/* $OpenBSD: sdmmc_mem.c,v 1.35 2020/08/24 15:06:10 kettenis Exp $ */ /* * Copyright (c) 2006 Uwe Stuehler * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Routines for SD/MMC memory cards. */ #include #include #include #include #include #include #include #include #ifdef HIBERNATE #include #endif typedef struct { uint32_t _bits[512/32]; } __packed __aligned(4) sdmmc_bitfield512_t; void sdmmc_be512_to_bitfield512(sdmmc_bitfield512_t *); int sdmmc_decode_csd(struct sdmmc_softc *, sdmmc_response, struct sdmmc_function *); int sdmmc_decode_cid(struct sdmmc_softc *, sdmmc_response, struct sdmmc_function *); void sdmmc_print_cid(struct sdmmc_cid *); int sdmmc_mem_send_op_cond(struct sdmmc_softc *, u_int32_t, u_int32_t *); int sdmmc_mem_set_blocklen(struct sdmmc_softc *, struct sdmmc_function *); int sdmmc_mem_send_scr(struct sdmmc_softc *, uint32_t *); int sdmmc_mem_decode_scr(struct sdmmc_softc *, uint32_t *, struct sdmmc_function *); int sdmmc_mem_send_cxd_data(struct sdmmc_softc *, int, void *, size_t); int sdmmc_mem_set_bus_width(struct sdmmc_function *, int); int sdmmc_mem_mmc_switch(struct sdmmc_function *, uint8_t, uint8_t, uint8_t); int sdmmc_mem_signal_voltage(struct sdmmc_softc *, int); int sdmmc_mem_sd_init(struct sdmmc_softc *, struct sdmmc_function *); int sdmmc_mem_mmc_init(struct sdmmc_softc *, struct sdmmc_function *); int sdmmc_mem_single_read_block(struct sdmmc_function *, int, u_char *, size_t); int sdmmc_mem_read_block_subr(struct sdmmc_function *, bus_dmamap_t, int, u_char *, size_t); int sdmmc_mem_single_write_block(struct sdmmc_function *, int, u_char *, size_t); int sdmmc_mem_write_block_subr(struct sdmmc_function *, bus_dmamap_t, int, u_char *, size_t); #ifdef SDMMC_DEBUG #define DPRINTF(s) printf s #else #define DPRINTF(s) /**/ #endif const struct { const char *name; int v; int freq; } switch_group0_functions[] = { /* Default/SDR12 */ { "Default/SDR12", 0, 25000 }, /* High-Speed/SDR25 */ { "High-Speed/SDR25", SMC_CAPS_SD_HIGHSPEED, 50000 }, /* SDR50 */ { "SDR50", SMC_CAPS_UHS_SDR50, 100000 }, /* SDR104 */ { "SDR104", SMC_CAPS_UHS_SDR104, 208000 }, /* DDR50 */ { "DDR50", SMC_CAPS_UHS_DDR50, 50000 }, }; const int sdmmc_mmc_timings[] = { [SDMMC_TIMING_LEGACY] = 26000, [SDMMC_TIMING_HIGHSPEED] = 52000, [SDMMC_TIMING_MMC_DDR52] = 52000, [SDMMC_TIMING_MMC_HS200] = 200000 }; /* * Initialize SD/MMC memory cards and memory in SDIO "combo" cards. */ int sdmmc_mem_enable(struct sdmmc_softc *sc) { uint32_t host_ocr; uint32_t card_ocr; uint32_t new_ocr; uint32_t ocr = 0; int error; rw_assert_wrlock(&sc->sc_lock); /* Set host mode to SD "combo" card or SD memory-only. */ CLR(sc->sc_flags, SMF_UHS_MODE); SET(sc->sc_flags, SMF_SD_MODE|SMF_MEM_MODE); /* Reset memory (*must* do that before CMD55 or CMD1). */ sdmmc_go_idle_state(sc); /* * Read the SD/MMC memory OCR value by issuing CMD55 followed * by ACMD41 to read the OCR value from memory-only SD cards. * MMC cards will not respond to CMD55 or ACMD41 and this is * how we distinguish them from SD cards. */ mmc_mode: if (sdmmc_mem_send_op_cond(sc, 0, &card_ocr) != 0) { if (ISSET(sc->sc_flags, SMF_SD_MODE) && !ISSET(sc->sc_flags, SMF_IO_MODE)) { /* Not a SD card, switch to MMC mode. */ CLR(sc->sc_flags, SMF_SD_MODE); goto mmc_mode; } if (!ISSET(sc->sc_flags, SMF_SD_MODE)) { DPRINTF(("%s: can't read memory OCR\n", DEVNAME(sc))); return 1; } else { /* Not a "combo" card. */ CLR(sc->sc_flags, SMF_MEM_MODE); return 0; } } /* Set the lowest voltage supported by the card and host. */ host_ocr = sdmmc_chip_host_ocr(sc->sct, sc->sch); if (sdmmc_set_bus_power(sc, host_ocr, card_ocr) != 0) { DPRINTF(("%s: can't supply voltage requested by card\n", DEVNAME(sc))); return 1; } /* Tell the card(s) to enter the idle state (again). */ sdmmc_go_idle_state(sc); host_ocr &= card_ocr; /* only allow the common voltages */ if (ISSET(sc->sc_flags, SMF_SD_MODE)) { if (sdmmc_send_if_cond(sc, card_ocr) == 0) SET(ocr, MMC_OCR_HCS); if (sdmmc_chip_host_ocr(sc->sct, sc->sch) & MMC_OCR_S18A) SET(ocr, MMC_OCR_S18A); } host_ocr |= ocr; /* Send the new OCR value until all cards are ready. */ if (sdmmc_mem_send_op_cond(sc, host_ocr, &new_ocr) != 0) { DPRINTF(("%s: can't send memory OCR\n", DEVNAME(sc))); return 1; } if (ISSET(sc->sc_flags, SMF_SD_MODE) && ISSET(new_ocr, MMC_OCR_S18A)) { /* * Card and host support low voltage mode, begin switch * sequence. */ struct sdmmc_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.c_arg = 0; cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1; cmd.c_opcode = SD_VOLTAGE_SWITCH; DPRINTF(("%s: switching card to 1.8V\n", DEVNAME(sc))); error = sdmmc_mmc_command(sc, &cmd); if (error) { DPRINTF(("%s: voltage switch command failed\n", SDMMCDEVNAME(sc))); return error; } error = sdmmc_mem_signal_voltage(sc, SDMMC_SIGNAL_VOLTAGE_180); if (error) return error; SET(sc->sc_flags, SMF_UHS_MODE); } return 0; } int sdmmc_mem_signal_voltage(struct sdmmc_softc *sc, int signal_voltage) { int error; /* * Stop the clock */ error = sdmmc_chip_bus_clock(sc->sct, sc->sch, 0, SDMMC_TIMING_LEGACY); if (error) return error; delay(1000); /* * Card switch command was successful, update host controller * signal voltage setting. */ DPRINTF(("%s: switching host to %s\n", SDMMCDEVNAME(sc), signal_voltage == SDMMC_SIGNAL_VOLTAGE_180 ? "1.8V" : "3.3V")); error = sdmmc_chip_signal_voltage(sc->sct, sc->sch, signal_voltage); if (error) return error; delay(5000); /* * Switch to SDR12 timing */ error = sdmmc_chip_bus_clock(sc->sct, sc->sch, SDMMC_SDCLK_25MHZ, SDMMC_TIMING_LEGACY); if (error) return error; delay(1000); return 0; } /* * Read the CSD and CID from all cards and assign each card a unique * relative card address (RCA). CMD2 is ignored by SDIO-only cards. */ void sdmmc_mem_scan(struct sdmmc_softc *sc) { struct sdmmc_command cmd; struct sdmmc_function *sf; u_int16_t next_rca; int error; int i; rw_assert_wrlock(&sc->sc_lock); /* * CMD2 is a broadcast command understood by SD cards and MMC * cards. All cards begin to respond to the command, but back * off if another card drives the CMD line to a different level. * Only one card will get its entire response through. That * card remains silent once it has been assigned a RCA. */ for (i = 0; i < 100; i++) { bzero(&cmd, sizeof cmd); cmd.c_opcode = MMC_ALL_SEND_CID; cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R2; error = sdmmc_mmc_command(sc, &cmd); if (error == ETIMEDOUT) { /* No more cards there. */ break; } else if (error != 0) { DPRINTF(("%s: can't read CID\n", DEVNAME(sc))); break; } /* In MMC mode, find the next available RCA. */ next_rca = 1; if (!ISSET(sc->sc_flags, SMF_SD_MODE)) SIMPLEQ_FOREACH(sf, &sc->sf_head, sf_list) next_rca++; /* Allocate a sdmmc_function structure. */ sf = sdmmc_function_alloc(sc); sf->rca = next_rca; /* * Remember the CID returned in the CMD2 response for * later decoding. */ bcopy(cmd.c_resp, sf->raw_cid, sizeof sf->raw_cid); /* * Silence the card by assigning it a unique RCA, or * querying it for its RCA in the case of SD. */ if (sdmmc_set_relative_addr(sc, sf) != 0) { printf("%s: can't set mem RCA\n", DEVNAME(sc)); sdmmc_function_free(sf); break; } #if 0 /* Verify that the RCA has been set by selecting the card. */ if (sdmmc_select_card(sc, sf) != 0) { printf("%s: can't select mem RCA %d\n", DEVNAME(sc), sf->rca); sdmmc_function_free(sf); break; } /* Deselect. */ (void)sdmmc_select_card(sc, NULL); #endif /* * If this is a memory-only card, the card responding * first becomes an alias for SDIO function 0. */ if (sc->sc_fn0 == NULL) sc->sc_fn0 = sf; SIMPLEQ_INSERT_TAIL(&sc->sf_head, sf, sf_list); } /* * All cards are either inactive or awaiting further commands. * Read the CSDs and decode the raw CID for each card. */ SIMPLEQ_FOREACH(sf, &sc->sf_head, sf_list) { bzero(&cmd, sizeof cmd); cmd.c_opcode = MMC_SEND_CSD; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R2; if (sdmmc_mmc_command(sc, &cmd) != 0) { SET(sf->flags, SFF_ERROR); continue; } if (sdmmc_decode_csd(sc, cmd.c_resp, sf) != 0 || sdmmc_decode_cid(sc, sf->raw_cid, sf) != 0) { SET(sf->flags, SFF_ERROR); continue; } #ifdef SDMMC_DEBUG printf("%s: CID: ", DEVNAME(sc)); sdmmc_print_cid(&sf->cid); #endif } } int sdmmc_decode_csd(struct sdmmc_softc *sc, sdmmc_response resp, struct sdmmc_function *sf) { struct sdmmc_csd *csd = &sf->csd; if (ISSET(sc->sc_flags, SMF_SD_MODE)) { /* * CSD version 1.0 corresponds to SD system * specification version 1.0 - 1.10. (SanDisk, 3.5.3) */ csd->csdver = SD_CSD_CSDVER(resp); switch (csd->csdver) { case SD_CSD_CSDVER_2_0: sf->flags |= SFF_SDHC; csd->capacity = SD_CSD_V2_CAPACITY(resp); csd->read_bl_len = SD_CSD_V2_BL_LEN; break; case SD_CSD_CSDVER_1_0: csd->capacity = SD_CSD_CAPACITY(resp); csd->read_bl_len = SD_CSD_READ_BL_LEN(resp); break; default: printf("%s: unknown SD CSD structure version 0x%x\n", DEVNAME(sc), csd->csdver); return 1; break; } csd->ccc = SD_CSD_CCC(resp); } else { csd->csdver = MMC_CSD_CSDVER(resp); if (csd->csdver == MMC_CSD_CSDVER_1_0 || csd->csdver == MMC_CSD_CSDVER_2_0 || csd->csdver == MMC_CSD_CSDVER_EXT_CSD) { csd->mmcver = MMC_CSD_MMCVER(resp); csd->capacity = MMC_CSD_CAPACITY(resp); csd->read_bl_len = MMC_CSD_READ_BL_LEN(resp); } else { printf("%s: unknown MMC CSD structure version 0x%x\n", DEVNAME(sc), csd->csdver); return 1; } } csd->sector_size = MIN(1 << csd->read_bl_len, sdmmc_chip_host_maxblklen(sc->sct, sc->sch)); if (csd->sector_size < (1<read_bl_len)) csd->capacity *= (1<read_bl_len) / csd->sector_size; return 0; } int sdmmc_decode_cid(struct sdmmc_softc *sc, sdmmc_response resp, struct sdmmc_function *sf) { struct sdmmc_cid *cid = &sf->cid; if (ISSET(sc->sc_flags, SMF_SD_MODE)) { cid->mid = SD_CID_MID(resp); cid->oid = SD_CID_OID(resp); SD_CID_PNM_CPY(resp, cid->pnm); cid->rev = SD_CID_REV(resp); cid->psn = SD_CID_PSN(resp); cid->mdt = SD_CID_MDT(resp); } else { switch(sf->csd.mmcver) { case MMC_CSD_MMCVER_1_0: case MMC_CSD_MMCVER_1_4: cid->mid = MMC_CID_MID_V1(resp); MMC_CID_PNM_V1_CPY(resp, cid->pnm); cid->rev = MMC_CID_REV_V1(resp); cid->psn = MMC_CID_PSN_V1(resp); cid->mdt = MMC_CID_MDT_V1(resp); break; case MMC_CSD_MMCVER_2_0: case MMC_CSD_MMCVER_3_1: case MMC_CSD_MMCVER_4_0: cid->mid = MMC_CID_MID_V2(resp); cid->oid = MMC_CID_OID_V2(resp); MMC_CID_PNM_V2_CPY(resp, cid->pnm); cid->psn = MMC_CID_PSN_V2(resp); break; default: printf("%s: unknown MMC version %d\n", DEVNAME(sc), sf->csd.mmcver); return 1; } } return 0; } #ifdef SDMMC_DEBUG void sdmmc_print_cid(struct sdmmc_cid *cid) { printf("mid=0x%02x oid=0x%04x pnm=\"%s\" rev=0x%02x psn=0x%08x" " mdt=%03x\n", cid->mid, cid->oid, cid->pnm, cid->rev, cid->psn, cid->mdt); } #endif int sdmmc_mem_send_scr(struct sdmmc_softc *sc, uint32_t *scr) { struct sdmmc_command cmd; void *ptr = NULL; int datalen = 8; int error = 0; ptr = malloc(datalen, M_DEVBUF, M_NOWAIT | M_ZERO); if (ptr == NULL) goto out; memset(&cmd, 0, sizeof(cmd)); cmd.c_data = ptr; cmd.c_datalen = datalen; cmd.c_blklen = datalen; cmd.c_arg = 0; cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; cmd.c_opcode = SD_APP_SEND_SCR; error = sdmmc_app_command(sc, &cmd); if (error == 0) memcpy(scr, ptr, datalen); out: if (ptr != NULL) free(ptr, M_DEVBUF, datalen); return error; } int sdmmc_mem_decode_scr(struct sdmmc_softc *sc, uint32_t *raw_scr, struct sdmmc_function *sf) { sdmmc_response resp; int ver; memset(resp, 0, sizeof(resp)); /* * Change the raw SCR to a response. */ resp[0] = be32toh(raw_scr[1]) >> 8; // LSW resp[1] = be32toh(raw_scr[0]); // MSW resp[0] |= (resp[1] & 0xff) << 24; resp[1] >>= 8; ver = SCR_STRUCTURE(resp); sf->scr.sd_spec = SCR_SD_SPEC(resp); sf->scr.bus_width = SCR_SD_BUS_WIDTHS(resp); DPRINTF(("%s: %s: %08x%08x ver=%d, spec=%d, bus width=%d\n", DEVNAME(sc), __func__, resp[1], resp[0], ver, sf->scr.sd_spec, sf->scr.bus_width)); if (ver != 0) { DPRINTF(("%s: unknown SCR structure version: %d\n", DEVNAME(sc), ver)); return EINVAL; } return 0; } int sdmmc_mem_send_cxd_data(struct sdmmc_softc *sc, int opcode, void *data, size_t datalen) { struct sdmmc_command cmd; void *ptr = NULL; int error = 0; ptr = malloc(datalen, M_DEVBUF, M_NOWAIT | M_ZERO); if (ptr == NULL) { error = ENOMEM; goto out; } memset(&cmd, 0, sizeof(cmd)); cmd.c_data = ptr; cmd.c_datalen = datalen; cmd.c_blklen = datalen; cmd.c_opcode = opcode; cmd.c_arg = 0; cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ; if (opcode == MMC_SEND_EXT_CSD) SET(cmd.c_flags, SCF_RSP_R1); else SET(cmd.c_flags, SCF_RSP_R2); error = sdmmc_mmc_command(sc, &cmd); if (error == 0) memcpy(data, ptr, datalen); out: if (ptr != NULL) free(ptr, M_DEVBUF, datalen); return error; } int sdmmc_mem_set_bus_width(struct sdmmc_function *sf, int width) { struct sdmmc_softc *sc = sf->sc; struct sdmmc_command cmd; int error; memset(&cmd, 0, sizeof(cmd)); cmd.c_opcode = SD_APP_SET_BUS_WIDTH; cmd.c_flags = SCF_RSP_R1 | SCF_CMD_AC; switch (width) { case 1: cmd.c_arg = SD_ARG_BUS_WIDTH_1; break; case 4: cmd.c_arg = SD_ARG_BUS_WIDTH_4; break; default: return EINVAL; } error = sdmmc_app_command(sc, &cmd); if (error == 0) error = sdmmc_chip_bus_width(sc->sct, sc->sch, width); return error; } int sdmmc_mem_sd_switch(struct sdmmc_function *sf, int mode, int group, int function, sdmmc_bitfield512_t *status) { struct sdmmc_softc *sc = sf->sc; struct sdmmc_command cmd; void *ptr = NULL; int gsft, error = 0; const int statlen = 64; if (sf->scr.sd_spec >= SCR_SD_SPEC_VER_1_10 && !ISSET(sf->csd.ccc, SD_CSD_CCC_SWITCH)) return EINVAL; if (group <= 0 || group > 6 || function < 0 || function > 15) return EINVAL; gsft = (group - 1) << 2; ptr = malloc(statlen, M_DEVBUF, M_NOWAIT | M_ZERO); if (ptr == NULL) goto out; memset(&cmd, 0, sizeof(cmd)); cmd.c_data = ptr; cmd.c_datalen = statlen; cmd.c_blklen = statlen; cmd.c_opcode = SD_SEND_SWITCH_FUNC; cmd.c_arg = (!!mode << 31) | (function << gsft) | (0x00ffffff & ~(0xf << gsft)); cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; error = sdmmc_mmc_command(sc, &cmd); if (error == 0) memcpy(status, ptr, statlen); out: if (ptr != NULL) free(ptr, M_DEVBUF, statlen); if (error == 0) sdmmc_be512_to_bitfield512(status); return error; } int sdmmc_mem_mmc_switch(struct sdmmc_function *sf, uint8_t set, uint8_t index, uint8_t value) { struct sdmmc_softc *sc = sf->sc; struct sdmmc_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.c_opcode = MMC_SWITCH; cmd.c_arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set; cmd.c_flags = SCF_RSP_R1B | SCF_CMD_AC; return sdmmc_mmc_command(sc, &cmd); } /* * Initialize a SD/MMC memory card. */ int sdmmc_mem_init(struct sdmmc_softc *sc, struct sdmmc_function *sf) { int error = 0; rw_assert_wrlock(&sc->sc_lock); if (sdmmc_select_card(sc, sf) != 0 || sdmmc_mem_set_blocklen(sc, sf) != 0) error = 1; if (ISSET(sc->sc_flags, SMF_SD_MODE)) error = sdmmc_mem_sd_init(sc, sf); else error = sdmmc_mem_mmc_init(sc, sf); return error; } /* make 512-bit BE quantity __bitfield()-compatible */ void sdmmc_be512_to_bitfield512(sdmmc_bitfield512_t *buf) { size_t i; uint32_t tmp0, tmp1; const size_t bitswords = nitems(buf->_bits); for (i = 0; i < bitswords/2; i++) { tmp0 = buf->_bits[i]; tmp1 = buf->_bits[bitswords - 1 - i]; buf->_bits[i] = be32toh(tmp1); buf->_bits[bitswords - 1 - i] = be32toh(tmp0); } } int sdmmc_mem_select_transfer_mode(struct sdmmc_softc *sc, int support_func) { if (ISSET(sc->sc_flags, SMF_UHS_MODE)) { if (ISSET(sc->sc_caps, SMC_CAPS_UHS_SDR104) && ISSET(support_func, 1 << SD_ACCESS_MODE_SDR104)) { return SD_ACCESS_MODE_SDR104; } if (ISSET(sc->sc_caps, SMC_CAPS_UHS_DDR50) && ISSET(support_func, 1 << SD_ACCESS_MODE_DDR50)) { return SD_ACCESS_MODE_DDR50; } if (ISSET(sc->sc_caps, SMC_CAPS_UHS_SDR50) && ISSET(support_func, 1 << SD_ACCESS_MODE_SDR50)) { return SD_ACCESS_MODE_SDR50; } } if (ISSET(sc->sc_caps, SMC_CAPS_SD_HIGHSPEED) && ISSET(support_func, 1 << SD_ACCESS_MODE_SDR25)) { return SD_ACCESS_MODE_SDR25; } return SD_ACCESS_MODE_SDR12; } int sdmmc_mem_execute_tuning(struct sdmmc_softc *sc, struct sdmmc_function *sf) { int timing = -1; if (ISSET(sc->sc_flags, SMF_SD_MODE)) { if (!ISSET(sc->sc_flags, SMF_UHS_MODE)) return 0; switch (sf->csd.tran_speed) { case 100000: timing = SDMMC_TIMING_UHS_SDR50; break; case 208000: timing = SDMMC_TIMING_UHS_SDR104; break; default: return 0; } } else { switch (sf->csd.tran_speed) { case 200000: timing = SDMMC_TIMING_MMC_HS200; break; default: return 0; } } DPRINTF(("%s: execute tuning for timing %d\n", SDMMCDEVNAME(sc), timing)); return sdmmc_chip_execute_tuning(sc->sct, sc->sch, timing); } int sdmmc_mem_sd_init(struct sdmmc_softc *sc, struct sdmmc_function *sf) { int support_func, best_func, error, i; sdmmc_bitfield512_t status; /* Switch Function Status */ uint32_t raw_scr[2]; /* * All SD cards are supposed to support Default Speed mode * with frequencies up to 25 MHz. Bump up the clock frequency * now as data transfers don't seem to work on the Realtek * RTS5229 host controller if it is running at a low clock * frequency. Reading the SCR requires a data transfer. */ error = sdmmc_chip_bus_clock(sc->sct, sc->sch, SDMMC_SDCLK_25MHZ, SDMMC_TIMING_LEGACY); if (error) { printf("%s: can't change bus clock\n", DEVNAME(sc)); return error; } error = sdmmc_mem_send_scr(sc, raw_scr); if (error) { printf("%s: SD_SEND_SCR send failed\n", DEVNAME(sc)); return error; } error = sdmmc_mem_decode_scr(sc, raw_scr, sf); if (error) return error; if (ISSET(sc->sc_caps, SMC_CAPS_4BIT_MODE) && ISSET(sf->scr.bus_width, SCR_SD_BUS_WIDTHS_4BIT)) { DPRINTF(("%s: change bus width\n", DEVNAME(sc))); error = sdmmc_mem_set_bus_width(sf, 4); if (error) { printf("%s: can't change bus width\n", DEVNAME(sc)); return error; } } best_func = 0; if (sf->scr.sd_spec >= SCR_SD_SPEC_VER_1_10 && ISSET(sf->csd.ccc, SD_CSD_CCC_SWITCH)) { DPRINTF(("%s: switch func mode 0\n", DEVNAME(sc))); error = sdmmc_mem_sd_switch(sf, 0, 1, 0, &status); if (error) { printf("%s: switch func mode 0 failed\n", DEVNAME(sc)); return error; } support_func = SFUNC_STATUS_GROUP(&status, 1); if (!ISSET(sc->sc_flags, SMF_UHS_MODE) && (ISSET(support_func, 1 << SD_ACCESS_MODE_SDR50) || ISSET(support_func, 1 << SD_ACCESS_MODE_DDR50) || ISSET(support_func, 1 << SD_ACCESS_MODE_SDR104))) { /* XXX UHS-I card started in 1.8V mode, switch now */ error = sdmmc_mem_signal_voltage(sc, SDMMC_SIGNAL_VOLTAGE_180); if (error) { printf("%s: failed to recover UHS card\n", DEVNAME(sc)); return error; } SET(sc->sc_flags, SMF_UHS_MODE); } for (i = 0; i < nitems(switch_group0_functions); i++) { if (!(support_func & (1 << i))) continue; DPRINTF(("%s: card supports mode %s\n", SDMMCDEVNAME(sc), switch_group0_functions[i].name)); } best_func = sdmmc_mem_select_transfer_mode(sc, support_func); DPRINTF(("%s: using mode %s\n", SDMMCDEVNAME(sc), switch_group0_functions[best_func].name)); } if (best_func != 0) { DPRINTF(("%s: switch func mode 1(func=%d)\n", DEVNAME(sc), best_func)); error = sdmmc_mem_sd_switch(sf, 1, 1, best_func, &status); if (error) { printf("%s: switch func mode 1 failed:" " group 1 function %d(0x%2x)\n", DEVNAME(sc), best_func, support_func); return error; } sf->csd.tran_speed = switch_group0_functions[best_func].freq; /* Wait 400KHz x 8 clock (2.5us * 8 + slop) */ delay(25); /* change bus clock */ error = sdmmc_chip_bus_clock(sc->sct, sc->sch, sf->csd.tran_speed, SDMMC_TIMING_HIGHSPEED); if (error) { printf("%s: can't change bus clock\n", DEVNAME(sc)); return error; } /* execute tuning (UHS) */ error = sdmmc_mem_execute_tuning(sc, sf); if (error) { printf("%s: can't execute SD tuning\n", DEVNAME(sc)); return error; } } return 0; } int sdmmc_mem_mmc_init(struct sdmmc_softc *sc, struct sdmmc_function *sf) { int width, value; int card_type; int error = 0; u_int8_t ext_csd[512]; int speed = 20000; int timing = SDMMC_TIMING_LEGACY; u_int32_t sectors = 0; error = sdmmc_chip_bus_clock(sc->sct, sc->sch, speed, timing); if (error) { printf("%s: can't change bus clock\n", DEVNAME(sc)); return error; } if (sf->csd.mmcver >= MMC_CSD_MMCVER_4_0) { /* read EXT_CSD */ error = sdmmc_mem_send_cxd_data(sc, MMC_SEND_EXT_CSD, ext_csd, sizeof(ext_csd)); if (error != 0) { SET(sf->flags, SFF_ERROR); printf("%s: can't read EXT_CSD\n", DEVNAME(sc)); return error; } card_type = ext_csd[EXT_CSD_CARD_TYPE]; if (card_type & EXT_CSD_CARD_TYPE_F_HS200_1_8V && ISSET(sc->sc_caps, SMC_CAPS_MMC_HS200)) { speed = 200000; timing = SDMMC_TIMING_MMC_HS200; } else if (card_type & EXT_CSD_CARD_TYPE_F_DDR52_1_8V && ISSET(sc->sc_caps, SMC_CAPS_MMC_DDR52)) { speed = 52000; timing = SDMMC_TIMING_MMC_DDR52; } else if (card_type & EXT_CSD_CARD_TYPE_F_52M && ISSET(sc->sc_caps, SMC_CAPS_MMC_HIGHSPEED)) { speed = 52000; timing = SDMMC_TIMING_HIGHSPEED; } else if (card_type & EXT_CSD_CARD_TYPE_F_26M) { speed = 26000; } else { printf("%s: unknown CARD_TYPE 0x%x\n", DEVNAME(sc), ext_csd[EXT_CSD_CARD_TYPE]); } if (ISSET(sc->sc_caps, SMC_CAPS_8BIT_MODE)) { width = 8; value = EXT_CSD_BUS_WIDTH_8; } else if (ISSET(sc->sc_caps, SMC_CAPS_4BIT_MODE)) { width = 4; value = EXT_CSD_BUS_WIDTH_4; } else { width = 1; value = EXT_CSD_BUS_WIDTH_1; } if (width != 1) { error = sdmmc_mem_mmc_switch(sf, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, value); if (error == 0) error = sdmmc_chip_bus_width(sc->sct, sc->sch, width); else { DPRINTF(("%s: can't change bus width" " (%d bit)\n", DEVNAME(sc), width)); return error; } /* XXXX: need bus test? (using by CMD14 & CMD19) */ sdmmc_delay(10000); } if (timing != SDMMC_TIMING_LEGACY) { switch (timing) { case SDMMC_TIMING_MMC_HS200: value = EXT_CSD_HS_TIMING_HS200; break; case SDMMC_TIMING_MMC_DDR52: case SDMMC_TIMING_HIGHSPEED: value = EXT_CSD_HS_TIMING_HS; break; } /* switch to high speed timing */ error = sdmmc_mem_mmc_switch(sf, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, value); if (error != 0) { printf("%s: can't change timing\n", DEVNAME(sc)); return error; } sdmmc_delay(10000); } KASSERT(timing < nitems(sdmmc_mmc_timings)); sf->csd.tran_speed = sdmmc_mmc_timings[timing]; if (timing != SDMMC_TIMING_LEGACY) { /* read EXT_CSD again */ error = sdmmc_mem_send_cxd_data(sc, MMC_SEND_EXT_CSD, ext_csd, sizeof(ext_csd)); if (error != 0) { printf("%s: can't re-read EXT_CSD\n", DEVNAME(sc)); return error; } if (ext_csd[EXT_CSD_HS_TIMING] != value) { printf("%s, HS_TIMING set failed\n", DEVNAME(sc)); return EINVAL; } } error = sdmmc_chip_bus_clock(sc->sct, sc->sch, speed, SDMMC_TIMING_HIGHSPEED); if (error != 0) { printf("%s: can't change bus clock\n", DEVNAME(sc)); return error; } if (timing == SDMMC_TIMING_MMC_DDR52) { switch (width) { case 4: value = EXT_CSD_BUS_WIDTH_4_DDR; break; case 8: value = EXT_CSD_BUS_WIDTH_8_DDR; break; } error = sdmmc_mem_mmc_switch(sf, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, value); if (error) { printf("%s: can't switch to DDR\n", DEVNAME(sc)); return error; } sdmmc_delay(10000); error = sdmmc_chip_signal_voltage(sc->sct, sc->sch, SDMMC_SIGNAL_VOLTAGE_180); if (error) { printf("%s: can't switch signalling voltage\n", DEVNAME(sc)); return error; } error = sdmmc_chip_bus_clock(sc->sct, sc->sch, speed, timing); if (error != 0) { printf("%s: can't change bus clock\n", DEVNAME(sc)); return error; } sdmmc_delay(10000); } sectors = ext_csd[EXT_CSD_SEC_COUNT + 0] << 0 | ext_csd[EXT_CSD_SEC_COUNT + 1] << 8 | ext_csd[EXT_CSD_SEC_COUNT + 2] << 16 | ext_csd[EXT_CSD_SEC_COUNT + 3] << 24; if (sectors > (2u * 1024 * 1024 * 1024) / 512) { sf->flags |= SFF_SDHC; sf->csd.capacity = sectors; } if (timing == SDMMC_TIMING_MMC_HS200) { /* execute tuning (HS200) */ error = sdmmc_mem_execute_tuning(sc, sf); if (error) { printf("%s: can't execute MMC tuning\n", DEVNAME(sc)); return error; } } } return error; } /* * Get or set the card's memory OCR value (SD or MMC). */ int sdmmc_mem_send_op_cond(struct sdmmc_softc *sc, u_int32_t ocr, u_int32_t *ocrp) { struct sdmmc_command cmd; int error; int i; rw_assert_wrlock(&sc->sc_lock); /* * If we change the OCR value, retry the command until the OCR * we receive in response has the "CARD BUSY" bit set, meaning * that all cards are ready for identification. */ for (i = 0; i < 100; i++) { bzero(&cmd, sizeof cmd); cmd.c_arg = ocr; cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R3; if (ISSET(sc->sc_flags, SMF_SD_MODE)) { cmd.c_opcode = SD_APP_OP_COND; error = sdmmc_app_command(sc, &cmd); } else { cmd.c_arg &= ~MMC_OCR_ACCESS_MODE_MASK; cmd.c_arg |= MMC_OCR_ACCESS_MODE_SECTOR; cmd.c_opcode = MMC_SEND_OP_COND; error = sdmmc_mmc_command(sc, &cmd); } if (error != 0) break; if (ISSET(MMC_R3(cmd.c_resp), MMC_OCR_MEM_READY) || ocr == 0) break; error = ETIMEDOUT; sdmmc_delay(10000); } if (error == 0 && ocrp != NULL) *ocrp = MMC_R3(cmd.c_resp); return error; } /* * Set the read block length appropriately for this card, according to * the card CSD register value. */ int sdmmc_mem_set_blocklen(struct sdmmc_softc *sc, struct sdmmc_function *sf) { struct sdmmc_command cmd; rw_assert_wrlock(&sc->sc_lock); bzero(&cmd, sizeof cmd); cmd.c_opcode = MMC_SET_BLOCKLEN; cmd.c_arg = sf->csd.sector_size; cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1; DPRINTF(("%s: read_bl_len=%d sector_size=%d\n", DEVNAME(sc), 1 << sf->csd.read_bl_len, sf->csd.sector_size)); return sdmmc_mmc_command(sc, &cmd); } int sdmmc_mem_read_block_subr(struct sdmmc_function *sf, bus_dmamap_t dmap, int blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; struct sdmmc_command cmd; int error; if ((error = sdmmc_select_card(sc, sf)) != 0) goto err; bzero(&cmd, sizeof cmd); cmd.c_data = data; cmd.c_datalen = datalen; cmd.c_blklen = sf->csd.sector_size; cmd.c_opcode = (datalen / cmd.c_blklen) > 1 ? MMC_READ_BLOCK_MULTIPLE : MMC_READ_BLOCK_SINGLE; if (sf->flags & SFF_SDHC) cmd.c_arg = blkno; else cmd.c_arg = blkno << 9; cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; cmd.c_dmamap = dmap; error = sdmmc_mmc_command(sc, &cmd); if (error != 0) goto err; if (ISSET(sc->sc_flags, SMF_STOP_AFTER_MULTIPLE) && cmd.c_opcode == MMC_READ_BLOCK_MULTIPLE) { bzero(&cmd, sizeof cmd); cmd.c_opcode = MMC_STOP_TRANSMISSION; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B; error = sdmmc_mmc_command(sc, &cmd); if (error != 0) goto err; } do { bzero(&cmd, sizeof cmd); cmd.c_opcode = MMC_SEND_STATUS; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1; error = sdmmc_mmc_command(sc, &cmd); if (error != 0) break; /* XXX time out */ } while (!ISSET(MMC_R1(cmd.c_resp), MMC_R1_READY_FOR_DATA)); err: return (error); } int sdmmc_mem_single_read_block(struct sdmmc_function *sf, int blkno, u_char *data, size_t datalen) { int error = 0; int i; for (i = 0; i < datalen / sf->csd.sector_size; i++) { error = sdmmc_mem_read_block_subr(sf, NULL, blkno + i, data + i * sf->csd.sector_size, sf->csd.sector_size); if (error) break; } return (error); } int sdmmc_mem_read_block(struct sdmmc_function *sf, int blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; int error; rw_enter_write(&sc->sc_lock); if (ISSET(sc->sc_caps, SMC_CAPS_SINGLE_ONLY)) { error = sdmmc_mem_single_read_block(sf, blkno, data, datalen); goto out; } if (!ISSET(sc->sc_caps, SMC_CAPS_DMA)) { error = sdmmc_mem_read_block_subr(sf, NULL, blkno, data, datalen); goto out; } /* DMA transfer */ error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, data, datalen, NULL, BUS_DMA_NOWAIT|BUS_DMA_READ); if (error) goto out; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_PREREAD); error = sdmmc_mem_read_block_subr(sf, sc->sc_dmap, blkno, data, datalen); if (error) goto unload; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_POSTREAD); unload: bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap); out: rw_exit(&sc->sc_lock); return (error); } int sdmmc_mem_write_block_subr(struct sdmmc_function *sf, bus_dmamap_t dmap, int blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; struct sdmmc_command cmd; int error; if ((error = sdmmc_select_card(sc, sf)) != 0) goto err; bzero(&cmd, sizeof cmd); cmd.c_data = data; cmd.c_datalen = datalen; cmd.c_blklen = sf->csd.sector_size; cmd.c_opcode = (datalen / cmd.c_blklen) > 1 ? MMC_WRITE_BLOCK_MULTIPLE : MMC_WRITE_BLOCK_SINGLE; if (sf->flags & SFF_SDHC) cmd.c_arg = blkno; else cmd.c_arg = blkno << 9; cmd.c_flags = SCF_CMD_ADTC | SCF_RSP_R1; cmd.c_dmamap = dmap; error = sdmmc_mmc_command(sc, &cmd); if (error != 0) goto err; if (ISSET(sc->sc_flags, SMF_STOP_AFTER_MULTIPLE) && cmd.c_opcode == MMC_WRITE_BLOCK_MULTIPLE) { bzero(&cmd, sizeof cmd); cmd.c_opcode = MMC_STOP_TRANSMISSION; cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B; error = sdmmc_mmc_command(sc, &cmd); if (error != 0) goto err; } do { bzero(&cmd, sizeof cmd); cmd.c_opcode = MMC_SEND_STATUS; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1; error = sdmmc_mmc_command(sc, &cmd); if (error != 0) break; /* XXX time out */ } while (!ISSET(MMC_R1(cmd.c_resp), MMC_R1_READY_FOR_DATA)); err: return (error); } int sdmmc_mem_single_write_block(struct sdmmc_function *sf, int blkno, u_char *data, size_t datalen) { int error = 0; int i; for (i = 0; i < datalen / sf->csd.sector_size; i++) { error = sdmmc_mem_write_block_subr(sf, NULL, blkno + i, data + i * sf->csd.sector_size, sf->csd.sector_size); if (error) break; } return (error); } int sdmmc_mem_write_block(struct sdmmc_function *sf, int blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; int error; rw_enter_write(&sc->sc_lock); if (ISSET(sc->sc_caps, SMC_CAPS_SINGLE_ONLY)) { error = sdmmc_mem_single_write_block(sf, blkno, data, datalen); goto out; } if (!ISSET(sc->sc_caps, SMC_CAPS_DMA)) { error = sdmmc_mem_write_block_subr(sf, NULL, blkno, data, datalen); goto out; } /* DMA transfer */ error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, data, datalen, NULL, BUS_DMA_NOWAIT|BUS_DMA_WRITE); if (error) goto out; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_PREWRITE); error = sdmmc_mem_write_block_subr(sf, sc->sc_dmap, blkno, data, datalen); if (error) goto unload; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_POSTWRITE); unload: bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap); out: rw_exit(&sc->sc_lock); return (error); } #ifdef HIBERNATE int sdmmc_mem_hibernate_write(struct sdmmc_function *sf, daddr_t blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; int i, error; struct bus_dmamap dmamap; paddr_t phys_addr; if (ISSET(sc->sc_caps, SMC_CAPS_SINGLE_ONLY)) { for (i = 0; i < datalen / sf->csd.sector_size; i++) { error = sdmmc_mem_write_block_subr(sf, NULL, blkno + i, data + i * sf->csd.sector_size, sf->csd.sector_size); if (error) return (error); } } else if (!ISSET(sc->sc_caps, SMC_CAPS_DMA)) { return (sdmmc_mem_write_block_subr(sf, NULL, blkno, data, datalen)); } /* pretend we're bus_dmamap_load */ bzero(&dmamap, sizeof(dmamap)); pmap_extract(pmap_kernel(), (vaddr_t)data, &phys_addr); dmamap.dm_mapsize = datalen; dmamap.dm_nsegs = 1; dmamap.dm_segs[0].ds_addr = phys_addr; dmamap.dm_segs[0].ds_len = datalen; return (sdmmc_mem_write_block_subr(sf, &dmamap, blkno, data, datalen)); } #endif