/* $OpenBSD: softraid_crypto.c,v 1.116 2014/12/19 17:15:16 tedu Exp $ */ /* * Copyright (c) 2007 Marco Peereboom * Copyright (c) 2008 Hans-Joerg Hoexer * Copyright (c) 2008 Damien Miller * Copyright (c) 2009 Joel Sing * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The per-I/O data that we need to preallocate. We cannot afford to allow I/O * to start failing when memory pressure kicks in. We can store this in the WU * because we assert that only one ccb per WU will ever be active. */ struct sr_crypto_wu { struct sr_workunit cr_wu; /* Must be first. */ struct uio cr_uio; struct iovec cr_iov; struct cryptop *cr_crp; struct cryptodesc *cr_descs; void *cr_dmabuf; }; struct sr_crypto_wu *sr_crypto_prepare(struct sr_workunit *, int); int sr_crypto_create_keys(struct sr_discipline *); int sr_crypto_get_kdf(struct bioc_createraid *, struct sr_discipline *); int sr_crypto_decrypt(u_char *, u_char *, u_char *, size_t, int); int sr_crypto_encrypt(u_char *, u_char *, u_char *, size_t, int); int sr_crypto_decrypt_key(struct sr_discipline *); int sr_crypto_change_maskkey(struct sr_discipline *, struct sr_crypto_kdfinfo *, struct sr_crypto_kdfinfo *); int sr_crypto_create(struct sr_discipline *, struct bioc_createraid *, int, int64_t); int sr_crypto_assemble(struct sr_discipline *, struct bioc_createraid *, int, void *); int sr_crypto_alloc_resources(struct sr_discipline *); void sr_crypto_free_resources(struct sr_discipline *); int sr_crypto_ioctl(struct sr_discipline *, struct bioc_discipline *); int sr_crypto_meta_opt_handler(struct sr_discipline *, struct sr_meta_opt_hdr *); int sr_crypto_write(struct cryptop *); int sr_crypto_rw(struct sr_workunit *); int sr_crypto_dev_rw(struct sr_workunit *, struct sr_crypto_wu *); void sr_crypto_done(struct sr_workunit *); int sr_crypto_read(struct cryptop *); void sr_crypto_calculate_check_hmac_sha1(u_int8_t *, int, u_int8_t *, int, u_char *); void sr_crypto_hotplug(struct sr_discipline *, struct disk *, int); #ifdef SR_DEBUG0 void sr_crypto_dumpkeys(struct sr_discipline *); #endif /* Discipline initialisation. */ void sr_crypto_discipline_init(struct sr_discipline *sd) { int i; /* Fill out discipline members. */ sd->sd_type = SR_MD_CRYPTO; strlcpy(sd->sd_name, "CRYPTO", sizeof(sd->sd_name)); sd->sd_capabilities = SR_CAP_SYSTEM_DISK | SR_CAP_AUTO_ASSEMBLE; sd->sd_max_wu = SR_CRYPTO_NOWU; for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; /* Setup discipline specific function pointers. */ sd->sd_alloc_resources = sr_crypto_alloc_resources; sd->sd_assemble = sr_crypto_assemble; sd->sd_create = sr_crypto_create; sd->sd_free_resources = sr_crypto_free_resources; sd->sd_ioctl_handler = sr_crypto_ioctl; sd->sd_meta_opt_handler = sr_crypto_meta_opt_handler; sd->sd_scsi_rw = sr_crypto_rw; sd->sd_scsi_done = sr_crypto_done; } int sr_crypto_create(struct sr_discipline *sd, struct bioc_createraid *bc, int no_chunk, int64_t coerced_size) { struct sr_meta_opt_item *omi; int rv = EINVAL; if (no_chunk != 1) { sr_error(sd->sd_sc, "%s requires exactly one chunk", sd->sd_name); goto done; } /* Create crypto optional metadata. */ omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF, M_WAITOK | M_ZERO); omi->omi_som = malloc(sizeof(struct sr_meta_crypto), M_DEVBUF, M_WAITOK | M_ZERO); omi->omi_som->som_type = SR_OPT_CRYPTO; omi->omi_som->som_length = sizeof(struct sr_meta_crypto); SLIST_INSERT_HEAD(&sd->sd_meta_opt, omi, omi_link); sd->mds.mdd_crypto.scr_meta = (struct sr_meta_crypto *)omi->omi_som; sd->sd_meta->ssdi.ssd_opt_no++; sd->mds.mdd_crypto.key_disk = NULL; if (bc->bc_key_disk != NODEV) { /* Create a key disk. */ if (sr_crypto_get_kdf(bc, sd)) goto done; sd->mds.mdd_crypto.key_disk = sr_crypto_create_key_disk(sd, bc->bc_key_disk); if (sd->mds.mdd_crypto.key_disk == NULL) goto done; sd->sd_capabilities |= SR_CAP_AUTO_ASSEMBLE; } else if (bc->bc_opaque_flags & BIOC_SOOUT) { /* No hint available yet. */ bc->bc_opaque_status = BIOC_SOINOUT_FAILED; rv = EAGAIN; goto done; } else if (sr_crypto_get_kdf(bc, sd)) goto done; /* Passphrase volumes cannot be automatically assembled. */ if (!(bc->bc_flags & BIOC_SCNOAUTOASSEMBLE) && bc->bc_key_disk == NODEV) goto done; sd->sd_meta->ssdi.ssd_size = coerced_size; sr_crypto_create_keys(sd); sd->sd_max_ccb_per_wu = no_chunk; rv = 0; done: return (rv); } int sr_crypto_assemble(struct sr_discipline *sd, struct bioc_createraid *bc, int no_chunk, void *data) { int rv = EINVAL; sd->mds.mdd_crypto.key_disk = NULL; /* Crypto optional metadata must already exist... */ if (sd->mds.mdd_crypto.scr_meta == NULL) goto done; if (data != NULL) { /* Kernel already has mask key. */ memcpy(sd->mds.mdd_crypto.scr_maskkey, data, sizeof(sd->mds.mdd_crypto.scr_maskkey)); } else if (bc->bc_key_disk != NODEV) { /* Read the mask key from the key disk. */ sd->mds.mdd_crypto.key_disk = sr_crypto_read_key_disk(sd, bc->bc_key_disk); if (sd->mds.mdd_crypto.key_disk == NULL) goto done; } else if (bc->bc_opaque_flags & BIOC_SOOUT) { /* provide userland with kdf hint */ if (bc->bc_opaque == NULL) goto done; if (sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint) < bc->bc_opaque_size) goto done; if (copyout(sd->mds.mdd_crypto.scr_meta->scm_kdfhint, bc->bc_opaque, bc->bc_opaque_size)) goto done; /* we're done */ bc->bc_opaque_status = BIOC_SOINOUT_OK; rv = EAGAIN; goto done; } else if (bc->bc_opaque_flags & BIOC_SOIN) { /* get kdf with maskkey from userland */ if (sr_crypto_get_kdf(bc, sd)) goto done; } else goto done; sd->sd_max_ccb_per_wu = sd->sd_meta->ssdi.ssd_chunk_no; rv = 0; done: return (rv); } struct sr_crypto_wu * sr_crypto_prepare(struct sr_workunit *wu, int encrypt) { struct scsi_xfer *xs = wu->swu_xs; struct sr_discipline *sd = wu->swu_dis; struct sr_crypto_wu *crwu; struct cryptodesc *crd; int flags, i, n; daddr_t blk; u_int keyndx; DNPRINTF(SR_D_DIS, "%s: sr_crypto_prepare wu %p encrypt %d\n", DEVNAME(sd->sd_sc), wu, encrypt); crwu = (struct sr_crypto_wu *)wu; crwu->cr_uio.uio_iovcnt = 1; crwu->cr_uio.uio_iov->iov_len = xs->datalen; if (xs->flags & SCSI_DATA_OUT) { crwu->cr_uio.uio_iov->iov_base = crwu->cr_dmabuf; memcpy(crwu->cr_uio.uio_iov->iov_base, xs->data, xs->datalen); } else crwu->cr_uio.uio_iov->iov_base = xs->data; blk = wu->swu_blk_start; n = xs->datalen >> DEV_BSHIFT; /* * We preallocated enough crypto descs for up to MAXPHYS of I/O. * Since there may be less than that we need to tweak the linked list * of crypto desc structures to be just long enough for our needs. */ crd = crwu->cr_descs; for (i = 0; i < ((MAXPHYS >> DEV_BSHIFT) - n); i++) { crd = crd->crd_next; KASSERT(crd); } crwu->cr_crp->crp_desc = crd; flags = (encrypt ? CRD_F_ENCRYPT : 0) | CRD_F_IV_PRESENT | CRD_F_IV_EXPLICIT; /* * Select crypto session based on block number. * * XXX - this does not handle the case where the read/write spans * across a different key blocks (e.g. 0.5TB boundary). Currently * this is already broken by the use of scr_key[0] below. */ keyndx = blk >> SR_CRYPTO_KEY_BLKSHIFT; crwu->cr_crp->crp_sid = sd->mds.mdd_crypto.scr_sid[keyndx]; crwu->cr_crp->crp_opaque = crwu; crwu->cr_crp->crp_ilen = xs->datalen; crwu->cr_crp->crp_alloctype = M_DEVBUF; crwu->cr_crp->crp_buf = &crwu->cr_uio; for (i = 0, crd = crwu->cr_crp->crp_desc; crd; i++, blk++, crd = crd->crd_next) { crd->crd_skip = i << DEV_BSHIFT; crd->crd_len = DEV_BSIZE; crd->crd_inject = 0; crd->crd_flags = flags; crd->crd_alg = sd->mds.mdd_crypto.scr_alg; crd->crd_klen = sd->mds.mdd_crypto.scr_klen; crd->crd_key = sd->mds.mdd_crypto.scr_key[0]; memcpy(crd->crd_iv, &blk, sizeof(blk)); } return (crwu); } int sr_crypto_get_kdf(struct bioc_createraid *bc, struct sr_discipline *sd) { int rv = EINVAL; struct sr_crypto_kdfinfo *kdfinfo; if (!(bc->bc_opaque_flags & BIOC_SOIN)) return (rv); if (bc->bc_opaque == NULL) return (rv); if (bc->bc_opaque_size != sizeof(*kdfinfo)) return (rv); kdfinfo = malloc(bc->bc_opaque_size, M_DEVBUF, M_WAITOK | M_ZERO); if (copyin(bc->bc_opaque, kdfinfo, bc->bc_opaque_size)) goto out; if (kdfinfo->len != bc->bc_opaque_size) goto out; /* copy KDF hint to disk meta data */ if (kdfinfo->flags & SR_CRYPTOKDF_HINT) { if (sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint) < kdfinfo->genkdf.len) goto out; memcpy(sd->mds.mdd_crypto.scr_meta->scm_kdfhint, &kdfinfo->genkdf, kdfinfo->genkdf.len); } /* copy mask key to run-time meta data */ if ((kdfinfo->flags & SR_CRYPTOKDF_KEY)) { if (sizeof(sd->mds.mdd_crypto.scr_maskkey) < sizeof(kdfinfo->maskkey)) goto out; memcpy(sd->mds.mdd_crypto.scr_maskkey, &kdfinfo->maskkey, sizeof(kdfinfo->maskkey)); } bc->bc_opaque_status = BIOC_SOINOUT_OK; rv = 0; out: explicit_bzero(kdfinfo, bc->bc_opaque_size); free(kdfinfo, M_DEVBUF, bc->bc_opaque_size); return (rv); } int sr_crypto_encrypt(u_char *p, u_char *c, u_char *key, size_t size, int alg) { rijndael_ctx ctx; int i, rv = 1; switch (alg) { case SR_CRYPTOM_AES_ECB_256: if (rijndael_set_key_enc_only(&ctx, key, 256) != 0) goto out; for (i = 0; i < size; i += RIJNDAEL128_BLOCK_LEN) rijndael_encrypt(&ctx, &p[i], &c[i]); rv = 0; break; default: DNPRINTF(SR_D_DIS, "%s: unsupported encryption algorithm %d\n", "softraid", alg); rv = -1; goto out; } out: explicit_bzero(&ctx, sizeof(ctx)); return (rv); } int sr_crypto_decrypt(u_char *c, u_char *p, u_char *key, size_t size, int alg) { rijndael_ctx ctx; int i, rv = 1; switch (alg) { case SR_CRYPTOM_AES_ECB_256: if (rijndael_set_key(&ctx, key, 256) != 0) goto out; for (i = 0; i < size; i += RIJNDAEL128_BLOCK_LEN) rijndael_decrypt(&ctx, &c[i], &p[i]); rv = 0; break; default: DNPRINTF(SR_D_DIS, "%s: unsupported encryption algorithm %d\n", "softraid", alg); rv = -1; goto out; } out: explicit_bzero(&ctx, sizeof(ctx)); return (rv); } void sr_crypto_calculate_check_hmac_sha1(u_int8_t *maskkey, int maskkey_size, u_int8_t *key, int key_size, u_char *check_digest) { u_char check_key[SHA1_DIGEST_LENGTH]; HMAC_SHA1_CTX hmacctx; SHA1_CTX shactx; bzero(check_key, sizeof(check_key)); bzero(&hmacctx, sizeof(hmacctx)); bzero(&shactx, sizeof(shactx)); /* k = SHA1(mask_key) */ SHA1Init(&shactx); SHA1Update(&shactx, maskkey, maskkey_size); SHA1Final(check_key, &shactx); /* mac = HMAC_SHA1_k(unencrypted key) */ HMAC_SHA1_Init(&hmacctx, check_key, sizeof(check_key)); HMAC_SHA1_Update(&hmacctx, key, key_size); HMAC_SHA1_Final(check_digest, &hmacctx); explicit_bzero(check_key, sizeof(check_key)); explicit_bzero(&hmacctx, sizeof(hmacctx)); explicit_bzero(&shactx, sizeof(shactx)); } int sr_crypto_decrypt_key(struct sr_discipline *sd) { u_char check_digest[SHA1_DIGEST_LENGTH]; int rv = 1; DNPRINTF(SR_D_DIS, "%s: sr_crypto_decrypt_key\n", DEVNAME(sd->sd_sc)); if (sd->mds.mdd_crypto.scr_meta->scm_check_alg != SR_CRYPTOC_HMAC_SHA1) goto out; if (sr_crypto_decrypt((u_char *)sd->mds.mdd_crypto.scr_meta->scm_key, (u_char *)sd->mds.mdd_crypto.scr_key, sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_key), sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1) goto out; #ifdef SR_DEBUG0 sr_crypto_dumpkeys(sd); #endif /* Check that the key decrypted properly. */ sr_crypto_calculate_check_hmac_sha1(sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_maskkey), (u_int8_t *)sd->mds.mdd_crypto.scr_key, sizeof(sd->mds.mdd_crypto.scr_key), check_digest); if (memcmp(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac, check_digest, sizeof(check_digest)) != 0) { explicit_bzero(sd->mds.mdd_crypto.scr_key, sizeof(sd->mds.mdd_crypto.scr_key)); goto out; } rv = 0; /* Success */ out: /* we don't need the mask key anymore */ explicit_bzero(&sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_maskkey)); explicit_bzero(check_digest, sizeof(check_digest)); return rv; } int sr_crypto_create_keys(struct sr_discipline *sd) { DNPRINTF(SR_D_DIS, "%s: sr_crypto_create_keys\n", DEVNAME(sd->sd_sc)); if (AES_MAXKEYBYTES < sizeof(sd->mds.mdd_crypto.scr_maskkey)) return (1); /* XXX allow user to specify */ sd->mds.mdd_crypto.scr_meta->scm_alg = SR_CRYPTOA_AES_XTS_256; /* generate crypto keys */ arc4random_buf(sd->mds.mdd_crypto.scr_key, sizeof(sd->mds.mdd_crypto.scr_key)); /* Mask the disk keys. */ sd->mds.mdd_crypto.scr_meta->scm_mask_alg = SR_CRYPTOM_AES_ECB_256; sr_crypto_encrypt((u_char *)sd->mds.mdd_crypto.scr_key, (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key, sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_key), sd->mds.mdd_crypto.scr_meta->scm_mask_alg); /* Prepare key decryption check code. */ sd->mds.mdd_crypto.scr_meta->scm_check_alg = SR_CRYPTOC_HMAC_SHA1; sr_crypto_calculate_check_hmac_sha1(sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_maskkey), (u_int8_t *)sd->mds.mdd_crypto.scr_key, sizeof(sd->mds.mdd_crypto.scr_key), sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac); /* Erase the plaintext disk keys */ explicit_bzero(sd->mds.mdd_crypto.scr_key, sizeof(sd->mds.mdd_crypto.scr_key)); #ifdef SR_DEBUG0 sr_crypto_dumpkeys(sd); #endif sd->mds.mdd_crypto.scr_meta->scm_flags = SR_CRYPTOF_KEY | SR_CRYPTOF_KDFHINT; return (0); } int sr_crypto_change_maskkey(struct sr_discipline *sd, struct sr_crypto_kdfinfo *kdfinfo1, struct sr_crypto_kdfinfo *kdfinfo2) { u_char check_digest[SHA1_DIGEST_LENGTH]; u_char *c, *p = NULL; size_t ksz; int rv = 1; DNPRINTF(SR_D_DIS, "%s: sr_crypto_change_maskkey\n", DEVNAME(sd->sd_sc)); if (sd->mds.mdd_crypto.scr_meta->scm_check_alg != SR_CRYPTOC_HMAC_SHA1) goto out; c = (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key; ksz = sizeof(sd->mds.mdd_crypto.scr_key); p = malloc(ksz, M_DEVBUF, M_WAITOK | M_CANFAIL | M_ZERO); if (p == NULL) goto out; if (sr_crypto_decrypt(c, p, kdfinfo1->maskkey, ksz, sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1) goto out; #ifdef SR_DEBUG0 sr_crypto_dumpkeys(sd); #endif sr_crypto_calculate_check_hmac_sha1(kdfinfo1->maskkey, sizeof(kdfinfo1->maskkey), p, ksz, check_digest); if (memcmp(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac, check_digest, sizeof(check_digest)) != 0) { sr_error(sd->sd_sc, "incorrect key or passphrase"); rv = EPERM; goto out; } /* Mask the disk keys. */ c = (u_char *)sd->mds.mdd_crypto.scr_meta->scm_key; if (sr_crypto_encrypt(p, c, kdfinfo2->maskkey, ksz, sd->mds.mdd_crypto.scr_meta->scm_mask_alg) == -1) goto out; /* Prepare key decryption check code. */ sd->mds.mdd_crypto.scr_meta->scm_check_alg = SR_CRYPTOC_HMAC_SHA1; sr_crypto_calculate_check_hmac_sha1(kdfinfo2->maskkey, sizeof(kdfinfo2->maskkey), (u_int8_t *)sd->mds.mdd_crypto.scr_key, sizeof(sd->mds.mdd_crypto.scr_key), check_digest); /* Copy new encrypted key and HMAC to metadata. */ memcpy(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac, check_digest, sizeof(sd->mds.mdd_crypto.scr_meta->chk_hmac_sha1.sch_mac)); rv = 0; /* Success */ out: if (p) { explicit_bzero(p, ksz); free(p, M_DEVBUF, ksz); } explicit_bzero(check_digest, sizeof(check_digest)); explicit_bzero(&kdfinfo1->maskkey, sizeof(kdfinfo1->maskkey)); explicit_bzero(&kdfinfo2->maskkey, sizeof(kdfinfo2->maskkey)); return (rv); } struct sr_chunk * sr_crypto_create_key_disk(struct sr_discipline *sd, dev_t dev) { struct sr_softc *sc = sd->sd_sc; struct sr_discipline *fakesd = NULL; struct sr_metadata *sm = NULL; struct sr_meta_chunk *km; struct sr_meta_opt_item *omi = NULL; struct sr_meta_keydisk *skm; struct sr_chunk *key_disk = NULL; struct disklabel label; struct vnode *vn; char devname[32]; int c, part, open = 0; /* * Create a metadata structure on the key disk and store * keying material in the optional metadata. */ sr_meta_getdevname(sc, dev, devname, sizeof(devname)); /* Make sure chunk is not already in use. */ c = sr_chunk_in_use(sc, dev); if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) { sr_error(sc, "%s is already in use", devname); goto done; } /* Open device. */ if (bdevvp(dev, &vn)) { sr_error(sc, "cannot open key disk %s", devname); goto done; } if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) { DNPRINTF(SR_D_META,"%s: sr_crypto_create_key_disk cannot " "open %s\n", DEVNAME(sc), devname); vput(vn); goto fail; } open = 1; /* close dev on error */ /* Get partition details. */ part = DISKPART(dev); if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, curproc)) { DNPRINTF(SR_D_META, "%s: sr_crypto_create_key_disk ioctl " "failed\n", DEVNAME(sc)); VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc); vput(vn); goto fail; } if (label.d_secsize != DEV_BSIZE) { sr_error(sc, "%s has unsupported sector size (%d)", devname, label.d_secsize); goto fail; } if (label.d_partitions[part].p_fstype != FS_RAID) { sr_error(sc, "%s partition not of type RAID (%d)\n", devname, label.d_partitions[part].p_fstype); goto fail; } /* * Create and populate chunk metadata. */ key_disk = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); km = &key_disk->src_meta; key_disk->src_dev_mm = dev; key_disk->src_vn = vn; strlcpy(key_disk->src_devname, devname, sizeof(km->scmi.scm_devname)); key_disk->src_size = 0; km->scmi.scm_volid = sd->sd_meta->ssdi.ssd_level; km->scmi.scm_chunk_id = 0; km->scmi.scm_size = 0; km->scmi.scm_coerced_size = 0; strlcpy(km->scmi.scm_devname, devname, sizeof(km->scmi.scm_devname)); memcpy(&km->scmi.scm_uuid, &sd->sd_meta->ssdi.ssd_uuid, sizeof(struct sr_uuid)); sr_checksum(sc, km, &km->scm_checksum, sizeof(struct sr_meta_chunk_invariant)); km->scm_status = BIOC_SDONLINE; /* * Create and populate our own discipline and metadata. */ sm = malloc(sizeof(struct sr_metadata), M_DEVBUF, M_WAITOK | M_ZERO); sm->ssdi.ssd_magic = SR_MAGIC; sm->ssdi.ssd_version = SR_META_VERSION; sm->ssd_ondisk = 0; sm->ssdi.ssd_vol_flags = 0; memcpy(&sm->ssdi.ssd_uuid, &sd->sd_meta->ssdi.ssd_uuid, sizeof(struct sr_uuid)); sm->ssdi.ssd_chunk_no = 1; sm->ssdi.ssd_volid = SR_KEYDISK_VOLID; sm->ssdi.ssd_level = SR_KEYDISK_LEVEL; sm->ssdi.ssd_size = 0; strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor)); snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product), "SR %s", "KEYDISK"); snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision), "%03d", SR_META_VERSION); fakesd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_WAITOK | M_ZERO); fakesd->sd_sc = sd->sd_sc; fakesd->sd_meta = sm; fakesd->sd_meta_type = SR_META_F_NATIVE; fakesd->sd_vol_status = BIOC_SVONLINE; strlcpy(fakesd->sd_name, "KEYDISK", sizeof(fakesd->sd_name)); SLIST_INIT(&fakesd->sd_meta_opt); /* Add chunk to volume. */ fakesd->sd_vol.sv_chunks = malloc(sizeof(struct sr_chunk *), M_DEVBUF, M_WAITOK | M_ZERO); fakesd->sd_vol.sv_chunks[0] = key_disk; SLIST_INIT(&fakesd->sd_vol.sv_chunk_list); SLIST_INSERT_HEAD(&fakesd->sd_vol.sv_chunk_list, key_disk, src_link); /* Generate mask key. */ arc4random_buf(sd->mds.mdd_crypto.scr_maskkey, sizeof(sd->mds.mdd_crypto.scr_maskkey)); /* Copy mask key to optional metadata area. */ omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF, M_WAITOK | M_ZERO); omi->omi_som = malloc(sizeof(struct sr_meta_keydisk), M_DEVBUF, M_WAITOK | M_ZERO); omi->omi_som->som_type = SR_OPT_KEYDISK; omi->omi_som->som_length = sizeof(struct sr_meta_keydisk); skm = (struct sr_meta_keydisk *)omi->omi_som; memcpy(&skm->skm_maskkey, sd->mds.mdd_crypto.scr_maskkey, sizeof(skm->skm_maskkey)); SLIST_INSERT_HEAD(&fakesd->sd_meta_opt, omi, omi_link); fakesd->sd_meta->ssdi.ssd_opt_no++; /* Save metadata. */ if (sr_meta_save(fakesd, SR_META_DIRTY)) { sr_error(sc, "could not save metadata to %s", devname); goto fail; } goto done; fail: free(key_disk, M_DEVBUF, sizeof(struct sr_chunk)); key_disk = NULL; done: free(omi, M_DEVBUF, sizeof(struct sr_meta_opt_item)); if (fakesd && fakesd->sd_vol.sv_chunks) free(fakesd->sd_vol.sv_chunks, M_DEVBUF, sizeof(struct sr_chunk *)); free(fakesd, M_DEVBUF, sizeof(struct sr_discipline)); free(sm, M_DEVBUF, sizeof(struct sr_metadata)); if (open) { VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc); vput(vn); } return key_disk; } struct sr_chunk * sr_crypto_read_key_disk(struct sr_discipline *sd, dev_t dev) { struct sr_softc *sc = sd->sd_sc; struct sr_metadata *sm = NULL; struct sr_meta_opt_item *omi, *omi_next; struct sr_meta_opt_hdr *omh; struct sr_meta_keydisk *skm; struct sr_meta_opt_head som; struct sr_chunk *key_disk = NULL; struct disklabel label; struct vnode *vn = NULL; char devname[32]; int c, part, open = 0; /* * Load a key disk and load keying material into memory. */ SLIST_INIT(&som); sr_meta_getdevname(sc, dev, devname, sizeof(devname)); /* Make sure chunk is not already in use. */ c = sr_chunk_in_use(sc, dev); if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) { sr_error(sc, "%s is already in use", devname); goto done; } /* Open device. */ if (bdevvp(dev, &vn)) { sr_error(sc, "cannot open key disk %s", devname); goto done; } if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) { DNPRINTF(SR_D_META,"%s: sr_crypto_read_key_disk cannot " "open %s\n", DEVNAME(sc), devname); vput(vn); goto done; } open = 1; /* close dev on error */ /* Get partition details. */ part = DISKPART(dev); if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED, curproc)) { DNPRINTF(SR_D_META, "%s: sr_crypto_read_key_disk ioctl " "failed\n", DEVNAME(sc)); VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc); vput(vn); goto done; } if (label.d_secsize != DEV_BSIZE) { sr_error(sc, "%s has unsupported sector size (%d)", devname, label.d_secsize); goto done; } if (label.d_partitions[part].p_fstype != FS_RAID) { sr_error(sc, "%s partition not of type RAID (%d)\n", devname, label.d_partitions[part].p_fstype); goto done; } /* * Read and validate key disk metadata. */ sm = malloc(SR_META_SIZE * 512, M_DEVBUF, M_WAITOK | M_ZERO); if (sr_meta_native_read(sd, dev, sm, NULL)) { sr_error(sc, "native bootprobe could not read native metadata"); goto done; } if (sr_meta_validate(sd, dev, sm, NULL)) { DNPRINTF(SR_D_META, "%s: invalid metadata\n", DEVNAME(sc)); goto done; } /* Make sure this is a key disk. */ if (sm->ssdi.ssd_level != SR_KEYDISK_LEVEL) { sr_error(sc, "%s is not a key disk", devname); goto done; } /* Construct key disk chunk. */ key_disk = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO); key_disk->src_dev_mm = dev; key_disk->src_vn = vn; key_disk->src_size = 0; memcpy(&key_disk->src_meta, (struct sr_meta_chunk *)(sm + 1), sizeof(key_disk->src_meta)); /* Read mask key from optional metadata. */ sr_meta_opt_load(sc, sm, &som); SLIST_FOREACH(omi, &som, omi_link) { omh = omi->omi_som; if (omh->som_type == SR_OPT_KEYDISK) { skm = (struct sr_meta_keydisk *)omh; memcpy(sd->mds.mdd_crypto.scr_maskkey, &skm->skm_maskkey, sizeof(sd->mds.mdd_crypto.scr_maskkey)); } else if (omh->som_type == SR_OPT_CRYPTO) { /* Original keydisk format with key in crypto area. */ memcpy(sd->mds.mdd_crypto.scr_maskkey, omh + sizeof(struct sr_meta_opt_hdr), sizeof(sd->mds.mdd_crypto.scr_maskkey)); } } open = 0; done: for (omi = SLIST_FIRST(&som); omi != NULL; omi = omi_next) { omi_next = SLIST_NEXT(omi, omi_link); if (omi->omi_som) free(omi->omi_som, M_DEVBUF, 0); free(omi, M_DEVBUF, 0); } free(sm, M_DEVBUF, SR_META_SIZE * 512); if (vn && open) { VOP_CLOSE(vn, FREAD, NOCRED, curproc); vput(vn); } return key_disk; } int sr_crypto_alloc_resources(struct sr_discipline *sd) { struct sr_workunit *wu; struct sr_crypto_wu *crwu; struct cryptoini cri; u_int num_keys, i; DNPRINTF(SR_D_DIS, "%s: sr_crypto_alloc_resources\n", DEVNAME(sd->sd_sc)); sd->mds.mdd_crypto.scr_alg = CRYPTO_AES_XTS; switch (sd->mds.mdd_crypto.scr_meta->scm_alg) { case SR_CRYPTOA_AES_XTS_128: sd->mds.mdd_crypto.scr_klen = 256; break; case SR_CRYPTOA_AES_XTS_256: sd->mds.mdd_crypto.scr_klen = 512; break; default: sr_error(sd->sd_sc, "unknown crypto algorithm"); return (EINVAL); } for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; if (sr_wu_alloc(sd, sizeof(struct sr_crypto_wu))) { sr_error(sd->sd_sc, "unable to allocate work units"); return (ENOMEM); } if (sr_ccb_alloc(sd)) { sr_error(sd->sd_sc, "unable to allocate CCBs"); return (ENOMEM); } if (sr_crypto_decrypt_key(sd)) { sr_error(sd->sd_sc, "incorrect key or passphrase"); return (EPERM); } /* * For each work unit allocate the uio, iovec and crypto structures. * These have to be allocated now because during runtime we cannot * fail an allocation without failing the I/O (which can cause real * problems). */ TAILQ_FOREACH(wu, &sd->sd_wu, swu_next) { crwu = (struct sr_crypto_wu *)wu; crwu->cr_uio.uio_iov = &crwu->cr_iov; crwu->cr_dmabuf = dma_alloc(MAXPHYS, PR_WAITOK); crwu->cr_crp = crypto_getreq(MAXPHYS >> DEV_BSHIFT); if (crwu->cr_crp == NULL) return (ENOMEM); crwu->cr_descs = crwu->cr_crp->crp_desc; } memset(&cri, 0, sizeof(cri)); cri.cri_alg = sd->mds.mdd_crypto.scr_alg; cri.cri_klen = sd->mds.mdd_crypto.scr_klen; /* Allocate a session for every 2^SR_CRYPTO_KEY_BLKSHIFT blocks. */ num_keys = sd->sd_meta->ssdi.ssd_size >> SR_CRYPTO_KEY_BLKSHIFT; if (num_keys >= SR_CRYPTO_MAXKEYS) return (EFBIG); for (i = 0; i <= num_keys; i++) { cri.cri_key = sd->mds.mdd_crypto.scr_key[i]; if (crypto_newsession(&sd->mds.mdd_crypto.scr_sid[i], &cri, 0) != 0) { for (i = 0; sd->mds.mdd_crypto.scr_sid[i] != (u_int64_t)-1; i++) { crypto_freesession( sd->mds.mdd_crypto.scr_sid[i]); sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; } return (EINVAL); } } sr_hotplug_register(sd, sr_crypto_hotplug); return (0); } void sr_crypto_free_resources(struct sr_discipline *sd) { struct sr_workunit *wu; struct sr_crypto_wu *crwu; u_int i; DNPRINTF(SR_D_DIS, "%s: sr_crypto_free_resources\n", DEVNAME(sd->sd_sc)); if (sd->mds.mdd_crypto.key_disk != NULL) { explicit_bzero(sd->mds.mdd_crypto.key_disk, sizeof(*sd->mds.mdd_crypto.key_disk)); free(sd->mds.mdd_crypto.key_disk, M_DEVBUF, sizeof(*sd->mds.mdd_crypto.key_disk)); } sr_hotplug_unregister(sd, sr_crypto_hotplug); for (i = 0; sd->mds.mdd_crypto.scr_sid[i] != (u_int64_t)-1; i++) { crypto_freesession(sd->mds.mdd_crypto.scr_sid[i]); sd->mds.mdd_crypto.scr_sid[i] = (u_int64_t)-1; } TAILQ_FOREACH(wu, &sd->sd_wu, swu_next) { crwu = (struct sr_crypto_wu *)wu; if (crwu->cr_dmabuf) dma_free(crwu->cr_dmabuf, MAXPHYS); if (crwu->cr_crp) { crwu->cr_crp->crp_desc = crwu->cr_descs; crypto_freereq(crwu->cr_crp); } } sr_wu_free(sd); sr_ccb_free(sd); } int sr_crypto_ioctl(struct sr_discipline *sd, struct bioc_discipline *bd) { struct sr_crypto_kdfpair kdfpair; struct sr_crypto_kdfinfo kdfinfo1, kdfinfo2; int size, rv = 1; DNPRINTF(SR_D_IOCTL, "%s: sr_crypto_ioctl %u\n", DEVNAME(sd->sd_sc), bd->bd_cmd); switch (bd->bd_cmd) { case SR_IOCTL_GET_KDFHINT: /* Get KDF hint for userland. */ size = sizeof(sd->mds.mdd_crypto.scr_meta->scm_kdfhint); if (bd->bd_data == NULL || bd->bd_size > size) goto bad; if (copyout(sd->mds.mdd_crypto.scr_meta->scm_kdfhint, bd->bd_data, bd->bd_size)) goto bad; rv = 0; break; case SR_IOCTL_CHANGE_PASSPHRASE: /* Attempt to change passphrase. */ size = sizeof(kdfpair); if (bd->bd_data == NULL || bd->bd_size > size) goto bad; if (copyin(bd->bd_data, &kdfpair, size)) goto bad; size = sizeof(kdfinfo1); if (kdfpair.kdfinfo1 == NULL || kdfpair.kdfsize1 > size) goto bad; if (copyin(kdfpair.kdfinfo1, &kdfinfo1, size)) goto bad; size = sizeof(kdfinfo2); if (kdfpair.kdfinfo2 == NULL || kdfpair.kdfsize2 > size) goto bad; if (copyin(kdfpair.kdfinfo2, &kdfinfo2, size)) goto bad; if (sr_crypto_change_maskkey(sd, &kdfinfo1, &kdfinfo2)) goto bad; /* Save metadata to disk. */ rv = sr_meta_save(sd, SR_META_DIRTY); break; } bad: explicit_bzero(&kdfpair, sizeof(kdfpair)); explicit_bzero(&kdfinfo1, sizeof(kdfinfo1)); explicit_bzero(&kdfinfo2, sizeof(kdfinfo2)); return (rv); } int sr_crypto_meta_opt_handler(struct sr_discipline *sd, struct sr_meta_opt_hdr *om) { int rv = EINVAL; if (om->som_type == SR_OPT_CRYPTO) { sd->mds.mdd_crypto.scr_meta = (struct sr_meta_crypto *)om; rv = 0; } return (rv); } int sr_crypto_rw(struct sr_workunit *wu) { struct sr_crypto_wu *crwu; daddr_t blk; int rv = 0; DNPRINTF(SR_D_DIS, "%s: sr_crypto_rw wu %p\n", DEVNAME(wu->swu_dis->sd_sc), wu); if (sr_validate_io(wu, &blk, "sr_crypto_rw")) return (1); if (wu->swu_xs->flags & SCSI_DATA_OUT) { crwu = sr_crypto_prepare(wu, 1); crwu->cr_crp->crp_callback = sr_crypto_write; rv = crypto_invoke(crwu->cr_crp); if (rv == 0) rv = crwu->cr_crp->crp_etype; } else rv = sr_crypto_dev_rw(wu, NULL); return (rv); } int sr_crypto_write(struct cryptop *crp) { struct sr_crypto_wu *crwu = crp->crp_opaque; struct sr_workunit *wu = &crwu->cr_wu; int s; DNPRINTF(SR_D_INTR, "%s: sr_crypto_write: wu %x xs: %x\n", DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs); if (crp->crp_etype) { /* fail io */ wu->swu_xs->error = XS_DRIVER_STUFFUP; s = splbio(); sr_scsi_done(wu->swu_dis, wu->swu_xs); splx(s); } return (sr_crypto_dev_rw(wu, crwu)); } int sr_crypto_dev_rw(struct sr_workunit *wu, struct sr_crypto_wu *crwu) { struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct sr_ccb *ccb; struct uio *uio; daddr_t blk; blk = wu->swu_blk_start; blk += sd->sd_meta->ssd_data_offset; ccb = sr_ccb_rw(sd, 0, blk, xs->datalen, xs->data, xs->flags, 0); if (!ccb) { /* should never happen but handle more gracefully */ printf("%s: %s: too many ccbs queued\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname); goto bad; } if (!ISSET(xs->flags, SCSI_DATA_IN)) { uio = crwu->cr_crp->crp_buf; ccb->ccb_buf.b_data = uio->uio_iov->iov_base; ccb->ccb_opaque = crwu; } sr_wu_enqueue_ccb(wu, ccb); sr_schedule_wu(wu); return (0); bad: /* wu is unwound by sr_wu_put */ if (crwu) crwu->cr_crp->crp_etype = EINVAL; return (1); } void sr_crypto_done(struct sr_workunit *wu) { struct scsi_xfer *xs = wu->swu_xs; struct sr_crypto_wu *crwu; int s; /* If this was a successful read, initiate decryption of the data. */ if (ISSET(xs->flags, SCSI_DATA_IN) && xs->error == XS_NOERROR) { crwu = sr_crypto_prepare(wu, 0); crwu->cr_crp->crp_callback = sr_crypto_read; DNPRINTF(SR_D_INTR, "%s: sr_crypto_done: crypto_invoke %p\n", DEVNAME(wu->swu_dis->sd_sc), crwu->cr_crp); crypto_invoke(crwu->cr_crp); return; } s = splbio(); sr_scsi_done(wu->swu_dis, wu->swu_xs); splx(s); } int sr_crypto_read(struct cryptop *crp) { struct sr_crypto_wu *crwu = crp->crp_opaque; struct sr_workunit *wu = &crwu->cr_wu; int s; DNPRINTF(SR_D_INTR, "%s: sr_crypto_read: wu %x xs: %x\n", DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs); if (crp->crp_etype) wu->swu_xs->error = XS_DRIVER_STUFFUP; s = splbio(); sr_scsi_done(wu->swu_dis, wu->swu_xs); splx(s); return (0); } void sr_crypto_hotplug(struct sr_discipline *sd, struct disk *diskp, int action) { DNPRINTF(SR_D_MISC, "%s: sr_crypto_hotplug: %s %d\n", DEVNAME(sd->sd_sc), diskp->dk_name, action); } #ifdef SR_DEBUG0 void sr_crypto_dumpkeys(struct sr_discipline *sd) { int i, j; printf("sr_crypto_dumpkeys:\n"); for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) { printf("\tscm_key[%d]: 0x", i); for (j = 0; j < SR_CRYPTO_KEYBYTES; j++) { printf("%02x", sd->mds.mdd_crypto.scr_meta->scm_key[i][j]); } printf("\n"); } printf("sr_crypto_dumpkeys: runtime data keys:\n"); for (i = 0; i < SR_CRYPTO_MAXKEYS; i++) { printf("\tscr_key[%d]: 0x", i); for (j = 0; j < SR_CRYPTO_KEYBYTES; j++) { printf("%02x", sd->mds.mdd_crypto.scr_key[i][j]); } printf("\n"); } } #endif /* SR_DEBUG */