/* $OpenBSD: softraid.c,v 1.421 2022/01/09 05:42:37 jsg Exp $ */ /* * Copyright (c) 2007, 2008, 2009 Marco Peereboom * Copyright (c) 2008 Chris Kuethe * Copyright (c) 2009 Joel Sing * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HIBERNATE #include #include #include #endif /* HIBERNATE */ /* #define SR_FANCY_STATS */ #ifdef SR_DEBUG #define SR_FANCY_STATS uint32_t sr_debug = 0 /* | SR_D_CMD */ /* | SR_D_MISC */ /* | SR_D_INTR */ /* | SR_D_IOCTL */ /* | SR_D_CCB */ /* | SR_D_WU */ /* | SR_D_META */ /* | SR_D_DIS */ /* | SR_D_STATE */ /* | SR_D_REBUILD */ ; #endif struct sr_softc *softraid0; struct sr_uuid sr_bootuuid; u_int8_t sr_bootkey[SR_CRYPTO_MAXKEYBYTES]; int sr_match(struct device *, void *, void *); void sr_attach(struct device *, struct device *, void *); int sr_detach(struct device *, int); void sr_map_root(void); struct cfattach softraid_ca = { sizeof(struct sr_softc), sr_match, sr_attach, sr_detach, }; struct cfdriver softraid_cd = { NULL, "softraid", DV_DULL }; /* scsi & discipline */ void sr_scsi_cmd(struct scsi_xfer *); int sr_scsi_probe(struct scsi_link *); int sr_scsi_ioctl(struct scsi_link *, u_long, caddr_t, int); int sr_bio_ioctl(struct device *, u_long, caddr_t); int sr_bio_handler(struct sr_softc *, struct sr_discipline *, u_long, struct bio *); int sr_ioctl_inq(struct sr_softc *, struct bioc_inq *); int sr_ioctl_vol(struct sr_softc *, struct bioc_vol *); int sr_ioctl_disk(struct sr_softc *, struct bioc_disk *); int sr_ioctl_setstate(struct sr_softc *, struct bioc_setstate *); int sr_ioctl_createraid(struct sr_softc *, struct bioc_createraid *, int, void *); int sr_ioctl_deleteraid(struct sr_softc *, struct sr_discipline *, struct bioc_deleteraid *); int sr_ioctl_discipline(struct sr_softc *, struct sr_discipline *, struct bioc_discipline *); int sr_ioctl_installboot(struct sr_softc *, struct sr_discipline *, struct bioc_installboot *); void sr_chunks_unwind(struct sr_softc *, struct sr_chunk_head *); void sr_discipline_free(struct sr_discipline *); void sr_discipline_shutdown(struct sr_discipline *, int, int); int sr_discipline_init(struct sr_discipline *, int); int sr_alloc_resources(struct sr_discipline *); void sr_free_resources(struct sr_discipline *); void sr_set_chunk_state(struct sr_discipline *, int, int); void sr_set_vol_state(struct sr_discipline *); /* utility functions */ void sr_shutdown(int); void sr_uuid_generate(struct sr_uuid *); char *sr_uuid_format(struct sr_uuid *); void sr_uuid_print(struct sr_uuid *, int); void sr_checksum_print(u_int8_t *); int sr_boot_assembly(struct sr_softc *); int sr_already_assembled(struct sr_discipline *); int sr_hotspare(struct sr_softc *, dev_t); void sr_hotspare_rebuild(struct sr_discipline *); int sr_rebuild_init(struct sr_discipline *, dev_t, int); void sr_rebuild_start(void *); void sr_rebuild_thread(void *); void sr_rebuild(struct sr_discipline *); void sr_roam_chunks(struct sr_discipline *); int sr_chunk_in_use(struct sr_softc *, dev_t); int sr_rw(struct sr_softc *, dev_t, char *, size_t, daddr_t, long); void sr_wu_done_callback(void *); /* don't include these on RAMDISK */ #ifndef SMALL_KERNEL void sr_sensors_refresh(void *); int sr_sensors_create(struct sr_discipline *); void sr_sensors_delete(struct sr_discipline *); #endif /* metadata */ int sr_meta_probe(struct sr_discipline *, dev_t *, int); int sr_meta_attach(struct sr_discipline *, int, int); int sr_meta_rw(struct sr_discipline *, dev_t, void *, long); int sr_meta_clear(struct sr_discipline *); void sr_meta_init(struct sr_discipline *, int, int); void sr_meta_init_complete(struct sr_discipline *); void sr_meta_opt_handler(struct sr_discipline *, struct sr_meta_opt_hdr *); /* hotplug magic */ void sr_disk_attach(struct disk *, int); struct sr_hotplug_list { void (*sh_hotplug)(struct sr_discipline *, struct disk *, int); struct sr_discipline *sh_sd; SLIST_ENTRY(sr_hotplug_list) shl_link; }; SLIST_HEAD(sr_hotplug_list_head, sr_hotplug_list); struct sr_hotplug_list_head sr_hotplug_callbacks; extern void (*softraid_disk_attach)(struct disk *, int); /* scsi glue */ struct scsi_adapter sr_switch = { sr_scsi_cmd, NULL, sr_scsi_probe, NULL, sr_scsi_ioctl }; /* native metadata format */ int sr_meta_native_bootprobe(struct sr_softc *, dev_t, struct sr_boot_chunk_head *); #define SR_META_NOTCLAIMED (0) #define SR_META_CLAIMED (1) int sr_meta_native_probe(struct sr_softc *, struct sr_chunk *); int sr_meta_native_attach(struct sr_discipline *, int); int sr_meta_native_write(struct sr_discipline *, dev_t, struct sr_metadata *,void *); #ifdef SR_DEBUG void sr_meta_print(struct sr_metadata *); #else #define sr_meta_print(m) #endif /* the metadata driver should remain stateless */ struct sr_meta_driver { daddr_t smd_offset; /* metadata location */ u_int32_t smd_size; /* size of metadata */ int (*smd_probe)(struct sr_softc *, struct sr_chunk *); int (*smd_attach)(struct sr_discipline *, int); int (*smd_detach)(struct sr_discipline *); int (*smd_read)(struct sr_discipline *, dev_t, struct sr_metadata *, void *); int (*smd_write)(struct sr_discipline *, dev_t, struct sr_metadata *, void *); int (*smd_validate)(struct sr_discipline *, struct sr_metadata *, void *); } smd[] = { { SR_META_OFFSET, SR_META_SIZE * DEV_BSIZE, sr_meta_native_probe, sr_meta_native_attach, NULL, sr_meta_native_read, sr_meta_native_write, NULL }, { 0, 0, NULL, NULL, NULL, NULL } }; int sr_meta_attach(struct sr_discipline *sd, int chunk_no, int force) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl; struct sr_chunk *ch_entry, *chunk1, *chunk2; int rv = 1, i = 0; DNPRINTF(SR_D_META, "%s: sr_meta_attach(%d)\n", DEVNAME(sc), chunk_no); /* in memory copy of metadata */ sd->sd_meta = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_ZERO | M_NOWAIT); if (!sd->sd_meta) { sr_error(sc, "could not allocate memory for metadata"); goto bad; } if (sd->sd_meta_type != SR_META_F_NATIVE) { /* in memory copy of foreign metadata */ sd->sd_meta_foreign = malloc(smd[sd->sd_meta_type].smd_size, M_DEVBUF, M_ZERO | M_NOWAIT); if (!sd->sd_meta_foreign) { /* unwind frees sd_meta */ sr_error(sc, "could not allocate memory for foreign " "metadata"); goto bad; } } /* we have a valid list now create an array index */ cl = &sd->sd_vol.sv_chunk_list; sd->sd_vol.sv_chunks = mallocarray(chunk_no, sizeof(struct sr_chunk *), M_DEVBUF, M_WAITOK | M_ZERO); /* fill out chunk array */ i = 0; SLIST_FOREACH(ch_entry, cl, src_link) sd->sd_vol.sv_chunks[i++] = ch_entry; /* attach metadata */ if (smd[sd->sd_meta_type].smd_attach(sd, force)) goto bad; /* Force chunks into correct order now that metadata is attached. */ SLIST_INIT(cl); for (i = 0; i < chunk_no; i++) { ch_entry = sd->sd_vol.sv_chunks[i]; chunk2 = NULL; SLIST_FOREACH(chunk1, cl, src_link) { if (chunk1->src_meta.scmi.scm_chunk_id > ch_entry->src_meta.scmi.scm_chunk_id) break; chunk2 = chunk1; } if (chunk2 == NULL) SLIST_INSERT_HEAD(cl, ch_entry, src_link); else SLIST_INSERT_AFTER(chunk2, ch_entry, src_link); } i = 0; SLIST_FOREACH(ch_entry, cl, src_link) sd->sd_vol.sv_chunks[i++] = ch_entry; rv = 0; bad: return (rv); } int sr_meta_probe(struct sr_discipline *sd, dev_t *dt, int no_chunk) { struct sr_softc *sc = sd->sd_sc; struct vnode *vn; struct sr_chunk *ch_entry, *ch_prev = NULL; struct sr_chunk_head *cl; char devname[32]; int i, d, type, found, prevf, error; dev_t dev; DNPRINTF(SR_D_META, "%s: sr_meta_probe(%d)\n", DEVNAME(sc), no_chunk); if (no_chunk == 0) goto unwind; cl = &sd->sd_vol.sv_chunk_list; for (d = 0, prevf = SR_META_F_INVALID; d < no_chunk; d++) { ch_entry = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); /* keep disks in user supplied order */ if (ch_prev) SLIST_INSERT_AFTER(ch_prev, ch_entry, src_link); else SLIST_INSERT_HEAD(cl, ch_entry, src_link); ch_prev = ch_entry; dev = dt[d]; ch_entry->src_dev_mm = dev; if (dev == NODEV) { ch_entry->src_meta.scm_status = BIOC_SDOFFLINE; continue; } else { sr_meta_getdevname(sc, dev, devname, sizeof(devname)); if (bdevvp(dev, &vn)) { sr_error(sc, "sr_meta_probe: cannot allocate " "vnode"); goto unwind; } /* * XXX leaving dev open for now; move this to attach * and figure out the open/close dance for unwind. */ error = VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc); if (error) { DNPRINTF(SR_D_META,"%s: sr_meta_probe can't " "open %s\n", DEVNAME(sc), devname); vput(vn); goto unwind; } strlcpy(ch_entry->src_devname, devname, sizeof(ch_entry->src_devname)); ch_entry->src_vn = vn; } /* determine if this is a device we understand */ for (i = 0, found = SR_META_F_INVALID; smd[i].smd_probe; i++) { type = smd[i].smd_probe(sc, ch_entry); if (type == SR_META_F_INVALID) continue; else { found = type; break; } } if (found == SR_META_F_INVALID) goto unwind; if (prevf == SR_META_F_INVALID) prevf = found; if (prevf != found) { DNPRINTF(SR_D_META, "%s: prevf != found\n", DEVNAME(sc)); goto unwind; } } return (prevf); unwind: return (SR_META_F_INVALID); } void sr_meta_getdevname(struct sr_softc *sc, dev_t dev, char *buf, int size) { int maj, unit, part; char *name; DNPRINTF(SR_D_META, "%s: sr_meta_getdevname(%p, %d)\n", DEVNAME(sc), buf, size); if (!buf) return; maj = major(dev); part = DISKPART(dev); unit = DISKUNIT(dev); name = findblkname(maj); if (name == NULL) return; snprintf(buf, size, "%s%d%c", name, unit, part + 'a'); } int sr_rw(struct sr_softc *sc, dev_t dev, char *buf, size_t size, daddr_t blkno, long flags) { struct vnode *vp; struct buf b; size_t bufsize, dma_bufsize; int rv = 1; char *dma_buf; DNPRINTF(SR_D_MISC, "%s: sr_rw(0x%x, %p, %zu, %lld 0x%lx)\n", DEVNAME(sc), dev, buf, size, (long long)blkno, flags); dma_bufsize = (size > MAXPHYS) ? MAXPHYS : size; dma_buf = dma_alloc(dma_bufsize, PR_WAITOK); if (bdevvp(dev, &vp)) { printf("%s: sr_rw: failed to allocate vnode\n", DEVNAME(sc)); goto done; } while (size > 0) { DNPRINTF(SR_D_MISC, "%s: dma_buf %p, size %zu, blkno %lld)\n", DEVNAME(sc), dma_buf, size, (long long)blkno); bufsize = (size > MAXPHYS) ? MAXPHYS : size; if (flags == B_WRITE) memcpy(dma_buf, buf, bufsize); bzero(&b, sizeof(b)); b.b_flags = flags | B_PHYS; b.b_proc = curproc; b.b_dev = dev; b.b_iodone = NULL; b.b_error = 0; b.b_blkno = blkno; b.b_data = dma_buf; b.b_bcount = bufsize; b.b_bufsize = bufsize; b.b_resid = bufsize; b.b_vp = vp; if ((b.b_flags & B_READ) == 0) vp->v_numoutput++; LIST_INIT(&b.b_dep); VOP_STRATEGY(vp, &b); biowait(&b); if (b.b_flags & B_ERROR) { printf("%s: I/O error %d on dev 0x%x at block %llu\n", DEVNAME(sc), b.b_error, dev, b.b_blkno); goto done; } if (flags == B_READ) memcpy(buf, dma_buf, bufsize); size -= bufsize; buf += bufsize; blkno += howmany(bufsize, DEV_BSIZE); } rv = 0; done: if (vp) vput(vp); dma_free(dma_buf, dma_bufsize); return (rv); } int sr_meta_rw(struct sr_discipline *sd, dev_t dev, void *md, long flags) { int rv = 1; DNPRINTF(SR_D_META, "%s: sr_meta_rw(0x%x, %p, 0x%lx)\n", DEVNAME(sd->sd_sc), dev, md, flags); if (md == NULL) { printf("%s: sr_meta_rw: invalid metadata pointer\n", DEVNAME(sd->sd_sc)); goto done; } rv = sr_rw(sd->sd_sc, dev, md, SR_META_SIZE * DEV_BSIZE, SR_META_OFFSET, flags); done: return (rv); } int sr_meta_clear(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list; struct sr_chunk *ch_entry; void *m; int rv = 1; DNPRINTF(SR_D_META, "%s: sr_meta_clear\n", DEVNAME(sc)); if (sd->sd_meta_type != SR_META_F_NATIVE) { sr_error(sc, "cannot clear foreign metadata"); goto done; } m = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_WAITOK | M_ZERO); SLIST_FOREACH(ch_entry, cl, src_link) { if (sr_meta_native_write(sd, ch_entry->src_dev_mm, m, NULL)) { /* XXX mark disk offline */ DNPRINTF(SR_D_META, "%s: sr_meta_clear failed to " "clear %s\n", DEVNAME(sc), ch_entry->src_devname); rv++; continue; } bzero(&ch_entry->src_meta, sizeof(ch_entry->src_meta)); } bzero(sd->sd_meta, SR_META_SIZE * DEV_BSIZE); free(m, M_DEVBUF, SR_META_SIZE * DEV_BSIZE); rv = 0; done: return (rv); } void sr_meta_init(struct sr_discipline *sd, int level, int no_chunk) { struct sr_softc *sc = sd->sd_sc; struct sr_metadata *sm = sd->sd_meta; struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list; struct sr_meta_chunk *scm; struct sr_chunk *chunk; int cid = 0; u_int64_t max_chunk_sz = 0, min_chunk_sz = 0; u_int32_t secsize = DEV_BSIZE; DNPRINTF(SR_D_META, "%s: sr_meta_init\n", DEVNAME(sc)); if (!sm) return; /* Initialise volume metadata. */ sm->ssdi.ssd_magic = SR_MAGIC; sm->ssdi.ssd_version = SR_META_VERSION; sm->ssdi.ssd_vol_flags = sd->sd_meta_flags; sm->ssdi.ssd_volid = 0; sm->ssdi.ssd_chunk_no = no_chunk; sm->ssdi.ssd_level = level; sm->ssd_data_blkno = SR_DATA_OFFSET; sm->ssd_ondisk = 0; sr_uuid_generate(&sm->ssdi.ssd_uuid); /* Initialise chunk metadata and get min/max chunk sizes & secsize. */ SLIST_FOREACH(chunk, cl, src_link) { scm = &chunk->src_meta; scm->scmi.scm_size = chunk->src_size; scm->scmi.scm_chunk_id = cid++; scm->scm_status = BIOC_SDONLINE; scm->scmi.scm_volid = 0; strlcpy(scm->scmi.scm_devname, chunk->src_devname, sizeof(scm->scmi.scm_devname)); memcpy(&scm->scmi.scm_uuid, &sm->ssdi.ssd_uuid, sizeof(scm->scmi.scm_uuid)); sr_checksum(sc, scm, &scm->scm_checksum, sizeof(scm->scm_checksum)); if (min_chunk_sz == 0) min_chunk_sz = scm->scmi.scm_size; if (chunk->src_secsize > secsize) secsize = chunk->src_secsize; min_chunk_sz = MIN(min_chunk_sz, scm->scmi.scm_size); max_chunk_sz = MAX(max_chunk_sz, scm->scmi.scm_size); } sm->ssdi.ssd_secsize = secsize; /* Equalize chunk sizes. */ SLIST_FOREACH(chunk, cl, src_link) chunk->src_meta.scmi.scm_coerced_size = min_chunk_sz; sd->sd_vol.sv_chunk_minsz = min_chunk_sz; sd->sd_vol.sv_chunk_maxsz = max_chunk_sz; } void sr_meta_init_complete(struct sr_discipline *sd) { #ifdef SR_DEBUG struct sr_softc *sc = sd->sd_sc; #endif struct sr_metadata *sm = sd->sd_meta; DNPRINTF(SR_D_META, "%s: sr_meta_complete\n", DEVNAME(sc)); /* Complete initialisation of volume metadata. */ strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor)); snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product), "SR %s", sd->sd_name); snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision), "%03d", sm->ssdi.ssd_version); } void sr_meta_opt_handler(struct sr_discipline *sd, struct sr_meta_opt_hdr *om) { if (om->som_type != SR_OPT_BOOT) panic("unknown optional metadata type"); } void sr_meta_save_callback(void *xsd) { struct sr_discipline *sd = xsd; int s; s = splbio(); if (sr_meta_save(sd, SR_META_DIRTY)) printf("%s: save metadata failed\n", DEVNAME(sd->sd_sc)); sd->sd_must_flush = 0; splx(s); } int sr_meta_save(struct sr_discipline *sd, u_int32_t flags) { struct sr_softc *sc = sd->sd_sc; struct sr_metadata *sm = sd->sd_meta, *m; struct sr_meta_driver *s; struct sr_chunk *src; struct sr_meta_chunk *cm; struct sr_workunit wu; struct sr_meta_opt_hdr *omh; struct sr_meta_opt_item *omi; int i; DNPRINTF(SR_D_META, "%s: sr_meta_save %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); if (!sm) { printf("%s: no in memory copy of metadata\n", DEVNAME(sc)); goto bad; } /* meta scratchpad */ s = &smd[sd->sd_meta_type]; m = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_ZERO | M_NOWAIT); if (!m) { printf("%s: could not allocate metadata scratch area\n", DEVNAME(sc)); goto bad; } /* from here on out metadata is updated */ restart: sm->ssd_ondisk++; sm->ssd_meta_flags = flags; memcpy(m, sm, sizeof(*m)); /* Chunk metadata. */ cm = (struct sr_meta_chunk *)(m + 1); for (i = 0; i < sm->ssdi.ssd_chunk_no; i++) { src = sd->sd_vol.sv_chunks[i]; memcpy(cm, &src->src_meta, sizeof(*cm)); cm++; } /* Optional metadata. */ omh = (struct sr_meta_opt_hdr *)(cm); SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link) { DNPRINTF(SR_D_META, "%s: saving optional metadata type %u with " "length %u\n", DEVNAME(sc), omi->omi_som->som_type, omi->omi_som->som_length); bzero(&omi->omi_som->som_checksum, MD5_DIGEST_LENGTH); sr_checksum(sc, omi->omi_som, &omi->omi_som->som_checksum, omi->omi_som->som_length); memcpy(omh, omi->omi_som, omi->omi_som->som_length); omh = (struct sr_meta_opt_hdr *)((u_int8_t *)omh + omi->omi_som->som_length); } for (i = 0; i < sm->ssdi.ssd_chunk_no; i++) { src = sd->sd_vol.sv_chunks[i]; /* skip disks that are offline */ if (src->src_meta.scm_status == BIOC_SDOFFLINE) continue; /* calculate metadata checksum for correct chunk */ m->ssdi.ssd_chunk_id = i; sr_checksum(sc, m, &m->ssd_checksum, sizeof(struct sr_meta_invariant)); #ifdef SR_DEBUG DNPRINTF(SR_D_META, "%s: sr_meta_save %s: volid: %d " "chunkid: %d checksum: ", DEVNAME(sc), src->src_meta.scmi.scm_devname, m->ssdi.ssd_volid, m->ssdi.ssd_chunk_id); if (sr_debug & SR_D_META) sr_checksum_print((u_int8_t *)&m->ssd_checksum); DNPRINTF(SR_D_META, "\n"); sr_meta_print(m); #endif /* translate and write to disk */ if (s->smd_write(sd, src->src_dev_mm, m, NULL /* XXX */)) { printf("%s: could not write metadata to %s\n", DEVNAME(sc), src->src_devname); /* restart the meta write */ src->src_meta.scm_status = BIOC_SDOFFLINE; /* XXX recalculate volume status */ goto restart; } } /* not all disciplines have sync */ if (sd->sd_scsi_sync) { bzero(&wu, sizeof(wu)); wu.swu_flags |= SR_WUF_FAKE; wu.swu_dis = sd; sd->sd_scsi_sync(&wu); } free(m, M_DEVBUF, SR_META_SIZE * DEV_BSIZE); return (0); bad: return (1); } int sr_meta_read(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list; struct sr_metadata *sm; struct sr_chunk *ch_entry; struct sr_meta_chunk *cp; struct sr_meta_driver *s; void *fm = NULL; int no_disk = 0, got_meta = 0; DNPRINTF(SR_D_META, "%s: sr_meta_read\n", DEVNAME(sc)); sm = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_WAITOK | M_ZERO); s = &smd[sd->sd_meta_type]; if (sd->sd_meta_type != SR_META_F_NATIVE) fm = malloc(s->smd_size, M_DEVBUF, M_WAITOK | M_ZERO); cp = (struct sr_meta_chunk *)(sm + 1); SLIST_FOREACH(ch_entry, cl, src_link) { /* skip disks that are offline */ if (ch_entry->src_meta.scm_status == BIOC_SDOFFLINE) { DNPRINTF(SR_D_META, "%s: %s chunk marked offline, spoofing status\n", DEVNAME(sc), ch_entry->src_devname); cp++; /* adjust chunk pointer to match failure */ continue; } else if (s->smd_read(sd, ch_entry->src_dev_mm, sm, fm)) { /* read and translate */ /* XXX mark chunk offline, elsewhere!! */ ch_entry->src_meta.scm_status = BIOC_SDOFFLINE; cp++; /* adjust chunk pointer to match failure */ DNPRINTF(SR_D_META, "%s: sr_meta_read failed\n", DEVNAME(sc)); continue; } if (sm->ssdi.ssd_magic != SR_MAGIC) { DNPRINTF(SR_D_META, "%s: sr_meta_read !SR_MAGIC\n", DEVNAME(sc)); continue; } /* validate metadata */ if (sr_meta_validate(sd, ch_entry->src_dev_mm, sm, fm)) { DNPRINTF(SR_D_META, "%s: invalid metadata\n", DEVNAME(sc)); no_disk = -1; goto done; } /* assume first chunk contains metadata */ if (got_meta == 0) { sr_meta_opt_load(sc, sm, &sd->sd_meta_opt); memcpy(sd->sd_meta, sm, sizeof(*sd->sd_meta)); got_meta = 1; } memcpy(&ch_entry->src_meta, cp, sizeof(ch_entry->src_meta)); no_disk++; cp++; } free(sm, M_DEVBUF, SR_META_SIZE * DEV_BSIZE); free(fm, M_DEVBUF, s->smd_size); done: DNPRINTF(SR_D_META, "%s: sr_meta_read found %d parts\n", DEVNAME(sc), no_disk); return (no_disk); } void sr_meta_opt_load(struct sr_softc *sc, struct sr_metadata *sm, struct sr_meta_opt_head *som) { struct sr_meta_opt_hdr *omh; struct sr_meta_opt_item *omi; u_int8_t checksum[MD5_DIGEST_LENGTH]; int i; /* Process optional metadata. */ omh = (struct sr_meta_opt_hdr *)((u_int8_t *)(sm + 1) + sizeof(struct sr_meta_chunk) * sm->ssdi.ssd_chunk_no); for (i = 0; i < sm->ssdi.ssd_opt_no; i++) { omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF, M_WAITOK | M_ZERO); SLIST_INSERT_HEAD(som, omi, omi_link); if (omh->som_length == 0) { /* Load old fixed length optional metadata. */ DNPRINTF(SR_D_META, "%s: old optional metadata of type " "%u\n", DEVNAME(sc), omh->som_type); /* Validate checksum. */ sr_checksum(sc, (void *)omh, &checksum, SR_OLD_META_OPT_SIZE - MD5_DIGEST_LENGTH); if (bcmp(&checksum, (void *)omh + SR_OLD_META_OPT_MD5, sizeof(checksum))) panic("%s: invalid optional metadata checksum", DEVNAME(sc)); /* Determine correct length. */ switch (omh->som_type) { case SR_OPT_CRYPTO: omh->som_length = sizeof(struct sr_meta_crypto); break; case SR_OPT_BOOT: omh->som_length = sizeof(struct sr_meta_boot); break; case SR_OPT_KEYDISK: omh->som_length = sizeof(struct sr_meta_keydisk); break; default: panic("unknown old optional metadata type %u", omh->som_type); } omi->omi_som = malloc(omh->som_length, M_DEVBUF, M_WAITOK | M_ZERO); memcpy((u_int8_t *)omi->omi_som + sizeof(*omi->omi_som), (u_int8_t *)omh + SR_OLD_META_OPT_OFFSET, omh->som_length - sizeof(*omi->omi_som)); omi->omi_som->som_type = omh->som_type; omi->omi_som->som_length = omh->som_length; omh = (struct sr_meta_opt_hdr *)((void *)omh + SR_OLD_META_OPT_SIZE); } else { /* Load variable length optional metadata. */ DNPRINTF(SR_D_META, "%s: optional metadata of type %u, " "length %u\n", DEVNAME(sc), omh->som_type, omh->som_length); omi->omi_som = malloc(omh->som_length, M_DEVBUF, M_WAITOK | M_ZERO); memcpy(omi->omi_som, omh, omh->som_length); /* Validate checksum. */ memcpy(&checksum, &omi->omi_som->som_checksum, MD5_DIGEST_LENGTH); bzero(&omi->omi_som->som_checksum, MD5_DIGEST_LENGTH); sr_checksum(sc, omi->omi_som, &omi->omi_som->som_checksum, omh->som_length); if (bcmp(&checksum, &omi->omi_som->som_checksum, sizeof(checksum))) panic("%s: invalid optional metadata checksum", DEVNAME(sc)); omh = (struct sr_meta_opt_hdr *)((void *)omh + omh->som_length); } } } int sr_meta_validate(struct sr_discipline *sd, dev_t dev, struct sr_metadata *sm, void *fm) { struct sr_softc *sc = sd->sd_sc; struct sr_meta_driver *s; #ifdef SR_DEBUG struct sr_meta_chunk *mc; #endif u_int8_t checksum[MD5_DIGEST_LENGTH]; char devname[32]; int rv = 1; DNPRINTF(SR_D_META, "%s: sr_meta_validate(%p)\n", DEVNAME(sc), sm); sr_meta_getdevname(sc, dev, devname, sizeof(devname)); s = &smd[sd->sd_meta_type]; if (sd->sd_meta_type != SR_META_F_NATIVE) if (s->smd_validate(sd, sm, fm)) { sr_error(sc, "invalid foreign metadata"); goto done; } /* * at this point all foreign metadata has been translated to the native * format and will be treated just like the native format */ if (sm->ssdi.ssd_magic != SR_MAGIC) { sr_error(sc, "not valid softraid metadata"); goto done; } /* Verify metadata checksum. */ sr_checksum(sc, sm, &checksum, sizeof(struct sr_meta_invariant)); if (bcmp(&checksum, &sm->ssd_checksum, sizeof(checksum))) { sr_error(sc, "invalid metadata checksum"); goto done; } /* Handle changes between versions. */ if (sm->ssdi.ssd_version == 3) { /* * Version 3 - update metadata version and fix up data blkno * value since this did not exist in version 3. */ if (sm->ssd_data_blkno == 0) sm->ssd_data_blkno = SR_META_V3_DATA_OFFSET; sm->ssdi.ssd_secsize = DEV_BSIZE; } else if (sm->ssdi.ssd_version == 4) { /* * Version 4 - original metadata format did not store * data blkno so fix this up if necessary. */ if (sm->ssd_data_blkno == 0) sm->ssd_data_blkno = SR_DATA_OFFSET; sm->ssdi.ssd_secsize = DEV_BSIZE; } else if (sm->ssdi.ssd_version == 5) { /* * Version 5 - variable length optional metadata. Migration * from earlier fixed length optional metadata is handled * in sr_meta_read(). */ sm->ssdi.ssd_secsize = DEV_BSIZE; } else if (sm->ssdi.ssd_version == SR_META_VERSION) { /* * Version 6 - store & report a sector size. */ } else { sr_error(sc, "cannot read metadata version %u on %s, " "expected version %u or earlier", sm->ssdi.ssd_version, devname, SR_META_VERSION); goto done; } /* Update version number and revision string. */ sm->ssdi.ssd_version = SR_META_VERSION; snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision), "%03d", SR_META_VERSION); #ifdef SR_DEBUG /* warn if disk changed order */ mc = (struct sr_meta_chunk *)(sm + 1); if (strncmp(mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname, devname, sizeof(mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname))) DNPRINTF(SR_D_META, "%s: roaming device %s -> %s\n", DEVNAME(sc), mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname, devname); #endif /* we have meta data on disk */ DNPRINTF(SR_D_META, "%s: sr_meta_validate valid metadata %s\n", DEVNAME(sc), devname); rv = 0; done: return (rv); } int sr_meta_native_bootprobe(struct sr_softc *sc, dev_t devno, struct sr_boot_chunk_head *bch) { struct vnode *vn; struct disklabel label; struct sr_metadata *md = NULL; struct sr_discipline *fake_sd = NULL; struct sr_boot_chunk *bc; char devname[32]; dev_t chrdev, rawdev; int error, i; int rv = SR_META_NOTCLAIMED; DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe\n", DEVNAME(sc)); /* * Use character raw device to avoid SCSI complaints about missing * media on removable media devices. */ chrdev = blktochr(devno); rawdev = MAKEDISKDEV(major(chrdev), DISKUNIT(devno), RAW_PART); if (cdevvp(rawdev, &vn)) { sr_error(sc, "sr_meta_native_bootprobe: cannot allocate vnode"); goto done; } /* open device */ error = VOP_OPEN(vn, FREAD, NOCRED, curproc); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe open " "failed\n", DEVNAME(sc)); vput(vn); goto done; } /* get disklabel */ error = VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, curproc); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe ioctl " "failed\n", DEVNAME(sc)); VOP_CLOSE(vn, FREAD, NOCRED, curproc); vput(vn); goto done; } /* we are done, close device */ error = VOP_CLOSE(vn, FREAD, NOCRED, curproc); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe close " "failed\n", DEVNAME(sc)); vput(vn); goto done; } vput(vn); md = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_ZERO | M_NOWAIT); if (md == NULL) { sr_error(sc, "not enough memory for metadata buffer"); goto done; } /* create fake sd to use utility functions */ fake_sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_ZERO | M_NOWAIT); if (fake_sd == NULL) { sr_error(sc, "not enough memory for fake discipline"); goto done; } fake_sd->sd_sc = sc; fake_sd->sd_meta_type = SR_META_F_NATIVE; for (i = 0; i < MAXPARTITIONS; i++) { if (label.d_partitions[i].p_fstype != FS_RAID) continue; /* open partition */ rawdev = MAKEDISKDEV(major(devno), DISKUNIT(devno), i); if (bdevvp(rawdev, &vn)) { sr_error(sc, "sr_meta_native_bootprobe: cannot " "allocate vnode for partition"); goto done; } error = VOP_OPEN(vn, FREAD, NOCRED, curproc); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe " "open failed, partition %d\n", DEVNAME(sc), i); vput(vn); continue; } if (sr_meta_native_read(fake_sd, rawdev, md, NULL)) { sr_error(sc, "native bootprobe could not read native " "metadata"); VOP_CLOSE(vn, FREAD, NOCRED, curproc); vput(vn); continue; } /* are we a softraid partition? */ if (md->ssdi.ssd_magic != SR_MAGIC) { VOP_CLOSE(vn, FREAD, NOCRED, curproc); vput(vn); continue; } sr_meta_getdevname(sc, rawdev, devname, sizeof(devname)); if (sr_meta_validate(fake_sd, rawdev, md, NULL) == 0) { /* XXX fix M_WAITOK, this is boot time */ bc = malloc(sizeof(struct sr_boot_chunk), M_DEVBUF, M_WAITOK | M_ZERO); bc->sbc_metadata = malloc(sizeof(struct sr_metadata), M_DEVBUF, M_WAITOK | M_ZERO); memcpy(bc->sbc_metadata, md, sizeof(struct sr_metadata)); bc->sbc_mm = rawdev; SLIST_INSERT_HEAD(bch, bc, sbc_link); rv = SR_META_CLAIMED; } /* we are done, close partition */ VOP_CLOSE(vn, FREAD, NOCRED, curproc); vput(vn); } done: free(fake_sd, M_DEVBUF, sizeof(struct sr_discipline)); free(md, M_DEVBUF, SR_META_SIZE * DEV_BSIZE); return (rv); } int sr_boot_assembly(struct sr_softc *sc) { struct sr_boot_volume_head bvh; struct sr_boot_chunk_head bch, kdh; struct sr_boot_volume *bv, *bv1, *bv2; struct sr_boot_chunk *bc, *bcnext, *bc1, *bc2; struct sr_disk_head sdklist; struct sr_disk *sdk; struct disk *dk; struct bioc_createraid bcr; struct sr_meta_chunk *hm; struct sr_chunk_head *cl; struct sr_chunk *hotspare, *chunk, *last; u_int64_t *ondisk = NULL; dev_t *devs = NULL; void *data; char devname[32]; int rv = 0, i; DNPRINTF(SR_D_META, "%s: sr_boot_assembly\n", DEVNAME(sc)); SLIST_INIT(&sdklist); SLIST_INIT(&bvh); SLIST_INIT(&bch); SLIST_INIT(&kdh); dk = TAILQ_FIRST(&disklist); while (dk != NULL) { /* See if this disk has been checked. */ SLIST_FOREACH(sdk, &sdklist, sdk_link) if (sdk->sdk_devno == dk->dk_devno) break; if (sdk != NULL || dk->dk_devno == NODEV) { dk = TAILQ_NEXT(dk, dk_link); continue; } /* Add this disk to the list that we've checked. */ sdk = malloc(sizeof(struct sr_disk), M_DEVBUF, M_NOWAIT | M_ZERO); if (sdk == NULL) goto unwind; sdk->sdk_devno = dk->dk_devno; SLIST_INSERT_HEAD(&sdklist, sdk, sdk_link); /* Only check sd(4) and wd(4) devices. */ if (strncmp(dk->dk_name, "sd", 2) && strncmp(dk->dk_name, "wd", 2)) { dk = TAILQ_NEXT(dk, dk_link); continue; } /* native softraid uses partitions */ rw_enter_write(&sc->sc_lock); bio_status_init(&sc->sc_status, &sc->sc_dev); sr_meta_native_bootprobe(sc, dk->dk_devno, &bch); rw_exit_write(&sc->sc_lock); /* probe non-native disks if native failed. */ /* Restart scan since we may have slept. */ dk = TAILQ_FIRST(&disklist); } /* * Create a list of volumes and associate chunks with each volume. */ for (bc = SLIST_FIRST(&bch); bc != NULL; bc = bcnext) { bcnext = SLIST_NEXT(bc, sbc_link); SLIST_REMOVE(&bch, bc, sr_boot_chunk, sbc_link); bc->sbc_chunk_id = bc->sbc_metadata->ssdi.ssd_chunk_id; /* Handle key disks separately. */ if (bc->sbc_metadata->ssdi.ssd_level == SR_KEYDISK_LEVEL) { SLIST_INSERT_HEAD(&kdh, bc, sbc_link); continue; } SLIST_FOREACH(bv, &bvh, sbv_link) { if (bcmp(&bc->sbc_metadata->ssdi.ssd_uuid, &bv->sbv_uuid, sizeof(bc->sbc_metadata->ssdi.ssd_uuid)) == 0) break; } if (bv == NULL) { bv = malloc(sizeof(struct sr_boot_volume), M_DEVBUF, M_NOWAIT | M_ZERO); if (bv == NULL) { printf("%s: failed to allocate boot volume\n", DEVNAME(sc)); goto unwind; } bv->sbv_level = bc->sbc_metadata->ssdi.ssd_level; bv->sbv_volid = bc->sbc_metadata->ssdi.ssd_volid; bv->sbv_chunk_no = bc->sbc_metadata->ssdi.ssd_chunk_no; bv->sbv_flags = bc->sbc_metadata->ssdi.ssd_vol_flags; memcpy(&bv->sbv_uuid, &bc->sbc_metadata->ssdi.ssd_uuid, sizeof(bc->sbc_metadata->ssdi.ssd_uuid)); SLIST_INIT(&bv->sbv_chunks); /* Maintain volume order. */ bv2 = NULL; SLIST_FOREACH(bv1, &bvh, sbv_link) { if (bv1->sbv_volid > bv->sbv_volid) break; bv2 = bv1; } if (bv2 == NULL) { DNPRINTF(SR_D_META, "%s: insert volume %u " "at head\n", DEVNAME(sc), bv->sbv_volid); SLIST_INSERT_HEAD(&bvh, bv, sbv_link); } else { DNPRINTF(SR_D_META, "%s: insert volume %u " "after %u\n", DEVNAME(sc), bv->sbv_volid, bv2->sbv_volid); SLIST_INSERT_AFTER(bv2, bv, sbv_link); } } /* Maintain chunk order. */ bc2 = NULL; SLIST_FOREACH(bc1, &bv->sbv_chunks, sbc_link) { if (bc1->sbc_chunk_id > bc->sbc_chunk_id) break; bc2 = bc1; } if (bc2 == NULL) { DNPRINTF(SR_D_META, "%s: volume %u insert chunk %u " "at head\n", DEVNAME(sc), bv->sbv_volid, bc->sbc_chunk_id); SLIST_INSERT_HEAD(&bv->sbv_chunks, bc, sbc_link); } else { DNPRINTF(SR_D_META, "%s: volume %u insert chunk %u " "after %u\n", DEVNAME(sc), bv->sbv_volid, bc->sbc_chunk_id, bc2->sbc_chunk_id); SLIST_INSERT_AFTER(bc2, bc, sbc_link); } bv->sbv_chunks_found++; } /* Allocate memory for device and ondisk version arrays. */ devs = mallocarray(BIOC_CRMAXLEN, sizeof(dev_t), M_DEVBUF, M_NOWAIT); if (devs == NULL) { printf("%s: failed to allocate device array\n", DEVNAME(sc)); goto unwind; } ondisk = mallocarray(BIOC_CRMAXLEN, sizeof(u_int64_t), M_DEVBUF, M_NOWAIT); if (ondisk == NULL) { printf("%s: failed to allocate ondisk array\n", DEVNAME(sc)); goto unwind; } /* * Assemble hotspare "volumes". */ SLIST_FOREACH(bv, &bvh, sbv_link) { /* Check if this is a hotspare "volume". */ if (bv->sbv_level != SR_HOTSPARE_LEVEL || bv->sbv_chunk_no != 1) continue; #ifdef SR_DEBUG DNPRINTF(SR_D_META, "%s: assembling hotspare volume ", DEVNAME(sc)); if (sr_debug & SR_D_META) sr_uuid_print(&bv->sbv_uuid, 0); DNPRINTF(SR_D_META, " volid %u with %u chunks\n", bv->sbv_volid, bv->sbv_chunk_no); #endif /* Create hotspare chunk metadata. */ hotspare = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_NOWAIT | M_ZERO); if (hotspare == NULL) { printf("%s: failed to allocate hotspare\n", DEVNAME(sc)); goto unwind; } bc = SLIST_FIRST(&bv->sbv_chunks); sr_meta_getdevname(sc, bc->sbc_mm, devname, sizeof(devname)); hotspare->src_dev_mm = bc->sbc_mm; strlcpy(hotspare->src_devname, devname, sizeof(hotspare->src_devname)); hotspare->src_size = bc->sbc_metadata->ssdi.ssd_size; hm = &hotspare->src_meta; hm->scmi.scm_volid = SR_HOTSPARE_VOLID; hm->scmi.scm_chunk_id = 0; hm->scmi.scm_size = bc->sbc_metadata->ssdi.ssd_size; hm->scmi.scm_coerced_size = bc->sbc_metadata->ssdi.ssd_size; strlcpy(hm->scmi.scm_devname, devname, sizeof(hm->scmi.scm_devname)); memcpy(&hm->scmi.scm_uuid, &bc->sbc_metadata->ssdi.ssd_uuid, sizeof(struct sr_uuid)); sr_checksum(sc, hm, &hm->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); hm->scm_status = BIOC_SDHOTSPARE; /* Add chunk to hotspare list. */ rw_enter_write(&sc->sc_hs_lock); cl = &sc->sc_hotspare_list; if (SLIST_EMPTY(cl)) SLIST_INSERT_HEAD(cl, hotspare, src_link); else { SLIST_FOREACH(chunk, cl, src_link) last = chunk; SLIST_INSERT_AFTER(last, hotspare, src_link); } sc->sc_hotspare_no++; rw_exit_write(&sc->sc_hs_lock); } /* * Assemble RAID volumes. */ SLIST_FOREACH(bv, &bvh, sbv_link) { bzero(&bcr, sizeof(bcr)); data = NULL; /* Check if this is a hotspare "volume". */ if (bv->sbv_level == SR_HOTSPARE_LEVEL && bv->sbv_chunk_no == 1) continue; /* * Skip volumes that are marked as no auto assemble, unless * this was the volume which we actually booted from. */ if (bcmp(&sr_bootuuid, &bv->sbv_uuid, sizeof(sr_bootuuid)) != 0) if (bv->sbv_flags & BIOC_SCNOAUTOASSEMBLE) continue; #ifdef SR_DEBUG DNPRINTF(SR_D_META, "%s: assembling volume ", DEVNAME(sc)); if (sr_debug & SR_D_META) sr_uuid_print(&bv->sbv_uuid, 0); DNPRINTF(SR_D_META, " volid %u with %u chunks\n", bv->sbv_volid, bv->sbv_chunk_no); #endif /* * If this is a crypto volume, try to find a matching * key disk... */ bcr.bc_key_disk = NODEV; if (bv->sbv_level == 'C' || bv->sbv_level == 0x1C) { SLIST_FOREACH(bc, &kdh, sbc_link) { if (bcmp(&bc->sbc_metadata->ssdi.ssd_uuid, &bv->sbv_uuid, sizeof(bc->sbc_metadata->ssdi.ssd_uuid)) == 0) bcr.bc_key_disk = bc->sbc_mm; } } for (i = 0; i < BIOC_CRMAXLEN; i++) { devs[i] = NODEV; /* mark device as illegal */ ondisk[i] = 0; } SLIST_FOREACH(bc, &bv->sbv_chunks, sbc_link) { if (devs[bc->sbc_chunk_id] != NODEV) { bv->sbv_chunks_found--; sr_meta_getdevname(sc, bc->sbc_mm, devname, sizeof(devname)); printf("%s: found duplicate chunk %u for " "volume %u on device %s\n", DEVNAME(sc), bc->sbc_chunk_id, bv->sbv_volid, devname); } if (devs[bc->sbc_chunk_id] == NODEV || bc->sbc_metadata->ssd_ondisk > ondisk[bc->sbc_chunk_id]) { devs[bc->sbc_chunk_id] = bc->sbc_mm; ondisk[bc->sbc_chunk_id] = bc->sbc_metadata->ssd_ondisk; DNPRINTF(SR_D_META, "%s: using ondisk " "metadata version %llu for chunk %u\n", DEVNAME(sc), ondisk[bc->sbc_chunk_id], bc->sbc_chunk_id); } } if (bv->sbv_chunk_no != bv->sbv_chunks_found) { printf("%s: not all chunks were provided; " "attempting to bring volume %d online\n", DEVNAME(sc), bv->sbv_volid); } bcr.bc_level = bv->sbv_level; bcr.bc_dev_list_len = bv->sbv_chunk_no * sizeof(dev_t); bcr.bc_dev_list = devs; bcr.bc_flags = BIOC_SCDEVT | (bv->sbv_flags & BIOC_SCNOAUTOASSEMBLE); if ((bv->sbv_level == 'C' || bv->sbv_level == 0x1C) && bcmp(&sr_bootuuid, &bv->sbv_uuid, sizeof(sr_bootuuid)) == 0) data = sr_bootkey; rw_enter_write(&sc->sc_lock); bio_status_init(&sc->sc_status, &sc->sc_dev); sr_ioctl_createraid(sc, &bcr, 0, data); rw_exit_write(&sc->sc_lock); rv++; } /* done with metadata */ unwind: /* Free boot volumes and associated chunks. */ for (bv1 = SLIST_FIRST(&bvh); bv1 != NULL; bv1 = bv2) { bv2 = SLIST_NEXT(bv1, sbv_link); for (bc1 = SLIST_FIRST(&bv1->sbv_chunks); bc1 != NULL; bc1 = bc2) { bc2 = SLIST_NEXT(bc1, sbc_link); free(bc1->sbc_metadata, M_DEVBUF, sizeof(*bc1->sbc_metadata)); free(bc1, M_DEVBUF, sizeof(*bc1)); } free(bv1, M_DEVBUF, sizeof(*bv1)); } /* Free keydisks chunks. */ for (bc1 = SLIST_FIRST(&kdh); bc1 != NULL; bc1 = bc2) { bc2 = SLIST_NEXT(bc1, sbc_link); free(bc1->sbc_metadata, M_DEVBUF, sizeof(*bc1->sbc_metadata)); free(bc1, M_DEVBUF, sizeof(*bc1)); } /* Free unallocated chunks. */ for (bc1 = SLIST_FIRST(&bch); bc1 != NULL; bc1 = bc2) { bc2 = SLIST_NEXT(bc1, sbc_link); free(bc1->sbc_metadata, M_DEVBUF, sizeof(*bc1->sbc_metadata)); free(bc1, M_DEVBUF, sizeof(*bc1)); } while (!SLIST_EMPTY(&sdklist)) { sdk = SLIST_FIRST(&sdklist); SLIST_REMOVE_HEAD(&sdklist, sdk_link); free(sdk, M_DEVBUF, sizeof(*sdk)); } free(devs, M_DEVBUF, BIOC_CRMAXLEN * sizeof(dev_t)); free(ondisk, M_DEVBUF, BIOC_CRMAXLEN * sizeof(u_int64_t)); return (rv); } void sr_map_root(void) { struct sr_softc *sc = softraid0; struct sr_discipline *sd; struct sr_meta_opt_item *omi; struct sr_meta_boot *sbm; u_char duid[8]; int i; DNPRINTF(SR_D_MISC, "%s: sr_map_root\n", DEVNAME(sc)); if (sc == NULL) return; bzero(duid, sizeof(duid)); if (bcmp(rootduid, duid, sizeof(duid)) == 0) { DNPRINTF(SR_D_MISC, "%s: root duid is zero\n", DEVNAME(sc)); return; } TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link) { if (omi->omi_som->som_type != SR_OPT_BOOT) continue; sbm = (struct sr_meta_boot *)omi->omi_som; for (i = 0; i < SR_MAX_BOOT_DISKS; i++) { if (bcmp(rootduid, sbm->sbm_boot_duid[i], sizeof(rootduid)) == 0) { memcpy(rootduid, sbm->sbm_root_duid, sizeof(rootduid)); DNPRINTF(SR_D_MISC, "%s: root duid " "mapped to %s\n", DEVNAME(sc), duid_format(rootduid)); return; } } } } } int sr_meta_native_probe(struct sr_softc *sc, struct sr_chunk *ch_entry) { struct disklabel label; char *devname; int error, part; u_int64_t size; DNPRINTF(SR_D_META, "%s: sr_meta_native_probe(%s)\n", DEVNAME(sc), ch_entry->src_devname); devname = ch_entry->src_devname; part = DISKPART(ch_entry->src_dev_mm); /* get disklabel */ error = VOP_IOCTL(ch_entry->src_vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, curproc); if (error) { DNPRINTF(SR_D_META, "%s: %s can't obtain disklabel\n", DEVNAME(sc), devname); goto unwind; } memcpy(ch_entry->src_duid, label.d_uid, sizeof(ch_entry->src_duid)); /* make sure the partition is of the right type */ if (label.d_partitions[part].p_fstype != FS_RAID) { DNPRINTF(SR_D_META, "%s: %s partition not of type RAID (%d)\n", DEVNAME(sc), devname, label.d_partitions[part].p_fstype); goto unwind; } size = DL_SECTOBLK(&label, DL_GETPSIZE(&label.d_partitions[part])); if (size <= SR_DATA_OFFSET) { DNPRINTF(SR_D_META, "%s: %s partition too small\n", DEVNAME(sc), devname); goto unwind; } size -= SR_DATA_OFFSET; if (size > INT64_MAX) { DNPRINTF(SR_D_META, "%s: %s partition too large\n", DEVNAME(sc), devname); goto unwind; } ch_entry->src_size = size; ch_entry->src_secsize = label.d_secsize; DNPRINTF(SR_D_META, "%s: probe found %s size %lld\n", DEVNAME(sc), devname, (long long)size); return (SR_META_F_NATIVE); unwind: DNPRINTF(SR_D_META, "%s: invalid device: %s\n", DEVNAME(sc), devname ? devname : "nodev"); return (SR_META_F_INVALID); } int sr_meta_native_attach(struct sr_discipline *sd, int force) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list; struct sr_metadata *md = NULL; struct sr_chunk *ch_entry, *ch_next; struct sr_uuid uuid; u_int64_t version = 0; int sr, not_sr, rv = 1, d, expected = -1, old_meta = 0; DNPRINTF(SR_D_META, "%s: sr_meta_native_attach\n", DEVNAME(sc)); md = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_ZERO | M_NOWAIT); if (md == NULL) { sr_error(sc, "not enough memory for metadata buffer"); goto bad; } bzero(&uuid, sizeof uuid); sr = not_sr = d = 0; SLIST_FOREACH(ch_entry, cl, src_link) { if (ch_entry->src_dev_mm == NODEV) continue; if (sr_meta_native_read(sd, ch_entry->src_dev_mm, md, NULL)) { sr_error(sc, "could not read native metadata"); goto bad; } if (md->ssdi.ssd_magic == SR_MAGIC) { sr++; ch_entry->src_meta.scmi.scm_chunk_id = md->ssdi.ssd_chunk_id; if (d == 0) { memcpy(&uuid, &md->ssdi.ssd_uuid, sizeof uuid); expected = md->ssdi.ssd_chunk_no; version = md->ssd_ondisk; d++; continue; } else if (bcmp(&md->ssdi.ssd_uuid, &uuid, sizeof uuid)) { sr_error(sc, "not part of the same volume"); goto bad; } if (md->ssd_ondisk != version) { old_meta++; version = MAX(md->ssd_ondisk, version); } } else not_sr++; } if (sr && not_sr && !force) { sr_error(sc, "not all chunks are of the native metadata " "format"); goto bad; } /* mixed metadata versions; mark bad disks offline */ if (old_meta) { d = 0; for (ch_entry = SLIST_FIRST(cl); ch_entry != NULL; ch_entry = ch_next, d++) { ch_next = SLIST_NEXT(ch_entry, src_link); /* XXX do we want to read this again? */ if (ch_entry->src_dev_mm == NODEV) panic("src_dev_mm == NODEV"); if (sr_meta_native_read(sd, ch_entry->src_dev_mm, md, NULL)) sr_warn(sc, "could not read native metadata"); if (md->ssd_ondisk != version) sd->sd_vol.sv_chunks[d]->src_meta.scm_status = BIOC_SDOFFLINE; } } if (expected != sr && !force && expected != -1) { DNPRINTF(SR_D_META, "%s: not all chunks were provided, trying " "anyway\n", DEVNAME(sc)); } rv = 0; bad: free(md, M_DEVBUF, SR_META_SIZE * DEV_BSIZE); return (rv); } int sr_meta_native_read(struct sr_discipline *sd, dev_t dev, struct sr_metadata *md, void *fm) { #ifdef SR_DEBUG struct sr_softc *sc = sd->sd_sc; #endif DNPRINTF(SR_D_META, "%s: sr_meta_native_read(0x%x, %p)\n", DEVNAME(sc), dev, md); return (sr_meta_rw(sd, dev, md, B_READ)); } int sr_meta_native_write(struct sr_discipline *sd, dev_t dev, struct sr_metadata *md, void *fm) { #ifdef SR_DEBUG struct sr_softc *sc = sd->sd_sc; #endif DNPRINTF(SR_D_META, "%s: sr_meta_native_write(0x%x, %p)\n", DEVNAME(sc), dev, md); return (sr_meta_rw(sd, dev, md, B_WRITE)); } void sr_hotplug_register(struct sr_discipline *sd, void *func) { struct sr_hotplug_list *mhe; DNPRINTF(SR_D_MISC, "%s: sr_hotplug_register: %p\n", DEVNAME(sd->sd_sc), func); /* make sure we aren't on the list yet */ SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link) if (mhe->sh_hotplug == func) return; mhe = malloc(sizeof(struct sr_hotplug_list), M_DEVBUF, M_WAITOK | M_ZERO); mhe->sh_hotplug = func; mhe->sh_sd = sd; SLIST_INSERT_HEAD(&sr_hotplug_callbacks, mhe, shl_link); } void sr_hotplug_unregister(struct sr_discipline *sd, void *func) { struct sr_hotplug_list *mhe; DNPRINTF(SR_D_MISC, "%s: sr_hotplug_unregister: %s %p\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, func); /* make sure we are on the list yet */ SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link) { if (mhe->sh_hotplug == func) break; } if (mhe != NULL) { SLIST_REMOVE(&sr_hotplug_callbacks, mhe, sr_hotplug_list, shl_link); free(mhe, M_DEVBUF, sizeof(*mhe)); } } void sr_disk_attach(struct disk *diskp, int action) { struct sr_hotplug_list *mhe; SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link) if (mhe->sh_sd->sd_ready) mhe->sh_hotplug(mhe->sh_sd, diskp, action); } int sr_match(struct device *parent, void *match, void *aux) { return (1); } void sr_attach(struct device *parent, struct device *self, void *aux) { struct sr_softc *sc = (void *)self; struct scsibus_attach_args saa; DNPRINTF(SR_D_MISC, "\n%s: sr_attach", DEVNAME(sc)); if (softraid0 == NULL) softraid0 = sc; rw_init(&sc->sc_lock, "sr_lock"); rw_init(&sc->sc_hs_lock, "sr_hs_lock"); SLIST_INIT(&sr_hotplug_callbacks); TAILQ_INIT(&sc->sc_dis_list); SLIST_INIT(&sc->sc_hotspare_list); #if NBIO > 0 if (bio_register(&sc->sc_dev, sr_bio_ioctl) != 0) printf("%s: controller registration failed", DEVNAME(sc)); #endif /* NBIO > 0 */ #ifndef SMALL_KERNEL strlcpy(sc->sc_sensordev.xname, DEVNAME(sc), sizeof(sc->sc_sensordev.xname)); sensordev_install(&sc->sc_sensordev); #endif /* SMALL_KERNEL */ printf("\n"); saa.saa_adapter_softc = sc; saa.saa_adapter = &sr_switch; saa.saa_adapter_target = SDEV_NO_ADAPTER_TARGET; saa.saa_adapter_buswidth = SR_MAX_LD; saa.saa_luns = 1; saa.saa_openings = 0; saa.saa_pool = NULL; saa.saa_quirks = saa.saa_flags = 0; saa.saa_wwpn = saa.saa_wwnn = 0; sc->sc_scsibus = (struct scsibus_softc *)config_found(&sc->sc_dev, &saa, scsiprint); softraid_disk_attach = sr_disk_attach; sr_boot_assembly(sc); explicit_bzero(sr_bootkey, sizeof(sr_bootkey)); } int sr_detach(struct device *self, int flags) { struct sr_softc *sc = (void *)self; int rv; DNPRINTF(SR_D_MISC, "%s: sr_detach\n", DEVNAME(sc)); softraid_disk_attach = NULL; sr_shutdown(0); #ifndef SMALL_KERNEL if (sc->sc_sensor_task != NULL) sensor_task_unregister(sc->sc_sensor_task); sensordev_deinstall(&sc->sc_sensordev); #endif /* SMALL_KERNEL */ if (sc->sc_scsibus != NULL) { rv = config_detach((struct device *)sc->sc_scsibus, flags); if (rv != 0) return (rv); sc->sc_scsibus = NULL; } return (0); } void sr_info(struct sr_softc *sc, const char *fmt, ...) { va_list ap; rw_assert_wrlock(&sc->sc_lock); va_start(ap, fmt); bio_status(&sc->sc_status, 0, BIO_MSG_INFO, fmt, &ap); va_end(ap); } void sr_warn(struct sr_softc *sc, const char *fmt, ...) { va_list ap; rw_assert_wrlock(&sc->sc_lock); va_start(ap, fmt); bio_status(&sc->sc_status, 1, BIO_MSG_WARN, fmt, &ap); va_end(ap); } void sr_error(struct sr_softc *sc, const char *fmt, ...) { va_list ap; rw_assert_wrlock(&sc->sc_lock); va_start(ap, fmt); bio_status(&sc->sc_status, 1, BIO_MSG_ERROR, fmt, &ap); va_end(ap); } int sr_ccb_alloc(struct sr_discipline *sd) { struct sr_ccb *ccb; int i; if (!sd) return (1); DNPRINTF(SR_D_CCB, "%s: sr_ccb_alloc\n", DEVNAME(sd->sd_sc)); if (sd->sd_ccb) return (1); sd->sd_ccb = mallocarray(sd->sd_max_wu, sd->sd_max_ccb_per_wu * sizeof(struct sr_ccb), M_DEVBUF, M_WAITOK | M_ZERO); TAILQ_INIT(&sd->sd_ccb_freeq); for (i = 0; i < sd->sd_max_wu * sd->sd_max_ccb_per_wu; i++) { ccb = &sd->sd_ccb[i]; ccb->ccb_dis = sd; sr_ccb_put(ccb); } DNPRINTF(SR_D_CCB, "%s: sr_ccb_alloc ccb: %d\n", DEVNAME(sd->sd_sc), sd->sd_max_wu * sd->sd_max_ccb_per_wu); return (0); } void sr_ccb_free(struct sr_discipline *sd) { struct sr_ccb *ccb; if (!sd) return; DNPRINTF(SR_D_CCB, "%s: sr_ccb_free %p\n", DEVNAME(sd->sd_sc), sd); while ((ccb = TAILQ_FIRST(&sd->sd_ccb_freeq)) != NULL) TAILQ_REMOVE(&sd->sd_ccb_freeq, ccb, ccb_link); free(sd->sd_ccb, M_DEVBUF, sd->sd_max_wu * sd->sd_max_ccb_per_wu * sizeof(struct sr_ccb)); } struct sr_ccb * sr_ccb_get(struct sr_discipline *sd) { struct sr_ccb *ccb; int s; s = splbio(); ccb = TAILQ_FIRST(&sd->sd_ccb_freeq); if (ccb) { TAILQ_REMOVE(&sd->sd_ccb_freeq, ccb, ccb_link); ccb->ccb_state = SR_CCB_INPROGRESS; } splx(s); DNPRINTF(SR_D_CCB, "%s: sr_ccb_get: %p\n", DEVNAME(sd->sd_sc), ccb); return (ccb); } void sr_ccb_put(struct sr_ccb *ccb) { struct sr_discipline *sd = ccb->ccb_dis; int s; DNPRINTF(SR_D_CCB, "%s: sr_ccb_put: %p\n", DEVNAME(sd->sd_sc), ccb); s = splbio(); ccb->ccb_wu = NULL; ccb->ccb_state = SR_CCB_FREE; ccb->ccb_target = -1; ccb->ccb_opaque = NULL; TAILQ_INSERT_TAIL(&sd->sd_ccb_freeq, ccb, ccb_link); splx(s); } struct sr_ccb * sr_ccb_rw(struct sr_discipline *sd, int chunk, daddr_t blkno, long len, u_int8_t *data, int xsflags, int ccbflags) { struct sr_chunk *sc = sd->sd_vol.sv_chunks[chunk]; struct sr_ccb *ccb = NULL; ccb = sr_ccb_get(sd); if (ccb == NULL) goto out; ccb->ccb_flags = ccbflags; ccb->ccb_target = chunk; ccb->ccb_buf.b_flags = B_PHYS | B_CALL; if (ISSET(xsflags, SCSI_DATA_IN)) ccb->ccb_buf.b_flags |= B_READ; else ccb->ccb_buf.b_flags |= B_WRITE; ccb->ccb_buf.b_blkno = blkno + sd->sd_meta->ssd_data_blkno; ccb->ccb_buf.b_bcount = len; ccb->ccb_buf.b_bufsize = len; ccb->ccb_buf.b_resid = len; ccb->ccb_buf.b_data = data; ccb->ccb_buf.b_error = 0; ccb->ccb_buf.b_iodone = sd->sd_scsi_intr; ccb->ccb_buf.b_proc = curproc; ccb->ccb_buf.b_dev = sc->src_dev_mm; ccb->ccb_buf.b_vp = sc->src_vn; ccb->ccb_buf.b_bq = NULL; if (!ISSET(ccb->ccb_buf.b_flags, B_READ)) ccb->ccb_buf.b_vp->v_numoutput++; LIST_INIT(&ccb->ccb_buf.b_dep); DNPRINTF(SR_D_DIS, "%s: %s %s ccb " "b_bcount %ld b_blkno %lld b_flags 0x%0lx b_data %p\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_name, ccb->ccb_buf.b_bcount, (long long)ccb->ccb_buf.b_blkno, ccb->ccb_buf.b_flags, ccb->ccb_buf.b_data); out: return ccb; } void sr_ccb_done(struct sr_ccb *ccb) { struct sr_workunit *wu = ccb->ccb_wu; struct sr_discipline *sd = wu->swu_dis; struct sr_softc *sc = sd->sd_sc; DNPRINTF(SR_D_INTR, "%s: %s %s ccb done b_bcount %ld b_resid %zu" " b_flags 0x%0lx block %lld target %d\n", DEVNAME(sc), sd->sd_meta->ssd_devname, sd->sd_name, ccb->ccb_buf.b_bcount, ccb->ccb_buf.b_resid, ccb->ccb_buf.b_flags, (long long)ccb->ccb_buf.b_blkno, ccb->ccb_target); splassert(IPL_BIO); if (ccb->ccb_target == -1) panic("%s: invalid target on wu: %p", DEVNAME(sc), wu); if (ccb->ccb_buf.b_flags & B_ERROR) { DNPRINTF(SR_D_INTR, "%s: i/o error on block %lld target %d\n", DEVNAME(sc), (long long)ccb->ccb_buf.b_blkno, ccb->ccb_target); if (ISSET(sd->sd_capabilities, SR_CAP_REDUNDANT)) sd->sd_set_chunk_state(sd, ccb->ccb_target, BIOC_SDOFFLINE); else printf("%s: %s: i/o error %d @ %s block %lld\n", DEVNAME(sc), sd->sd_meta->ssd_devname, ccb->ccb_buf.b_error, sd->sd_name, (long long)ccb->ccb_buf.b_blkno); ccb->ccb_state = SR_CCB_FAILED; wu->swu_ios_failed++; } else { ccb->ccb_state = SR_CCB_OK; wu->swu_ios_succeeded++; } wu->swu_ios_complete++; } int sr_wu_alloc(struct sr_discipline *sd) { struct sr_workunit *wu; int i, no_wu; DNPRINTF(SR_D_WU, "%s: sr_wu_alloc %p %d\n", DEVNAME(sd->sd_sc), sd, sd->sd_max_wu); no_wu = sd->sd_max_wu; sd->sd_wu_pending = no_wu; mtx_init(&sd->sd_wu_mtx, IPL_BIO); TAILQ_INIT(&sd->sd_wu); TAILQ_INIT(&sd->sd_wu_freeq); TAILQ_INIT(&sd->sd_wu_pendq); TAILQ_INIT(&sd->sd_wu_defq); for (i = 0; i < no_wu; i++) { wu = malloc(sd->sd_wu_size, M_DEVBUF, M_WAITOK | M_ZERO); TAILQ_INSERT_TAIL(&sd->sd_wu, wu, swu_next); TAILQ_INIT(&wu->swu_ccb); wu->swu_dis = sd; task_set(&wu->swu_task, sr_wu_done_callback, wu); sr_wu_put(sd, wu); } return (0); } void sr_wu_free(struct sr_discipline *sd) { struct sr_workunit *wu; DNPRINTF(SR_D_WU, "%s: sr_wu_free %p\n", DEVNAME(sd->sd_sc), sd); while ((wu = TAILQ_FIRST(&sd->sd_wu_freeq)) != NULL) TAILQ_REMOVE(&sd->sd_wu_freeq, wu, swu_link); while ((wu = TAILQ_FIRST(&sd->sd_wu_pendq)) != NULL) TAILQ_REMOVE(&sd->sd_wu_pendq, wu, swu_link); while ((wu = TAILQ_FIRST(&sd->sd_wu_defq)) != NULL) TAILQ_REMOVE(&sd->sd_wu_defq, wu, swu_link); while ((wu = TAILQ_FIRST(&sd->sd_wu)) != NULL) { TAILQ_REMOVE(&sd->sd_wu, wu, swu_next); free(wu, M_DEVBUF, sd->sd_wu_size); } } void * sr_wu_get(void *xsd) { struct sr_discipline *sd = (struct sr_discipline *)xsd; struct sr_workunit *wu; mtx_enter(&sd->sd_wu_mtx); wu = TAILQ_FIRST(&sd->sd_wu_freeq); if (wu) { TAILQ_REMOVE(&sd->sd_wu_freeq, wu, swu_link); sd->sd_wu_pending++; } mtx_leave(&sd->sd_wu_mtx); DNPRINTF(SR_D_WU, "%s: sr_wu_get: %p\n", DEVNAME(sd->sd_sc), wu); return (wu); } void sr_wu_put(void *xsd, void *xwu) { struct sr_discipline *sd = (struct sr_discipline *)xsd; struct sr_workunit *wu = (struct sr_workunit *)xwu; DNPRINTF(SR_D_WU, "%s: sr_wu_put: %p\n", DEVNAME(sd->sd_sc), wu); sr_wu_release_ccbs(wu); sr_wu_init(sd, wu); mtx_enter(&sd->sd_wu_mtx); TAILQ_INSERT_TAIL(&sd->sd_wu_freeq, wu, swu_link); sd->sd_wu_pending--; mtx_leave(&sd->sd_wu_mtx); } void sr_wu_init(struct sr_discipline *sd, struct sr_workunit *wu) { int s; s = splbio(); if (wu->swu_cb_active == 1) panic("%s: sr_wu_init got active wu", DEVNAME(sd->sd_sc)); splx(s); wu->swu_xs = NULL; wu->swu_state = SR_WU_FREE; wu->swu_flags = 0; wu->swu_blk_start = 0; wu->swu_blk_end = 0; wu->swu_collider = NULL; } void sr_wu_enqueue_ccb(struct sr_workunit *wu, struct sr_ccb *ccb) { struct sr_discipline *sd = wu->swu_dis; int s; s = splbio(); if (wu->swu_cb_active == 1) panic("%s: sr_wu_enqueue_ccb got active wu", DEVNAME(sd->sd_sc)); ccb->ccb_wu = wu; wu->swu_io_count++; TAILQ_INSERT_TAIL(&wu->swu_ccb, ccb, ccb_link); splx(s); } void sr_wu_release_ccbs(struct sr_workunit *wu) { struct sr_ccb *ccb; /* Return all ccbs that are associated with this workunit. */ while ((ccb = TAILQ_FIRST(&wu->swu_ccb)) != NULL) { TAILQ_REMOVE(&wu->swu_ccb, ccb, ccb_link); sr_ccb_put(ccb); } wu->swu_io_count = 0; wu->swu_ios_complete = 0; wu->swu_ios_failed = 0; wu->swu_ios_succeeded = 0; } void sr_wu_done(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; DNPRINTF(SR_D_INTR, "%s: sr_wu_done count %d completed %d failed %d\n", DEVNAME(sd->sd_sc), wu->swu_io_count, wu->swu_ios_complete, wu->swu_ios_failed); if (wu->swu_ios_complete < wu->swu_io_count) return; task_add(sd->sd_taskq, &wu->swu_task); } void sr_wu_done_callback(void *xwu) { struct sr_workunit *wu = xwu; struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct sr_workunit *wup; int s; /* * The SR_WUF_DISCIPLINE or SR_WUF_REBUILD flag must be set if * the work unit is not associated with a scsi_xfer. */ KASSERT(xs != NULL || (wu->swu_flags & (SR_WUF_DISCIPLINE|SR_WUF_REBUILD))); s = splbio(); if (xs != NULL) { if (wu->swu_ios_failed) xs->error = XS_DRIVER_STUFFUP; else xs->error = XS_NOERROR; } if (sd->sd_scsi_wu_done) { if (sd->sd_scsi_wu_done(wu) == SR_WU_RESTART) goto done; } /* Remove work unit from pending queue. */ TAILQ_FOREACH(wup, &sd->sd_wu_pendq, swu_link) if (wup == wu) break; if (wup == NULL) panic("%s: wu %p not on pending queue", DEVNAME(sd->sd_sc), wu); TAILQ_REMOVE(&sd->sd_wu_pendq, wu, swu_link); if (wu->swu_collider) { if (wu->swu_ios_failed) sr_raid_recreate_wu(wu->swu_collider); /* XXX Should the collider be failed if this xs failed? */ sr_raid_startwu(wu->swu_collider); } /* * If a discipline provides its own sd_scsi_done function, then it * is responsible for calling sr_scsi_done() once I/O is complete. */ if (wu->swu_flags & SR_WUF_REBUILD) wu->swu_flags |= SR_WUF_REBUILDIOCOMP; if (wu->swu_flags & SR_WUF_WAKEUP) wakeup(wu); if (sd->sd_scsi_done) sd->sd_scsi_done(wu); else if (wu->swu_flags & SR_WUF_DISCIPLINE) sr_scsi_wu_put(sd, wu); else if (!(wu->swu_flags & SR_WUF_REBUILD)) sr_scsi_done(sd, xs); done: splx(s); } struct sr_workunit * sr_scsi_wu_get(struct sr_discipline *sd, int flags) { return scsi_io_get(&sd->sd_iopool, flags); } void sr_scsi_wu_put(struct sr_discipline *sd, struct sr_workunit *wu) { scsi_io_put(&sd->sd_iopool, wu); if (sd->sd_sync && sd->sd_wu_pending == 0) wakeup(sd); } void sr_scsi_done(struct sr_discipline *sd, struct scsi_xfer *xs) { DNPRINTF(SR_D_DIS, "%s: sr_scsi_done: xs %p\n", DEVNAME(sd->sd_sc), xs); if (xs->error == XS_NOERROR) xs->resid = 0; scsi_done(xs); if (sd->sd_sync && sd->sd_wu_pending == 0) wakeup(sd); } void sr_scsi_cmd(struct scsi_xfer *xs) { struct scsi_link *link = xs->sc_link; struct sr_softc *sc = link->bus->sb_adapter_softc; struct sr_workunit *wu = xs->io; struct sr_discipline *sd; DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd target %d xs %p flags %#x\n", DEVNAME(sc), link->target, xs, xs->flags); sd = sc->sc_targets[link->target]; if (sd == NULL) panic("%s: sr_scsi_cmd NULL discipline", DEVNAME(sc)); if (sd->sd_deleted) { printf("%s: %s device is being deleted, failing io\n", DEVNAME(sc), sd->sd_meta->ssd_devname); goto stuffup; } /* scsi layer *can* re-send wu without calling sr_wu_put(). */ sr_wu_release_ccbs(wu); sr_wu_init(sd, wu); wu->swu_state = SR_WU_INPROGRESS; wu->swu_xs = xs; switch (xs->cmd.opcode) { case READ_COMMAND: case READ_10: case READ_16: case WRITE_COMMAND: case WRITE_10: case WRITE_16: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: READ/WRITE %02x\n", DEVNAME(sc), xs->cmd.opcode); if (sd->sd_scsi_rw(wu)) goto stuffup; break; case SYNCHRONIZE_CACHE: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: SYNCHRONIZE_CACHE\n", DEVNAME(sc)); if (sd->sd_scsi_sync(wu)) goto stuffup; goto complete; case TEST_UNIT_READY: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: TEST_UNIT_READY\n", DEVNAME(sc)); if (sd->sd_scsi_tur(wu)) goto stuffup; goto complete; case START_STOP: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: START_STOP\n", DEVNAME(sc)); if (sd->sd_scsi_start_stop(wu)) goto stuffup; goto complete; case INQUIRY: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: INQUIRY\n", DEVNAME(sc)); if (sd->sd_scsi_inquiry(wu)) goto stuffup; goto complete; case READ_CAPACITY: case READ_CAPACITY_16: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd READ CAPACITY 0x%02x\n", DEVNAME(sc), xs->cmd.opcode); if (sd->sd_scsi_read_cap(wu)) goto stuffup; goto complete; case REQUEST_SENSE: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd REQUEST SENSE\n", DEVNAME(sc)); if (sd->sd_scsi_req_sense(wu)) goto stuffup; goto complete; default: DNPRINTF(SR_D_CMD, "%s: unsupported scsi command %x\n", DEVNAME(sc), xs->cmd.opcode); /* XXX might need to add generic function to handle others */ goto stuffup; } return; stuffup: if (sd->sd_scsi_sense.error_code) { xs->error = XS_SENSE; memcpy(&xs->sense, &sd->sd_scsi_sense, sizeof(xs->sense)); bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense)); } else { xs->error = XS_DRIVER_STUFFUP; } complete: sr_scsi_done(sd, xs); } int sr_scsi_probe(struct scsi_link *link) { struct sr_softc *sc = link->bus->sb_adapter_softc; struct sr_discipline *sd; KASSERT(link->target < SR_MAX_LD && link->lun == 0); sd = sc->sc_targets[link->target]; if (sd == NULL) return (ENODEV); link->pool = &sd->sd_iopool; if (sd->sd_openings) link->openings = sd->sd_openings(sd); else link->openings = sd->sd_max_wu; return (0); } int sr_scsi_ioctl(struct scsi_link *link, u_long cmd, caddr_t addr, int flag) { struct sr_softc *sc = link->bus->sb_adapter_softc; struct sr_discipline *sd; sd = sc->sc_targets[link->target]; if (sd == NULL) return (ENODEV); DNPRINTF(SR_D_IOCTL, "%s: %s sr_scsi_ioctl cmd: %#lx\n", DEVNAME(sc), sd->sd_meta->ssd_devname, cmd); /* Pass bio ioctls through to the bio handler. */ if (IOCGROUP(cmd) == 'B') return (sr_bio_handler(sc, sd, cmd, (struct bio *)addr)); switch (cmd) { case DIOCGCACHE: case DIOCSCACHE: return (EOPNOTSUPP); default: return (ENOTTY); } } int sr_bio_ioctl(struct device *dev, u_long cmd, caddr_t addr) { struct sr_softc *sc = (struct sr_softc *) dev; DNPRINTF(SR_D_IOCTL, "%s: sr_bio_ioctl\n", DEVNAME(sc)); return sr_bio_handler(sc, NULL, cmd, (struct bio *)addr); } int sr_bio_handler(struct sr_softc *sc, struct sr_discipline *sd, u_long cmd, struct bio *bio) { int rv = 0; DNPRINTF(SR_D_IOCTL, "%s: sr_bio_handler ", DEVNAME(sc)); rw_enter_write(&sc->sc_lock); bio_status_init(&sc->sc_status, &sc->sc_dev); switch (cmd) { case BIOCINQ: DNPRINTF(SR_D_IOCTL, "inq\n"); rv = sr_ioctl_inq(sc, (struct bioc_inq *)bio); break; case BIOCVOL: DNPRINTF(SR_D_IOCTL, "vol\n"); rv = sr_ioctl_vol(sc, (struct bioc_vol *)bio); break; case BIOCDISK: DNPRINTF(SR_D_IOCTL, "disk\n"); rv = sr_ioctl_disk(sc, (struct bioc_disk *)bio); break; case BIOCALARM: DNPRINTF(SR_D_IOCTL, "alarm\n"); /*rv = sr_ioctl_alarm(sc, (struct bioc_alarm *)bio); */ break; case BIOCBLINK: DNPRINTF(SR_D_IOCTL, "blink\n"); /*rv = sr_ioctl_blink(sc, (struct bioc_blink *)bio); */ break; case BIOCSETSTATE: DNPRINTF(SR_D_IOCTL, "setstate\n"); rv = sr_ioctl_setstate(sc, (struct bioc_setstate *)bio); break; case BIOCCREATERAID: DNPRINTF(SR_D_IOCTL, "createraid\n"); rv = sr_ioctl_createraid(sc, (struct bioc_createraid *)bio, 1, NULL); break; case BIOCDELETERAID: DNPRINTF(SR_D_IOCTL, "deleteraid\n"); rv = sr_ioctl_deleteraid(sc, sd, (struct bioc_deleteraid *)bio); break; case BIOCDISCIPLINE: DNPRINTF(SR_D_IOCTL, "discipline\n"); rv = sr_ioctl_discipline(sc, sd, (struct bioc_discipline *)bio); break; case BIOCINSTALLBOOT: DNPRINTF(SR_D_IOCTL, "installboot\n"); rv = sr_ioctl_installboot(sc, sd, (struct bioc_installboot *)bio); break; default: DNPRINTF(SR_D_IOCTL, "invalid ioctl\n"); rv = ENOTTY; } sc->sc_status.bs_status = (rv ? BIO_STATUS_ERROR : BIO_STATUS_SUCCESS); if (sc->sc_status.bs_msg_count > 0) rv = 0; memcpy(&bio->bio_status, &sc->sc_status, sizeof(struct bio_status)); rw_exit_write(&sc->sc_lock); return (rv); } int sr_ioctl_inq(struct sr_softc *sc, struct bioc_inq *bi) { struct sr_discipline *sd; int vol = 0, disk = 0; TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { vol++; disk += sd->sd_meta->ssdi.ssd_chunk_no; } strlcpy(bi->bi_dev, sc->sc_dev.dv_xname, sizeof(bi->bi_dev)); bi->bi_novol = vol + sc->sc_hotspare_no; bi->bi_nodisk = disk + sc->sc_hotspare_no; return (0); } int sr_ioctl_vol(struct sr_softc *sc, struct bioc_vol *bv) { int vol = -1, rv = EINVAL; struct sr_discipline *sd; struct sr_chunk *hotspare; TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { vol++; if (vol != bv->bv_volid) continue; bv->bv_status = sd->sd_vol_status; bv->bv_size = sd->sd_meta->ssdi.ssd_size << DEV_BSHIFT; bv->bv_level = sd->sd_meta->ssdi.ssd_level; bv->bv_nodisk = sd->sd_meta->ssdi.ssd_chunk_no; #ifdef CRYPTO if ((sd->sd_meta->ssdi.ssd_level == 'C' || sd->sd_meta->ssdi.ssd_level == 0x1C) && sd->mds.mdd_crypto.key_disk != NULL) bv->bv_nodisk++; #endif if (bv->bv_status == BIOC_SVREBUILD) bv->bv_percent = sr_rebuild_percent(sd); strlcpy(bv->bv_dev, sd->sd_meta->ssd_devname, sizeof(bv->bv_dev)); strlcpy(bv->bv_vendor, sd->sd_meta->ssdi.ssd_vendor, sizeof(bv->bv_vendor)); rv = 0; goto done; } /* Check hotspares list. */ SLIST_FOREACH(hotspare, &sc->sc_hotspare_list, src_link) { vol++; if (vol != bv->bv_volid) continue; bv->bv_status = BIOC_SVONLINE; bv->bv_size = hotspare->src_meta.scmi.scm_size << DEV_BSHIFT; bv->bv_level = -1; /* Hotspare. */ bv->bv_nodisk = 1; strlcpy(bv->bv_dev, hotspare->src_meta.scmi.scm_devname, sizeof(bv->bv_dev)); strlcpy(bv->bv_vendor, hotspare->src_meta.scmi.scm_devname, sizeof(bv->bv_vendor)); rv = 0; goto done; } done: return (rv); } int sr_ioctl_disk(struct sr_softc *sc, struct bioc_disk *bd) { struct sr_discipline *sd; struct sr_chunk *src, *hotspare; int vol = -1, rv = EINVAL; if (bd->bd_diskid < 0) goto done; TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { vol++; if (vol != bd->bd_volid) continue; if (bd->bd_diskid < sd->sd_meta->ssdi.ssd_chunk_no) src = sd->sd_vol.sv_chunks[bd->bd_diskid]; #ifdef CRYPTO else if (bd->bd_diskid == sd->sd_meta->ssdi.ssd_chunk_no && (sd->sd_meta->ssdi.ssd_level == 'C' || sd->sd_meta->ssdi.ssd_level == 0x1C) && sd->mds.mdd_crypto.key_disk != NULL) src = sd->mds.mdd_crypto.key_disk; #endif else break; bd->bd_status = src->src_meta.scm_status; bd->bd_size = src->src_meta.scmi.scm_size << DEV_BSHIFT; bd->bd_channel = vol; bd->bd_target = bd->bd_diskid; strlcpy(bd->bd_vendor, src->src_meta.scmi.scm_devname, sizeof(bd->bd_vendor)); rv = 0; goto done; } /* Check hotspares list. */ SLIST_FOREACH(hotspare, &sc->sc_hotspare_list, src_link) { vol++; if (vol != bd->bd_volid) continue; if (bd->bd_diskid != 0) break; bd->bd_status = hotspare->src_meta.scm_status; bd->bd_size = hotspare->src_meta.scmi.scm_size << DEV_BSHIFT; bd->bd_channel = vol; bd->bd_target = bd->bd_diskid; strlcpy(bd->bd_vendor, hotspare->src_meta.scmi.scm_devname, sizeof(bd->bd_vendor)); rv = 0; goto done; } done: return (rv); } int sr_ioctl_setstate(struct sr_softc *sc, struct bioc_setstate *bs) { int rv = EINVAL; int vol = -1, found, c; struct sr_discipline *sd; struct sr_chunk *ch_entry; struct sr_chunk_head *cl; if (bs->bs_other_id_type == BIOC_SSOTHER_UNUSED) goto done; if (bs->bs_status == BIOC_SSHOTSPARE) { rv = sr_hotspare(sc, (dev_t)bs->bs_other_id); goto done; } TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { vol++; if (vol == bs->bs_volid) break; } if (sd == NULL) goto done; switch (bs->bs_status) { case BIOC_SSOFFLINE: /* Take chunk offline */ found = c = 0; cl = &sd->sd_vol.sv_chunk_list; SLIST_FOREACH(ch_entry, cl, src_link) { if (ch_entry->src_dev_mm == bs->bs_other_id) { found = 1; break; } c++; } if (found == 0) { sr_error(sc, "chunk not part of array"); goto done; } /* XXX: check current state first */ sd->sd_set_chunk_state(sd, c, BIOC_SDOFFLINE); if (sr_meta_save(sd, SR_META_DIRTY)) { sr_error(sc, "could not save metadata for %s", sd->sd_meta->ssd_devname); goto done; } rv = 0; break; case BIOC_SDSCRUB: break; case BIOC_SSREBUILD: rv = sr_rebuild_init(sd, (dev_t)bs->bs_other_id, 0); break; default: sr_error(sc, "unsupported state request %d", bs->bs_status); } done: return (rv); } int sr_chunk_in_use(struct sr_softc *sc, dev_t dev) { struct sr_discipline *sd; struct sr_chunk *chunk; int i; DNPRINTF(SR_D_MISC, "%s: sr_chunk_in_use(%d)\n", DEVNAME(sc), dev); if (dev == NODEV) return BIOC_SDINVALID; /* See if chunk is already in use. */ TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) { chunk = sd->sd_vol.sv_chunks[i]; if (chunk->src_dev_mm == dev) return chunk->src_meta.scm_status; } } /* Check hotspares list. */ SLIST_FOREACH(chunk, &sc->sc_hotspare_list, src_link) if (chunk->src_dev_mm == dev) return chunk->src_meta.scm_status; return BIOC_SDINVALID; } int sr_hotspare(struct sr_softc *sc, dev_t dev) { struct sr_discipline *sd = NULL; struct sr_metadata *sm = NULL; struct sr_meta_chunk *hm; struct sr_chunk_head *cl; struct sr_chunk *chunk, *last, *hotspare = NULL; struct sr_uuid uuid; struct disklabel label; struct vnode *vn; u_int64_t size; char devname[32]; int rv = EINVAL; int c, part, open = 0; /* * Add device to global hotspares list. */ sr_meta_getdevname(sc, dev, devname, sizeof(devname)); /* Make sure chunk is not already in use. */ c = sr_chunk_in_use(sc, dev); if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) { if (c == BIOC_SDHOTSPARE) sr_error(sc, "%s is already a hotspare", devname); else sr_error(sc, "%s is already in use", devname); goto done; } /* XXX - See if there is an existing degraded volume... */ /* Open device. */ if (bdevvp(dev, &vn)) { sr_error(sc, "sr_hotspare: cannot allocate vnode"); goto done; } if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) { DNPRINTF(SR_D_META,"%s: sr_hotspare cannot open %s\n", DEVNAME(sc), devname); vput(vn); goto fail; } open = 1; /* close dev on error */ /* Get partition details. */ part = DISKPART(dev); if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, curproc)) { DNPRINTF(SR_D_META, "%s: sr_hotspare ioctl failed\n", DEVNAME(sc)); goto fail; } if (label.d_partitions[part].p_fstype != FS_RAID) { sr_error(sc, "%s partition not of type RAID (%d)", devname, label.d_partitions[part].p_fstype); goto fail; } /* Calculate partition size. */ size = DL_SECTOBLK(&label, DL_GETPSIZE(&label.d_partitions[part])); if (size <= SR_DATA_OFFSET) { DNPRINTF(SR_D_META, "%s: %s partition too small\n", DEVNAME(sc), devname); goto fail; } size -= SR_DATA_OFFSET; if (size > INT64_MAX) { DNPRINTF(SR_D_META, "%s: %s partition too large\n", DEVNAME(sc), devname); goto fail; } /* * Create and populate chunk metadata. */ sr_uuid_generate(&uuid); hotspare = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); hotspare->src_dev_mm = dev; hotspare->src_vn = vn; strlcpy(hotspare->src_devname, devname, sizeof(hm->scmi.scm_devname)); hotspare->src_size = size; hm = &hotspare->src_meta; hm->scmi.scm_volid = SR_HOTSPARE_VOLID; hm->scmi.scm_chunk_id = 0; hm->scmi.scm_size = size; hm->scmi.scm_coerced_size = size; strlcpy(hm->scmi.scm_devname, devname, sizeof(hm->scmi.scm_devname)); memcpy(&hm->scmi.scm_uuid, &uuid, sizeof(struct sr_uuid)); sr_checksum(sc, hm, &hm->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); hm->scm_status = BIOC_SDHOTSPARE; /* * Create and populate our own discipline and metadata. */ sm = malloc(sizeof(struct sr_metadata), M_DEVBUF, M_WAITOK | M_ZERO); sm->ssdi.ssd_magic = SR_MAGIC; sm->ssdi.ssd_version = SR_META_VERSION; sm->ssd_ondisk = 0; sm->ssdi.ssd_vol_flags = 0; memcpy(&sm->ssdi.ssd_uuid, &uuid, sizeof(struct sr_uuid)); sm->ssdi.ssd_chunk_no = 1; sm->ssdi.ssd_volid = SR_HOTSPARE_VOLID; sm->ssdi.ssd_level = SR_HOTSPARE_LEVEL; sm->ssdi.ssd_size = size; sm->ssdi.ssd_secsize = label.d_secsize; strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor)); snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product), "SR %s", "HOTSPARE"); snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision), "%03d", SR_META_VERSION); sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_WAITOK | M_ZERO); sd->sd_sc = sc; sd->sd_meta = sm; sd->sd_meta_type = SR_META_F_NATIVE; sd->sd_vol_status = BIOC_SVONLINE; strlcpy(sd->sd_name, "HOTSPARE", sizeof(sd->sd_name)); SLIST_INIT(&sd->sd_meta_opt); /* Add chunk to volume. */ sd->sd_vol.sv_chunks = malloc(sizeof(struct sr_chunk *), M_DEVBUF, M_WAITOK | M_ZERO); sd->sd_vol.sv_chunks[0] = hotspare; SLIST_INIT(&sd->sd_vol.sv_chunk_list); SLIST_INSERT_HEAD(&sd->sd_vol.sv_chunk_list, hotspare, src_link); /* Save metadata. */ if (sr_meta_save(sd, SR_META_DIRTY)) { sr_error(sc, "could not save metadata to %s", devname); goto fail; } /* * Add chunk to hotspare list. */ rw_enter_write(&sc->sc_hs_lock); cl = &sc->sc_hotspare_list; if (SLIST_EMPTY(cl)) SLIST_INSERT_HEAD(cl, hotspare, src_link); else { SLIST_FOREACH(chunk, cl, src_link) last = chunk; SLIST_INSERT_AFTER(last, hotspare, src_link); } sc->sc_hotspare_no++; rw_exit_write(&sc->sc_hs_lock); rv = 0; goto done; fail: free(hotspare, M_DEVBUF, sizeof(*hotspare)); done: if (sd) free(sd->sd_vol.sv_chunks, M_DEVBUF, sizeof(sd->sd_vol.sv_chunks)); free(sd, M_DEVBUF, sizeof(*sd)); free(sm, M_DEVBUF, sizeof(*sm)); if (open) { VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc); vput(vn); } return (rv); } void sr_hotspare_rebuild_callback(void *xsd) { struct sr_discipline *sd = xsd; sr_hotspare_rebuild(sd); } void sr_hotspare_rebuild(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl; struct sr_chunk *hotspare, *chunk = NULL; struct sr_workunit *wu; struct sr_ccb *ccb; int i, s, cid, busy; /* * Attempt to locate a hotspare and initiate rebuild. */ /* Find first offline chunk. */ for (cid = 0; cid < sd->sd_meta->ssdi.ssd_chunk_no; cid++) { if (sd->sd_vol.sv_chunks[cid]->src_meta.scm_status == BIOC_SDOFFLINE) { chunk = sd->sd_vol.sv_chunks[cid]; break; } } if (chunk == NULL) { printf("%s: no offline chunk found on %s!\n", DEVNAME(sc), sd->sd_meta->ssd_devname); return; } /* See if we have a suitable hotspare... */ rw_enter_write(&sc->sc_hs_lock); cl = &sc->sc_hotspare_list; SLIST_FOREACH(hotspare, cl, src_link) if (hotspare->src_size >= chunk->src_size && hotspare->src_secsize <= sd->sd_meta->ssdi.ssd_secsize) break; if (hotspare != NULL) { printf("%s: %s volume degraded, will attempt to " "rebuild on hotspare %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname, hotspare->src_devname); /* * Ensure that all pending I/O completes on the failed chunk * before trying to initiate a rebuild. */ i = 0; do { busy = 0; s = splbio(); TAILQ_FOREACH(wu, &sd->sd_wu_pendq, swu_link) { TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) { if (ccb->ccb_target == cid) busy = 1; } } TAILQ_FOREACH(wu, &sd->sd_wu_defq, swu_link) { TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) { if (ccb->ccb_target == cid) busy = 1; } } splx(s); if (busy) { tsleep_nsec(sd, PRIBIO, "sr_hotspare", SEC_TO_NSEC(1)); i++; } } while (busy && i < 120); DNPRINTF(SR_D_META, "%s: waited %i seconds for I/O to " "complete on failed chunk %s\n", DEVNAME(sc), i, chunk->src_devname); if (busy) { printf("%s: pending I/O failed to complete on " "failed chunk %s, hotspare rebuild aborted...\n", DEVNAME(sc), chunk->src_devname); goto done; } s = splbio(); rw_enter_write(&sc->sc_lock); bio_status_init(&sc->sc_status, &sc->sc_dev); if (sr_rebuild_init(sd, hotspare->src_dev_mm, 1) == 0) { /* Remove hotspare from available list. */ sc->sc_hotspare_no--; SLIST_REMOVE(cl, hotspare, sr_chunk, src_link); free(hotspare, M_DEVBUF, sizeof(*hotspare)); } rw_exit_write(&sc->sc_lock); splx(s); } done: rw_exit_write(&sc->sc_hs_lock); } int sr_rebuild_init(struct sr_discipline *sd, dev_t dev, int hotspare) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk *chunk = NULL; struct sr_meta_chunk *meta; struct disklabel label; struct vnode *vn; u_int64_t size; int64_t csize; char devname[32]; int rv = EINVAL, open = 0; int cid, i, part, status; /* * Attempt to initiate a rebuild onto the specified device. */ if (!(sd->sd_capabilities & SR_CAP_REBUILD)) { sr_error(sc, "discipline does not support rebuild"); goto done; } /* make sure volume is in the right state */ if (sd->sd_vol_status == BIOC_SVREBUILD) { sr_error(sc, "rebuild already in progress"); goto done; } if (sd->sd_vol_status != BIOC_SVDEGRADED) { sr_error(sc, "volume not degraded"); goto done; } /* Find first offline chunk. */ for (cid = 0; cid < sd->sd_meta->ssdi.ssd_chunk_no; cid++) { if (sd->sd_vol.sv_chunks[cid]->src_meta.scm_status == BIOC_SDOFFLINE) { chunk = sd->sd_vol.sv_chunks[cid]; break; } } if (chunk == NULL) { sr_error(sc, "no offline chunks available to rebuild"); goto done; } /* Get coerced size from another online chunk. */ csize = 0; for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) { if (sd->sd_vol.sv_chunks[i]->src_meta.scm_status == BIOC_SDONLINE) { meta = &sd->sd_vol.sv_chunks[i]->src_meta; csize = meta->scmi.scm_coerced_size; break; } } if (csize == 0) { sr_error(sc, "no online chunks available for rebuild"); goto done; } sr_meta_getdevname(sc, dev, devname, sizeof(devname)); if (bdevvp(dev, &vn)) { printf("%s: sr_rebuild_init: can't allocate vnode\n", DEVNAME(sc)); goto done; } if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) { DNPRINTF(SR_D_META,"%s: sr_ioctl_setstate can't " "open %s\n", DEVNAME(sc), devname); vput(vn); goto done; } open = 1; /* close dev on error */ /* Get disklabel and check partition. */ part = DISKPART(dev); if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, curproc)) { DNPRINTF(SR_D_META, "%s: sr_ioctl_setstate ioctl failed\n", DEVNAME(sc)); goto done; } if (label.d_partitions[part].p_fstype != FS_RAID) { sr_error(sc, "%s partition not of type RAID (%d)", devname, label.d_partitions[part].p_fstype); goto done; } /* Is the partition large enough? */ size = DL_SECTOBLK(&label, DL_GETPSIZE(&label.d_partitions[part])); if (size <= sd->sd_meta->ssd_data_blkno) { sr_error(sc, "%s: %s partition too small", DEVNAME(sc), devname); goto done; } size -= sd->sd_meta->ssd_data_blkno; if (size > INT64_MAX) { sr_error(sc, "%s: %s partition too large", DEVNAME(sc), devname); goto done; } if (size < csize) { sr_error(sc, "%s partition too small, at least %lld bytes " "required", devname, (long long)(csize << DEV_BSHIFT)); goto done; } else if (size > csize) sr_warn(sc, "%s partition too large, wasting %lld bytes", devname, (long long)((size - csize) << DEV_BSHIFT)); if (label.d_secsize > sd->sd_meta->ssdi.ssd_secsize) { sr_error(sc, "%s sector size too large, <= %u bytes " "required", devname, sd->sd_meta->ssdi.ssd_secsize); goto done; } /* Ensure that this chunk is not already in use. */ status = sr_chunk_in_use(sc, dev); if (status != BIOC_SDINVALID && status != BIOC_SDOFFLINE && !(hotspare && status == BIOC_SDHOTSPARE)) { sr_error(sc, "%s is already in use", devname); goto done; } /* Reset rebuild counter since we rebuilding onto a new chunk. */ sd->sd_meta->ssd_rebuild = 0; open = 0; /* leave dev open from here on out */ /* Fix up chunk. */ memcpy(chunk->src_duid, label.d_uid, sizeof(chunk->src_duid)); chunk->src_dev_mm = dev; chunk->src_vn = vn; /* Reconstruct metadata. */ meta = &chunk->src_meta; meta->scmi.scm_volid = sd->sd_meta->ssdi.ssd_volid; meta->scmi.scm_chunk_id = cid; strlcpy(meta->scmi.scm_devname, devname, sizeof(meta->scmi.scm_devname)); meta->scmi.scm_size = size; meta->scmi.scm_coerced_size = csize; memcpy(&meta->scmi.scm_uuid, &sd->sd_meta->ssdi.ssd_uuid, sizeof(meta->scmi.scm_uuid)); sr_checksum(sc, meta, &meta->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); sd->sd_set_chunk_state(sd, cid, BIOC_SDREBUILD); if (sr_meta_save(sd, SR_META_DIRTY)) { sr_error(sc, "could not save metadata to %s", devname); open = 1; goto done; } sr_warn(sc, "rebuild of %s started on %s", sd->sd_meta->ssd_devname, devname); sd->sd_reb_abort = 0; kthread_create_deferred(sr_rebuild_start, sd); rv = 0; done: if (open) { VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc); vput(vn); } return (rv); } int sr_rebuild_percent(struct sr_discipline *sd) { daddr_t rb, sz; sz = sd->sd_meta->ssdi.ssd_size; rb = sd->sd_meta->ssd_rebuild; if (rb > 0) return (100 - ((sz * 100 - rb * 100) / sz) - 1); return (0); } void sr_roam_chunks(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk *chunk; struct sr_meta_chunk *meta; int roamed = 0; /* Have any chunks roamed? */ SLIST_FOREACH(chunk, &sd->sd_vol.sv_chunk_list, src_link) { meta = &chunk->src_meta; if (strncmp(meta->scmi.scm_devname, chunk->src_devname, sizeof(meta->scmi.scm_devname))) { printf("%s: roaming device %s -> %s\n", DEVNAME(sc), meta->scmi.scm_devname, chunk->src_devname); strlcpy(meta->scmi.scm_devname, chunk->src_devname, sizeof(meta->scmi.scm_devname)); roamed++; } } if (roamed) sr_meta_save(sd, SR_META_DIRTY); } int sr_ioctl_createraid(struct sr_softc *sc, struct bioc_createraid *bc, int user, void *data) { struct sr_meta_opt_item *omi; struct sr_chunk_head *cl; struct sr_discipline *sd = NULL; struct sr_chunk *ch_entry; struct scsi_link *link; struct device *dev; char *uuid, devname[32]; dev_t *dt = NULL; int i, no_chunk, rv = EINVAL, target, vol; int no_meta; DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_createraid(%d)\n", DEVNAME(sc), user); /* user input */ if (bc->bc_dev_list_len > BIOC_CRMAXLEN) goto unwind; dt = malloc(bc->bc_dev_list_len, M_DEVBUF, M_WAITOK | M_ZERO); if (user) { if (copyin(bc->bc_dev_list, dt, bc->bc_dev_list_len) != 0) goto unwind; } else memcpy(dt, bc->bc_dev_list, bc->bc_dev_list_len); /* Initialise discipline. */ sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_WAITOK | M_ZERO); sd->sd_sc = sc; SLIST_INIT(&sd->sd_meta_opt); sd->sd_taskq = taskq_create("srdis", 1, IPL_BIO, 0); if (sd->sd_taskq == NULL) { sr_error(sc, "could not create discipline taskq"); goto unwind; } if (sr_discipline_init(sd, bc->bc_level)) { sr_error(sc, "could not initialize discipline"); goto unwind; } no_chunk = bc->bc_dev_list_len / sizeof(dev_t); cl = &sd->sd_vol.sv_chunk_list; SLIST_INIT(cl); /* Ensure that chunks are not already in use. */ for (i = 0; i < no_chunk; i++) { if (sr_chunk_in_use(sc, dt[i]) != BIOC_SDINVALID) { sr_meta_getdevname(sc, dt[i], devname, sizeof(devname)); sr_error(sc, "chunk %s already in use", devname); goto unwind; } } sd->sd_meta_type = sr_meta_probe(sd, dt, no_chunk); if (sd->sd_meta_type == SR_META_F_INVALID) { sr_error(sc, "invalid metadata format"); goto unwind; } if (sr_meta_attach(sd, no_chunk, bc->bc_flags & BIOC_SCFORCE)) goto unwind; /* force the raid volume by clearing metadata region */ if (bc->bc_flags & BIOC_SCFORCE) { /* make sure disk isn't up and running */ if (sr_meta_read(sd)) if (sr_already_assembled(sd)) { uuid = sr_uuid_format( &sd->sd_meta->ssdi.ssd_uuid); sr_error(sc, "disk %s is currently in use; " "cannot force create", uuid); free(uuid, M_DEVBUF, 37); goto unwind; } if (sr_meta_clear(sd)) { sr_error(sc, "failed to clear metadata"); goto unwind; } } no_meta = sr_meta_read(sd); if (no_meta == -1) { /* Corrupt metadata on one or more chunks. */ sr_error(sc, "one of the chunks has corrupt metadata; " "aborting assembly"); goto unwind; } else if (no_meta == 0) { /* Initialise volume and chunk metadata. */ sr_meta_init(sd, bc->bc_level, no_chunk); sd->sd_vol_status = BIOC_SVONLINE; sd->sd_meta_flags = bc->bc_flags & BIOC_SCNOAUTOASSEMBLE; if (sd->sd_create) { if ((i = sd->sd_create(sd, bc, no_chunk, sd->sd_vol.sv_chunk_minsz))) { rv = i; goto unwind; } } sr_meta_init_complete(sd); DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_createraid: vol_size: %lld\n", DEVNAME(sc), sd->sd_meta->ssdi.ssd_size); /* Warn if we've wasted chunk space due to coercing. */ if ((sd->sd_capabilities & SR_CAP_NON_COERCED) == 0 && sd->sd_vol.sv_chunk_minsz != sd->sd_vol.sv_chunk_maxsz) sr_warn(sc, "chunk sizes are not equal; up to %llu " "blocks wasted per chunk", sd->sd_vol.sv_chunk_maxsz - sd->sd_vol.sv_chunk_minsz); } else { /* Ensure we are assembling the correct # of chunks. */ if (bc->bc_level == 0x1C && sd->sd_meta->ssdi.ssd_chunk_no > no_chunk) { sr_warn(sc, "trying to bring up %s degraded", sd->sd_meta->ssd_devname); } else if (sd->sd_meta->ssdi.ssd_chunk_no != no_chunk) { sr_error(sc, "volume chunk count does not match metadata " "chunk count"); goto unwind; } /* Ensure metadata level matches requested assembly level. */ if (sd->sd_meta->ssdi.ssd_level != bc->bc_level) { sr_error(sc, "volume level does not match metadata " "level"); goto unwind; } if (sr_already_assembled(sd)) { uuid = sr_uuid_format(&sd->sd_meta->ssdi.ssd_uuid); sr_error(sc, "disk %s already assembled", uuid); free(uuid, M_DEVBUF, 37); goto unwind; } if (user == 0 && sd->sd_meta_flags & BIOC_SCNOAUTOASSEMBLE) { DNPRINTF(SR_D_META, "%s: disk not auto assembled from " "metadata\n", DEVNAME(sc)); goto unwind; } if (no_meta != no_chunk) sr_warn(sc, "trying to bring up %s degraded", sd->sd_meta->ssd_devname); if (sd->sd_meta->ssd_meta_flags & SR_META_DIRTY) sr_warn(sc, "%s was not shutdown properly", sd->sd_meta->ssd_devname); SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link) if (sd->sd_meta_opt_handler == NULL || sd->sd_meta_opt_handler(sd, omi->omi_som) != 0) sr_meta_opt_handler(sd, omi->omi_som); if (sd->sd_assemble) { if ((i = sd->sd_assemble(sd, bc, no_chunk, data))) { rv = i; goto unwind; } } DNPRINTF(SR_D_META, "%s: disk assembled from metadata\n", DEVNAME(sc)); } /* Metadata MUST be fully populated by this point. */ TAILQ_INSERT_TAIL(&sc->sc_dis_list, sd, sd_link); /* Allocate all resources. */ if ((rv = sd->sd_alloc_resources(sd))) goto unwind; /* Adjust flags if necessary. */ if ((sd->sd_capabilities & SR_CAP_AUTO_ASSEMBLE) && (bc->bc_flags & BIOC_SCNOAUTOASSEMBLE) != (sd->sd_meta->ssdi.ssd_vol_flags & BIOC_SCNOAUTOASSEMBLE)) { sd->sd_meta->ssdi.ssd_vol_flags &= ~BIOC_SCNOAUTOASSEMBLE; sd->sd_meta->ssdi.ssd_vol_flags |= bc->bc_flags & BIOC_SCNOAUTOASSEMBLE; } if (sd->sd_capabilities & SR_CAP_SYSTEM_DISK) { /* Initialise volume state. */ sd->sd_set_vol_state(sd); if (sd->sd_vol_status == BIOC_SVOFFLINE) { sr_error(sc, "%s is offline, will not be brought " "online", sd->sd_meta->ssd_devname); goto unwind; } /* Setup SCSI iopool. */ scsi_iopool_init(&sd->sd_iopool, sd, sr_wu_get, sr_wu_put); /* * All checks passed - return ENXIO if volume cannot be created. */ rv = ENXIO; /* * Find a free target. * * XXX: We reserve sd_target == 0 to indicate the * discipline is not linked into sc->sc_targets, so begin * the search with target = 1. */ for (target = 1; target < SR_MAX_LD; target++) if (sc->sc_targets[target] == NULL) break; if (target == SR_MAX_LD) { sr_error(sc, "no free target for %s", sd->sd_meta->ssd_devname); goto unwind; } /* Clear sense data. */ bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense)); /* Attach discipline and get midlayer to probe it. */ sd->sd_target = target; sc->sc_targets[target] = sd; if (scsi_probe_lun(sc->sc_scsibus, target, 0) != 0) { sr_error(sc, "scsi_probe_lun failed"); sc->sc_targets[target] = NULL; sd->sd_target = 0; goto unwind; } link = scsi_get_link(sc->sc_scsibus, target, 0); if (link == NULL) goto unwind; dev = link->device_softc; DNPRINTF(SR_D_IOCTL, "%s: sr device added: %s at target %d\n", DEVNAME(sc), dev->dv_xname, sd->sd_target); /* XXX - Count volumes, not targets. */ for (i = 0, vol = -1; i <= sd->sd_target; i++) if (sc->sc_targets[i]) vol++; rv = 0; if (sd->sd_meta->ssd_devname[0] != '\0' && strncmp(sd->sd_meta->ssd_devname, dev->dv_xname, sizeof(dev->dv_xname))) sr_warn(sc, "volume %s is roaming, it used to be %s, " "updating metadata", dev->dv_xname, sd->sd_meta->ssd_devname); /* Populate remaining volume metadata. */ sd->sd_meta->ssdi.ssd_volid = vol; strlcpy(sd->sd_meta->ssd_devname, dev->dv_xname, sizeof(sd->sd_meta->ssd_devname)); sr_info(sc, "%s volume attached as %s", sd->sd_name, sd->sd_meta->ssd_devname); /* Update device name on any roaming chunks. */ sr_roam_chunks(sd); #ifndef SMALL_KERNEL if (sr_sensors_create(sd)) sr_warn(sc, "unable to create sensor for %s", dev->dv_xname); #endif /* SMALL_KERNEL */ } else { /* This volume does not attach as a system disk. */ ch_entry = SLIST_FIRST(cl); /* XXX */ strlcpy(sd->sd_meta->ssd_devname, ch_entry->src_devname, sizeof(sd->sd_meta->ssd_devname)); if (sd->sd_start_discipline(sd)) goto unwind; } /* Save current metadata to disk. */ rv = sr_meta_save(sd, SR_META_DIRTY); if (sd->sd_vol_status == BIOC_SVREBUILD) kthread_create_deferred(sr_rebuild_start, sd); sd->sd_ready = 1; free(dt, M_DEVBUF, bc->bc_dev_list_len); return (rv); unwind: free(dt, M_DEVBUF, bc->bc_dev_list_len); sr_discipline_shutdown(sd, 0, 0); if (rv == EAGAIN) rv = 0; return (rv); } int sr_ioctl_deleteraid(struct sr_softc *sc, struct sr_discipline *sd, struct bioc_deleteraid *bd) { int rv = 1; DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_deleteraid %s\n", DEVNAME(sc), bd->bd_dev); if (sd == NULL) { TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { if (!strncmp(sd->sd_meta->ssd_devname, bd->bd_dev, sizeof(sd->sd_meta->ssd_devname))) break; } if (sd == NULL) { sr_error(sc, "volume %s not found", bd->bd_dev); goto bad; } } sd->sd_deleted = 1; sd->sd_meta->ssdi.ssd_vol_flags = BIOC_SCNOAUTOASSEMBLE; sr_discipline_shutdown(sd, 1, 0); rv = 0; bad: return (rv); } int sr_ioctl_discipline(struct sr_softc *sc, struct sr_discipline *sd, struct bioc_discipline *bd) { int rv = 1; /* Dispatch a discipline specific ioctl. */ DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_discipline %s\n", DEVNAME(sc), bd->bd_dev); if (sd == NULL) { TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { if (!strncmp(sd->sd_meta->ssd_devname, bd->bd_dev, sizeof(sd->sd_meta->ssd_devname))) break; } if (sd == NULL) { sr_error(sc, "volume %s not found", bd->bd_dev); goto bad; } } if (sd->sd_ioctl_handler) rv = sd->sd_ioctl_handler(sd, bd); bad: return (rv); } int sr_ioctl_installboot(struct sr_softc *sc, struct sr_discipline *sd, struct bioc_installboot *bb) { void *bootblk = NULL, *bootldr = NULL; struct sr_chunk *chunk; struct sr_meta_opt_item *omi; struct sr_meta_boot *sbm; struct disk *dk; u_int32_t bbs = 0, bls = 0, secsize; u_char duid[8]; int rv = EINVAL; int i; DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_installboot %s\n", DEVNAME(sc), bb->bb_dev); if (sd == NULL) { TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { if (!strncmp(sd->sd_meta->ssd_devname, bb->bb_dev, sizeof(sd->sd_meta->ssd_devname))) break; } if (sd == NULL) { sr_error(sc, "volume %s not found", bb->bb_dev); goto done; } } bzero(duid, sizeof(duid)); TAILQ_FOREACH(dk, &disklist, dk_link) if (!strncmp(dk->dk_name, bb->bb_dev, sizeof(bb->bb_dev))) break; if (dk == NULL || dk->dk_label == NULL || (dk->dk_flags & DKF_LABELVALID) == 0 || bcmp(dk->dk_label->d_uid, &duid, sizeof(duid)) == 0) { sr_error(sc, "failed to get DUID for softraid volume"); goto done; } memcpy(duid, dk->dk_label->d_uid, sizeof(duid)); /* Ensure that boot storage area is large enough. */ if (sd->sd_meta->ssd_data_blkno < (SR_BOOT_OFFSET + SR_BOOT_SIZE)) { sr_error(sc, "insufficient boot storage"); goto done; } if (bb->bb_bootblk_size > SR_BOOT_BLOCKS_SIZE * DEV_BSIZE) { sr_error(sc, "boot block too large (%d > %d)", bb->bb_bootblk_size, SR_BOOT_BLOCKS_SIZE * DEV_BSIZE); goto done; } if (bb->bb_bootldr_size > SR_BOOT_LOADER_SIZE * DEV_BSIZE) { sr_error(sc, "boot loader too large (%d > %d)", bb->bb_bootldr_size, SR_BOOT_LOADER_SIZE * DEV_BSIZE); goto done; } secsize = sd->sd_meta->ssdi.ssd_secsize; /* Copy in boot block. */ bbs = howmany(bb->bb_bootblk_size, secsize) * secsize; bootblk = malloc(bbs, M_DEVBUF, M_WAITOK | M_ZERO); if (copyin(bb->bb_bootblk, bootblk, bb->bb_bootblk_size) != 0) goto done; /* Copy in boot loader. */ bls = howmany(bb->bb_bootldr_size, secsize) * secsize; bootldr = malloc(bls, M_DEVBUF, M_WAITOK | M_ZERO); if (copyin(bb->bb_bootldr, bootldr, bb->bb_bootldr_size) != 0) goto done; /* Create or update optional meta for bootable volumes. */ SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link) if (omi->omi_som->som_type == SR_OPT_BOOT) break; if (omi == NULL) { omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF, M_WAITOK | M_ZERO); omi->omi_som = malloc(sizeof(struct sr_meta_boot), M_DEVBUF, M_WAITOK | M_ZERO); omi->omi_som->som_type = SR_OPT_BOOT; omi->omi_som->som_length = sizeof(struct sr_meta_boot); SLIST_INSERT_HEAD(&sd->sd_meta_opt, omi, omi_link); sd->sd_meta->ssdi.ssd_opt_no++; } sbm = (struct sr_meta_boot *)omi->omi_som; memcpy(sbm->sbm_root_duid, duid, sizeof(sbm->sbm_root_duid)); bzero(&sbm->sbm_boot_duid, sizeof(sbm->sbm_boot_duid)); sbm->sbm_bootblk_size = bbs; sbm->sbm_bootldr_size = bls; DNPRINTF(SR_D_IOCTL, "sr_ioctl_installboot: root duid is %s\n", duid_format(sbm->sbm_root_duid)); /* Save boot block and boot loader to each chunk. */ for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) { chunk = sd->sd_vol.sv_chunks[i]; if (chunk->src_meta.scm_status != BIOC_SDONLINE && chunk->src_meta.scm_status != BIOC_SDREBUILD) continue; if (i < SR_MAX_BOOT_DISKS) memcpy(&sbm->sbm_boot_duid[i], chunk->src_duid, sizeof(sbm->sbm_boot_duid[i])); /* Save boot blocks. */ DNPRINTF(SR_D_IOCTL, "sr_ioctl_installboot: saving boot block to %s " "(%u bytes)\n", chunk->src_devname, bbs); if (sr_rw(sc, chunk->src_dev_mm, bootblk, bbs, SR_BOOT_BLOCKS_OFFSET, B_WRITE)) { sr_error(sc, "failed to write boot block"); goto done; } /* Save boot loader.*/ DNPRINTF(SR_D_IOCTL, "sr_ioctl_installboot: saving boot loader to %s " "(%u bytes)\n", chunk->src_devname, bls); if (sr_rw(sc, chunk->src_dev_mm, bootldr, bls, SR_BOOT_LOADER_OFFSET, B_WRITE)) { sr_error(sc, "failed to write boot loader"); goto done; } } /* XXX - Install boot block on disk - MD code. */ /* Mark volume as bootable and save metadata. */ sd->sd_meta->ssdi.ssd_vol_flags |= BIOC_SCBOOTABLE; if (sr_meta_save(sd, SR_META_DIRTY)) { sr_error(sc, "could not save metadata to %s", DEVNAME(sc)); goto done; } rv = 0; done: free(bootblk, M_DEVBUF, bbs); free(bootldr, M_DEVBUF, bls); return (rv); } void sr_chunks_unwind(struct sr_softc *sc, struct sr_chunk_head *cl) { struct sr_chunk *ch_entry, *ch_next; DNPRINTF(SR_D_IOCTL, "%s: sr_chunks_unwind\n", DEVNAME(sc)); if (!cl) return; for (ch_entry = SLIST_FIRST(cl); ch_entry != NULL; ch_entry = ch_next) { ch_next = SLIST_NEXT(ch_entry, src_link); DNPRINTF(SR_D_IOCTL, "%s: sr_chunks_unwind closing: %s\n", DEVNAME(sc), ch_entry->src_devname); if (ch_entry->src_vn) { /* * XXX - explicitly lock the vnode until we can resolve * the problem introduced by vnode aliasing... specfs * has no locking, whereas ufs/ffs does! */ vn_lock(ch_entry->src_vn, LK_EXCLUSIVE | LK_RETRY); VOP_CLOSE(ch_entry->src_vn, FREAD | FWRITE, NOCRED, curproc); vput(ch_entry->src_vn); } free(ch_entry, M_DEVBUF, sizeof(*ch_entry)); } SLIST_INIT(cl); } void sr_discipline_free(struct sr_discipline *sd) { struct sr_softc *sc; struct sr_discipline *sdtmp1; struct sr_meta_opt_head *som; struct sr_meta_opt_item *omi, *omi_next; if (!sd) return; sc = sd->sd_sc; DNPRINTF(SR_D_DIS, "%s: sr_discipline_free %s\n", DEVNAME(sc), sd->sd_meta ? sd->sd_meta->ssd_devname : "nodev"); if (sd->sd_free_resources) sd->sd_free_resources(sd); free(sd->sd_vol.sv_chunks, M_DEVBUF, 0); free(sd->sd_meta, M_DEVBUF, SR_META_SIZE * DEV_BSIZE); free(sd->sd_meta_foreign, M_DEVBUF, smd[sd->sd_meta_type].smd_size); som = &sd->sd_meta_opt; for (omi = SLIST_FIRST(som); omi != NULL; omi = omi_next) { omi_next = SLIST_NEXT(omi, omi_link); free(omi->omi_som, M_DEVBUF, 0); free(omi, M_DEVBUF, sizeof(*omi)); } if (sd->sd_target != 0) { KASSERT(sc->sc_targets[sd->sd_target] == sd); sc->sc_targets[sd->sd_target] = NULL; } TAILQ_FOREACH(sdtmp1, &sc->sc_dis_list, sd_link) { if (sdtmp1 == sd) break; } if (sdtmp1 != NULL) TAILQ_REMOVE(&sc->sc_dis_list, sd, sd_link); explicit_bzero(sd, sizeof *sd); free(sd, M_DEVBUF, sizeof(*sd)); } void sr_discipline_shutdown(struct sr_discipline *sd, int meta_save, int dying) { struct sr_softc *sc; int ret, s; if (!sd) return; sc = sd->sd_sc; DNPRINTF(SR_D_DIS, "%s: sr_discipline_shutdown %s\n", DEVNAME(sc), sd->sd_meta ? sd->sd_meta->ssd_devname : "nodev"); /* If rebuilding, abort rebuild and drain I/O. */ if (sd->sd_reb_active) { sd->sd_reb_abort = 1; while (sd->sd_reb_active) tsleep_nsec(sd, PWAIT, "sr_shutdown", MSEC_TO_NSEC(1)); } if (meta_save) sr_meta_save(sd, 0); s = splbio(); sd->sd_ready = 0; /* make sure there isn't a sync pending and yield */ wakeup(sd); while (sd->sd_sync || sd->sd_must_flush) { ret = tsleep_nsec(&sd->sd_sync, MAXPRI, "sr_down", SEC_TO_NSEC(60)); if (ret == EWOULDBLOCK) break; } if (dying == -1) { sd->sd_ready = 1; splx(s); return; } #ifndef SMALL_KERNEL sr_sensors_delete(sd); #endif /* SMALL_KERNEL */ if (sd->sd_target != 0) scsi_detach_lun(sc->sc_scsibus, sd->sd_target, 0, dying ? 0 : DETACH_FORCE); sr_chunks_unwind(sc, &sd->sd_vol.sv_chunk_list); if (sd->sd_taskq) taskq_destroy(sd->sd_taskq); sr_discipline_free(sd); splx(s); } int sr_discipline_init(struct sr_discipline *sd, int level) { int rv = 1; /* Initialise discipline function pointers with defaults. */ sd->sd_alloc_resources = sr_alloc_resources; sd->sd_assemble = NULL; sd->sd_create = NULL; sd->sd_free_resources = sr_free_resources; sd->sd_ioctl_handler = NULL; sd->sd_openings = NULL; sd->sd_meta_opt_handler = NULL; sd->sd_rebuild = sr_rebuild; sd->sd_scsi_inquiry = sr_raid_inquiry; sd->sd_scsi_read_cap = sr_raid_read_cap; sd->sd_scsi_tur = sr_raid_tur; sd->sd_scsi_req_sense = sr_raid_request_sense; sd->sd_scsi_start_stop = sr_raid_start_stop; sd->sd_scsi_sync = sr_raid_sync; sd->sd_scsi_rw = NULL; sd->sd_scsi_intr = sr_raid_intr; sd->sd_scsi_wu_done = NULL; sd->sd_scsi_done = NULL; sd->sd_set_chunk_state = sr_set_chunk_state; sd->sd_set_vol_state = sr_set_vol_state; sd->sd_start_discipline = NULL; task_set(&sd->sd_meta_save_task, sr_meta_save_callback, sd); task_set(&sd->sd_hotspare_rebuild_task, sr_hotspare_rebuild_callback, sd); sd->sd_wu_size = sizeof(struct sr_workunit); switch (level) { case 0: sr_raid0_discipline_init(sd); break; case 1: sr_raid1_discipline_init(sd); break; case 5: sr_raid5_discipline_init(sd); break; case 6: sr_raid6_discipline_init(sd); break; #ifdef CRYPTO case 'C': sr_crypto_discipline_init(sd); break; case 0x1C: sr_raid1c_discipline_init(sd); break; #endif case 'c': sr_concat_discipline_init(sd); break; default: goto bad; } rv = 0; bad: return (rv); } int sr_raid_inquiry(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct scsi_inquiry *cdb = (struct scsi_inquiry *)&xs->cmd; struct scsi_inquiry_data inq; DNPRINTF(SR_D_DIS, "%s: sr_raid_inquiry\n", DEVNAME(sd->sd_sc)); if (xs->cmdlen != sizeof(*cdb)) return (EINVAL); if (ISSET(cdb->flags, SI_EVPD)) return (EOPNOTSUPP); bzero(&inq, sizeof(inq)); inq.device = T_DIRECT; inq.dev_qual2 = 0; inq.version = SCSI_REV_2; inq.response_format = SID_SCSI2_RESPONSE; inq.additional_length = SID_SCSI2_ALEN; inq.flags |= SID_CmdQue; strlcpy(inq.vendor, sd->sd_meta->ssdi.ssd_vendor, sizeof(inq.vendor)); strlcpy(inq.product, sd->sd_meta->ssdi.ssd_product, sizeof(inq.product)); strlcpy(inq.revision, sd->sd_meta->ssdi.ssd_revision, sizeof(inq.revision)); scsi_copy_internal_data(xs, &inq, sizeof(inq)); return (0); } int sr_raid_read_cap(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct scsi_read_cap_data rcd; struct scsi_read_cap_data_16 rcd16; u_int64_t addr; int rv = 1; u_int32_t secsize; DNPRINTF(SR_D_DIS, "%s: sr_raid_read_cap\n", DEVNAME(sd->sd_sc)); secsize = sd->sd_meta->ssdi.ssd_secsize; addr = ((sd->sd_meta->ssdi.ssd_size * DEV_BSIZE) / secsize) - 1; if (xs->cmd.opcode == READ_CAPACITY) { bzero(&rcd, sizeof(rcd)); if (addr > 0xffffffffllu) _lto4b(0xffffffff, rcd.addr); else _lto4b(addr, rcd.addr); _lto4b(secsize, rcd.length); scsi_copy_internal_data(xs, &rcd, sizeof(rcd)); rv = 0; } else if (xs->cmd.opcode == READ_CAPACITY_16) { bzero(&rcd16, sizeof(rcd16)); _lto8b(addr, rcd16.addr); _lto4b(secsize, rcd16.length); scsi_copy_internal_data(xs, &rcd16, sizeof(rcd16)); rv = 0; } return (rv); } int sr_raid_tur(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; DNPRINTF(SR_D_DIS, "%s: sr_raid_tur\n", DEVNAME(sd->sd_sc)); if (sd->sd_vol_status == BIOC_SVOFFLINE) { sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT; sd->sd_scsi_sense.flags = SKEY_NOT_READY; sd->sd_scsi_sense.add_sense_code = 0x04; sd->sd_scsi_sense.add_sense_code_qual = 0x11; sd->sd_scsi_sense.extra_len = 4; return (1); } else if (sd->sd_vol_status == BIOC_SVINVALID) { sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT; sd->sd_scsi_sense.flags = SKEY_HARDWARE_ERROR; sd->sd_scsi_sense.add_sense_code = 0x05; sd->sd_scsi_sense.add_sense_code_qual = 0x00; sd->sd_scsi_sense.extra_len = 4; return (1); } return (0); } int sr_raid_request_sense(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; DNPRINTF(SR_D_DIS, "%s: sr_raid_request_sense\n", DEVNAME(sd->sd_sc)); /* use latest sense data */ memcpy(&xs->sense, &sd->sd_scsi_sense, sizeof(xs->sense)); /* clear sense data */ bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense)); return (0); } int sr_raid_start_stop(struct sr_workunit *wu) { struct scsi_xfer *xs = wu->swu_xs; struct scsi_start_stop *ss = (struct scsi_start_stop *)&xs->cmd; DNPRINTF(SR_D_DIS, "%s: sr_raid_start_stop\n", DEVNAME(wu->swu_dis->sd_sc)); if (!ss) return (1); /* * do nothing! * a softraid discipline should always reflect correct status */ return (0); } int sr_raid_sync(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; int s, ret, rv = 0, ios; DNPRINTF(SR_D_DIS, "%s: sr_raid_sync\n", DEVNAME(sd->sd_sc)); /* when doing a fake sync don't count the wu */ ios = (wu->swu_flags & SR_WUF_FAKE) ? 0 : 1; s = splbio(); sd->sd_sync = 1; while (sd->sd_wu_pending > ios) { ret = tsleep_nsec(sd, PRIBIO, "sr_sync", SEC_TO_NSEC(15)); if (ret == EWOULDBLOCK) { DNPRINTF(SR_D_DIS, "%s: sr_raid_sync timeout\n", DEVNAME(sd->sd_sc)); rv = 1; break; } } sd->sd_sync = 0; splx(s); wakeup(&sd->sd_sync); return (rv); } void sr_raid_intr(struct buf *bp) { struct sr_ccb *ccb = (struct sr_ccb *)bp; struct sr_workunit *wu = ccb->ccb_wu; #ifdef SR_DEBUG struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; #endif int s; DNPRINTF(SR_D_INTR, "%s: %s %s intr bp %p xs %p\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_name, bp, xs); s = splbio(); sr_ccb_done(ccb); sr_wu_done(wu); splx(s); } void sr_schedule_wu(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct sr_workunit *wup; int s; DNPRINTF(SR_D_WU, "sr_schedule_wu: schedule wu %p state %i " "flags 0x%x\n", wu, wu->swu_state, wu->swu_flags); KASSERT(wu->swu_io_count > 0); s = splbio(); /* Construct the work unit, do not schedule it. */ if (wu->swu_state == SR_WU_CONSTRUCT) goto queued; /* Deferred work unit being reconstructed, do not start. */ if (wu->swu_state == SR_WU_REQUEUE) goto queued; /* Current work unit failed, restart. */ if (wu->swu_state == SR_WU_RESTART) goto start; if (wu->swu_state != SR_WU_INPROGRESS) panic("sr_schedule_wu: work unit not in progress (state %i)", wu->swu_state); /* Walk queue backwards and fill in collider if we have one. */ TAILQ_FOREACH_REVERSE(wup, &sd->sd_wu_pendq, sr_wu_list, swu_link) { if (wu->swu_blk_end < wup->swu_blk_start || wup->swu_blk_end < wu->swu_blk_start) continue; /* Defer work unit due to LBA collision. */ DNPRINTF(SR_D_WU, "sr_schedule_wu: deferring work unit %p\n", wu); wu->swu_state = SR_WU_DEFERRED; while (wup->swu_collider) wup = wup->swu_collider; wup->swu_collider = wu; TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu, swu_link); sd->sd_wu_collisions++; goto queued; } start: sr_raid_startwu(wu); queued: splx(s); } void sr_raid_startwu(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct sr_ccb *ccb; DNPRINTF(SR_D_WU, "sr_raid_startwu: start wu %p\n", wu); splassert(IPL_BIO); if (wu->swu_state == SR_WU_DEFERRED) { TAILQ_REMOVE(&sd->sd_wu_defq, wu, swu_link); wu->swu_state = SR_WU_INPROGRESS; } if (wu->swu_state != SR_WU_RESTART) TAILQ_INSERT_TAIL(&sd->sd_wu_pendq, wu, swu_link); /* Start all of the individual I/Os. */ if (wu->swu_cb_active == 1) panic("%s: sr_startwu_callback", DEVNAME(sd->sd_sc)); wu->swu_cb_active = 1; TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) VOP_STRATEGY(ccb->ccb_buf.b_vp, &ccb->ccb_buf); wu->swu_cb_active = 0; } void sr_raid_recreate_wu(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct sr_workunit *wup = wu; /* * Recreate a work unit by releasing the associated CCBs and reissuing * the SCSI I/O request. This process is then repeated for all of the * colliding work units. */ do { sr_wu_release_ccbs(wup); wup->swu_state = SR_WU_REQUEUE; if (sd->sd_scsi_rw(wup)) panic("could not requeue I/O"); wup = wup->swu_collider; } while (wup); } int sr_alloc_resources(struct sr_discipline *sd) { if (sr_wu_alloc(sd)) { sr_error(sd->sd_sc, "unable to allocate work units"); return (ENOMEM); } if (sr_ccb_alloc(sd)) { sr_error(sd->sd_sc, "unable to allocate ccbs"); return (ENOMEM); } return (0); } void sr_free_resources(struct sr_discipline *sd) { sr_wu_free(sd); sr_ccb_free(sd); } void sr_set_chunk_state(struct sr_discipline *sd, int c, int new_state) { int old_state, s; DNPRINTF(SR_D_STATE, "%s: %s: %s: sr_set_chunk_state %d -> %d\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_vol.sv_chunks[c]->src_meta.scmi.scm_devname, c, new_state); /* ok to go to splbio since this only happens in error path */ s = splbio(); old_state = sd->sd_vol.sv_chunks[c]->src_meta.scm_status; /* multiple IOs to the same chunk that fail will come through here */ if (old_state == new_state) goto done; switch (old_state) { case BIOC_SDONLINE: if (new_state == BIOC_SDOFFLINE) break; else goto die; break; case BIOC_SDOFFLINE: goto die; default: die: splx(s); /* XXX */ panic("%s: %s: %s: invalid chunk state transition %d -> %d", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_vol.sv_chunks[c]->src_meta.scmi.scm_devname, old_state, new_state); /* NOTREACHED */ } sd->sd_vol.sv_chunks[c]->src_meta.scm_status = new_state; sd->sd_set_vol_state(sd); sd->sd_must_flush = 1; task_add(systq, &sd->sd_meta_save_task); done: splx(s); } void sr_set_vol_state(struct sr_discipline *sd) { int states[SR_MAX_STATES]; int new_state, i, nd; int old_state = sd->sd_vol_status; u_int32_t s; DNPRINTF(SR_D_STATE, "%s: %s: sr_set_vol_state\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname); nd = sd->sd_meta->ssdi.ssd_chunk_no; for (i = 0; i < SR_MAX_STATES; i++) states[i] = 0; for (i = 0; i < nd; i++) { s = sd->sd_vol.sv_chunks[i]->src_meta.scm_status; if (s >= SR_MAX_STATES) panic("%s: %s: %s: invalid chunk state", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_vol.sv_chunks[i]->src_meta.scmi.scm_devname); states[s]++; } if (states[BIOC_SDONLINE] == nd) new_state = BIOC_SVONLINE; else new_state = BIOC_SVOFFLINE; DNPRINTF(SR_D_STATE, "%s: %s: sr_set_vol_state %d -> %d\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, old_state, new_state); switch (old_state) { case BIOC_SVONLINE: if (new_state == BIOC_SVOFFLINE || new_state == BIOC_SVONLINE) break; else goto die; break; case BIOC_SVOFFLINE: /* XXX this might be a little too much */ goto die; default: die: panic("%s: %s: invalid volume state transition %d -> %d", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, old_state, new_state); /* NOTREACHED */ } sd->sd_vol_status = new_state; } void * sr_block_get(struct sr_discipline *sd, long length) { return dma_alloc(length, PR_NOWAIT | PR_ZERO); } void sr_block_put(struct sr_discipline *sd, void *ptr, int length) { dma_free(ptr, length); } void sr_checksum_print(u_int8_t *md5) { int i; for (i = 0; i < MD5_DIGEST_LENGTH; i++) printf("%02x", md5[i]); } void sr_checksum(struct sr_softc *sc, void *src, void *md5, u_int32_t len) { MD5_CTX ctx; DNPRINTF(SR_D_MISC, "%s: sr_checksum(%p %p %d)\n", DEVNAME(sc), src, md5, len); MD5Init(&ctx); MD5Update(&ctx, src, len); MD5Final(md5, &ctx); } void sr_uuid_generate(struct sr_uuid *uuid) { arc4random_buf(uuid->sui_id, sizeof(uuid->sui_id)); /* UUID version 4: random */ uuid->sui_id[6] &= 0x0f; uuid->sui_id[6] |= 0x40; /* RFC4122 variant */ uuid->sui_id[8] &= 0x3f; uuid->sui_id[8] |= 0x80; } char * sr_uuid_format(struct sr_uuid *uuid) { char *uuidstr; uuidstr = malloc(37, M_DEVBUF, M_WAITOK); snprintf(uuidstr, 37, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" "%02x%02x%02x%02x%02x%02x", uuid->sui_id[0], uuid->sui_id[1], uuid->sui_id[2], uuid->sui_id[3], uuid->sui_id[4], uuid->sui_id[5], uuid->sui_id[6], uuid->sui_id[7], uuid->sui_id[8], uuid->sui_id[9], uuid->sui_id[10], uuid->sui_id[11], uuid->sui_id[12], uuid->sui_id[13], uuid->sui_id[14], uuid->sui_id[15]); return uuidstr; } void sr_uuid_print(struct sr_uuid *uuid, int cr) { char *uuidstr; uuidstr = sr_uuid_format(uuid); printf("%s%s", uuidstr, (cr ? "\n" : "")); free(uuidstr, M_DEVBUF, 37); } int sr_already_assembled(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; struct sr_discipline *sdtmp; TAILQ_FOREACH(sdtmp, &sc->sc_dis_list, sd_link) { if (!bcmp(&sd->sd_meta->ssdi.ssd_uuid, &sdtmp->sd_meta->ssdi.ssd_uuid, sizeof(sd->sd_meta->ssdi.ssd_uuid))) return (1); } return (0); } int32_t sr_validate_stripsize(u_int32_t b) { int s = 0; if (b % DEV_BSIZE) return (-1); while ((b & 1) == 0) { b >>= 1; s++; } /* only multiple of twos */ b >>= 1; if (b) return(-1); return (s); } void sr_quiesce(void) { struct sr_softc *sc = softraid0; struct sr_discipline *sd, *nsd; /* Shutdown disciplines in reverse attach order. */ TAILQ_FOREACH_REVERSE_SAFE(sd, &sc->sc_dis_list, sr_discipline_list, sd_link, nsd) sr_discipline_shutdown(sd, 1, -1); } void sr_shutdown(int dying) { struct sr_softc *sc = softraid0; struct sr_discipline *sd; DNPRINTF(SR_D_MISC, "%s: sr_shutdown\n", DEVNAME(sc)); /* * Since softraid is not under mainbus, we have to explicitly * notify its children that the power is going down, so they * can execute their shutdown hooks. */ config_suspend((struct device *)sc, DVACT_POWERDOWN); /* Shutdown disciplines in reverse attach order. */ while ((sd = TAILQ_LAST(&sc->sc_dis_list, sr_discipline_list)) != NULL) sr_discipline_shutdown(sd, 1, dying); } int sr_validate_io(struct sr_workunit *wu, daddr_t *blkno, char *func) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; int rv = 1; DNPRINTF(SR_D_DIS, "%s: %s 0x%02x\n", DEVNAME(sd->sd_sc), func, xs->cmd.opcode); if (sd->sd_meta->ssd_data_blkno == 0) panic("invalid data blkno"); if (sd->sd_vol_status == BIOC_SVOFFLINE) { DNPRINTF(SR_D_DIS, "%s: %s device offline\n", DEVNAME(sd->sd_sc), func); goto bad; } if (xs->datalen == 0) { printf("%s: %s: illegal block count for %s\n", DEVNAME(sd->sd_sc), func, sd->sd_meta->ssd_devname); goto bad; } if (xs->cmdlen == 10) *blkno = _4btol(((struct scsi_rw_10 *)&xs->cmd)->addr); else if (xs->cmdlen == 16) *blkno = _8btol(((struct scsi_rw_16 *)&xs->cmd)->addr); else if (xs->cmdlen == 6) *blkno = _3btol(((struct scsi_rw *)&xs->cmd)->addr); else { printf("%s: %s: illegal cmdlen for %s\n", DEVNAME(sd->sd_sc), func, sd->sd_meta->ssd_devname); goto bad; } *blkno *= (sd->sd_meta->ssdi.ssd_secsize / DEV_BSIZE); wu->swu_blk_start = *blkno; wu->swu_blk_end = *blkno + (xs->datalen >> DEV_BSHIFT) - 1; if (wu->swu_blk_end > sd->sd_meta->ssdi.ssd_size) { DNPRINTF(SR_D_DIS, "%s: %s out of bounds start: %lld " "end: %lld length: %d\n", DEVNAME(sd->sd_sc), func, (long long)wu->swu_blk_start, (long long)wu->swu_blk_end, xs->datalen); sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT | SSD_ERRCODE_VALID; sd->sd_scsi_sense.flags = SKEY_ILLEGAL_REQUEST; sd->sd_scsi_sense.add_sense_code = 0x21; sd->sd_scsi_sense.add_sense_code_qual = 0x00; sd->sd_scsi_sense.extra_len = 4; goto bad; } rv = 0; bad: return (rv); } void sr_rebuild_start(void *arg) { struct sr_discipline *sd = arg; struct sr_softc *sc = sd->sd_sc; DNPRINTF(SR_D_REBUILD, "%s: %s starting rebuild thread\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname); if (kthread_create(sr_rebuild_thread, sd, &sd->sd_background_proc, DEVNAME(sc)) != 0) printf("%s: unable to start background operation\n", DEVNAME(sc)); } void sr_rebuild_thread(void *arg) { struct sr_discipline *sd = arg; DNPRINTF(SR_D_REBUILD, "%s: %s rebuild thread started\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname); sd->sd_reb_active = 1; sd->sd_rebuild(sd); sd->sd_reb_active = 0; kthread_exit(0); } void sr_rebuild(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; u_int64_t sz, whole_blk, partial_blk, blk, restart; daddr_t lba; struct sr_workunit *wu_r, *wu_w; struct scsi_xfer xs_r, xs_w; struct scsi_rw_16 *cr, *cw; int c, s, slept, percent = 0, old_percent = -1; u_int8_t *buf; whole_blk = sd->sd_meta->ssdi.ssd_size / SR_REBUILD_IO_SIZE; partial_blk = sd->sd_meta->ssdi.ssd_size % SR_REBUILD_IO_SIZE; restart = sd->sd_meta->ssd_rebuild / SR_REBUILD_IO_SIZE; if (restart > whole_blk) { printf("%s: bogus rebuild restart offset, starting from 0\n", DEVNAME(sc)); restart = 0; } if (restart) { /* * XXX there is a hole here; there is a possibility that we * had a restart however the chunk that was supposed to * be rebuilt is no longer valid; we can reach this situation * when a rebuild is in progress and the box crashes and * on reboot the rebuild chunk is different (like zero'd or * replaced). We need to check the uuid of the chunk that is * being rebuilt to assert this. */ percent = sr_rebuild_percent(sd); printf("%s: resuming rebuild on %s at %d%%\n", DEVNAME(sc), sd->sd_meta->ssd_devname, percent); } /* currently this is 64k therefore we can use dma_alloc */ buf = dma_alloc(SR_REBUILD_IO_SIZE << DEV_BSHIFT, PR_WAITOK); for (blk = restart; blk <= whole_blk; blk++) { lba = blk * SR_REBUILD_IO_SIZE; sz = SR_REBUILD_IO_SIZE; if (blk == whole_blk) { if (partial_blk == 0) break; sz = partial_blk; } /* get some wu */ wu_r = sr_scsi_wu_get(sd, 0); wu_w = sr_scsi_wu_get(sd, 0); DNPRINTF(SR_D_REBUILD, "%s: %s rebuild wu_r %p, wu_w %p\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, wu_r, wu_w); /* setup read io */ bzero(&xs_r, sizeof xs_r); xs_r.error = XS_NOERROR; xs_r.flags = SCSI_DATA_IN; xs_r.datalen = sz << DEV_BSHIFT; xs_r.data = buf; xs_r.cmdlen = sizeof(*cr); cr = (struct scsi_rw_16 *)&xs_r.cmd; cr->opcode = READ_16; _lto4b(sz, cr->length); _lto8b(lba, cr->addr); wu_r->swu_state = SR_WU_CONSTRUCT; wu_r->swu_flags |= SR_WUF_REBUILD; wu_r->swu_xs = &xs_r; if (sd->sd_scsi_rw(wu_r)) { printf("%s: could not create read io\n", DEVNAME(sc)); goto fail; } /* setup write io */ bzero(&xs_w, sizeof xs_w); xs_w.error = XS_NOERROR; xs_w.flags = SCSI_DATA_OUT; xs_w.datalen = sz << DEV_BSHIFT; xs_w.data = buf; xs_w.cmdlen = sizeof(*cw); cw = (struct scsi_rw_16 *)&xs_w.cmd; cw->opcode = WRITE_16; _lto4b(sz, cw->length); _lto8b(lba, cw->addr); wu_w->swu_state = SR_WU_CONSTRUCT; wu_w->swu_flags |= SR_WUF_REBUILD | SR_WUF_WAKEUP; wu_w->swu_xs = &xs_w; if (sd->sd_scsi_rw(wu_w)) { printf("%s: could not create write io\n", DEVNAME(sc)); goto fail; } /* * collide with the read io so that we get automatically * started when the read is done */ wu_w->swu_state = SR_WU_DEFERRED; wu_r->swu_collider = wu_w; s = splbio(); TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu_w, swu_link); splx(s); DNPRINTF(SR_D_REBUILD, "%s: %s rebuild scheduling wu_r %p\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, wu_r); wu_r->swu_state = SR_WU_INPROGRESS; sr_schedule_wu(wu_r); /* wait for write completion */ slept = 0; while ((wu_w->swu_flags & SR_WUF_REBUILDIOCOMP) == 0) { tsleep_nsec(wu_w, PRIBIO, "sr_rebuild", INFSLP); slept = 1; } /* yield if we didn't sleep */ if (slept == 0) tsleep_nsec(sc, PWAIT, "sr_yield", MSEC_TO_NSEC(1)); sr_scsi_wu_put(sd, wu_r); sr_scsi_wu_put(sd, wu_w); sd->sd_meta->ssd_rebuild = lba; /* XXX - this should be based on size, not percentage. */ /* save metadata every percent */ percent = sr_rebuild_percent(sd); if (percent != old_percent && blk != whole_blk) { if (sr_meta_save(sd, SR_META_DIRTY)) printf("%s: could not save metadata to %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); old_percent = percent; } if (sd->sd_reb_abort) goto abort; } /* all done */ sd->sd_meta->ssd_rebuild = 0; for (c = 0; c < sd->sd_meta->ssdi.ssd_chunk_no; c++) { if (sd->sd_vol.sv_chunks[c]->src_meta.scm_status == BIOC_SDREBUILD) { sd->sd_set_chunk_state(sd, c, BIOC_SDONLINE); break; } } abort: if (sr_meta_save(sd, SR_META_DIRTY)) printf("%s: could not save metadata to %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); fail: dma_free(buf, SR_REBUILD_IO_SIZE << DEV_BSHIFT); } #ifndef SMALL_KERNEL int sr_sensors_create(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; int rv = 1; DNPRINTF(SR_D_STATE, "%s: %s: sr_sensors_create\n", DEVNAME(sc), sd->sd_meta->ssd_devname); sd->sd_vol.sv_sensor.type = SENSOR_DRIVE; sd->sd_vol.sv_sensor.status = SENSOR_S_UNKNOWN; strlcpy(sd->sd_vol.sv_sensor.desc, sd->sd_meta->ssd_devname, sizeof(sd->sd_vol.sv_sensor.desc)); sensor_attach(&sc->sc_sensordev, &sd->sd_vol.sv_sensor); sd->sd_vol.sv_sensor_attached = 1; if (sc->sc_sensor_task == NULL) { sc->sc_sensor_task = sensor_task_register(sc, sr_sensors_refresh, 10); if (sc->sc_sensor_task == NULL) goto bad; } rv = 0; bad: return (rv); } void sr_sensors_delete(struct sr_discipline *sd) { DNPRINTF(SR_D_STATE, "%s: sr_sensors_delete\n", DEVNAME(sd->sd_sc)); if (sd->sd_vol.sv_sensor_attached) sensor_detach(&sd->sd_sc->sc_sensordev, &sd->sd_vol.sv_sensor); } void sr_sensors_refresh(void *arg) { struct sr_softc *sc = arg; struct sr_volume *sv; struct sr_discipline *sd; DNPRINTF(SR_D_STATE, "%s: sr_sensors_refresh\n", DEVNAME(sc)); TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { sv = &sd->sd_vol; switch(sd->sd_vol_status) { case BIOC_SVOFFLINE: sv->sv_sensor.value = SENSOR_DRIVE_FAIL; sv->sv_sensor.status = SENSOR_S_CRIT; break; case BIOC_SVDEGRADED: sv->sv_sensor.value = SENSOR_DRIVE_PFAIL; sv->sv_sensor.status = SENSOR_S_WARN; break; case BIOC_SVREBUILD: sv->sv_sensor.value = SENSOR_DRIVE_REBUILD; sv->sv_sensor.status = SENSOR_S_WARN; break; case BIOC_SVSCRUB: case BIOC_SVONLINE: sv->sv_sensor.value = SENSOR_DRIVE_ONLINE; sv->sv_sensor.status = SENSOR_S_OK; break; default: sv->sv_sensor.value = 0; /* unknown */ sv->sv_sensor.status = SENSOR_S_UNKNOWN; } } } #endif /* SMALL_KERNEL */ #ifdef SR_FANCY_STATS void sr_print_stats(void); void sr_print_stats(void) { struct sr_softc *sc = softraid0; struct sr_discipline *sd; if (sc == NULL) { printf("no softraid softc found\n"); return; } TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) { printf("%s: ios pending %d, collisions %llu\n", sd->sd_meta->ssd_devname, sd->sd_wu_pending, sd->sd_wu_collisions); } } #endif /* SR_FANCY_STATS */ #ifdef SR_DEBUG void sr_meta_print(struct sr_metadata *m) { int i; struct sr_meta_chunk *mc; struct sr_meta_opt_hdr *omh; if (!(sr_debug & SR_D_META)) return; printf("\tssd_magic 0x%llx\n", m->ssdi.ssd_magic); printf("\tssd_version %d\n", m->ssdi.ssd_version); printf("\tssd_vol_flags 0x%x\n", m->ssdi.ssd_vol_flags); printf("\tssd_uuid "); sr_uuid_print(&m->ssdi.ssd_uuid, 1); printf("\tssd_chunk_no %d\n", m->ssdi.ssd_chunk_no); printf("\tssd_chunk_id %d\n", m->ssdi.ssd_chunk_id); printf("\tssd_opt_no %d\n", m->ssdi.ssd_opt_no); printf("\tssd_volid %d\n", m->ssdi.ssd_volid); printf("\tssd_level %d\n", m->ssdi.ssd_level); printf("\tssd_size %lld\n", m->ssdi.ssd_size); printf("\tssd_devname %s\n", m->ssd_devname); printf("\tssd_vendor %s\n", m->ssdi.ssd_vendor); printf("\tssd_product %s\n", m->ssdi.ssd_product); printf("\tssd_revision %s\n", m->ssdi.ssd_revision); printf("\tssd_strip_size %d\n", m->ssdi.ssd_strip_size); printf("\tssd_checksum "); sr_checksum_print(m->ssd_checksum); printf("\n"); printf("\tssd_meta_flags 0x%x\n", m->ssd_meta_flags); printf("\tssd_ondisk %llu\n", m->ssd_ondisk); mc = (struct sr_meta_chunk *)(m + 1); for (i = 0; i < m->ssdi.ssd_chunk_no; i++, mc++) { printf("\t\tscm_volid %d\n", mc->scmi.scm_volid); printf("\t\tscm_chunk_id %d\n", mc->scmi.scm_chunk_id); printf("\t\tscm_devname %s\n", mc->scmi.scm_devname); printf("\t\tscm_size %lld\n", mc->scmi.scm_size); printf("\t\tscm_coerced_size %lld\n",mc->scmi.scm_coerced_size); printf("\t\tscm_uuid "); sr_uuid_print(&mc->scmi.scm_uuid, 1); printf("\t\tscm_checksum "); sr_checksum_print(mc->scm_checksum); printf("\n"); printf("\t\tscm_status %d\n", mc->scm_status); } omh = (struct sr_meta_opt_hdr *)((u_int8_t *)(m + 1) + sizeof(struct sr_meta_chunk) * m->ssdi.ssd_chunk_no); for (i = 0; i < m->ssdi.ssd_opt_no; i++) { printf("\t\t\tsom_type %d\n", omh->som_type); printf("\t\t\tsom_checksum "); sr_checksum_print(omh->som_checksum); printf("\n"); omh = (struct sr_meta_opt_hdr *)((void *)omh + omh->som_length); } } void sr_dump_block(void *blk, int len) { uint8_t *b = blk; int i, j, c; for (i = 0; i < len; i += 16) { for (j = 0; j < 16; j++) printf("%.2x ", b[i + j]); printf(" "); for (j = 0; j < 16; j++) { c = b[i + j]; if (c < ' ' || c > 'z' || i + j > len) c = '.'; printf("%c", c); } printf("\n"); } } void sr_dump_mem(u_int8_t *p, int len) { int i; for (i = 0; i < len; i++) printf("%02x ", *p++); printf("\n"); } #endif /* SR_DEBUG */ #ifdef HIBERNATE /* * Side-effect free (no malloc, printf, pool, splx) softraid crypto writer. * * This function must perform the following: * 1. Determine the underlying device's own side-effect free I/O function * (eg, ahci_hibernate_io, wd_hibernate_io, etc). * 2. Store enough information in the provided page argument for subsequent * I/O calls (such as the crypto discipline structure for the keys, the * offset of the softraid partition on the underlying disk, as well as * the offset of the swap partition within the crypto volume. * 3. Encrypt the incoming data using the sr_discipline keys, then pass * the request to the underlying device's own I/O function. */ int sr_hibernate_io(dev_t dev, daddr_t blkno, vaddr_t addr, size_t size, int op, void *page) { /* Struct for stashing data obtained on HIB_INIT. * XXX * We share the page with the underlying device's own * side-effect free I/O function, so we pad our data to * the end of the page. Presently this does not overlap * with either of the two other side-effect free i/o * functions (ahci/wd). */ struct { char pad[3072]; struct sr_discipline *srd; hibio_fn subfn; /* underlying device i/o fn */ dev_t subdev; /* underlying device dev_t */ daddr_t sr_swapoff; /* ofs of swap part in sr volume */ char buf[DEV_BSIZE]; /* encryption performed into this buf */ } *my = page; extern struct cfdriver sd_cd; char errstr[128], *dl_ret; struct sr_chunk *schunk; struct sd_softc *sd; struct aes_xts_ctx ctx; struct sr_softc *sc; struct device *dv; daddr_t key_blkno; uint32_t sub_raidoff; /* ofs of sr part in underlying dev */ struct disklabel dl; struct partition *pp; size_t i, j; u_char iv[8]; /* * In HIB_INIT, we are passed the swap partition size and offset * in 'size' and 'blkno' respectively. These are relative to the * start of the softraid partition, and we need to save these * for later translation to the underlying device's layout. */ if (op == HIB_INIT) { dv = disk_lookup(&sd_cd, DISKUNIT(dev)); sd = (struct sd_softc *)dv; sc = (struct sr_softc *)dv->dv_parent->dv_parent; /* * Look up the sr discipline. This is used to determine * if we are SR crypto and what the underlying device is. */ my->srd = sc->sc_targets[sd->sc_link->target]; DNPRINTF(SR_D_MISC, "sr_hibernate_io: discipline is %s\n", my->srd->sd_name); if (strncmp(my->srd->sd_name, "CRYPTO", sizeof(my->srd->sd_name))) return (ENOTSUP); /* Find the underlying device */ schunk = my->srd->sd_vol.sv_chunks[0]; my->subdev = schunk->src_dev_mm; /* * Find the appropriate underlying device side effect free * I/O function, based on the type of device it is. */ my->subfn = get_hibernate_io_function(my->subdev); if (!my->subfn) return (ENODEV); /* * Find blkno where this raid partition starts on * the underlying disk. */ dl_ret = disk_readlabel(&dl, my->subdev, errstr, sizeof(errstr)); if (dl_ret) { printf("Hibernate error reading disklabel: %s\n", dl_ret); return (ENOTSUP); } pp = &dl.d_partitions[DISKPART(my->subdev)]; if (pp->p_fstype != FS_RAID || DL_GETPSIZE(pp) == 0) return (ENOTSUP); /* Find the blkno of the SR part in the underlying device */ sub_raidoff = my->srd->sd_meta->ssd_data_blkno + DL_SECTOBLK(&dl, DL_GETPOFFSET(pp)); DNPRINTF(SR_D_MISC,"sr_hibernate_io: blk trans ofs: %d blks\n", sub_raidoff); /* Save the blkno of the swap partition in the SR disk */ my->sr_swapoff = blkno; /* Initialize the sub-device */ return my->subfn(my->subdev, sub_raidoff + blkno, addr, size, op, page); } /* Hibernate only uses (and we only support) writes */ if (op != HIB_W) return (ENOTSUP); /* * Blocks act as the IV for the encryption. These block numbers * are relative to the start of the sr partition, but the 'blkno' * passed above is relative to the start of the swap partition * inside the sr partition, so bias appropriately. */ key_blkno = my->sr_swapoff + blkno; /* Process each disk block one at a time. */ for (i = 0; i < size; i += DEV_BSIZE) { int res; bzero(&ctx, sizeof(ctx)); /* * Set encryption key (from the sr discipline stashed * during HIB_INIT. This code is based on the softraid * bootblock code. */ aes_xts_setkey(&ctx, my->srd->mds.mdd_crypto.scr_key[0], 64); /* We encrypt DEV_BSIZE bytes at a time in my->buf */ memcpy(my->buf, ((char *)addr) + i, DEV_BSIZE); /* Block number is the IV */ memcpy(&iv, &key_blkno, sizeof(key_blkno)); aes_xts_reinit(&ctx, iv); /* Encrypt DEV_BSIZE bytes, AES_XTS_BLOCKSIZE bytes at a time */ for (j = 0; j < DEV_BSIZE; j += AES_XTS_BLOCKSIZE) aes_xts_encrypt(&ctx, my->buf + j); /* * Write one block out from my->buf to the underlying device * using its own side-effect free I/O function. */ res = my->subfn(my->subdev, blkno + (i / DEV_BSIZE), (vaddr_t)(my->buf), DEV_BSIZE, op, page); if (res != 0) return (res); key_blkno++; } return (0); } #endif /* HIBERNATE */