsStallCount); #endif /* RF_RECON_STATS > 0 */ rf_FreeReconControl(raidPtr, row); RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); rf_FreeReconDesc(reconDesc); } rf_SignalReconDone(raidPtr); return (0); } /***************************************************************************** * Do the right thing upon each reconstruction event. * Returns nonzero if and only if there is nothing left unread on the * indicated disk. *****************************************************************************/ int rf_ProcessReconEvent(RF_Raid_t *raidPtr, RF_RowCol_t frow, RF_ReconEvent_t *event) { int retcode = 0, submitblocked; RF_ReconBuffer_t *rbuf; RF_SectorCount_t sectorsPerRU; Dprintf1("RECON: rf_ProcessReconEvent type %d.\n", event->type); switch (event->type) { /* A read I/O has completed. */ case RF_REVENT_READDONE: rbuf = raidPtr->reconControl[frow] ->perDiskInfo[event->col].rbuf; Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld.\n", frow, event->col, rbuf->parityStripeID); Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x" " %02x %02x.\n", rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); Dprintf1("RECON: submitblocked=%d.\n", submitblocked); if (!submitblocked) retcode = rf_IssueNextReadRequest(raidPtr, frow, event->col); break; /* A write I/O has completed. */ case RF_REVENT_WRITEDONE: if (rf_floatingRbufDebug) { rf_CheckFloatingRbufCount(raidPtr, 1); } sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; rbuf = (RF_ReconBuffer_t *) event->arg; rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d" " (%d %% complete).\n", rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow] ->reconMap, rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); if (rbuf->type == RF_RBUF_TYPE_FLOATING) { RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); raidPtr->numFullReconBuffers--; rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); } else if (rbuf->type == RF_RBUF_TYPE_FORCED) rf_FreeReconBuffer(rbuf); else RF_ASSERT(0); break; /* A buffer-stall condition has been cleared. */ case RF_REVENT_BUFCLEAR: Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d.\n", frow, event->col); submitblocked = rf_SubmitReconBuffer(raidPtr ->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); RF_ASSERT(!submitblocked); /* * We wouldn't have gotten the * BUFCLEAR event if we * couldn't submit. */ retcode = rf_IssueNextReadRequest(raidPtr, frow, event->col); break; /* A user-write reconstruction blockage has been cleared. */ case RF_REVENT_BLOCKCLEAR: DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d.\n", frow, event->col); retcode = rf_TryToRead(raidPtr, frow, event->col); break; /* * A max-head-separation reconstruction blockage has been * cleared. */ case RF_REVENT_HEADSEPCLEAR: Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d.\n", frow, event->col); retcode = rf_TryToRead(raidPtr, frow, event->col); break; /* A buffer has become ready to write. */ case RF_REVENT_BUFREADY: Dprintf2("RECON: BUFREADY EVENT: row %d col %d.\n", frow, event->col); retcode = rf_IssueNextWriteRequest(raidPtr, frow); if (rf_floatingRbufDebug) { rf_CheckFloatingRbufCount(raidPtr, 1); } break; /* * We need to skip the current RU entirely because it got * recon'd while we were waiting for something else to happen. */ case RF_REVENT_SKIP: DDprintf2("RECON: SKIP EVENT: row %d col %d.\n", frow, event->col); retcode = rf_IssueNextReadRequest(raidPtr, frow, event->col); break; /* * A forced-reconstruction read access has completed. Just * submit the buffer. */ case RF_REVENT_FORCEDREADDONE: rbuf = (RF_ReconBuffer_t *) event->arg; rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d.\n", frow, event->col); submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); RF_ASSERT(!submitblocked); break; default: RF_PANIC(); } rf_FreeReconEventDesc(event); return (retcode); } /***************************************************************************** * * Find the next thing that's needed on the indicated disk, and issue * a read request for it. We assume that the reconstruction buffer * associated with this process is free to receive the data. If * reconstruction is blocked on the indicated RU, we issue a * blockage-release request instead of a physical disk read request. * If the current disk gets too far ahead of the others, we issue a * head-separation wait request and return. * * ctrl->{ru_count, curPSID, diskOffset} and * rbuf->failedDiskSectorOffset are maintained to point to the unit * we're currently accessing. Note that this deviates from the * standard C idiom of having counters point to the next thing to be * accessed. This allows us to easily retry when we're blocked by * head separation or reconstruction-blockage events. * * Returns nonzero if and only if there is nothing left unread on the * indicated disk. * *****************************************************************************/ int rf_IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col) { RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_ReconBuffer_t *rbuf = ctrl->rbuf; RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; int do_new_check = 0, retcode = 0, status; /* * If we are currently the slowest disk, mark that we have to do a new * check. */ if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) do_new_check = 1; while (1) { ctrl->ru_count++; if (ctrl->ru_count < RUsPerPU) { ctrl->diskOffset += sectorsPerRU; rbuf->failedDiskSectorOffset += sectorsPerRU; } else { ctrl->curPSID++; ctrl->ru_count = 0; /* code left over from when head-sep was based on * parity stripe id */ if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { rf_CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); return (1); /* Finito ! */ } /* * Find the disk offsets of the start of the parity * stripe on both the current disk and the failed * disk. Skip this entire parity stripe if either disk * does not appear in the indicated PS. */ status = rf_ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); if (status) { ctrl->ru_count = RUsPerPU - 1; continue; } } rbuf->which_ru = ctrl->ru_count; /* Skip this RU if it's already been reconstructed. */ if (rf_CheckRUReconstructed(raidPtr->reconControl[row] ->reconMap, rbuf->failedDiskSectorOffset)) { Dprintf2("Skipping psid %ld ru %d: already" " reconstructed.\n", ctrl->curPSID, ctrl->ru_count); continue; } break; } ctrl->headSepCounter++; if (do_new_check) /* Update min if needed. */ rf_CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* * At this point, we have definitely decided what to do, and we have * only to see if we can actually do it now. */ rbuf->parityStripeID = ctrl->curPSID; rbuf->which_ru = ctrl->ru_count; bzero(&raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); raidPtr->recon_tracerecs[col].reconacc = 1; RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); retcode = rf_TryToRead(raidPtr, row, col); return (retcode); } /* * Tries to issue the next read on the indicated disk. We may be * blocked by (a) the heads being too far apart, or (b) recon on the * indicated RU being blocked due to a write by a user thread. In * this case, we issue a head-sep or blockage wait request, which will * cause this same routine to be invoked again later when the blockage * has cleared. */ int rf_TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col) { RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; RF_StripeNum_t psid = ctrl->curPSID; RF_ReconUnitNum_t which_ru = ctrl->ru_count; RF_DiskQueueData_t *req; int status, created = 0; RF_ReconParityStripeStatus_t *pssPtr; /* * If the current disk is too far ahead of the others, issue a * head-separation wait and return. */ if (rf_CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) return (0); RF_LOCK_PSS_MUTEX(raidPtr, row, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row] ->pssTable, psid, which_ru, RF_PSS_CREATE, &created); /* * If recon is blocked on the indicated parity stripe, issue a * block-wait request and return. This also must mark the indicated RU * in the stripe as under reconstruction if not blocked. */ status = rf_CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); if (status == RF_PSS_RECON_BLOCKED) { Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked.\n", psid, which_ru); goto out; } else if (status == RF_PSS_FORCED_ON_WRITE) { rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); goto out; } /* * Make one last check to be sure that the indicated RU didn't get * reconstructed while we were waiting for something else to happen. * This is unfortunate in that it causes us to make this check twice * in the normal case. Might want to make some attempt to re-work * this so that we only do this check if we've definitely blocked on * one of the above checks. When this condition is detected, we may * have just created a bogus status entry, which we need to delete. */ if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after" " stall.\n", psid, which_ru); if (created) rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); goto out; } /* Found something to read. Issue the I/O. */ Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld" " buf %lx.\n", psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); /* * Should be ok to use a NULL proc pointer here, all the bufs we use * should be in kernel space. */ req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, rf_ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- Fix this. -- XXX */ ctrl->rbuf->arg = (void *) req; rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); pssPtr->issued[col] = 1; out: RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (0); } /* * Given a parity stripe ID, we want to find out whether both the * current disk and the failed disk exist in that parity stripe. If * not, we want to skip this whole PS. If so, we want to find the * disk offset of the start of the PS on both the current disk and the * failed disk. * * This works by getting a list of disks comprising the indicated * parity stripe, and searching the list for the current and failed * disks. Once we've decided they both exist in the parity stripe, we * need to decide whether each is data or parity, so that we'll know * which mapping function to call to get the corresponding disk * offsets. * * This is kind of unpleasant, but doing it this way allows the * reconstruction code to use parity stripe IDs rather than physical * disks address to march through the failed disk, which greatly * simplifies a lot of code, as well as eliminating the need for a * reverse-mapping function. I also think it will execute faster, * since the calls to the mapping module are kept to a minimum. * * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING * THE STRIPE IN THE CORRECT ORDER. */ int rf_ComputePSDiskOffsets( RF_Raid_t *raidPtr, /* RAID descriptor. */ RF_StripeNum_t psid, /* Parity stripe identifier. */ RF_RowCol_t row, /* * Row and column of disk to find * the offsets for. */ RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, RF_SectorNum_t *outFailedDiskSectorOffset, RF_RowCol_t *spRow, /* * OUT: Row,col of spare unit for * failed unit. */ RF_RowCol_t *spCol, RF_SectorNum_t *spOffset /* * OUT: Offset into disk containing * spare unit. */ ) { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ RF_RowCol_t *diskids; u_int i, j, k, i_offset, j_offset; RF_RowCol_t prow, pcol; int testcol, testrow; RF_RowCol_t stripe; RF_SectorNum_t poffset; char i_is_parity = 0, j_is_parity = 0; RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; /* Get a listing of the disks comprising that stripe. */ sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); RF_ASSERT(diskids); /* * Reject this entire parity stripe if it does not contain the * indicated disk or it does not contain the failed disk. */ if (row != stripe) goto skipit; for (i = 0; i < stripeWidth; i++) { if (col == diskids[i]) break; } if (i == stripeWidth) goto skipit; for (j = 0; j < stripeWidth; j++) { if (fcol == diskids[j]) break; } if (j == stripeWidth) { goto skipit; } /* Find out which disk the parity is on. */ (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); /* Find out if either the current RU or the failed RU is parity. */ /* * Also, if the parity occurs in this stripe prior to the data and/or * failed col, we need to decrement i and/or j. */ for (k = 0; k < stripeWidth; k++) if (diskids[k] == pcol) break; RF_ASSERT(k < stripeWidth); i_offset = i; j_offset = j; if (k < i) i_offset--; else if (k == i) { i_is_parity = 1; i_offset = 0; } /* * Set offsets to zero to disable multiply * below. */ if (k < j) j_offset--; else if (k == j) { j_is_parity = 1; j_offset = 0; } /* * At this point, [ij]_is_parity tells us whether the [current,failed] * disk is parity at the start of this RU, and, if data, "[ij]_offset" * tells us how far into the stripe the [current,failed] disk is. */ /* * Call the mapping routine to get the offset into the current disk, * repeat for failed disk. */ if (i_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); RF_ASSERT(row == testrow && col == testcol); if (j_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); RF_ASSERT(row == testrow && fcol == testcol); /* Now locate the spare unit for the failed unit. */ if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { if (j_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); } else { *spRow = raidPtr->reconControl[row]->spareRow; *spCol = raidPtr->reconControl[row]->spareCol; *spOffset = *outFailedDiskSectorOffset; } return (0); skipit: Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d.\n", psid, row, col); return (1); } /* * This is called when a buffer has become ready to write to the replacement * disk. */ int rf_IssueNextWriteRequest(RF_Raid_t *raidPtr, RF_RowCol_t row) { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; RF_ReconBuffer_t *rbuf; RF_DiskQueueData_t *req; rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); RF_ASSERT(rbuf); /* * There must be one available, or we wouldn't * have gotten the event that sent us here. */ RF_ASSERT(rbuf->pssPtr); rbuf->pssPtr->writeRbuf = rbuf; rbuf->pssPtr = NULL; Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d" " (failed disk offset %ld) buf %lx.\n", rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x.\n", rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); /* * Should be ok to use a NULL b_proc here b/c all addrs should be in * kernel space. */ req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, sectorsPerRU, rbuf->buffer, rbuf->parityStripeID, rbuf->which_ru, rf_ReconWriteDoneProc, (void *) rbuf, NULL, &raidPtr->recon_tracerecs[fcol], (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- Fix this. -- XXX */ rbuf->arg = (void *) req; rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); return (0); } /* * This gets called upon the completion of a reconstruction read * operation. The arg is a pointer to the per-disk reconstruction * control structure for the process that just finished a read. * * Called at interrupt context in the kernel, so don't do anything * illegal here. */ int rf_ReconReadDoneProc(void *arg, int status) { RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; if (status) { /* * XXX */ printf("Recon read failed !\n"); RF_PANIC(); } RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); raidPtr->recon_tracerecs[ctrl->col].specific.recon. recon_fetch_to_return_us = RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); return (0); } /* * This gets called upon the completion of a reconstruction write operation. * The arg is a pointer to the rbuf that was just written. * * Called at interrupt context in the kernel, so don't do anything illegal here. */ int rf_ReconWriteDoneProc(void *arg, int status) { RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; Dprintf2("Reconstruction completed on psid %ld ru %d.\n", rbuf->parityStripeID, rbuf->which_ru); if (status) { /* fprintf(stderr, "Recon write failed !\n"); */ printf("Recon write failed !\n"); RF_PANIC(); } rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); return (0); } /* * Computes a new minimum head sep, and wakes up anyone who needs to * be woken as a result. */ void rf_CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_HeadSepLimit_t hsCtr) { RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; RF_HeadSepLimit_t new_min; RF_RowCol_t i; RF_CallbackDesc_t *p; /* From the definition of a minimum. */ RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ for (i = 0; i < raidPtr->numCol; i++) if (i != reconCtrlPtr->fcol) { if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; } /* Set the new minimum and wake up anyone who can now run again. */ if (new_min != reconCtrlPtr->minHeadSepCounter) { reconCtrlPtr->minHeadSepCounter = new_min; Dprintf1("RECON: new min head pos counter val is %ld.\n", new_min); while (reconCtrlPtr->headSepCBList) { if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) break; p = reconCtrlPtr->headSepCBList; reconCtrlPtr->headSepCBList = p->next; p->next = NULL; rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); rf_FreeCallbackDesc(p); } } RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); } /* * Checks to see that the maximum head separation will not be violated * if we initiate a reconstruction I/O on the indicated disk. * Limiting the maximum head separation between two disks eliminates * the nasty buffer-stall conditions that occur when one disk races * ahead of the others and consumes all of the floating recon buffers. * This code is complex and unpleasant but it's necessary to avoid * some very nasty, albeit fairly rare, reconstruction behavior. * * Returns non-zero if and only if we have to stop working on the * indicated disk due to a head-separation delay. */ int rf_CheckHeadSeparation( RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, RF_ReconUnitNum_t which_ru ) { RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; RF_CallbackDesc_t *cb, *p, *pt; int retval = 0; /* * If we're too far ahead of the slowest disk, stop working on this * disk until the slower ones catch up. We do this by scheduling a * wakeup callback for the time when the slowest disk has caught up. * We define "caught up" with 20% hysteresis, i.e. the head separation * must have fallen to at most 80% of the max allowable head * separation before we'll wake up. */ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); if ((raidPtr->headSepLimit >= 0) && ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr" " %ld minHSCtr %ld limit %ld.\n", raidPtr->raidid, row, col, ctrl->headSepCounter, reconCtrlPtr->minHeadSepCounter, raidPtr->headSepLimit); cb = rf_AllocCallbackDesc(); /* * The minHeadSepCounter value we have to get to before we'll * wake up. Build in 20% hysteresis. */ cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); cb->row = row; cb->col = col; cb->next = NULL; /* * Insert this callback descriptor into the sorted list of * pending head-sep callbacks. */ p = reconCtrlPtr->headSepCBList; if (!p) reconCtrlPtr->headSepCBList = cb; else if (cb->callbackArg.v < p->callbackArg.v) { cb->next = reconCtrlPtr->headSepCBList; reconCtrlPtr->headSepCBList = cb; } else { for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); cb->next = p; pt->next = cb; } retval = 1; #if RF_RECON_STATS > 0 ctrl->reconCtrl->reconDesc->hsStallCount++; #endif /* RF_RECON_STATS > 0 */ } RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); return (retval); } /* * Checks to see if reconstruction has been either forced or blocked * by a user operation. If forced, we skip this RU entirely. Else if * blocked, put ourselves on the wait list. Else return 0. * * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY. */ int rf_CheckForcedOrBlockedReconstruction( RF_Raid_t *raidPtr, RF_ReconParityStripeStatus_t *pssPtr, RF_PerDiskReconCtrl_t *ctrl, RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, RF_ReconUnitNum_t which_ru ) { RF_CallbackDesc_t *cb; int retcode = 0; if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) retcode = RF_PSS_FORCED_ON_WRITE; else if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { Dprintf4("RECON: row %d col %d blocked at psid %ld" " ru %d.\n", row, col, psid, which_ru); cb = rf_AllocCallbackDesc(); /* * Append ourselves to * the blockage-wait * list. */ cb->row = row; cb->col = col; cb->next = pssPtr->blockWaitList; pssPtr->blockWaitList = cb; retcode = RF_PSS_RECON_BLOCKED; } if (!retcode) pssPtr->flags |= RF_PSS_UNDER_RECON; /* * Mark this RU as under * reconstruction. */ return (retcode); } /* * If reconstruction is currently ongoing for the indicated stripeID, * reconstruction is forced to completion and we return non-zero to * indicate that the caller must wait. If not, then reconstruction is * blocked on the indicated stripe and the routine returns zero. If * and only if we return non-zero, we'll cause the cbFunc to get * invoked with the cbArg when the reconstruction has completed. */ int rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, void (*cbFunc) (RF_Raid_t *, void *), void *cbArg) { RF_RowCol_t row = asmap->physInfo->row; /* * Which row of the array * we're working on. */ RF_StripeNum_t stripeID = asmap->stripeID; /* * The stripe ID we're * forcing recon on. */ RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* Num sects in one RU. */ RF_ReconParityStripeStatus_t *pssPtr; /* * A pointer to the parity * stripe status structure. */ RF_StripeNum_t psid; /* Parity stripe id. */ RF_SectorNum_t offset, fd_offset; /* * Disk offset, failed-disk * offset. */ RF_RowCol_t *diskids; RF_RowCol_t stripe; RF_ReconUnitNum_t which_ru; /* RU within parity stripe. */ RF_RowCol_t fcol, diskno, i; RF_ReconBuffer_t *new_rbuf; /* Ptr to newly allocated rbufs. */ RF_DiskQueueData_t *req; /* Disk I/O req to be enqueued. */ RF_CallbackDesc_t *cb; int created = 0, nPromoted; psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); RF_LOCK_PSS_MUTEX(raidPtr, row, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); /* If recon is not ongoing on this PS, just return. */ if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (0); } /* * Otherwise, we have to wait for reconstruction to complete on this * RU. */ /* * In order to avoid waiting for a potentially large number of * low-priority accesses to complete, we force a normal-priority (i.e. * not low-priority) reconstruction on this RU. */ if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { DDprintf1("Forcing recon on psid %ld.\n", psid); /* Mark this RU as under forced recon. */ pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* Clear the blockage that we just set. */ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; fcol = raidPtr->reconControl[row]->fcol; /* * Get a listing of the disks comprising the indicated stripe. */ (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); RF_ASSERT(row == stripe); /* * For previously issued reads, elevate them to normal * priority. If the I/O has already completed, it won't be * found in the queue, and hence this will be a no-op. For * unissued reads, allocate buffers and issue new reads. The * fact that we've set the FORCED bit means that the regular * recon procs will not re-issue these reqs. */ for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) if ((diskno = diskids[i]) != fcol) { if (pssPtr->issued[diskno]) { nPromoted = rf_DiskIOPromote(&raidPtr ->Queues[row][diskno], psid, which_ru); if (rf_reconDebug && nPromoted) printf("raid%d: promoted read" " from row %d col %d.\n", raidPtr->raidid, row, diskno); } else { /* Create new buf. */ new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* Find offsets & spare locationp */ rf_ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); new_rbuf->parityStripeID = psid; /* Fill in the buffer. */ new_rbuf->which_ru = which_ru; new_rbuf->failedDiskSectorOffset = fd_offset; new_rbuf->priority = RF_IO_NORMAL_PRIORITY; /* * Use NULL b_proc b/c all addrs * should be in kernel space. */ req = rf_CreateDiskQueueData( RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, psid, which_ru, (int (*) (void *, int)) rf_ForceReconReadDoneProc, (void *) new_rbuf, NULL, NULL, (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* * XXX -- Fix this. -- * XXX */ new_rbuf->arg = req; /* Enqueue the I/O. */ rf_DiskIOEnqueue(&raidPtr ->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); Dprintf3("raid%d: Issued new read req" " on row %d col %d.\n", raidPtr->raidid, row, diskno); } } /* * If the write is sitting in the disk queue, elevate its * priority. */ if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) printf("raid%d: promoted write to row %d col %d.\n", raidPtr->raidid, row, fcol); } /* * Install a callback descriptor to be invoked when recon completes on * this parity stripe. */ cb = rf_AllocCallbackDesc(); /* * XXX The following is bogus... These functions don't really match !!! * GO */ cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; cb->callbackArg.p = (void *) cbArg; cb->next = pssPtr->procWaitList; pssPtr->procWaitList = cb; DDprintf2("raid%d: Waiting for forced recon on psid %ld.\n", raidPtr->raidid, psid); RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (1); } /* * Called upon the completion of a forced reconstruction read. * All we do is schedule the FORCEDREADONE event. * Called at interrupt context in the kernel, so don't do anything illegal here. */ void rf_ForceReconReadDoneProc(void *arg, int status) { RF_ReconBuffer_t *rbuf = arg; if (status) { /* fprintf(stderr, "Forced recon read failed !\n"); */ printf("Forced recon read failed !\n"); RF_PANIC(); } rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); } /* Releases a block on the reconstruction of the indicated stripe. */ int rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) { RF_RowCol_t row = asmap->origRow; RF_StripeNum_t stripeID = asmap->stripeID; RF_ReconParityStripeStatus_t *pssPtr; RF_ReconUnitNum_t which_ru; RF_StripeNum_t psid; int created = 0; RF_CallbackDesc_t *cb; psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); RF_LOCK_PSS_MUTEX(raidPtr, row, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row] ->pssTable, psid, which_ru, RF_PSS_NONE, &created); /* * When recon is forced, the pss desc can get deleted before we get * back to unblock recon. But, this can _only_ happen when recon is * forced. It would be good to put some kind of sanity check here, but * how to decide if recon was just forced or not ? */ if (!pssPtr) { /* * printf("Warning: no pss descriptor upon unblock on psid %ld" * " RU %d.\n", psid, which_ru); */ if (rf_reconDebug || rf_pssDebug) printf("Warning: no pss descriptor upon unblock on" " psid %ld RU %d.\n", (long) psid, which_ru); goto out; } pssPtr->blockCount--; Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d.\n", raidPtr->raidid, psid, pssPtr->blockCount); if (pssPtr->blockCount == 0) { /* If recon blockage has been released. */ /* * Unblock recon before calling CauseReconEvent in case * CauseReconEvent causes us to try to issue a new read before * returning here. */ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; while (pssPtr->blockWaitList) { /* * Spin through the block-wait list and * release all the waiters. */ cb = pssPtr->blockWaitList; pssPtr->blockWaitList = cb->next; cb->next = NULL; rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); rf_FreeCallbackDesc(cb); } if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* If no recon was requested while recon was blocked. */ rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row] ->pssTable, pssPtr); } } out: RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); return (0); }