/* $OpenBSD: softraid.c,v 1.210 2010/07/03 03:04:55 tedu Exp $ */ /* * Copyright (c) 2007, 2008, 2009 Marco Peereboom * Copyright (c) 2008 Chris Kuethe * Copyright (c) 2009 Joel Sing * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef AOE #include #include #endif /* AOE */ #include #include #include #include #include #include /* #define SR_FANCY_STATS */ #ifdef SR_DEBUG #define SR_FANCY_STATS uint32_t sr_debug = 0 /* | SR_D_CMD */ /* | SR_D_MISC */ /* | SR_D_INTR */ /* | SR_D_IOCTL */ /* | SR_D_CCB */ /* | SR_D_WU */ /* | SR_D_META */ /* | SR_D_DIS */ /* | SR_D_STATE */ ; #endif int sr_match(struct device *, void *, void *); void sr_attach(struct device *, struct device *, void *); int sr_detach(struct device *, int); int sr_activate(struct device *, int); struct cfattach softraid_ca = { sizeof(struct sr_softc), sr_match, sr_attach, sr_detach, sr_activate }; struct cfdriver softraid_cd = { NULL, "softraid", DV_DULL }; /* scsi & discipline */ void sr_scsi_cmd(struct scsi_xfer *); void sr_minphys(struct buf *bp, struct scsi_link *sl); void sr_copy_internal_data(struct scsi_xfer *, void *, size_t); int sr_scsi_ioctl(struct scsi_link *, u_long, caddr_t, int); int sr_ioctl(struct device *, u_long, caddr_t); int sr_ioctl_inq(struct sr_softc *, struct bioc_inq *); int sr_ioctl_vol(struct sr_softc *, struct bioc_vol *); int sr_ioctl_disk(struct sr_softc *, struct bioc_disk *); int sr_ioctl_setstate(struct sr_softc *, struct bioc_setstate *); int sr_ioctl_createraid(struct sr_softc *, struct bioc_createraid *, int); int sr_ioctl_deleteraid(struct sr_softc *, struct bioc_deleteraid *); int sr_ioctl_discipline(struct sr_softc *, struct bioc_discipline *); int sr_ioctl_installboot(struct sr_softc *, struct bioc_installboot *); void sr_chunks_unwind(struct sr_softc *, struct sr_chunk_head *); void sr_discipline_free(struct sr_discipline *); void sr_discipline_shutdown(struct sr_discipline *); int sr_discipline_init(struct sr_discipline *, int); /* utility functions */ void sr_shutdown(void *); void sr_uuid_get(struct sr_uuid *); void sr_uuid_print(struct sr_uuid *, int); void sr_checksum_print(u_int8_t *); int sr_boot_assembly(struct sr_softc *); int sr_already_assembled(struct sr_discipline *); int sr_hotspare(struct sr_softc *, dev_t); void sr_hotspare_rebuild(struct sr_discipline *); int sr_rebuild_init(struct sr_discipline *, dev_t, int); void sr_rebuild(void *); void sr_rebuild_thread(void *); void sr_roam_chunks(struct sr_discipline *); int sr_chunk_in_use(struct sr_softc *, dev_t); /* don't include these on RAMDISK */ #ifndef SMALL_KERNEL void sr_sensors_refresh(void *); int sr_sensors_create(struct sr_discipline *); void sr_sensors_delete(struct sr_discipline *); #endif /* metadata */ int sr_meta_probe(struct sr_discipline *, dev_t *, int); int sr_meta_attach(struct sr_discipline *, int, int); int sr_meta_rw(struct sr_discipline *, dev_t, void *, size_t, daddr64_t, long); int sr_meta_clear(struct sr_discipline *); void sr_meta_chunks_create(struct sr_softc *, struct sr_chunk_head *); void sr_meta_init(struct sr_discipline *, struct sr_chunk_head *); void sr_meta_opt_load(struct sr_discipline *, struct sr_meta_opt *); /* hotplug magic */ void sr_disk_attach(struct disk *, int); struct sr_hotplug_list { void (*sh_hotplug)(struct sr_discipline *, struct disk *, int); struct sr_discipline *sh_sd; SLIST_ENTRY(sr_hotplug_list) shl_link; }; SLIST_HEAD(sr_hotplug_list_head, sr_hotplug_list); struct sr_hotplug_list_head sr_hotplug_callbacks; extern void (*softraid_disk_attach)(struct disk *, int); /* scsi glue */ struct scsi_adapter sr_switch = { sr_scsi_cmd, sr_minphys, NULL, NULL, sr_scsi_ioctl }; /* native metadata format */ int sr_meta_native_bootprobe(struct sr_softc *, struct device *, struct sr_metadata_list_head *); #define SR_META_NOTCLAIMED (0) #define SR_META_CLAIMED (1) int sr_meta_native_probe(struct sr_softc *, struct sr_chunk *); int sr_meta_native_attach(struct sr_discipline *, int); int sr_meta_native_write(struct sr_discipline *, dev_t, struct sr_metadata *,void *); #ifdef SR_DEBUG void sr_meta_print(struct sr_metadata *); #else #define sr_meta_print(m) #endif /* the metadata driver should remain stateless */ struct sr_meta_driver { daddr64_t smd_offset; /* metadata location */ u_int32_t smd_size; /* size of metadata */ int (*smd_probe)(struct sr_softc *, struct sr_chunk *); int (*smd_attach)(struct sr_discipline *, int); int (*smd_detach)(struct sr_discipline *); int (*smd_read)(struct sr_discipline *, dev_t, struct sr_metadata *, void *); int (*smd_write)(struct sr_discipline *, dev_t, struct sr_metadata *, void *); int (*smd_validate)(struct sr_discipline *, struct sr_metadata *, void *); } smd[] = { { SR_META_OFFSET, SR_META_SIZE * 512, sr_meta_native_probe, sr_meta_native_attach, NULL, sr_meta_native_read, sr_meta_native_write, NULL }, { 0, 0, NULL, NULL, NULL, NULL } }; int sr_meta_attach(struct sr_discipline *sd, int chunk_no, int force) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl; struct sr_chunk *ch_entry, *chunk1, *chunk2; int rv = 1, i = 0; DNPRINTF(SR_D_META, "%s: sr_meta_attach(%d)\n", DEVNAME(sc)); /* in memory copy of metadata */ sd->sd_meta = malloc(SR_META_SIZE * 512, M_DEVBUF, M_ZERO | M_NOWAIT); if (!sd->sd_meta) { printf("%s: could not allocate memory for metadata\n", DEVNAME(sc)); goto bad; } if (sd->sd_meta_type != SR_META_F_NATIVE) { /* in memory copy of foreign metadata */ sd->sd_meta_foreign = malloc(smd[sd->sd_meta_type].smd_size, M_DEVBUF, M_ZERO | M_NOWAIT); if (!sd->sd_meta_foreign) { /* unwind frees sd_meta */ printf("%s: could not allocate memory for foreign " "metadata\n", DEVNAME(sc)); goto bad; } } /* we have a valid list now create an array index */ cl = &sd->sd_vol.sv_chunk_list; sd->sd_vol.sv_chunks = malloc(sizeof(struct sr_chunk *) * chunk_no, M_DEVBUF, M_WAITOK | M_ZERO); /* fill out chunk array */ i = 0; SLIST_FOREACH(ch_entry, cl, src_link) sd->sd_vol.sv_chunks[i++] = ch_entry; /* attach metadata */ if (smd[sd->sd_meta_type].smd_attach(sd, force)) goto bad; /* Force chunks into correct order now that metadata is attached. */ SLIST_FOREACH(ch_entry, cl, src_link) SLIST_REMOVE(cl, ch_entry, sr_chunk, src_link); for (i = 0; i < chunk_no; i++) { ch_entry = sd->sd_vol.sv_chunks[i]; chunk2 = NULL; SLIST_FOREACH(chunk1, cl, src_link) { if (chunk1->src_meta.scmi.scm_chunk_id > ch_entry->src_meta.scmi.scm_chunk_id) break; chunk2 = chunk1; } if (chunk2 == NULL) SLIST_INSERT_HEAD(cl, ch_entry, src_link); else SLIST_INSERT_AFTER(chunk2, ch_entry, src_link); } i = 0; SLIST_FOREACH(ch_entry, cl, src_link) sd->sd_vol.sv_chunks[i++] = ch_entry; rv = 0; bad: return (rv); } int sr_meta_probe(struct sr_discipline *sd, dev_t *dt, int no_chunk) { struct sr_softc *sc = sd->sd_sc; struct vnode *vn; struct sr_chunk *ch_entry, *ch_prev = NULL; struct sr_chunk_head *cl; char devname[32]; int i, d, type, found, prevf, error; dev_t dev; DNPRINTF(SR_D_META, "%s: sr_meta_probe(%d)\n", DEVNAME(sc), no_chunk); if (no_chunk == 0) goto unwind; cl = &sd->sd_vol.sv_chunk_list; for (d = 0, prevf = SR_META_F_INVALID; d < no_chunk; d++) { ch_entry = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); /* keep disks in user supplied order */ if (ch_prev) SLIST_INSERT_AFTER(ch_prev, ch_entry, src_link); else SLIST_INSERT_HEAD(cl, ch_entry, src_link); ch_prev = ch_entry; dev = dt[d]; ch_entry->src_dev_mm = dev; if (dev == NODEV) { ch_entry->src_meta.scm_status = BIOC_SDOFFLINE; continue; } else { sr_meta_getdevname(sc, dev, devname, sizeof(devname)); if (bdevvp(dev, &vn)) { printf("%s:, sr_meta_probe: can't allocate " "vnode\n", DEVNAME(sc)); goto unwind; } /* * XXX leaving dev open for now; move this to attach * and figure out the open/close dance for unwind. */ error = VOP_OPEN(vn, FREAD | FWRITE, NOCRED, 0); if (error) { DNPRINTF(SR_D_META,"%s: sr_meta_probe can't " "open %s\n", DEVNAME(sc), devname); vput(vn); goto unwind; } strlcpy(ch_entry->src_devname, devname, sizeof(ch_entry->src_devname)); ch_entry->src_vn = vn; } /* determine if this is a device we understand */ for (i = 0, found = SR_META_F_INVALID; smd[i].smd_probe; i++) { type = smd[i].smd_probe(sc, ch_entry); if (type == SR_META_F_INVALID) continue; else { found = type; break; } } if (found == SR_META_F_INVALID) goto unwind; if (prevf == SR_META_F_INVALID) prevf = found; if (prevf != found) { DNPRINTF(SR_D_META, "%s: prevf != found\n", DEVNAME(sc)); goto unwind; } } return (prevf); unwind: return (SR_META_F_INVALID); } void sr_meta_getdevname(struct sr_softc *sc, dev_t dev, char *buf, int size) { int maj, unit, part; char *name; DNPRINTF(SR_D_META, "%s: sr_meta_getdevname(%p, %d)\n", DEVNAME(sc), buf, size); if (!buf) return; maj = major(dev); part = DISKPART(dev); unit = DISKUNIT(dev); name = findblkname(maj); if (name == NULL) return; snprintf(buf, size, "%s%d%c", name, unit, part + 'a'); } int sr_meta_rw(struct sr_discipline *sd, dev_t dev, void *md, size_t sz, daddr64_t ofs, long flags) { struct sr_softc *sc = sd->sd_sc; struct buf b; int rv = 1; DNPRINTF(SR_D_META, "%s: sr_meta_rw(0x%x, %p, %d, %llu 0x%x)\n", DEVNAME(sc), dev, md, sz, ofs, flags); bzero(&b, sizeof(b)); if (md == NULL) { printf("%s: read invalid metadata pointer\n", DEVNAME(sc)); goto done; } b.b_flags = flags | B_PHYS; b.b_blkno = ofs; b.b_bcount = sz; b.b_bufsize = sz; b.b_resid = sz; b.b_data = md; b.b_error = 0; b.b_proc = curproc; b.b_dev = dev; b.b_iodone = NULL; if (bdevvp(dev, &b.b_vp)) { printf("%s: sr_meta_rw: can't allocate vnode\n", DEVNAME(sc)); goto done; } if ((b.b_flags & B_READ) == 0) b.b_vp->v_numoutput++; LIST_INIT(&b.b_dep); VOP_STRATEGY(&b); biowait(&b); if (b.b_flags & B_ERROR) { printf("%s: 0x%x i/o error on block %llu while reading " "metadata %d\n", DEVNAME(sc), dev, b.b_blkno, b.b_error); goto done; } rv = 0; done: if (b.b_vp) vput(b.b_vp); return (rv); } int sr_meta_clear(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list; struct sr_chunk *ch_entry; void *m; int rv = 1; DNPRINTF(SR_D_META, "%s: sr_meta_clear\n", DEVNAME(sc)); if (sd->sd_meta_type != SR_META_F_NATIVE) { printf("%s: sr_meta_clear can not clear foreign metadata\n", DEVNAME(sc)); goto done; } m = malloc(SR_META_SIZE * 512, M_DEVBUF, M_WAITOK | M_ZERO); SLIST_FOREACH(ch_entry, cl, src_link) { if (sr_meta_native_write(sd, ch_entry->src_dev_mm, m, NULL)) { /* XXX mark disk offline */ DNPRINTF(SR_D_META, "%s: sr_meta_clear failed to " "clear %s\n", ch_entry->src_devname); rv++; continue; } bzero(&ch_entry->src_meta, sizeof(ch_entry->src_meta)); } bzero(sd->sd_meta, SR_META_SIZE * 512); free(m, M_DEVBUF); rv = 0; done: return (rv); } void sr_meta_chunks_create(struct sr_softc *sc, struct sr_chunk_head *cl) { struct sr_chunk *ch_entry; struct sr_uuid uuid; int cid = 0; char *name; u_int64_t max_chunk_sz = 0, min_chunk_sz; DNPRINTF(SR_D_META, "%s: sr_meta_chunks_create\n", DEVNAME(sc)); sr_uuid_get(&uuid); /* fill out stuff and get largest chunk size while looping */ SLIST_FOREACH(ch_entry, cl, src_link) { name = ch_entry->src_devname; ch_entry->src_meta.scmi.scm_size = ch_entry->src_size; ch_entry->src_meta.scmi.scm_chunk_id = cid++; ch_entry->src_meta.scm_status = BIOC_SDONLINE; strlcpy(ch_entry->src_meta.scmi.scm_devname, name, sizeof(ch_entry->src_meta.scmi.scm_devname)); bcopy(&uuid, &ch_entry->src_meta.scmi.scm_uuid, sizeof(ch_entry->src_meta.scmi.scm_uuid)); if (ch_entry->src_meta.scmi.scm_size > max_chunk_sz) max_chunk_sz = ch_entry->src_meta.scmi.scm_size; } /* get smallest chunk size */ min_chunk_sz = max_chunk_sz; SLIST_FOREACH(ch_entry, cl, src_link) if (ch_entry->src_meta.scmi.scm_size < min_chunk_sz) min_chunk_sz = ch_entry->src_meta.scmi.scm_size; /* equalize all sizes */ SLIST_FOREACH(ch_entry, cl, src_link) ch_entry->src_meta.scmi.scm_coerced_size = min_chunk_sz; /* whine if chunks are not the same size */ if (min_chunk_sz != max_chunk_sz) printf("%s: chunk sizes are not equal; up to %llu blocks " "wasted per chunk\n", DEVNAME(sc), max_chunk_sz - min_chunk_sz); } void sr_meta_init(struct sr_discipline *sd, struct sr_chunk_head *cl) { struct sr_softc *sc = sd->sd_sc; struct sr_metadata *sm = sd->sd_meta; struct sr_meta_chunk *im_sc; int i, chunk_no; DNPRINTF(SR_D_META, "%s: sr_meta_init\n", DEVNAME(sc)); if (!sm) return; /* initial metadata */ sm->ssdi.ssd_magic = SR_MAGIC; sm->ssdi.ssd_version = SR_META_VERSION; sm->ssd_ondisk = 0; sm->ssdi.ssd_vol_flags = sd->sd_meta_flags; sm->ssd_data_offset = SR_DATA_OFFSET; /* get uuid from chunk 0 */ bcopy(&sd->sd_vol.sv_chunks[0]->src_meta.scmi.scm_uuid, &sm->ssdi.ssd_uuid, sizeof(struct sr_uuid)); /* volume is filled in createraid */ /* add missing chunk bits */ chunk_no = sm->ssdi.ssd_chunk_no; for (i = 0; i < chunk_no; i++) { im_sc = &sd->sd_vol.sv_chunks[i]->src_meta; im_sc->scmi.scm_volid = sm->ssdi.ssd_volid; sr_checksum(sc, im_sc, &im_sc->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); } } void sr_meta_opt_load(struct sr_discipline *sd, struct sr_meta_opt *om) { if (om->somi.som_type == SR_OPT_BOOT) { } else panic("unknown optional metadata type"); } void sr_meta_save_callback(void *arg1, void *arg2) { struct sr_discipline *sd = arg1; int s; s = splbio(); if (sr_meta_save(arg1, SR_META_DIRTY)) printf("%s: save metadata failed\n", DEVNAME(sd->sd_sc)); sd->sd_must_flush = 0; splx(s); } int sr_meta_save(struct sr_discipline *sd, u_int32_t flags) { struct sr_softc *sc = sd->sd_sc; struct sr_metadata *sm = sd->sd_meta, *m; struct sr_meta_driver *s; struct sr_chunk *src; struct sr_meta_chunk *cm; struct sr_workunit wu; struct sr_meta_opt_item *omi; struct sr_meta_opt *om; int i; DNPRINTF(SR_D_META, "%s: sr_meta_save %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); if (!sm) { printf("%s: no in memory copy of metadata\n", DEVNAME(sc)); goto bad; } /* meta scratchpad */ s = &smd[sd->sd_meta_type]; m = malloc(SR_META_SIZE * 512, M_DEVBUF, M_ZERO | M_NOWAIT); if (!m) { printf("%s: could not allocate metadata scratch area\n", DEVNAME(sc)); goto bad; } /* from here on out metadata is updated */ restart: sm->ssd_ondisk++; sm->ssd_meta_flags = flags; bcopy(sm, m, sizeof(*m)); /* Chunk metadata. */ cm = (struct sr_meta_chunk *)(m + 1); for (i = 0; i < sm->ssdi.ssd_chunk_no; i++) { src = sd->sd_vol.sv_chunks[i]; bcopy(&src->src_meta, cm, sizeof(*cm)); cm++; } /* Optional metadata. */ om = (struct sr_meta_opt *)(cm); SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link) { bcopy(&omi->omi_om, om, sizeof(*om)); sr_checksum(sc, om, &om->som_checksum, sizeof(struct sr_meta_opt_invariant)); om++; } for (i = 0; i < sm->ssdi.ssd_chunk_no; i++) { src = sd->sd_vol.sv_chunks[i]; /* skip disks that are offline */ if (src->src_meta.scm_status == BIOC_SDOFFLINE) continue; /* calculate metadata checksum for correct chunk */ m->ssdi.ssd_chunk_id = i; sr_checksum(sc, m, &m->ssd_checksum, sizeof(struct sr_meta_invariant)); #ifdef SR_DEBUG DNPRINTF(SR_D_META, "%s: sr_meta_save %s: volid: %d " "chunkid: %d checksum: ", DEVNAME(sc), src->src_meta.scmi.scm_devname, m->ssdi.ssd_volid, m->ssdi.ssd_chunk_id); if (sr_debug & SR_D_META) sr_checksum_print((u_int8_t *)&m->ssd_checksum); DNPRINTF(SR_D_META, "\n"); sr_meta_print(m); #endif /* translate and write to disk */ if (s->smd_write(sd, src->src_dev_mm, m, NULL /* XXX */)) { printf("%s: could not write metadata to %s\n", DEVNAME(sc), src->src_devname); /* restart the meta write */ src->src_meta.scm_status = BIOC_SDOFFLINE; /* XXX recalculate volume status */ goto restart; } } /* not all disciplines have sync */ if (sd->sd_scsi_sync) { bzero(&wu, sizeof(wu)); wu.swu_fake = 1; wu.swu_dis = sd; sd->sd_scsi_sync(&wu); } free(m, M_DEVBUF); return (0); bad: return (1); } int sr_meta_read(struct sr_discipline *sd) { #ifdef SR_DEBUG struct sr_softc *sc = sd->sd_sc; #endif struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list; struct sr_metadata *sm; struct sr_chunk *ch_entry; struct sr_meta_chunk *cp; struct sr_meta_driver *s; struct sr_meta_opt_item *omi; struct sr_meta_opt *om; void *fm = NULL; int i, no_disk = 0, got_meta = 0; DNPRINTF(SR_D_META, "%s: sr_meta_read\n", DEVNAME(sc)); sm = malloc(SR_META_SIZE * 512, M_DEVBUF, M_WAITOK | M_ZERO); s = &smd[sd->sd_meta_type]; if (sd->sd_meta_type != SR_META_F_NATIVE) fm = malloc(s->smd_size, M_DEVBUF, M_WAITOK | M_ZERO); cp = (struct sr_meta_chunk *)(sm + 1); SLIST_FOREACH(ch_entry, cl, src_link) { /* skip disks that are offline */ if (ch_entry->src_meta.scm_status == BIOC_SDOFFLINE) { DNPRINTF(SR_D_META, "%s: %s chunk marked offline, spoofing status\n", DEVNAME(sc), ch_entry->src_devname); cp++; /* adjust chunk pointer to match failure */ continue; } else if (s->smd_read(sd, ch_entry->src_dev_mm, sm, fm)) { /* read and translate */ /* XXX mark chunk offline, elsewhere!! */ ch_entry->src_meta.scm_status = BIOC_SDOFFLINE; cp++; /* adjust chunk pointer to match failure */ DNPRINTF(SR_D_META, "%s: sr_meta_read failed\n", DEVNAME(sc)); continue; } if (sm->ssdi.ssd_magic != SR_MAGIC) { DNPRINTF(SR_D_META, "%s: sr_meta_read !SR_MAGIC\n", DEVNAME(sc)); continue; } /* validate metadata */ if (sr_meta_validate(sd, ch_entry->src_dev_mm, sm, fm)) { DNPRINTF(SR_D_META, "%s: invalid metadata\n", DEVNAME(sc)); no_disk = -1; goto done; } /* assume first chunk contains metadata */ if (got_meta == 0) { bcopy(sm, sd->sd_meta, sizeof(*sd->sd_meta)); got_meta = 1; } bcopy(cp, &ch_entry->src_meta, sizeof(ch_entry->src_meta)); /* Process optional metadata. */ om = (struct sr_meta_opt *) ((u_int8_t *)(sm + 1) + sizeof(struct sr_meta_chunk) * sm->ssdi.ssd_chunk_no); for (i = 0; i < sm->ssdi.ssd_opt_no; i++) { omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF, M_WAITOK | M_ZERO); bcopy(om, &omi->omi_om, sizeof(struct sr_meta_opt)); SLIST_INSERT_HEAD(&sd->sd_meta_opt, omi, omi_link); /* See if discipline wants to handle it. */ if (sd->sd_meta_opt_load && sd->sd_meta_opt_load(sd, &omi->omi_om) == 0) continue; else sr_meta_opt_load(sd, &omi->omi_om); om++; } cp++; no_disk++; } free(sm, M_DEVBUF); if (fm) free(fm, M_DEVBUF); done: DNPRINTF(SR_D_META, "%s: sr_meta_read found %d parts\n", DEVNAME(sc), no_disk); return (no_disk); } int sr_meta_validate(struct sr_discipline *sd, dev_t dev, struct sr_metadata *sm, void *fm) { struct sr_softc *sc = sd->sd_sc; struct sr_meta_driver *s; #ifdef SR_DEBUG struct sr_meta_chunk *mc; #endif char devname[32]; int rv = 1; u_int8_t checksum[MD5_DIGEST_LENGTH]; DNPRINTF(SR_D_META, "%s: sr_meta_validate(%p)\n", DEVNAME(sc), sm); sr_meta_getdevname(sc, dev, devname, sizeof(devname)); s = &smd[sd->sd_meta_type]; if (sd->sd_meta_type != SR_META_F_NATIVE) if (s->smd_validate(sd, sm, fm)) { printf("%s: invalid foreign metadata\n", DEVNAME(sc)); goto done; } /* * at this point all foreign metadata has been translated to the native * format and will be treated just like the native format */ if (sm->ssdi.ssd_magic != SR_MAGIC) { printf("%s: not valid softraid metadata\n", DEVNAME(sc)); goto done; } /* Verify metadata checksum. */ sr_checksum(sc, sm, &checksum, sizeof(struct sr_meta_invariant)); if (bcmp(&checksum, &sm->ssd_checksum, sizeof(checksum))) { printf("%s: invalid metadata checksum\n", DEVNAME(sc)); goto done; } /* Handle changes between versions. */ if (sm->ssdi.ssd_version == 3) { /* * Version 3 - update metadata version and fix up data offset * value since this did not exist in version 3. */ sm->ssdi.ssd_version = SR_META_VERSION; snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision), "%03d", SR_META_VERSION); if (sm->ssd_data_offset == 0) sm->ssd_data_offset = SR_META_V3_DATA_OFFSET; } else if (sm->ssdi.ssd_version == SR_META_VERSION) { /* * Version 4 - original metadata format did not store * data offset so fix this up if necessary. */ if (sm->ssd_data_offset == 0) sm->ssd_data_offset = SR_DATA_OFFSET; } else { printf("%s: %s can not read metadata version %u, expected %u\n", DEVNAME(sc), devname, sm->ssdi.ssd_version, SR_META_VERSION); goto done; } #ifdef SR_DEBUG /* warn if disk changed order */ mc = (struct sr_meta_chunk *)(sm + 1); if (strncmp(mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname, devname, sizeof(mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname))) DNPRINTF(SR_D_META, "%s: roaming device %s -> %s\n", DEVNAME(sc), mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname, devname); #endif /* we have meta data on disk */ DNPRINTF(SR_D_META, "%s: sr_meta_validate valid metadata %s\n", DEVNAME(sc), devname); rv = 0; done: return (rv); } int sr_meta_native_bootprobe(struct sr_softc *sc, struct device *dv, struct sr_metadata_list_head *mlh) { struct vnode *vn; struct disklabel label; struct sr_metadata *md = NULL; struct sr_discipline *fake_sd = NULL; struct sr_metadata_list *mle; char devname[32]; dev_t dev, devr; int error, i, majdev; int rv = SR_META_NOTCLAIMED; DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe\n", DEVNAME(sc)); majdev = findblkmajor(dv); if (majdev == -1) goto done; dev = MAKEDISKDEV(majdev, dv->dv_unit, RAW_PART); /* * Use character raw device to avoid SCSI complaints about missing * media on removable media devices. */ dev = MAKEDISKDEV(major(blktochr(dev)), dv->dv_unit, RAW_PART); if (cdevvp(dev, &vn)) { printf("%s:, sr_meta_native_bootprobe: can't allocate vnode\n", DEVNAME(sc)); goto done; } /* open device */ error = VOP_OPEN(vn, FREAD, NOCRED, 0); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe open " "failed\n", DEVNAME(sc)); vput(vn); goto done; } /* get disklabel */ error = VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, 0); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe ioctl " "failed\n", DEVNAME(sc)); VOP_CLOSE(vn, FREAD, NOCRED, 0); vput(vn); goto done; } /* we are done, close device */ error = VOP_CLOSE(vn, FREAD, NOCRED, 0); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe close " "failed\n", DEVNAME(sc)); vput(vn); goto done; } vput(vn); md = malloc(SR_META_SIZE * 512, M_DEVBUF, M_ZERO | M_NOWAIT); if (md == NULL) { printf("%s: not enough memory for metadata buffer\n", DEVNAME(sc)); goto done; } /* create fake sd to use utility functions */ fake_sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_ZERO | M_NOWAIT); if (fake_sd == NULL) { printf("%s: not enough memory for fake discipline\n", DEVNAME(sc)); goto done; } fake_sd->sd_sc = sc; fake_sd->sd_meta_type = SR_META_F_NATIVE; for (i = 0; i < MAXPARTITIONS; i++) { if (label.d_partitions[i].p_fstype != FS_RAID) continue; /* open partition */ devr = MAKEDISKDEV(majdev, dv->dv_unit, i); if (bdevvp(devr, &vn)) { printf("%s:, sr_meta_native_bootprobe: can't allocate " "vnode for partition\n", DEVNAME(sc)); goto done; } error = VOP_OPEN(vn, FREAD, NOCRED, 0); if (error) { DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe " "open failed, partition %d\n", DEVNAME(sc), i); vput(vn); continue; } if (sr_meta_native_read(fake_sd, devr, md, NULL)) { printf("%s: native bootprobe could not read native " "metadata\n", DEVNAME(sc)); VOP_CLOSE(vn, FREAD, NOCRED, 0); vput(vn); continue; } /* are we a softraid partition? */ if (md->ssdi.ssd_magic != SR_MAGIC) { VOP_CLOSE(vn, FREAD, NOCRED, 0); vput(vn); continue; } sr_meta_getdevname(sc, devr, devname, sizeof(devname)); if (sr_meta_validate(fake_sd, devr, md, NULL) == 0) { if (md->ssdi.ssd_vol_flags & BIOC_SCNOAUTOASSEMBLE) { DNPRINTF(SR_D_META, "%s: don't save %s\n", DEVNAME(sc), devname); } else { /* XXX fix M_WAITOK, this is boot time */ mle = malloc(sizeof(*mle), M_DEVBUF, M_WAITOK | M_ZERO); bcopy(md, &mle->sml_metadata, SR_META_SIZE * 512); mle->sml_mm = devr; SLIST_INSERT_HEAD(mlh, mle, sml_link); rv = SR_META_CLAIMED; } } /* we are done, close partition */ VOP_CLOSE(vn, FREAD, NOCRED, 0); vput(vn); } done: if (fake_sd) free(fake_sd, M_DEVBUF); if (md) free(md, M_DEVBUF); return (rv); } int sr_boot_assembly(struct sr_softc *sc) { struct device *dv; struct bioc_createraid bc; struct sr_metadata_list_head mlh, kdh; struct sr_metadata_list *mle, *mlenext, *mle1, *mle2; struct sr_metadata *metadata; struct sr_boot_volume_head bvh; struct sr_boot_volume *vol, *vp1, *vp2; struct sr_meta_chunk *hm; struct sr_chunk_head *cl; struct sr_chunk *hotspare, *chunk, *last; u_int32_t chunk_id; u_int64_t *ondisk = NULL; dev_t *devs = NULL; char devname[32]; int rv = 0, i; DNPRINTF(SR_D_META, "%s: sr_boot_assembly\n", DEVNAME(sc)); SLIST_INIT(&mlh); TAILQ_FOREACH(dv, &alldevs, dv_list) { if (dv->dv_class != DV_DISK) continue; /* Only check sd(4) and wd(4) devices. */ if (strcmp(dv->dv_cfdata->cf_driver->cd_name, "sd") && strcmp(dv->dv_cfdata->cf_driver->cd_name, "wd")) continue; /* native softraid uses partitions */ if (sr_meta_native_bootprobe(sc, dv, &mlh) == SR_META_CLAIMED) continue; /* probe non-native disks */ } /* * Create a list of volumes and associate chunks with each volume. */ SLIST_INIT(&bvh); SLIST_INIT(&kdh); for (mle = SLIST_FIRST(&mlh); mle != SLIST_END(&mlh); mle = mlenext) { mlenext = SLIST_NEXT(mle, sml_link); SLIST_REMOVE(&mlh, mle, sr_metadata_list, sml_link); metadata = (struct sr_metadata *)&mle->sml_metadata; mle->sml_chunk_id = metadata->ssdi.ssd_chunk_id; /* Handle key disks separately. */ if (metadata->ssdi.ssd_level == SR_KEYDISK_LEVEL) { SLIST_INSERT_HEAD(&kdh, mle, sml_link); continue; } SLIST_FOREACH(vol, &bvh, sbv_link) { if (bcmp(&metadata->ssdi.ssd_uuid, &vol->sbv_uuid, sizeof(metadata->ssdi.ssd_uuid)) == 0) break; } if (vol == NULL) { vol = malloc(sizeof(struct sr_boot_volume), M_DEVBUF, M_NOWAIT | M_CANFAIL | M_ZERO); if (vol == NULL) { printf("%s: failed to allocate boot volume!\n", DEVNAME(sc)); goto unwind; } vol->sbv_level = metadata->ssdi.ssd_level; vol->sbv_volid = metadata->ssdi.ssd_volid; vol->sbv_chunk_no = metadata->ssdi.ssd_chunk_no; bcopy(&metadata->ssdi.ssd_uuid, &vol->sbv_uuid, sizeof(metadata->ssdi.ssd_uuid)); SLIST_INIT(&vol->sml); /* Maintain volume order. */ vp2 = NULL; SLIST_FOREACH(vp1, &bvh, sbv_link) { if (vp1->sbv_volid > vol->sbv_volid) break; vp2 = vp1; } if (vp2 == NULL) { DNPRINTF(SR_D_META, "%s: insert volume %u " "at head\n", DEVNAME(sc), vol->sbv_volid); SLIST_INSERT_HEAD(&bvh, vol, sbv_link); } else { DNPRINTF(SR_D_META, "%s: insert volume %u " "after %u\n", DEVNAME(sc), vol->sbv_volid, vp2->sbv_volid); SLIST_INSERT_AFTER(vp2, vol, sbv_link); } } /* Maintain chunk order. */ mle2 = NULL; SLIST_FOREACH(mle1, &vol->sml, sml_link) { if (mle1->sml_chunk_id > mle->sml_chunk_id) break; mle2 = mle1; } if (mle2 == NULL) { DNPRINTF(SR_D_META, "%s: volume %u insert chunk %u " "at head\n", DEVNAME(sc), vol->sbv_volid, mle->sml_chunk_id); SLIST_INSERT_HEAD(&vol->sml, mle, sml_link); } else { DNPRINTF(SR_D_META, "%s: volume %u insert chunk %u " "after %u\n", DEVNAME(sc), vol->sbv_volid, mle->sml_chunk_id, mle2->sml_chunk_id); SLIST_INSERT_AFTER(mle2, mle, sml_link); } vol->sbv_dev_no++; } /* Allocate memory for device and ondisk version arrays. */ devs = malloc(BIOC_CRMAXLEN * sizeof(dev_t), M_DEVBUF, M_NOWAIT | M_CANFAIL); if (devs == NULL) { printf("%s: failed to allocate device array\n", DEVNAME(sc)); goto unwind; } ondisk = malloc(BIOC_CRMAXLEN * sizeof(u_int64_t), M_DEVBUF, M_NOWAIT | M_CANFAIL); if (ondisk == NULL) { printf("%s: failed to allocate ondisk array\n", DEVNAME(sc)); goto unwind; } /* * Assemble hotspare "volumes". */ SLIST_FOREACH(vol, &bvh, sbv_link) { /* Check if this is a hotspare "volume". */ if (vol->sbv_level != SR_HOTSPARE_LEVEL || vol->sbv_chunk_no != 1) continue; #ifdef SR_DEBUG DNPRINTF(SR_D_META, "%s: assembling hotspare volume ", DEVNAME(sc)); if (sr_debug & SR_D_META) sr_uuid_print(&vol->sbv_uuid, 0); DNPRINTF(SR_D_META, " volid %u with %u chunks\n", vol->sbv_volid, vol->sbv_chunk_no); #endif /* Create hotspare chunk metadata. */ hotspare = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_NOWAIT | M_CANFAIL | M_ZERO); if (hotspare == NULL) { printf("%s: failed to allocate hotspare\n", DEVNAME(sc)); goto unwind; } mle = SLIST_FIRST(&vol->sml); sr_meta_getdevname(sc, mle->sml_mm, devname, sizeof(devname)); hotspare->src_dev_mm = mle->sml_mm; strlcpy(hotspare->src_devname, devname, sizeof(hotspare->src_devname)); hotspare->src_size = metadata->ssdi.ssd_size; hm = &hotspare->src_meta; hm->scmi.scm_volid = SR_HOTSPARE_VOLID; hm->scmi.scm_chunk_id = 0; hm->scmi.scm_size = metadata->ssdi.ssd_size; hm->scmi.scm_coerced_size = metadata->ssdi.ssd_size; strlcpy(hm->scmi.scm_devname, devname, sizeof(hm->scmi.scm_devname)); bcopy(&metadata->ssdi.ssd_uuid, &hm->scmi.scm_uuid, sizeof(struct sr_uuid)); sr_checksum(sc, hm, &hm->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); hm->scm_status = BIOC_SDHOTSPARE; /* Add chunk to hotspare list. */ rw_enter_write(&sc->sc_hs_lock); cl = &sc->sc_hotspare_list; if (SLIST_EMPTY(cl)) SLIST_INSERT_HEAD(cl, hotspare, src_link); else { SLIST_FOREACH(chunk, cl, src_link) last = chunk; SLIST_INSERT_AFTER(last, hotspare, src_link); } sc->sc_hotspare_no++; rw_exit_write(&sc->sc_hs_lock); } /* * Assemble RAID volumes. */ SLIST_FOREACH(vol, &bvh, sbv_link) { bzero(&bc, sizeof(bc)); /* Check if this is a hotspare "volume". */ if (vol->sbv_level == SR_HOTSPARE_LEVEL && vol->sbv_chunk_no == 1) continue; #ifdef SR_DEBUG DNPRINTF(SR_D_META, "%s: assembling volume ", DEVNAME(sc)); if (sr_debug & SR_D_META) sr_uuid_print(&vol->sbv_uuid, 0); DNPRINTF(SR_D_META, " volid %u with %u chunks\n", vol->sbv_volid, vol->sbv_chunk_no); #endif /* * If this is a crypto volume, try to find a matching * key disk... */ bc.bc_key_disk = NODEV; if (vol->sbv_level == 'C') { SLIST_FOREACH(mle, &kdh, sml_link) { metadata = (struct sr_metadata *)&mle->sml_metadata; if (bcmp(&metadata->ssdi.ssd_uuid, &vol->sbv_uuid, sizeof(metadata->ssdi.ssd_uuid)) == 0) { bc.bc_key_disk = mle->sml_mm; } } } for (i = 0; i < BIOC_CRMAXLEN; i++) { devs[i] = NODEV; /* mark device as illegal */ ondisk[i] = 0; } SLIST_FOREACH(mle, &vol->sml, sml_link) { metadata = (struct sr_metadata *)&mle->sml_metadata; chunk_id = metadata->ssdi.ssd_chunk_id; if (devs[chunk_id] != NODEV) { vol->sbv_dev_no--; sr_meta_getdevname(sc, mle->sml_mm, devname, sizeof(devname)); printf("%s: found duplicate chunk %u for " "volume %u on device %s\n", DEVNAME(sc), chunk_id, vol->sbv_volid, devname); } if (devs[chunk_id] == NODEV || metadata->ssd_ondisk > ondisk[chunk_id]) { devs[chunk_id] = mle->sml_mm; ondisk[chunk_id] = metadata->ssd_ondisk; DNPRINTF(SR_D_META, "%s: using ondisk " "metadata version %llu for chunk %u\n", DEVNAME(sc), ondisk[chunk_id], chunk_id); } } if (vol->sbv_chunk_no != vol->sbv_dev_no) { printf("%s: not all chunks were provided; " "attempting to bring volume %d online\n", DEVNAME(sc), vol->sbv_volid); } bc.bc_level = vol->sbv_level; bc.bc_dev_list_len = vol->sbv_chunk_no * sizeof(dev_t); bc.bc_dev_list = devs; bc.bc_flags = BIOC_SCDEVT; rw_enter_write(&sc->sc_lock); sr_ioctl_createraid(sc, &bc, 0); rw_exit_write(&sc->sc_lock); rv++; } /* done with metadata */ unwind: for (vp1 = SLIST_FIRST(&bvh); vp1 != SLIST_END(&bvh); vp1 = vp2) { vp2 = SLIST_NEXT(vp1, sbv_link); for (mle1 = SLIST_FIRST(&vp1->sml); mle1 != SLIST_END(&vp1->sml); mle1 = mle2) { mle2 = SLIST_NEXT(mle1, sml_link); free(mle1, M_DEVBUF); } free(vp1, M_DEVBUF); } for (mle = SLIST_FIRST(&mlh); mle != SLIST_END(&mlh); mle = mle2) { mle2 = SLIST_NEXT(mle, sml_link); free(mle, M_DEVBUF); } SLIST_INIT(&mlh); if (devs) free(devs, M_DEVBUF); if (ondisk) free(ondisk, M_DEVBUF); return (rv); } int sr_meta_native_probe(struct sr_softc *sc, struct sr_chunk *ch_entry) { struct disklabel label; char *devname; int error, part; daddr64_t size; DNPRINTF(SR_D_META, "%s: sr_meta_native_probe(%s)\n", DEVNAME(sc), ch_entry->src_devname); devname = ch_entry->src_devname; part = DISKPART(ch_entry->src_dev_mm); /* get disklabel */ error = VOP_IOCTL(ch_entry->src_vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, 0); if (error) { DNPRINTF(SR_D_META, "%s: %s can't obtain disklabel\n", DEVNAME(sc), devname); goto unwind; } /* make sure the partition is of the right type */ if (label.d_partitions[part].p_fstype != FS_RAID) { DNPRINTF(SR_D_META, "%s: %s partition not of type RAID (%d)\n", DEVNAME(sc), devname, label.d_partitions[part].p_fstype); goto unwind; } size = DL_GETPSIZE(&label.d_partitions[part]) - SR_DATA_OFFSET; if (size <= 0) { DNPRINTF(SR_D_META, "%s: %s partition too small\n", DEVNAME(sc), devname); goto unwind; } ch_entry->src_size = size; DNPRINTF(SR_D_META, "%s: probe found %s size %d\n", DEVNAME(sc), devname, size); return (SR_META_F_NATIVE); unwind: DNPRINTF(SR_D_META, "%s: invalid device: %s\n", DEVNAME(sc), devname ? devname : "nodev"); return (SR_META_F_INVALID); } int sr_meta_native_attach(struct sr_discipline *sd, int force) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list; struct sr_metadata *md = NULL; struct sr_chunk *ch_entry, *ch_next; struct sr_uuid uuid; u_int64_t version = 0; int sr, not_sr, rv = 1, d, expected = -1, old_meta = 0; DNPRINTF(SR_D_META, "%s: sr_meta_native_attach\n", DEVNAME(sc)); md = malloc(SR_META_SIZE * 512, M_DEVBUF, M_ZERO | M_NOWAIT); if (md == NULL) { printf("%s: not enough memory for metadata buffer\n", DEVNAME(sc)); goto bad; } bzero(&uuid, sizeof uuid); sr = not_sr = d = 0; SLIST_FOREACH(ch_entry, cl, src_link) { if (ch_entry->src_dev_mm == NODEV) continue; if (sr_meta_native_read(sd, ch_entry->src_dev_mm, md, NULL)) { printf("%s: could not read native metadata\n", DEVNAME(sc)); goto bad; } if (md->ssdi.ssd_magic == SR_MAGIC) { sr++; ch_entry->src_meta.scmi.scm_chunk_id = md->ssdi.ssd_chunk_id; if (d == 0) { bcopy(&md->ssdi.ssd_uuid, &uuid, sizeof uuid); expected = md->ssdi.ssd_chunk_no; version = md->ssd_ondisk; d++; continue; } else if (bcmp(&md->ssdi.ssd_uuid, &uuid, sizeof uuid)) { printf("%s: not part of the same volume\n", DEVNAME(sc)); goto bad; } if (md->ssd_ondisk != version) { old_meta++; version = MAX(md->ssd_ondisk, version); } } else not_sr++; } if (sr && not_sr) { printf("%s: not all chunks are of the native metadata format\n", DEVNAME(sc)); goto bad; } /* mixed metadata versions; mark bad disks offline */ if (old_meta) { d = 0; for (ch_entry = SLIST_FIRST(cl); ch_entry != SLIST_END(cl); ch_entry = ch_next, d++) { ch_next = SLIST_NEXT(ch_entry, src_link); /* XXX do we want to read this again? */ if (ch_entry->src_dev_mm == NODEV) panic("src_dev_mm == NODEV"); if (sr_meta_native_read(sd, ch_entry->src_dev_mm, md, NULL)) printf("%s: could not read native metadata\n", DEVNAME(sc)); if (md->ssd_ondisk != version) sd->sd_vol.sv_chunks[d]->src_meta.scm_status = BIOC_SDOFFLINE; } } if (expected != sr && !force && expected != -1) { DNPRINTF(SR_D_META, "%s: not all chunks were provided, trying " "anyway\n", DEVNAME(sc)); } rv = 0; bad: if (md) free(md, M_DEVBUF); return (rv); } int sr_meta_native_read(struct sr_discipline *sd, dev_t dev, struct sr_metadata *md, void *fm) { #ifdef SR_DEBUG struct sr_softc *sc = sd->sd_sc; #endif DNPRINTF(SR_D_META, "%s: sr_meta_native_read(0x%x, %p)\n", DEVNAME(sc), dev, md); return (sr_meta_rw(sd, dev, md, SR_META_SIZE * 512, SR_META_OFFSET, B_READ)); } int sr_meta_native_write(struct sr_discipline *sd, dev_t dev, struct sr_metadata *md, void *fm) { #ifdef SR_DEBUG struct sr_softc *sc = sd->sd_sc; #endif DNPRINTF(SR_D_META, "%s: sr_meta_native_write(0x%x, %p)\n", DEVNAME(sc), dev, md); return (sr_meta_rw(sd, dev, md, SR_META_SIZE * 512, SR_META_OFFSET, B_WRITE)); } void sr_hotplug_register(struct sr_discipline *sd, void *func) { struct sr_hotplug_list *mhe; DNPRINTF(SR_D_MISC, "%s: sr_hotplug_register: %p\n", DEVNAME(sd->sd_sc), func); /* make sure we aren't on the list yet */ SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link) if (mhe->sh_hotplug == func) return; mhe = malloc(sizeof(struct sr_hotplug_list), M_DEVBUF, M_WAITOK | M_ZERO); mhe->sh_hotplug = func; mhe->sh_sd = sd; SLIST_INSERT_HEAD(&sr_hotplug_callbacks, mhe, shl_link); } void sr_hotplug_unregister(struct sr_discipline *sd, void *func) { struct sr_hotplug_list *mhe; DNPRINTF(SR_D_MISC, "%s: sr_hotplug_unregister: %s %p\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, func); /* make sure we are on the list yet */ SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link) if (mhe->sh_hotplug == func) { SLIST_REMOVE(&sr_hotplug_callbacks, mhe, sr_hotplug_list, shl_link); free(mhe, M_DEVBUF); if (SLIST_EMPTY(&sr_hotplug_callbacks)) SLIST_INIT(&sr_hotplug_callbacks); return; } } void sr_disk_attach(struct disk *diskp, int action) { struct sr_hotplug_list *mhe; SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link) if (mhe->sh_sd->sd_ready) mhe->sh_hotplug(mhe->sh_sd, diskp, action); } int sr_match(struct device *parent, void *match, void *aux) { return (1); } void sr_attach(struct device *parent, struct device *self, void *aux) { struct sr_softc *sc = (void *)self; DNPRINTF(SR_D_MISC, "\n%s: sr_attach", DEVNAME(sc)); rw_init(&sc->sc_lock, "sr_lock"); rw_init(&sc->sc_hs_lock, "sr_hs_lock"); SLIST_INIT(&sr_hotplug_callbacks); SLIST_INIT(&sc->sc_hotspare_list); #if NBIO > 0 if (bio_register(&sc->sc_dev, sr_ioctl) != 0) printf("%s: controller registration failed", DEVNAME(sc)); else sc->sc_ioctl = sr_ioctl; #endif /* NBIO > 0 */ printf("\n"); softraid_disk_attach = sr_disk_attach; sr_boot_assembly(sc); } int sr_detach(struct device *self, int flags) { return (0); } int sr_activate(struct device *self, int act) { return (1); } void sr_minphys(struct buf *bp, struct scsi_link *sl) { DNPRINTF(SR_D_MISC, "sr_minphys: %d\n", bp->b_bcount); /* XXX currently using SR_MAXFER = MAXPHYS */ if (bp->b_bcount > SR_MAXFER) bp->b_bcount = SR_MAXFER; minphys(bp); } void sr_copy_internal_data(struct scsi_xfer *xs, void *v, size_t size) { size_t copy_cnt; DNPRINTF(SR_D_MISC, "sr_copy_internal_data xs: %p size: %d\n", xs, size); if (xs->datalen) { copy_cnt = MIN(size, xs->datalen); bcopy(v, xs->data, copy_cnt); } } int sr_ccb_alloc(struct sr_discipline *sd) { struct sr_ccb *ccb; int i; if (!sd) return (1); DNPRINTF(SR_D_CCB, "%s: sr_ccb_alloc\n", DEVNAME(sd->sd_sc)); if (sd->sd_ccb) return (1); sd->sd_ccb = malloc(sizeof(struct sr_ccb) * sd->sd_max_wu * sd->sd_max_ccb_per_wu, M_DEVBUF, M_WAITOK | M_ZERO); TAILQ_INIT(&sd->sd_ccb_freeq); for (i = 0; i < sd->sd_max_wu * sd->sd_max_ccb_per_wu; i++) { ccb = &sd->sd_ccb[i]; ccb->ccb_dis = sd; sr_ccb_put(ccb); } DNPRINTF(SR_D_CCB, "%s: sr_ccb_alloc ccb: %d\n", DEVNAME(sd->sd_sc), sd->sd_max_wu * sd->sd_max_ccb_per_wu); return (0); } void sr_ccb_free(struct sr_discipline *sd) { struct sr_ccb *ccb; if (!sd) return; DNPRINTF(SR_D_CCB, "%s: sr_ccb_free %p\n", DEVNAME(sd->sd_sc), sd); while ((ccb = TAILQ_FIRST(&sd->sd_ccb_freeq)) != NULL) TAILQ_REMOVE(&sd->sd_ccb_freeq, ccb, ccb_link); if (sd->sd_ccb) free(sd->sd_ccb, M_DEVBUF); } struct sr_ccb * sr_ccb_get(struct sr_discipline *sd) { struct sr_ccb *ccb; int s; s = splbio(); ccb = TAILQ_FIRST(&sd->sd_ccb_freeq); if (ccb) { TAILQ_REMOVE(&sd->sd_ccb_freeq, ccb, ccb_link); ccb->ccb_state = SR_CCB_INPROGRESS; } splx(s); DNPRINTF(SR_D_CCB, "%s: sr_ccb_get: %p\n", DEVNAME(sd->sd_sc), ccb); return (ccb); } void sr_ccb_put(struct sr_ccb *ccb) { struct sr_discipline *sd = ccb->ccb_dis; int s; DNPRINTF(SR_D_CCB, "%s: sr_ccb_put: %p\n", DEVNAME(sd->sd_sc), ccb); s = splbio(); ccb->ccb_wu = NULL; ccb->ccb_state = SR_CCB_FREE; ccb->ccb_target = -1; ccb->ccb_opaque = NULL; TAILQ_INSERT_TAIL(&sd->sd_ccb_freeq, ccb, ccb_link); splx(s); } int sr_wu_alloc(struct sr_discipline *sd) { struct sr_workunit *wu; int i, no_wu; if (!sd) return (1); DNPRINTF(SR_D_WU, "%s: sr_wu_alloc %p %d\n", DEVNAME(sd->sd_sc), sd, sd->sd_max_wu); if (sd->sd_wu) return (1); no_wu = sd->sd_max_wu; sd->sd_wu_pending = no_wu; sd->sd_wu = malloc(sizeof(struct sr_workunit) * no_wu, M_DEVBUF, M_WAITOK | M_ZERO); TAILQ_INIT(&sd->sd_wu_freeq); TAILQ_INIT(&sd->sd_wu_pendq); TAILQ_INIT(&sd->sd_wu_defq); for (i = 0; i < no_wu; i++) { wu = &sd->sd_wu[i]; wu->swu_dis = sd; sr_wu_put(wu); } return (0); } void sr_wu_free(struct sr_discipline *sd) { struct sr_workunit *wu; if (!sd) return; DNPRINTF(SR_D_WU, "%s: sr_wu_free %p\n", DEVNAME(sd->sd_sc), sd); while ((wu = TAILQ_FIRST(&sd->sd_wu_freeq)) != NULL) TAILQ_REMOVE(&sd->sd_wu_freeq, wu, swu_link); while ((wu = TAILQ_FIRST(&sd->sd_wu_pendq)) != NULL) TAILQ_REMOVE(&sd->sd_wu_pendq, wu, swu_link); while ((wu = TAILQ_FIRST(&sd->sd_wu_defq)) != NULL) TAILQ_REMOVE(&sd->sd_wu_defq, wu, swu_link); if (sd->sd_wu) free(sd->sd_wu, M_DEVBUF); } void sr_wu_put(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct sr_ccb *ccb; int s; DNPRINTF(SR_D_WU, "%s: sr_wu_put: %p\n", DEVNAME(sd->sd_sc), wu); s = splbio(); wu->swu_xs = NULL; wu->swu_state = SR_WU_FREE; wu->swu_ios_complete = 0; wu->swu_ios_failed = 0; wu->swu_ios_succeeded = 0; wu->swu_io_count = 0; wu->swu_blk_start = 0; wu->swu_blk_end = 0; wu->swu_collider = NULL; wu->swu_fake = 0; wu->swu_flags = 0; while ((ccb = TAILQ_FIRST(&wu->swu_ccb)) != NULL) { TAILQ_REMOVE(&wu->swu_ccb, ccb, ccb_link); sr_ccb_put(ccb); } TAILQ_INIT(&wu->swu_ccb); TAILQ_INSERT_TAIL(&sd->sd_wu_freeq, wu, swu_link); sd->sd_wu_pending--; /* wake up sleepers */ #ifdef DIAGNOSTIC if (sd->sd_wu_sleep < 0) panic("negative wu sleepers"); #endif /* DIAGNOSTIC */ if (sd->sd_wu_sleep) wakeup(&sd->sd_wu_sleep); splx(s); } struct sr_workunit * sr_wu_get(struct sr_discipline *sd, int canwait) { struct sr_workunit *wu; int s; s = splbio(); for (;;) { wu = TAILQ_FIRST(&sd->sd_wu_freeq); if (wu) { TAILQ_REMOVE(&sd->sd_wu_freeq, wu, swu_link); wu->swu_state = SR_WU_INPROGRESS; sd->sd_wu_pending++; break; } else if (wu == NULL && canwait) { sd->sd_wu_sleep++; tsleep(&sd->sd_wu_sleep, PRIBIO, "sr_wu_get", 0); sd->sd_wu_sleep--; } else break; } splx(s); DNPRINTF(SR_D_WU, "%s: sr_wu_get: %p\n", DEVNAME(sd->sd_sc), wu); return (wu); } void sr_scsi_done(struct sr_discipline *sd, struct scsi_xfer *xs) { DNPRINTF(SR_D_DIS, "%s: sr_scsi_done: xs %p\n", DEVNAME(sd->sd_sc), xs); scsi_done(xs); } void sr_scsi_cmd(struct scsi_xfer *xs) { int s; struct scsi_link *link = xs->sc_link; struct sr_softc *sc = link->adapter_softc; struct sr_workunit *wu = NULL; struct sr_discipline *sd; DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: scsibus%d xs: %p " "flags: %#x\n", DEVNAME(sc), link->scsibus, xs, xs->flags); sd = sc->sc_dis[link->scsibus]; if (sd == NULL) { s = splhigh(); sd = sc->sc_attach_dis; splx(s); DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: attaching %p\n", DEVNAME(sc), sd); if (sd == NULL) { printf("%s: sr_scsi_cmd NULL discipline\n", DEVNAME(sc)); goto stuffup; } } if (sd->sd_deleted) { printf("%s: %s device is being deleted, failing io\n", DEVNAME(sc), sd->sd_meta->ssd_devname); goto stuffup; } /* * we'll let the midlayer deal with stalls instead of being clever * and sending sr_wu_get !(xs->flags & SCSI_NOSLEEP) in cansleep */ if ((wu = sr_wu_get(sd, 0)) == NULL) { DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd no wu\n", DEVNAME(sc)); xs->error = XS_NO_CCB; sr_scsi_done(sd, xs); return; } xs->error = XS_NOERROR; wu->swu_xs = xs; /* the midlayer will query LUNs so report sense to stop scanning */ if (link->target != 0 || link->lun != 0) { DNPRINTF(SR_D_CMD, "%s: bad target:lun %d:%d\n", DEVNAME(sc), link->target, link->lun); sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT | SSD_ERRCODE_VALID; sd->sd_scsi_sense.flags = SKEY_ILLEGAL_REQUEST; sd->sd_scsi_sense.add_sense_code = 0x25; sd->sd_scsi_sense.add_sense_code_qual = 0x00; sd->sd_scsi_sense.extra_len = 4; goto stuffup; } switch (xs->cmd->opcode) { case READ_COMMAND: case READ_BIG: case READ_16: case WRITE_COMMAND: case WRITE_BIG: case WRITE_16: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: READ/WRITE %02x\n", DEVNAME(sc), xs->cmd->opcode); if (sd->sd_scsi_rw(wu)) goto stuffup; break; case SYNCHRONIZE_CACHE: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: SYNCHRONIZE_CACHE\n", DEVNAME(sc)); if (sd->sd_scsi_sync(wu)) goto stuffup; goto complete; case TEST_UNIT_READY: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: TEST_UNIT_READY\n", DEVNAME(sc)); if (sd->sd_scsi_tur(wu)) goto stuffup; goto complete; case START_STOP: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: START_STOP\n", DEVNAME(sc)); if (sd->sd_scsi_start_stop(wu)) goto stuffup; goto complete; case INQUIRY: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: INQUIRY\n", DEVNAME(sc)); if (sd->sd_scsi_inquiry(wu)) goto stuffup; goto complete; case READ_CAPACITY: case READ_CAPACITY_16: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd READ CAPACITY 0x%02x\n", DEVNAME(sc), xs->cmd->opcode); if (sd->sd_scsi_read_cap(wu)) goto stuffup; goto complete; case REQUEST_SENSE: DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd REQUEST SENSE\n", DEVNAME(sc)); if (sd->sd_scsi_req_sense(wu)) goto stuffup; goto complete; default: DNPRINTF(SR_D_CMD, "%s: unsupported scsi command %x\n", DEVNAME(sc), xs->cmd->opcode); /* XXX might need to add generic function to handle others */ goto stuffup; } return; stuffup: if (sd && sd->sd_scsi_sense.error_code) { xs->error = XS_SENSE; bcopy(&sd->sd_scsi_sense, &xs->sense, sizeof(xs->sense)); bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense)); } else { xs->error = XS_DRIVER_STUFFUP; } complete: if (wu) sr_wu_put(wu); sr_scsi_done(sd, xs); } int sr_scsi_ioctl(struct scsi_link *link, u_long cmd, caddr_t addr, int flag) { DNPRINTF(SR_D_IOCTL, "%s: sr_scsi_ioctl cmd: %#x\n", DEVNAME((struct sr_softc *)link->adapter_softc), cmd); switch (cmd) { case DIOCGCACHE: case DIOCSCACHE: return (EOPNOTSUPP); default: return (sr_ioctl(link->adapter_softc, cmd, addr)); } } int sr_ioctl(struct device *dev, u_long cmd, caddr_t addr) { struct sr_softc *sc = (struct sr_softc *)dev; int rv = 0; DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl ", DEVNAME(sc)); rw_enter_write(&sc->sc_lock); switch (cmd) { case BIOCINQ: DNPRINTF(SR_D_IOCTL, "inq\n"); rv = sr_ioctl_inq(sc, (struct bioc_inq *)addr); break; case BIOCVOL: DNPRINTF(SR_D_IOCTL, "vol\n"); rv = sr_ioctl_vol(sc, (struct bioc_vol *)addr); break; case BIOCDISK: DNPRINTF(SR_D_IOCTL, "disk\n"); rv = sr_ioctl_disk(sc, (struct bioc_disk *)addr); break; case BIOCALARM: DNPRINTF(SR_D_IOCTL, "alarm\n"); /*rv = sr_ioctl_alarm(sc, (struct bioc_alarm *)addr); */ break; case BIOCBLINK: DNPRINTF(SR_D_IOCTL, "blink\n"); /*rv = sr_ioctl_blink(sc, (struct bioc_blink *)addr); */ break; case BIOCSETSTATE: DNPRINTF(SR_D_IOCTL, "setstate\n"); rv = sr_ioctl_setstate(sc, (struct bioc_setstate *)addr); break; case BIOCCREATERAID: DNPRINTF(SR_D_IOCTL, "createraid\n"); rv = sr_ioctl_createraid(sc, (struct bioc_createraid *)addr, 1); break; case BIOCDELETERAID: rv = sr_ioctl_deleteraid(sc, (struct bioc_deleteraid *)addr); break; case BIOCDISCIPLINE: rv = sr_ioctl_discipline(sc, (struct bioc_discipline *)addr); break; case BIOCINSTALLBOOT: rv = sr_ioctl_installboot(sc, (struct bioc_installboot *)addr); break; default: DNPRINTF(SR_D_IOCTL, "invalid ioctl\n"); rv = ENOTTY; } rw_exit_write(&sc->sc_lock); return (rv); } int sr_ioctl_inq(struct sr_softc *sc, struct bioc_inq *bi) { int i, vol, disk; for (i = 0, vol = 0, disk = 0; i < SR_MAXSCSIBUS; i++) /* XXX this will not work when we stagger disciplines */ if (sc->sc_dis[i]) { vol++; disk += sc->sc_dis[i]->sd_meta->ssdi.ssd_chunk_no; } strlcpy(bi->bi_dev, sc->sc_dev.dv_xname, sizeof(bi->bi_dev)); bi->bi_novol = vol + sc->sc_hotspare_no; bi->bi_nodisk = disk + sc->sc_hotspare_no; return (0); } int sr_ioctl_vol(struct sr_softc *sc, struct bioc_vol *bv) { int i, vol, rv = EINVAL; struct sr_discipline *sd; struct sr_chunk *hotspare; daddr64_t rb, sz; for (i = 0, vol = -1; i < SR_MAXSCSIBUS; i++) { /* XXX this will not work when we stagger disciplines */ if (sc->sc_dis[i]) vol++; if (vol != bv->bv_volid) continue; if (sc->sc_dis[i] == NULL) goto done; sd = sc->sc_dis[i]; bv->bv_status = sd->sd_vol_status; bv->bv_size = sd->sd_meta->ssdi.ssd_size << DEV_BSHIFT; bv->bv_level = sd->sd_meta->ssdi.ssd_level; bv->bv_nodisk = sd->sd_meta->ssdi.ssd_chunk_no; #ifdef CRYPTO if (sd->sd_meta->ssdi.ssd_level == 'C' && sd->mds.mdd_crypto.key_disk != NULL) bv->bv_nodisk++; #endif if (bv->bv_status == BIOC_SVREBUILD) { sz = sd->sd_meta->ssdi.ssd_size; rb = sd->sd_meta->ssd_rebuild; if (rb > 0) bv->bv_percent = 100 - ((sz * 100 - rb * 100) / sz) - 1; else bv->bv_percent = 0; } strlcpy(bv->bv_dev, sd->sd_meta->ssd_devname, sizeof(bv->bv_dev)); strlcpy(bv->bv_vendor, sd->sd_meta->ssdi.ssd_vendor, sizeof(bv->bv_vendor)); rv = 0; goto done; } /* Check hotspares list. */ SLIST_FOREACH(hotspare, &sc->sc_hotspare_list, src_link) { vol++; if (vol != bv->bv_volid) continue; bv->bv_status = BIOC_SVONLINE; bv->bv_size = hotspare->src_meta.scmi.scm_size << DEV_BSHIFT; bv->bv_level = -1; /* Hotspare. */ bv->bv_nodisk = 1; strlcpy(bv->bv_dev, hotspare->src_meta.scmi.scm_devname, sizeof(bv->bv_dev)); strlcpy(bv->bv_vendor, hotspare->src_meta.scmi.scm_devname, sizeof(bv->bv_vendor)); rv = 0; goto done; } done: return (rv); } int sr_ioctl_disk(struct sr_softc *sc, struct bioc_disk *bd) { int i, vol, rv = EINVAL, id; struct sr_chunk *src, *hotspare; for (i = 0, vol = -1; i < SR_MAXSCSIBUS; i++) { /* XXX this will not work when we stagger disciplines */ if (sc->sc_dis[i]) vol++; if (vol != bd->bd_volid) continue; if (sc->sc_dis[i] == NULL) goto done; id = bd->bd_diskid; if (id < sc->sc_dis[i]->sd_meta->ssdi.ssd_chunk_no) src = sc->sc_dis[i]->sd_vol.sv_chunks[id]; #ifdef CRYPTO else if (id == sc->sc_dis[i]->sd_meta->ssdi.ssd_chunk_no && sc->sc_dis[i]->sd_meta->ssdi.ssd_level == 'C' && sc->sc_dis[i]->mds.mdd_crypto.key_disk != NULL) src = sc->sc_dis[i]->mds.mdd_crypto.key_disk; #endif else break; bd->bd_status = src->src_meta.scm_status; bd->bd_size = src->src_meta.scmi.scm_size << DEV_BSHIFT; bd->bd_channel = vol; bd->bd_target = id; strlcpy(bd->bd_vendor, src->src_meta.scmi.scm_devname, sizeof(bd->bd_vendor)); rv = 0; goto done; } /* Check hotspares list. */ SLIST_FOREACH(hotspare, &sc->sc_hotspare_list, src_link) { vol++; if (vol != bd->bd_volid) continue; if (bd->bd_diskid != 0) break; bd->bd_status = hotspare->src_meta.scm_status; bd->bd_size = hotspare->src_meta.scmi.scm_size << DEV_BSHIFT; bd->bd_channel = vol; bd->bd_target = bd->bd_diskid; strlcpy(bd->bd_vendor, hotspare->src_meta.scmi.scm_devname, sizeof(bd->bd_vendor)); rv = 0; goto done; } done: return (rv); } int sr_ioctl_setstate(struct sr_softc *sc, struct bioc_setstate *bs) { int rv = EINVAL; int i, vol, found, c; struct sr_discipline *sd = NULL; struct sr_chunk *ch_entry; struct sr_chunk_head *cl; if (bs->bs_other_id_type == BIOC_SSOTHER_UNUSED) goto done; if (bs->bs_status == BIOC_SSHOTSPARE) { rv = sr_hotspare(sc, (dev_t)bs->bs_other_id); goto done; } for (i = 0, vol = -1; i < SR_MAXSCSIBUS; i++) { /* XXX this will not work when we stagger disciplines */ if (sc->sc_dis[i]) vol++; if (vol != bs->bs_volid) continue; sd = sc->sc_dis[i]; break; } if (sd == NULL) goto done; switch (bs->bs_status) { case BIOC_SSOFFLINE: /* Take chunk offline */ found = c = 0; cl = &sd->sd_vol.sv_chunk_list; SLIST_FOREACH(ch_entry, cl, src_link) { if (ch_entry->src_dev_mm == bs->bs_other_id) { found = 1; break; } c++; } if (found == 0) { printf("%s: chunk not part of array\n", DEVNAME(sc)); goto done; } /* XXX: check current state first */ sd->sd_set_chunk_state(sd, c, BIOC_SSOFFLINE); if (sr_meta_save(sd, SR_META_DIRTY)) { printf("%s: could not save metadata to %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); goto done; } rv = 0; break; case BIOC_SDSCRUB: break; case BIOC_SSREBUILD: rv = sr_rebuild_init(sd, (dev_t)bs->bs_other_id, 0); break; default: printf("%s: unsupported state request %d\n", DEVNAME(sc), bs->bs_status); } done: return (rv); } int sr_chunk_in_use(struct sr_softc *sc, dev_t dev) { struct sr_discipline *sd; struct sr_chunk *chunk; int i, c; /* See if chunk is already in use. */ for (i = 0; i < SR_MAXSCSIBUS; i++) { if (sc->sc_dis[i] == NULL) continue; sd = sc->sc_dis[i]; for (c = 0; c < sd->sd_meta->ssdi.ssd_chunk_no; c++) { chunk = sd->sd_vol.sv_chunks[c]; if (chunk->src_dev_mm == dev) return chunk->src_meta.scm_status; } } /* Check hotspares list. */ SLIST_FOREACH(chunk, &sc->sc_hotspare_list, src_link) if (chunk->src_dev_mm == dev) return chunk->src_meta.scm_status; return BIOC_SDINVALID; } int sr_hotspare(struct sr_softc *sc, dev_t dev) { struct sr_discipline *sd = NULL; struct sr_metadata *sm = NULL; struct sr_meta_chunk *hm; struct sr_chunk_head *cl; struct sr_chunk *chunk, *last, *hotspare = NULL; struct sr_uuid uuid; struct disklabel label; struct vnode *vn; daddr64_t size; char devname[32]; int rv = EINVAL; int c, part, open = 0; /* * Add device to global hotspares list. */ sr_meta_getdevname(sc, dev, devname, sizeof(devname)); /* Make sure chunk is not already in use. */ c = sr_chunk_in_use(sc, dev); if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) { if (c == BIOC_SDHOTSPARE) printf("%s: %s is already a hotspare\n", DEVNAME(sc), devname); else printf("%s: %s is already in use\n", DEVNAME(sc), devname); goto done; } /* XXX - See if there is an existing degraded volume... */ /* Open device. */ if (bdevvp(dev, &vn)) { printf("%s:, sr_hotspare: can't allocate vnode\n", DEVNAME(sc)); goto done; } if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, 0)) { DNPRINTF(SR_D_META,"%s: sr_hotspare cannot open %s\n", DEVNAME(sc), devname); vput(vn); goto fail; } open = 1; /* close dev on error */ /* Get partition details. */ part = DISKPART(dev); if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, 0)) { DNPRINTF(SR_D_META, "%s: sr_hotspare ioctl failed\n", DEVNAME(sc)); VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, 0); vput(vn); goto fail; } if (label.d_partitions[part].p_fstype != FS_RAID) { printf("%s: %s partition not of type RAID (%d)\n", DEVNAME(sc), devname, label.d_partitions[part].p_fstype); goto fail; } /* Calculate partition size. */ size = DL_GETPSIZE(&label.d_partitions[part]) - SR_DATA_OFFSET; /* * Create and populate chunk metadata. */ sr_uuid_get(&uuid); hotspare = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); hotspare->src_dev_mm = dev; hotspare->src_vn = vn; strlcpy(hotspare->src_devname, devname, sizeof(hm->scmi.scm_devname)); hotspare->src_size = size; hm = &hotspare->src_meta; hm->scmi.scm_volid = SR_HOTSPARE_VOLID; hm->scmi.scm_chunk_id = 0; hm->scmi.scm_size = size; hm->scmi.scm_coerced_size = size; strlcpy(hm->scmi.scm_devname, devname, sizeof(hm->scmi.scm_devname)); bcopy(&uuid, &hm->scmi.scm_uuid, sizeof(struct sr_uuid)); sr_checksum(sc, hm, &hm->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); hm->scm_status = BIOC_SDHOTSPARE; /* * Create and populate our own discipline and metadata. */ sm = malloc(sizeof(struct sr_metadata), M_DEVBUF, M_WAITOK | M_ZERO); sm->ssdi.ssd_magic = SR_MAGIC; sm->ssdi.ssd_version = SR_META_VERSION; sm->ssd_ondisk = 0; sm->ssdi.ssd_vol_flags = 0; bcopy(&uuid, &sm->ssdi.ssd_uuid, sizeof(struct sr_uuid)); sm->ssdi.ssd_chunk_no = 1; sm->ssdi.ssd_volid = SR_HOTSPARE_VOLID; sm->ssdi.ssd_level = SR_HOTSPARE_LEVEL; sm->ssdi.ssd_size = size; strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor)); snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product), "SR %s", "HOTSPARE"); snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision), "%03d", SR_META_VERSION); sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_WAITOK | M_ZERO); sd->sd_sc = sc; sd->sd_meta = sm; sd->sd_meta_type = SR_META_F_NATIVE; sd->sd_vol_status = BIOC_SVONLINE; strlcpy(sd->sd_name, "HOTSPARE", sizeof(sd->sd_name)); SLIST_INIT(&sd->sd_meta_opt); /* Add chunk to volume. */ sd->sd_vol.sv_chunks = malloc(sizeof(struct sr_chunk *), M_DEVBUF, M_WAITOK | M_ZERO); sd->sd_vol.sv_chunks[0] = hotspare; SLIST_INIT(&sd->sd_vol.sv_chunk_list); SLIST_INSERT_HEAD(&sd->sd_vol.sv_chunk_list, hotspare, src_link); /* Save metadata. */ if (sr_meta_save(sd, SR_META_DIRTY)) { printf("%s: could not save metadata to %s\n", DEVNAME(sc), devname); goto fail; } /* * Add chunk to hotspare list. */ rw_enter_write(&sc->sc_hs_lock); cl = &sc->sc_hotspare_list; if (SLIST_EMPTY(cl)) SLIST_INSERT_HEAD(cl, hotspare, src_link); else { SLIST_FOREACH(chunk, cl, src_link) last = chunk; SLIST_INSERT_AFTER(last, hotspare, src_link); } sc->sc_hotspare_no++; rw_exit_write(&sc->sc_hs_lock); rv = 0; goto done; fail: if (hotspare) free(hotspare, M_DEVBUF); done: if (sd && sd->sd_vol.sv_chunks) free(sd->sd_vol.sv_chunks, M_DEVBUF); if (sd) free(sd, M_DEVBUF); if (sm) free(sm, M_DEVBUF); if (open) { VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, 0); vput(vn); } return (rv); } void sr_hotspare_rebuild_callback(void *arg1, void *arg2) { sr_hotspare_rebuild((struct sr_discipline *)arg1); } void sr_hotspare_rebuild(struct sr_discipline *sd) { struct sr_chunk_head *cl; struct sr_chunk *hotspare, *chunk = NULL; struct sr_workunit *wu; struct sr_ccb *ccb; int i, s, chunk_no, busy; /* * Attempt to locate a hotspare and initiate rebuild. */ for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) { if (sd->sd_vol.sv_chunks[i]->src_meta.scm_status == BIOC_SDOFFLINE) { chunk_no = i; chunk = sd->sd_vol.sv_chunks[i]; break; } } if (chunk == NULL) { printf("%s: no offline chunk found on %s!\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname); return; } /* See if we have a suitable hotspare... */ rw_enter_write(&sd->sd_sc->sc_hs_lock); cl = &sd->sd_sc->sc_hotspare_list; SLIST_FOREACH(hotspare, cl, src_link) if (hotspare->src_size >= chunk->src_size) break; if (hotspare != NULL) { printf("%s: %s volume degraded, will attempt to " "rebuild on hotspare %s\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, hotspare->src_devname); /* * Ensure that all pending I/O completes on the failed chunk * before trying to initiate a rebuild. */ i = 0; do { busy = 0; s = splbio(); TAILQ_FOREACH(wu, &sd->sd_wu_pendq, swu_link) { TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) { if (ccb->ccb_target == chunk_no) busy = 1; } } TAILQ_FOREACH(wu, &sd->sd_wu_defq, swu_link) { TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) { if (ccb->ccb_target == chunk_no) busy = 1; } } splx(s); if (busy) { tsleep(sd, PRIBIO, "sr_hotspare", hz); i++; } } while (busy && i < 120); DNPRINTF(SR_D_META, "%s: waited %i seconds for I/O to " "complete on failed chunk %s\n", DEVNAME(sd->sd_sc), i, chunk->src_devname); if (busy) { printf("%s: pending I/O failed to complete on " "failed chunk %s, hotspare rebuild aborted...\n", DEVNAME(sd->sd_sc), chunk->src_devname); goto done; } s = splbio(); rw_enter_write(&sd->sd_sc->sc_lock); if (sr_rebuild_init(sd, hotspare->src_dev_mm, 1) == 0) { /* Remove hotspare from available list. */ sd->sd_sc->sc_hotspare_no--; SLIST_REMOVE(cl, hotspare, sr_chunk, src_link); free(hotspare, M_DEVBUF); } rw_exit_write(&sd->sd_sc->sc_lock); splx(s); } done: rw_exit_write(&sd->sd_sc->sc_hs_lock); } int sr_rebuild_init(struct sr_discipline *sd, dev_t dev, int hotspare) { struct sr_softc *sc = sd->sd_sc; int rv = EINVAL, part; int c, found, open = 0; char devname[32]; struct vnode *vn; daddr64_t size, csize; struct disklabel label; struct sr_meta_chunk *old, *new; /* * Attempt to initiate a rebuild onto the specified device. */ if (!(sd->sd_capabilities & SR_CAP_REBUILD)) { printf("%s: discipline does not support rebuild\n", DEVNAME(sc)); goto done; } /* make sure volume is in the right state */ if (sd->sd_vol_status == BIOC_SVREBUILD) { printf("%s: rebuild already in progress\n", DEVNAME(sc)); goto done; } if (sd->sd_vol_status != BIOC_SVDEGRADED) { printf("%s: %s not degraded\n", DEVNAME(sc), sd->sd_meta->ssd_devname); goto done; } /* find offline chunk */ for (c = 0, found = -1; c < sd->sd_meta->ssdi.ssd_chunk_no; c++) if (sd->sd_vol.sv_chunks[c]->src_meta.scm_status == BIOC_SDOFFLINE) { found = c; new = &sd->sd_vol.sv_chunks[c]->src_meta; if (c > 0) break; /* roll at least once over the for */ } else { csize = sd->sd_vol.sv_chunks[c]->src_meta.scmi.scm_size; old = &sd->sd_vol.sv_chunks[c]->src_meta; if (found != -1) break; } if (found == -1) { printf("%s: no offline chunks available for rebuild\n", DEVNAME(sc)); goto done; } /* populate meta entry */ sr_meta_getdevname(sc, dev, devname, sizeof(devname)); if (bdevvp(dev, &vn)) { printf("%s:, sr_rebuild_init: can't allocate vnode\n", DEVNAME(sc)); goto done; } if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, 0)) { DNPRINTF(SR_D_META,"%s: sr_ioctl_setstate can't " "open %s\n", DEVNAME(sc), devname); vput(vn); goto done; } open = 1; /* close dev on error */ /* get partition */ part = DISKPART(dev); if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, 0)) { DNPRINTF(SR_D_META, "%s: sr_ioctl_setstate ioctl failed\n", DEVNAME(sc)); goto done; } if (label.d_partitions[part].p_fstype != FS_RAID) { printf("%s: %s partition not of type RAID (%d)\n", DEVNAME(sc), devname, label.d_partitions[part].p_fstype); goto done; } /* is partition large enough? */ size = DL_GETPSIZE(&label.d_partitions[part]) - SR_DATA_OFFSET; if (size < csize) { printf("%s: partition too small, at least %llu B required\n", DEVNAME(sc), csize << DEV_BSHIFT); goto done; } else if (size > csize) printf("%s: partition too large, wasting %llu B\n", DEVNAME(sc), (size - csize) << DEV_BSHIFT); /* make sure we are not stomping on some other partition */ c = sr_chunk_in_use(sc, dev); if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE && !(hotspare && c == BIOC_SDHOTSPARE)) { printf("%s: %s is already in use\n", DEVNAME(sc), devname); goto done; } /* Reset rebuild counter since we rebuilding onto a new chunk. */ sd->sd_meta->ssd_rebuild = 0; /* recreate metadata */ open = 0; /* leave dev open from here on out */ sd->sd_vol.sv_chunks[found]->src_dev_mm = dev; sd->sd_vol.sv_chunks[found]->src_vn = vn; new->scmi.scm_volid = old->scmi.scm_volid; new->scmi.scm_chunk_id = found; strlcpy(new->scmi.scm_devname, devname, sizeof new->scmi.scm_devname); new->scmi.scm_size = size; new->scmi.scm_coerced_size = old->scmi.scm_coerced_size; bcopy(&old->scmi.scm_uuid, &new->scmi.scm_uuid, sizeof new->scmi.scm_uuid); sr_checksum(sc, new, &new->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); sd->sd_set_chunk_state(sd, found, BIOC_SDREBUILD); if (sr_meta_save(sd, SR_META_DIRTY)) { printf("%s: could not save metadata to %s\n", DEVNAME(sc), devname); open = 1; goto done; } printf("%s: rebuild of %s started on %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname, devname); sd->sd_reb_abort = 0; kthread_create_deferred(sr_rebuild, sd); rv = 0; done: if (open) { VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, 0); vput(vn); } return (rv); } void sr_roam_chunks(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; struct sr_chunk *chunk; struct sr_meta_chunk *meta; int roamed = 0; /* Have any chunks roamed? */ SLIST_FOREACH(chunk, &sd->sd_vol.sv_chunk_list, src_link) { meta = &chunk->src_meta; if (strncmp(meta->scmi.scm_devname, chunk->src_devname, sizeof(meta->scmi.scm_devname))) { printf("%s: roaming device %s -> %s\n", DEVNAME(sc), meta->scmi.scm_devname, chunk->src_devname); strlcpy(meta->scmi.scm_devname, chunk->src_devname, sizeof(meta->scmi.scm_devname)); roamed++; } } if (roamed) sr_meta_save(sd, SR_META_DIRTY); } int sr_ioctl_createraid(struct sr_softc *sc, struct bioc_createraid *bc, int user) { dev_t *dt; int i, s, no_chunk, rv = EINVAL, vol; int no_meta, updatemeta = 0; struct sr_chunk_head *cl; struct sr_discipline *sd = NULL; struct sr_chunk *ch_entry; struct device *dev, *dev2; struct scsibus_attach_args saa; char devname[32]; DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_createraid(%d)\n", DEVNAME(sc), user); /* user input */ if (bc->bc_dev_list_len > BIOC_CRMAXLEN) goto unwind; dt = malloc(bc->bc_dev_list_len, M_DEVBUF, M_WAITOK | M_ZERO); if (user) { if (copyin(bc->bc_dev_list, dt, bc->bc_dev_list_len) != 0) goto unwind; } else bcopy(bc->bc_dev_list, dt, bc->bc_dev_list_len); /* Initialise discipline. */ sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_WAITOK | M_ZERO); sd->sd_sc = sc; SLIST_INIT(&sd->sd_meta_opt); if (sr_discipline_init(sd, bc->bc_level)) { printf("%s: could not initialize discipline\n", DEVNAME(sc)); goto unwind; } no_chunk = bc->bc_dev_list_len / sizeof(dev_t); cl = &sd->sd_vol.sv_chunk_list; SLIST_INIT(cl); /* Ensure that chunks are not already in use. */ for (i = 0; i < no_chunk; i++) { if (sr_chunk_in_use(sc, dt[i]) != BIOC_SDINVALID) { sr_meta_getdevname(sc, dt[i], devname, sizeof(devname)); printf("%s: chunk %s already in use\n", DEVNAME(sc), devname); goto unwind; } } sd->sd_meta_type = sr_meta_probe(sd, dt, no_chunk); if (sd->sd_meta_type == SR_META_F_INVALID) { printf("%s: invalid metadata format\n", DEVNAME(sc)); goto unwind; } if (sr_meta_attach(sd, no_chunk, bc->bc_flags & BIOC_SCFORCE)) { printf("%s: can't attach metadata type %d\n", DEVNAME(sc), sd->sd_meta_type); goto unwind; } /* force the raid volume by clearing metadata region */ if (bc->bc_flags & BIOC_SCFORCE) { /* make sure disk isn't up and running */ if (sr_meta_read(sd)) if (sr_already_assembled(sd)) { printf("%s: disk ", DEVNAME(sc)); sr_uuid_print(&sd->sd_meta->ssdi.ssd_uuid, 0); printf(" is currently in use; can't force " "create\n"); goto unwind; } if (sr_meta_clear(sd)) { printf("%s: failed to clear metadata\n", DEVNAME(sc)); goto unwind; } } if ((no_meta = sr_meta_read(sd)) == 0) { /* fill out all chunk metadata */ sr_meta_chunks_create(sc, cl); ch_entry = SLIST_FIRST(cl); sd->sd_vol_status = BIOC_SVONLINE; sd->sd_meta->ssdi.ssd_level = bc->bc_level; sd->sd_meta->ssdi.ssd_chunk_no = no_chunk; /* Make the volume UUID available. */ bcopy(&ch_entry->src_meta.scmi.scm_uuid, &sd->sd_meta->ssdi.ssd_uuid, sizeof(sd->sd_meta->ssdi.ssd_uuid)); if (sd->sd_create) { if ((i = sd->sd_create(sd, bc, no_chunk, ch_entry->src_meta.scmi.scm_coerced_size))) { rv = i; goto unwind; } } /* fill out all volume metadata */ DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_createraid: vol_size: %lld\n", DEVNAME(sc), sd->sd_meta->ssdi.ssd_size); strlcpy(sd->sd_meta->ssdi.ssd_vendor, "OPENBSD", sizeof(sd->sd_meta->ssdi.ssd_vendor)); snprintf(sd->sd_meta->ssdi.ssd_product, sizeof(sd->sd_meta->ssdi.ssd_product), "SR %s", sd->sd_name); snprintf(sd->sd_meta->ssdi.ssd_revision, sizeof(sd->sd_meta->ssdi.ssd_revision), "%03d", SR_META_VERSION); sd->sd_meta_flags = bc->bc_flags & BIOC_SCNOAUTOASSEMBLE; updatemeta = 1; } else if (no_meta == no_chunk) { if (sd->sd_meta->ssd_meta_flags & SR_META_DIRTY) printf("%s: %s was not shutdown properly\n", DEVNAME(sc), sd->sd_meta->ssd_devname); if (user == 0 && sd->sd_meta_flags & BIOC_SCNOAUTOASSEMBLE) { DNPRINTF(SR_D_META, "%s: disk not auto assembled from " "metadata\n", DEVNAME(sc)); goto unwind; } if (sr_already_assembled(sd)) { printf("%s: disk ", DEVNAME(sc)); sr_uuid_print(&sd->sd_meta->ssdi.ssd_uuid, 0); printf(" already assembled\n"); goto unwind; } if (sd->sd_assemble) { if ((i = sd->sd_assemble(sd, bc, no_chunk))) { rv = i; goto unwind; } } DNPRINTF(SR_D_META, "%s: disk assembled from metadata\n", DEVNAME(sc)); updatemeta = 0; } else if (no_meta == -1) { printf("%s: one of the chunks has corrupt metadata; aborting " "assembly\n", DEVNAME(sc)); goto unwind; } else { if (sr_already_assembled(sd)) { printf("%s: disk ", DEVNAME(sc)); sr_uuid_print(&sd->sd_meta->ssdi.ssd_uuid, 0); printf(" already assembled; will not partial " "assemble it\n"); goto unwind; } if (sd->sd_assemble) { if ((i = sd->sd_assemble(sd, bc, no_chunk))) { rv = i; goto unwind; } } printf("%s: trying to bring up %s degraded\n", DEVNAME(sc), sd->sd_meta->ssd_devname); } /* metadata SHALL be fully filled in at this point */ /* Make sure that metadata level matches assembly level. */ if (sd->sd_meta->ssdi.ssd_level != bc->bc_level) { printf("%s: volume level does not match metadata level!\n", DEVNAME(sc)); goto unwind; } /* allocate all resources */ if ((rv = sd->sd_alloc_resources(sd))) goto unwind; /* Adjust flags if necessary. */ if ((sd->sd_capabilities & SR_CAP_AUTO_ASSEMBLE) && (bc->bc_flags & BIOC_SCNOAUTOASSEMBLE) != (sd->sd_meta->ssdi.ssd_vol_flags & BIOC_SCNOAUTOASSEMBLE)) { sd->sd_meta->ssdi.ssd_vol_flags &= ~BIOC_SCNOAUTOASSEMBLE; sd->sd_meta->ssdi.ssd_vol_flags |= bc->bc_flags & BIOC_SCNOAUTOASSEMBLE; } if (sd->sd_capabilities & SR_CAP_SYSTEM_DISK) { /* set volume status */ sd->sd_set_vol_state(sd); if (sd->sd_vol_status == BIOC_SVOFFLINE) { printf("%s: %s offline, will not be brought online\n", DEVNAME(sc), sd->sd_meta->ssd_devname); goto unwind; } /* setup scsi midlayer */ if (sd->sd_openings) sd->sd_link.openings = sd->sd_openings(sd); else sd->sd_link.openings = sd->sd_max_wu; sd->sd_link.device_softc = sc; sd->sd_link.adapter_softc = sc; sd->sd_link.adapter = &sr_switch; sd->sd_link.adapter_target = SR_MAX_LD; sd->sd_link.adapter_buswidth = 1; bzero(&saa, sizeof(saa)); saa.saa_sc_link = &sd->sd_link; /* * we passed all checks return ENXIO if volume can't be created */ rv = ENXIO; /* clear sense data */ bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense)); /* use temporary discipline pointer */ s = splhigh(); sc->sc_attach_dis = sd; splx(s); dev2 = config_found(&sc->sc_dev, &saa, scsiprint); s = splhigh(); sc->sc_attach_dis = NULL; splx(s); TAILQ_FOREACH(dev, &alldevs, dv_list) if (dev->dv_parent == dev2) break; if (dev == NULL) goto unwind; DNPRINTF(SR_D_IOCTL, "%s: sr device added: %s on scsibus%d\n", DEVNAME(sc), dev->dv_xname, sd->sd_link.scsibus); sc->sc_dis[sd->sd_link.scsibus] = sd; for (i = 0, vol = -1; i <= sd->sd_link.scsibus; i++) if (sc->sc_dis[i]) vol++; sd->sd_scsibus_dev = dev2; rv = 0; if (updatemeta) { /* fill out remaining volume metadata */ sd->sd_meta->ssdi.ssd_volid = vol; strlcpy(sd->sd_meta->ssd_devname, dev->dv_xname, sizeof(sd->sd_meta->ssd_devname)); sr_meta_init(sd, cl); } else { if (strncmp(sd->sd_meta->ssd_devname, dev->dv_xname, sizeof(dev->dv_xname))) { printf("%s: volume %s is roaming, it used to " "be %s, updating metadata\n", DEVNAME(sc), dev->dv_xname, sd->sd_meta->ssd_devname); sd->sd_meta->ssdi.ssd_volid = vol; strlcpy(sd->sd_meta->ssd_devname, dev->dv_xname, sizeof(sd->sd_meta->ssd_devname)); } } /* Update device name on any chunks which roamed. */ sr_roam_chunks(sd); #ifndef SMALL_KERNEL if (sr_sensors_create(sd)) printf("%s: unable to create sensor for %s\n", DEVNAME(sc), dev->dv_xname); else sd->sd_vol.sv_sensor_valid = 1; #endif /* SMALL_KERNEL */ } else { /* we are not an os disk */ if (updatemeta) { /* fill out remaining volume metadata */ sd->sd_meta->ssdi.ssd_volid = 0; strlcpy(sd->sd_meta->ssd_devname, ch_entry->src_devname, sizeof(sd->sd_meta->ssd_devname)); sr_meta_init(sd, cl); } if (sd->sd_start_discipline(sd)) goto unwind; } /* save metadata to disk */ rv = sr_meta_save(sd, SR_META_DIRTY); sd->sd_shutdownhook = shutdownhook_establish(sr_shutdown, sd); if (sd->sd_vol_status == BIOC_SVREBUILD) kthread_create_deferred(sr_rebuild, sd); sd->sd_ready = 1; return (rv); unwind: sr_discipline_shutdown(sd); /* XXX - use internal status values! */ if (rv == EAGAIN) rv = 0; return (rv); } int sr_ioctl_deleteraid(struct sr_softc *sc, struct bioc_deleteraid *dr) { struct sr_discipline *sd = NULL; int rv = 1; int i; DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_deleteraid %s\n", DEVNAME(sc), dr->bd_dev); for (i = 0; i < SR_MAXSCSIBUS; i++) if (sc->sc_dis[i]) { if (!strncmp(sc->sc_dis[i]->sd_meta->ssd_devname, dr->bd_dev, sizeof(sc->sc_dis[i]->sd_meta->ssd_devname))) { sd = sc->sc_dis[i]; break; } } if (sd == NULL) goto bad; sd->sd_deleted = 1; sd->sd_meta->ssdi.ssd_vol_flags = BIOC_SCNOAUTOASSEMBLE; sr_shutdown(sd); rv = 0; bad: return (rv); } int sr_ioctl_discipline(struct sr_softc *sc, struct bioc_discipline *bd) { struct sr_discipline *sd = NULL; int i, rv = 1; /* Dispatch a discipline specific ioctl. */ DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_discipline %s\n", DEVNAME(sc), bd->bd_dev); for (i = 0; i < SR_MAXSCSIBUS; i++) if (sc->sc_dis[i]) { if (!strncmp(sc->sc_dis[i]->sd_meta->ssd_devname, bd->bd_dev, sizeof(sc->sc_dis[i]->sd_meta->ssd_devname))) { sd = sc->sc_dis[i]; break; } } if (sd && sd->sd_ioctl_handler) rv = sd->sd_ioctl_handler(sd, bd); return (rv); } int sr_ioctl_installboot(struct sr_softc *sc, struct bioc_installboot *bb) { void *bootblk = NULL, *bootldr = NULL; struct sr_discipline *sd = NULL; struct sr_chunk *chunk; struct buf b; u_int32_t bbs, bls; int rv = EINVAL; int i; DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_installboot %s\n", DEVNAME(sc), bb->bb_dev); for (i = 0; i < SR_MAXSCSIBUS; i++) if (sc->sc_dis[i]) { if (!strncmp(sc->sc_dis[i]->sd_meta->ssd_devname, bb->bb_dev, sizeof(sc->sc_dis[i]->sd_meta->ssd_devname))) { sd = sc->sc_dis[i]; break; } } if (sd == NULL) goto done; if (bb->bb_bootblk_size > SR_BOOT_BLOCKS_SIZE * 512) goto done; if (bb->bb_bootldr_size > SR_BOOT_LOADER_SIZE * 512) goto done; /* Copy in boot block. */ bbs = howmany(bb->bb_bootblk_size, DEV_BSIZE) * DEV_BSIZE; bootblk = malloc(bbs, M_DEVBUF, M_WAITOK | M_ZERO); if (copyin(bb->bb_bootblk, bootblk, bb->bb_bootblk_size) != 0) goto done; /* Copy in boot loader. */ bls = howmany(bb->bb_bootldr_size, DEV_BSIZE) * DEV_BSIZE; bootldr = malloc(bls, M_DEVBUF, M_WAITOK | M_ZERO); if (copyin(bb->bb_bootldr, bootldr, bb->bb_bootldr_size) != 0) goto done; /* Save boot block and boot loader to each chunk. */ for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) { chunk = sd->sd_vol.sv_chunks[i]; /* Save boot blocks. */ DNPRINTF(SR_D_IOCTL, "sr_ioctl_installboot: saving boot block to %s " "(%u bytes)\n", chunk->src_devname, bbs); bzero(&b, sizeof(b)); b.b_flags = B_WRITE | B_PHYS; b.b_blkno = SR_BOOT_BLOCKS_OFFSET; b.b_bcount = bbs; b.b_bufsize = bbs; b.b_resid = bbs; b.b_data = bootblk; b.b_error = 0; b.b_proc = curproc; b.b_dev = chunk->src_dev_mm; b.b_vp = NULL; b.b_iodone = NULL; if (bdevvp(chunk->src_dev_mm, &b.b_vp)) { printf("%s: sr_ioctl_installboot: vnode allocation " "failed\n", DEVNAME(sc)); goto done; } if ((b.b_flags & B_READ) == 0) b.b_vp->v_numoutput++; LIST_INIT(&b.b_dep); VOP_STRATEGY(&b); biowait(&b); vput(b.b_vp); if (b.b_flags & B_ERROR) { printf("%s: 0x%x i/o error on block %llu while " "writing boot block %d\n", DEVNAME(sc), chunk->src_dev_mm, b.b_blkno, b.b_error); goto done; } /* Save boot loader.*/ DNPRINTF(SR_D_IOCTL, "sr_ioctl_installboot: saving boot loader to %s " "(%u bytes)\n", chunk->src_devname, bls); bzero(&b, sizeof(b)); b.b_flags = B_WRITE | B_PHYS; b.b_blkno = SR_BOOT_LOADER_OFFSET; b.b_bcount = bls; b.b_bufsize = bls; b.b_resid = bls; b.b_data = bootldr; b.b_error = 0; b.b_proc = curproc; b.b_dev = chunk->src_dev_mm; b.b_vp = NULL; b.b_iodone = NULL; if (bdevvp(chunk->src_dev_mm, &b.b_vp)) { printf("%s: sr_ioctl_installboot: vnode alocation " "failed\n", DEVNAME(sc)); goto done; } if ((b.b_flags & B_READ) == 0) b.b_vp->v_numoutput++; LIST_INIT(&b.b_dep); VOP_STRATEGY(&b); biowait(&b); vput(b.b_vp); if (b.b_flags & B_ERROR) { printf("%s: 0x%x i/o error on block %llu while " "writing boot blocks %d\n", DEVNAME(sc), chunk->src_dev_mm, b.b_blkno, b.b_error); goto done; } } /* XXX - Install boot block on disk - MD code. */ /* Save boot details in metadata. */ sd->sd_meta->ssdi.ssd_vol_flags |= BIOC_SCBOOTABLE; /* XXX - Store size of boot block/loader in optional metadata. */ /* Save metadata. */ if (sr_meta_save(sd, SR_META_DIRTY)) { printf("%s: could not save metadata to %s\n", DEVNAME(sc), chunk->src_devname); goto done; } rv = 0; done: if (bootblk) free(bootblk, M_DEVBUF); if (bootldr) free(bootldr, M_DEVBUF); return (rv); } void sr_chunks_unwind(struct sr_softc *sc, struct sr_chunk_head *cl) { struct sr_chunk *ch_entry, *ch_next; DNPRINTF(SR_D_IOCTL, "%s: sr_chunks_unwind\n", DEVNAME(sc)); if (!cl) return; for (ch_entry = SLIST_FIRST(cl); ch_entry != SLIST_END(cl); ch_entry = ch_next) { ch_next = SLIST_NEXT(ch_entry, src_link); DNPRINTF(SR_D_IOCTL, "%s: sr_chunks_unwind closing: %s\n", DEVNAME(sc), ch_entry->src_devname); if (ch_entry->src_vn) { /* * XXX - explicitly lock the vnode until we can resolve * the problem introduced by vnode aliasing... specfs * has no locking, whereas ufs/ffs does! */ vn_lock(ch_entry->src_vn, LK_EXCLUSIVE | LK_RETRY, 0); VOP_CLOSE(ch_entry->src_vn, FREAD | FWRITE, NOCRED, 0); vput(ch_entry->src_vn); } free(ch_entry, M_DEVBUF); } SLIST_INIT(cl); } void sr_discipline_free(struct sr_discipline *sd) { struct sr_softc *sc; struct sr_meta_opt_head *omh; struct sr_meta_opt_item *omi, *omi_next; int i; if (!sd) return; sc = sd->sd_sc; DNPRINTF(SR_D_DIS, "%s: sr_discipline_free %s\n", DEVNAME(sc), sd->sd_meta ? sd->sd_meta->ssd_devname : "nodev"); if (sd->sd_free_resources) sd->sd_free_resources(sd); if (sd->sd_vol.sv_chunks) free(sd->sd_vol.sv_chunks, M_DEVBUF); if (sd->sd_meta) free(sd->sd_meta, M_DEVBUF); if (sd->sd_meta_foreign) free(sd->sd_meta_foreign, M_DEVBUF); omh = &sd->sd_meta_opt; for (omi = SLIST_FIRST(omh); omi != SLIST_END(omh); omi = omi_next) { omi_next = SLIST_NEXT(omi, omi_link); free(omi, M_DEVBUF); } for (i = 0; i < SR_MAXSCSIBUS; i++) if (sc->sc_dis[i] == sd) { sc->sc_dis[i] = NULL; break; } free(sd, M_DEVBUF); } void sr_discipline_shutdown(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; int s; if (!sd || !sc) return; DNPRINTF(SR_D_DIS, "%s: sr_discipline_shutdown %s\n", DEVNAME(sc), sd->sd_meta ? sd->sd_meta->ssd_devname : "nodev"); s = splbio(); sd->sd_ready = 0; if (sd->sd_shutdownhook) shutdownhook_disestablish(sd->sd_shutdownhook); /* make sure there isn't a sync pending and yield */ wakeup(sd); while (sd->sd_sync || sd->sd_must_flush) if (tsleep(&sd->sd_sync, MAXPRI, "sr_down", 60 * hz) == EWOULDBLOCK) break; #ifndef SMALL_KERNEL sr_sensors_delete(sd); #endif /* SMALL_KERNEL */ if (sd->sd_scsibus_dev) config_detach(sd->sd_scsibus_dev, DETACH_FORCE); sr_chunks_unwind(sc, &sd->sd_vol.sv_chunk_list); if (sd) sr_discipline_free(sd); splx(s); } int sr_discipline_init(struct sr_discipline *sd, int level) { int rv = 1; switch (level) { case 0: sr_raid0_discipline_init(sd); break; case 1: sr_raid1_discipline_init(sd); break; case 4: sr_raidp_discipline_init(sd, SR_MD_RAID4); break; case 5: sr_raidp_discipline_init(sd, SR_MD_RAID5); break; case 6: sr_raid6_discipline_init(sd); break; #ifdef AOE /* AOE target. */ case 'A': sr_aoe_server_discipline_init(sd); break; /* AOE initiator. */ case 'a': sr_aoe_discipline_init(sd); break; #endif #ifdef CRYPTO case 'C': sr_crypto_discipline_init(sd); break; #endif default: goto bad; } rv = 0; bad: return (rv); } int sr_raid_inquiry(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct scsi_inquiry_data inq; DNPRINTF(SR_D_DIS, "%s: sr_raid_inquiry\n", DEVNAME(sd->sd_sc)); bzero(&inq, sizeof(inq)); inq.device = T_DIRECT; inq.dev_qual2 = 0; inq.version = 2; inq.response_format = 2; inq.additional_length = 32; strlcpy(inq.vendor, sd->sd_meta->ssdi.ssd_vendor, sizeof(inq.vendor)); strlcpy(inq.product, sd->sd_meta->ssdi.ssd_product, sizeof(inq.product)); strlcpy(inq.revision, sd->sd_meta->ssdi.ssd_revision, sizeof(inq.revision)); sr_copy_internal_data(xs, &inq, sizeof(inq)); return (0); } int sr_raid_read_cap(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct scsi_read_cap_data rcd; struct scsi_read_cap_data_16 rcd16; int rv = 1; DNPRINTF(SR_D_DIS, "%s: sr_raid_read_cap\n", DEVNAME(sd->sd_sc)); if (xs->cmd->opcode == READ_CAPACITY) { bzero(&rcd, sizeof(rcd)); if (sd->sd_meta->ssdi.ssd_size > 0xffffffffllu) _lto4b(0xffffffff, rcd.addr); else _lto4b(sd->sd_meta->ssdi.ssd_size, rcd.addr); _lto4b(512, rcd.length); sr_copy_internal_data(xs, &rcd, sizeof(rcd)); rv = 0; } else if (xs->cmd->opcode == READ_CAPACITY_16) { bzero(&rcd16, sizeof(rcd16)); _lto8b(sd->sd_meta->ssdi.ssd_size, rcd16.addr); _lto4b(512, rcd16.length); sr_copy_internal_data(xs, &rcd16, sizeof(rcd16)); rv = 0; } return (rv); } int sr_raid_tur(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; DNPRINTF(SR_D_DIS, "%s: sr_raid_tur\n", DEVNAME(sd->sd_sc)); if (sd->sd_vol_status == BIOC_SVOFFLINE) { sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT; sd->sd_scsi_sense.flags = SKEY_NOT_READY; sd->sd_scsi_sense.add_sense_code = 0x04; sd->sd_scsi_sense.add_sense_code_qual = 0x11; sd->sd_scsi_sense.extra_len = 4; return (1); } else if (sd->sd_vol_status == BIOC_SVINVALID) { sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT; sd->sd_scsi_sense.flags = SKEY_HARDWARE_ERROR; sd->sd_scsi_sense.add_sense_code = 0x05; sd->sd_scsi_sense.add_sense_code_qual = 0x00; sd->sd_scsi_sense.extra_len = 4; return (1); } return (0); } int sr_raid_request_sense(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; DNPRINTF(SR_D_DIS, "%s: sr_raid_request_sense\n", DEVNAME(sd->sd_sc)); /* use latest sense data */ bcopy(&sd->sd_scsi_sense, &xs->sense, sizeof(xs->sense)); /* clear sense data */ bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense)); return (0); } int sr_raid_start_stop(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct scsi_start_stop *ss = (struct scsi_start_stop *)xs->cmd; int rv = 1; DNPRINTF(SR_D_DIS, "%s: sr_raid_start_stop\n", DEVNAME(sd->sd_sc)); if (!ss) return (rv); if (ss->byte2 == 0x00) { /* START */ if (sd->sd_vol_status == BIOC_SVOFFLINE) { /* bring volume online */ /* XXX check to see if volume can be brought online */ sd->sd_vol_status = BIOC_SVONLINE; } rv = 0; } else /* XXX is this the check? if (byte == 0x01) */ { /* STOP */ if (sd->sd_vol_status == BIOC_SVONLINE) { /* bring volume offline */ sd->sd_vol_status = BIOC_SVOFFLINE; } rv = 0; } return (rv); } int sr_raid_sync(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; int s, rv = 0, ios; DNPRINTF(SR_D_DIS, "%s: sr_raid_sync\n", DEVNAME(sd->sd_sc)); /* when doing a fake sync don't count the wu */ ios = wu->swu_fake ? 0 : 1; s = splbio(); sd->sd_sync = 1; while (sd->sd_wu_pending > ios) if (tsleep(sd, PRIBIO, "sr_sync", 15 * hz) == EWOULDBLOCK) { DNPRINTF(SR_D_DIS, "%s: sr_raid_sync timeout\n", DEVNAME(sd->sd_sc)); rv = 1; break; } sd->sd_sync = 0; splx(s); wakeup(&sd->sd_sync); return (rv); } void sr_raid_startwu(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct sr_ccb *ccb; splassert(IPL_BIO); if (wu->swu_state == SR_WU_RESTART) /* * no need to put the wu on the pending queue since we * are restarting the io */ ; else /* move wu to pending queue */ TAILQ_INSERT_TAIL(&sd->sd_wu_pendq, wu, swu_link); /* start all individual ios */ TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) { VOP_STRATEGY(&ccb->ccb_buf); } } void sr_checksum_print(u_int8_t *md5) { int i; for (i = 0; i < MD5_DIGEST_LENGTH; i++) printf("%02x", md5[i]); } void sr_checksum(struct sr_softc *sc, void *src, void *md5, u_int32_t len) { MD5_CTX ctx; DNPRINTF(SR_D_MISC, "%s: sr_checksum(%p %p %d)\n", DEVNAME(sc), src, md5, len); MD5Init(&ctx); MD5Update(&ctx, src, len); MD5Final(md5, &ctx); } void sr_uuid_get(struct sr_uuid *uuid) { arc4random_buf(uuid->sui_id, sizeof(uuid->sui_id)); /* UUID version 4: random */ uuid->sui_id[6] &= 0x0f; uuid->sui_id[6] |= 0x40; /* RFC4122 variant */ uuid->sui_id[8] &= 0x3f; uuid->sui_id[8] |= 0x80; } void sr_uuid_print(struct sr_uuid *uuid, int cr) { printf("%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" "%02x%02x%02x%02x%02x%02x", uuid->sui_id[0], uuid->sui_id[1], uuid->sui_id[2], uuid->sui_id[3], uuid->sui_id[4], uuid->sui_id[5], uuid->sui_id[6], uuid->sui_id[7], uuid->sui_id[8], uuid->sui_id[9], uuid->sui_id[10], uuid->sui_id[11], uuid->sui_id[12], uuid->sui_id[13], uuid->sui_id[14], uuid->sui_id[15]); if (cr) printf("\n"); } int sr_already_assembled(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; int i; for (i = 0; i < SR_MAXSCSIBUS; i++) if (sc->sc_dis[i]) if (!bcmp(&sd->sd_meta->ssdi.ssd_uuid, &sc->sc_dis[i]->sd_meta->ssdi.ssd_uuid, sizeof(sd->sd_meta->ssdi.ssd_uuid))) return (1); return (0); } int32_t sr_validate_stripsize(u_int32_t b) { int s = 0; if (b % 512) return (-1); while ((b & 1) == 0) { b >>= 1; s++; } /* only multiple of twos */ b >>= 1; if (b) return(-1); return (s); } void sr_shutdown(void *arg) { struct sr_discipline *sd = arg; #ifdef SR_DEBUG struct sr_softc *sc = sd->sd_sc; #endif DNPRINTF(SR_D_DIS, "%s: sr_shutdown %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); /* abort rebuild and drain io */ sd->sd_reb_abort = 1; while (sd->sd_reb_active) tsleep(sd, PWAIT, "sr_shutdown", 1); sr_meta_save(sd, 0); sr_discipline_shutdown(sd); } int sr_validate_io(struct sr_workunit *wu, daddr64_t *blk, char *func) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; int rv = 1; DNPRINTF(SR_D_DIS, "%s: %s 0x%02x\n", DEVNAME(sd->sd_sc), func, xs->cmd->opcode); if (sd->sd_meta->ssd_data_offset == 0) panic("invalid data offset"); if (sd->sd_vol_status == BIOC_SVOFFLINE) { DNPRINTF(SR_D_DIS, "%s: %s device offline\n", DEVNAME(sd->sd_sc), func); goto bad; } if (xs->datalen == 0) { printf("%s: %s: illegal block count for %s\n", DEVNAME(sd->sd_sc), func, sd->sd_meta->ssd_devname); goto bad; } if (xs->cmdlen == 10) *blk = _4btol(((struct scsi_rw_big *)xs->cmd)->addr); else if (xs->cmdlen == 16) *blk = _8btol(((struct scsi_rw_16 *)xs->cmd)->addr); else if (xs->cmdlen == 6) *blk = _3btol(((struct scsi_rw *)xs->cmd)->addr); else { printf("%s: %s: illegal cmdlen for %s\n", DEVNAME(sd->sd_sc), func, sd->sd_meta->ssd_devname); goto bad; } wu->swu_blk_start = *blk; wu->swu_blk_end = *blk + (xs->datalen >> DEV_BSHIFT) - 1; if (wu->swu_blk_end > sd->sd_meta->ssdi.ssd_size) { DNPRINTF(SR_D_DIS, "%s: %s out of bounds start: %lld " "end: %lld length: %d\n", DEVNAME(sd->sd_sc), func, wu->swu_blk_start, wu->swu_blk_end, xs->datalen); sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT | SSD_ERRCODE_VALID; sd->sd_scsi_sense.flags = SKEY_ILLEGAL_REQUEST; sd->sd_scsi_sense.add_sense_code = 0x21; sd->sd_scsi_sense.add_sense_code_qual = 0x00; sd->sd_scsi_sense.extra_len = 4; goto bad; } rv = 0; bad: return (rv); } int sr_check_io_collision(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct sr_workunit *wup; splassert(IPL_BIO); /* walk queue backwards and fill in collider if we have one */ TAILQ_FOREACH_REVERSE(wup, &sd->sd_wu_pendq, sr_wu_list, swu_link) { if (wu->swu_blk_end < wup->swu_blk_start || wup->swu_blk_end < wu->swu_blk_start) continue; /* we have an LBA collision, defer wu */ wu->swu_state = SR_WU_DEFERRED; if (wup->swu_collider) /* wu is on deferred queue, append to last wu */ while (wup->swu_collider) wup = wup->swu_collider; wup->swu_collider = wu; TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu, swu_link); sd->sd_wu_collisions++; goto queued; } return (0); queued: return (1); } void sr_rebuild(void *arg) { struct sr_discipline *sd = arg; struct sr_softc *sc = sd->sd_sc; if (kthread_create(sr_rebuild_thread, sd, &sd->sd_background_proc, DEVNAME(sc)) != 0) printf("%s: unable to start backgound operation\n", DEVNAME(sc)); } void sr_rebuild_thread(void *arg) { struct sr_discipline *sd = arg; struct sr_softc *sc = sd->sd_sc; daddr64_t whole_blk, partial_blk, blk, sz, lba; daddr64_t psz, rb, restart; uint64_t mysize = 0; struct sr_workunit *wu_r, *wu_w; struct scsi_xfer xs_r, xs_w; struct scsi_rw_16 cr, cw; int c, s, slept, percent = 0, old_percent = -1; u_int8_t *buf; whole_blk = sd->sd_meta->ssdi.ssd_size / SR_REBUILD_IO_SIZE; partial_blk = sd->sd_meta->ssdi.ssd_size % SR_REBUILD_IO_SIZE; restart = sd->sd_meta->ssd_rebuild / SR_REBUILD_IO_SIZE; if (restart > whole_blk) { printf("%s: bogus rebuild restart offset, starting from 0\n", DEVNAME(sc)); restart = 0; } if (restart) { /* * XXX there is a hole here; there is a posibility that we * had a restart however the chunk that was supposed to * be rebuilt is no longer valid; we can reach this situation * when a rebuild is in progress and the box crashes and * on reboot the rebuild chunk is different (like zero'd or * replaced). We need to check the uuid of the chunk that is * being rebuilt to assert this. */ psz = sd->sd_meta->ssdi.ssd_size; rb = sd->sd_meta->ssd_rebuild; if (rb > 0) percent = 100 - ((psz * 100 - rb * 100) / psz) - 1; else percent = 0; printf("%s: resuming rebuild on %s at %llu%%\n", DEVNAME(sc), sd->sd_meta->ssd_devname, percent); } sd->sd_reb_active = 1; buf = malloc(SR_REBUILD_IO_SIZE << DEV_BSHIFT, M_DEVBUF, M_WAITOK); for (blk = restart; blk <= whole_blk; blk++) { if (blk == whole_blk) sz = partial_blk; else sz = SR_REBUILD_IO_SIZE; mysize += sz; lba = blk * sz; /* get some wu */ if ((wu_r = sr_wu_get(sd, 1)) == NULL) panic("%s: rebuild exhausted wu_r", DEVNAME(sc)); if ((wu_w = sr_wu_get(sd, 1)) == NULL) panic("%s: rebuild exhausted wu_w", DEVNAME(sc)); /* setup read io */ bzero(&xs_r, sizeof xs_r); bzero(&cr, sizeof cr); xs_r.error = XS_NOERROR; xs_r.flags = SCSI_DATA_IN; xs_r.datalen = sz << DEV_BSHIFT; xs_r.data = buf; xs_r.cmdlen = 16; cr.opcode = READ_16; _lto4b(sz, cr.length); _lto8b(lba, cr.addr); xs_r.cmd = (struct scsi_generic *)&cr; wu_r->swu_flags |= SR_WUF_REBUILD; wu_r->swu_xs = &xs_r; if (sd->sd_scsi_rw(wu_r)) { printf("%s: could not create read io\n", DEVNAME(sc)); goto fail; } /* setup write io */ bzero(&xs_w, sizeof xs_w); bzero(&cw, sizeof cw); xs_w.error = XS_NOERROR; xs_w.flags = SCSI_DATA_OUT; xs_w.datalen = sz << DEV_BSHIFT; xs_w.data = buf; xs_w.cmdlen = 16; cw.opcode = WRITE_16; _lto4b(sz, cw.length); _lto8b(lba, cw.addr); xs_w.cmd = (struct scsi_generic *)&cw; wu_w->swu_flags |= SR_WUF_REBUILD; wu_w->swu_xs = &xs_w; if (sd->sd_scsi_rw(wu_w)) { printf("%s: could not create write io\n", DEVNAME(sc)); goto fail; } /* * collide with the read io so that we get automatically * started when the read is done */ wu_w->swu_state = SR_WU_DEFERRED; wu_r->swu_collider = wu_w; s = splbio(); TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu_w, swu_link); /* schedule io */ if (sr_check_io_collision(wu_r)) goto queued; sr_raid_startwu(wu_r); queued: splx(s); /* wait for read completion */ slept = 0; while ((wu_w->swu_flags & SR_WUF_REBUILDIOCOMP) == 0) { tsleep(wu_w, PRIBIO, "sr_rebuild", 0); slept = 1; } /* yield if we didn't sleep */ if (slept == 0) tsleep(sc, PWAIT, "sr_yield", 1); sr_wu_put(wu_r); sr_wu_put(wu_w); sd->sd_meta->ssd_rebuild = lba; /* save metadata every percent */ psz = sd->sd_meta->ssdi.ssd_size; rb = sd->sd_meta->ssd_rebuild; if (rb > 0) percent = 100 - ((psz * 100 - rb * 100) / psz) - 1; else percent = 0; if (percent != old_percent && blk != whole_blk) { if (sr_meta_save(sd, SR_META_DIRTY)) printf("%s: could not save metadata to %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); old_percent = percent; } if (sd->sd_reb_abort) goto abort; } /* all done */ sd->sd_meta->ssd_rebuild = 0; for (c = 0; c < sd->sd_meta->ssdi.ssd_chunk_no; c++) if (sd->sd_vol.sv_chunks[c]->src_meta.scm_status == BIOC_SDREBUILD) { sd->sd_set_chunk_state(sd, c, BIOC_SDONLINE); break; } abort: if (sr_meta_save(sd, SR_META_DIRTY)) printf("%s: could not save metadata to %s\n", DEVNAME(sc), sd->sd_meta->ssd_devname); fail: free(buf, M_DEVBUF); sd->sd_reb_active = 0; kthread_exit(0); } #ifndef SMALL_KERNEL int sr_sensors_create(struct sr_discipline *sd) { struct sr_softc *sc = sd->sd_sc; int rv = 1; DNPRINTF(SR_D_STATE, "%s: %s: sr_sensors_create\n", DEVNAME(sc), sd->sd_meta->ssd_devname); strlcpy(sd->sd_vol.sv_sensordev.xname, DEVNAME(sc), sizeof(sd->sd_vol.sv_sensordev.xname)); sd->sd_vol.sv_sensor.type = SENSOR_DRIVE; sd->sd_vol.sv_sensor.status = SENSOR_S_UNKNOWN; strlcpy(sd->sd_vol.sv_sensor.desc, sd->sd_meta->ssd_devname, sizeof(sd->sd_vol.sv_sensor.desc)); sensor_attach(&sd->sd_vol.sv_sensordev, &sd->sd_vol.sv_sensor); if (sc->sc_sensors_running == 0) { if (sensor_task_register(sc, sr_sensors_refresh, 10) == NULL) goto bad; sc->sc_sensors_running = 1; } sensordev_install(&sd->sd_vol.sv_sensordev); rv = 0; bad: return (rv); } void sr_sensors_delete(struct sr_discipline *sd) { DNPRINTF(SR_D_STATE, "%s: sr_sensors_delete\n", DEVNAME(sd->sd_sc)); if (sd->sd_vol.sv_sensor_valid) sensordev_deinstall(&sd->sd_vol.sv_sensordev); } void sr_sensors_refresh(void *arg) { struct sr_softc *sc = arg; struct sr_volume *sv; struct sr_discipline *sd; int i, vol; DNPRINTF(SR_D_STATE, "%s: sr_sensors_refresh\n", DEVNAME(sc)); for (i = 0, vol = -1; i < SR_MAXSCSIBUS; i++) { /* XXX this will not work when we stagger disciplines */ if (!sc->sc_dis[i]) continue; sd = sc->sc_dis[i]; sv = &sd->sd_vol; switch(sd->sd_vol_status) { case BIOC_SVOFFLINE: sv->sv_sensor.value = SENSOR_DRIVE_FAIL; sv->sv_sensor.status = SENSOR_S_CRIT; break; case BIOC_SVDEGRADED: sv->sv_sensor.value = SENSOR_DRIVE_PFAIL; sv->sv_sensor.status = SENSOR_S_WARN; break; case BIOC_SVSCRUB: case BIOC_SVONLINE: sv->sv_sensor.value = SENSOR_DRIVE_ONLINE; sv->sv_sensor.status = SENSOR_S_OK; break; default: sv->sv_sensor.value = 0; /* unknown */ sv->sv_sensor.status = SENSOR_S_UNKNOWN; } } } #endif /* SMALL_KERNEL */ #ifdef SR_FANCY_STATS void sr_print_stats(void); void sr_print_stats(void) { struct sr_softc *sc; struct sr_discipline *sd; int i, vol; for (i = 0; i < softraid_cd.cd_ndevs; i++) if (softraid_cd.cd_devs[i]) { sc = softraid_cd.cd_devs[i]; /* we'll only have one softc */ break; } if (!sc) { printf("no softraid softc found\n"); return; } for (i = 0, vol = -1; i < SR_MAXSCSIBUS; i++) { /* XXX this will not work when we stagger disciplines */ if (!sc->sc_dis[i]) continue; sd = sc->sc_dis[i]; printf("%s: ios pending: %d collisions %llu\n", sd->sd_meta->ssd_devname, sd->sd_wu_pending, sd->sd_wu_collisions); } } #endif /* SR_FANCY_STATS */ #ifdef SR_DEBUG void sr_meta_print(struct sr_metadata *m) { int i; struct sr_meta_chunk *mc; struct sr_meta_opt *mo; if (!(sr_debug & SR_D_META)) return; printf("\tssd_magic 0x%llx\n", m->ssdi.ssd_magic); printf("\tssd_version %d\n", m->ssdi.ssd_version); printf("\tssd_vol_flags 0x%x\n", m->ssdi.ssd_vol_flags); printf("\tssd_uuid "); sr_uuid_print(&m->ssdi.ssd_uuid, 1); printf("\tssd_chunk_no %d\n", m->ssdi.ssd_chunk_no); printf("\tssd_chunk_id %d\n", m->ssdi.ssd_chunk_id); printf("\tssd_opt_no %d\n", m->ssdi.ssd_opt_no); printf("\tssd_volid %d\n", m->ssdi.ssd_volid); printf("\tssd_level %d\n", m->ssdi.ssd_level); printf("\tssd_size %lld\n", m->ssdi.ssd_size); printf("\tssd_devname %s\n", m->ssd_devname); printf("\tssd_vendor %s\n", m->ssdi.ssd_vendor); printf("\tssd_product %s\n", m->ssdi.ssd_product); printf("\tssd_revision %s\n", m->ssdi.ssd_revision); printf("\tssd_strip_size %d\n", m->ssdi.ssd_strip_size); printf("\tssd_checksum "); sr_checksum_print(m->ssd_checksum); printf("\n"); printf("\tssd_meta_flags 0x%x\n", m->ssd_meta_flags); printf("\tssd_ondisk %llu\n", m->ssd_ondisk); mc = (struct sr_meta_chunk *)(m + 1); for (i = 0; i < m->ssdi.ssd_chunk_no; i++, mc++) { printf("\t\tscm_volid %d\n", mc->scmi.scm_volid); printf("\t\tscm_chunk_id %d\n", mc->scmi.scm_chunk_id); printf("\t\tscm_devname %s\n", mc->scmi.scm_devname); printf("\t\tscm_size %lld\n", mc->scmi.scm_size); printf("\t\tscm_coerced_size %lld\n",mc->scmi.scm_coerced_size); printf("\t\tscm_uuid "); sr_uuid_print(&mc->scmi.scm_uuid, 1); printf("\t\tscm_checksum "); sr_checksum_print(mc->scm_checksum); printf("\n"); printf("\t\tscm_status %d\n", mc->scm_status); } mo = (struct sr_meta_opt *)(mc); for (i = 0; i < m->ssdi.ssd_opt_no; i++, mo++) { printf("\t\t\tsom_type %d\n", mo->somi.som_type); printf("\t\t\tsom_checksum "); sr_checksum_print(mo->som_checksum); printf("\n"); } } void sr_dump_mem(u_int8_t *p, int len) { int i; for (i = 0; i < len; i++) printf("%02x ", *p++); printf("\n"); } #endif /* SR_DEBUG */