/* $OpenBSD: softraid_raidp.c,v 1.24 2012/10/08 14:22:41 jsing Exp $ */ /* * Copyright (c) 2009 Marco Peereboom * Copyright (c) 2009 Jordan Hargrave * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* RAID P functions. */ int sr_raidp_create(struct sr_discipline *, struct bioc_createraid *, int, int64_t); int sr_raidp_assemble(struct sr_discipline *, struct bioc_createraid *, int, void *); int sr_raidp_alloc_resources(struct sr_discipline *); int sr_raidp_free_resources(struct sr_discipline *); int sr_raidp_rw(struct sr_workunit *); int sr_raidp_openings(struct sr_discipline *); void sr_raidp_intr(struct buf *); void sr_raidp_recreate_wu(struct sr_workunit *); void sr_raidp_set_chunk_state(struct sr_discipline *, int, int); void sr_raidp_set_vol_state(struct sr_discipline *); void sr_raidp_xor(void *, void *, int); int sr_raidp_addio(struct sr_workunit *wu, int, daddr64_t, daddr64_t, void *, int, int, void *); void sr_dump(void *, int); void sr_raidp_scrub(struct sr_discipline *); void *sr_get_block(struct sr_discipline *, int); void sr_put_block(struct sr_discipline *, void *, int); /* discipline initialisation. */ void sr_raidp_discipline_init(struct sr_discipline *sd, u_int8_t type) { /* Fill out discipline members. */ sd->sd_type = type; sd->sd_capabilities = SR_CAP_SYSTEM_DISK | SR_CAP_AUTO_ASSEMBLE; sd->sd_max_ccb_per_wu = 4; /* only if stripsize <= MAXPHYS */ sd->sd_max_wu = SR_RAIDP_NOWU; /* Setup discipline specific function pointers. */ sd->sd_alloc_resources = sr_raidp_alloc_resources; sd->sd_assemble = sr_raidp_assemble; sd->sd_create = sr_raidp_create; sd->sd_free_resources = sr_raidp_free_resources; sd->sd_openings = sr_raidp_openings; sd->sd_scsi_rw = sr_raidp_rw; sd->sd_set_chunk_state = sr_raidp_set_chunk_state; sd->sd_set_vol_state = sr_raidp_set_vol_state; } int sr_raidp_create(struct sr_discipline *sd, struct bioc_createraid *bc, int no_chunk, int64_t coerced_size) { if (no_chunk < 3) return EINVAL; if (sd->sd_type == SR_MD_RAID4) strlcpy(sd->sd_name, "RAID 4", sizeof(sd->sd_name)); else strlcpy(sd->sd_name, "RAID 5", sizeof(sd->sd_name)); /* * XXX add variable strip size later even though MAXPHYS is really * the clever value, users like to tinker with that type of stuff. */ sd->sd_meta->ssdi.ssd_strip_size = MAXPHYS; sd->sd_meta->ssdi.ssd_size = (coerced_size & ~((sd->sd_meta->ssdi.ssd_strip_size >> DEV_BSHIFT) - 1)) * (no_chunk - 1); return 0; } int sr_raidp_assemble(struct sr_discipline *sd, struct bioc_createraid *bc, int no_chunk, void *data) { return 0; } int sr_raidp_openings(struct sr_discipline *sd) { return (sd->sd_max_wu >> 1); /* 2 wu's per IO */ } int sr_raidp_alloc_resources(struct sr_discipline *sd) { int rv = EINVAL; if (!sd) return (rv); DNPRINTF(SR_D_DIS, "%s: sr_raidp_alloc_resources\n", DEVNAME(sd->sd_sc)); if (sr_wu_alloc(sd)) goto bad; if (sr_ccb_alloc(sd)) goto bad; /* setup runtime values */ sd->mds.mdd_raidp.srp_strip_bits = sr_validate_stripsize(sd->sd_meta->ssdi.ssd_strip_size); if (sd->mds.mdd_raidp.srp_strip_bits == -1) goto bad; rv = 0; bad: return (rv); } int sr_raidp_free_resources(struct sr_discipline *sd) { int rv = EINVAL; if (!sd) return (rv); DNPRINTF(SR_D_DIS, "%s: sr_raidp_free_resources\n", DEVNAME(sd->sd_sc)); sr_wu_free(sd); sr_ccb_free(sd); rv = 0; return (rv); } void sr_raidp_set_chunk_state(struct sr_discipline *sd, int c, int new_state) { int old_state, s; DNPRINTF(SR_D_STATE, "%s: %s: %s: sr_raid_set_chunk_state %d -> %d\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_vol.sv_chunks[c]->src_meta.scmi.scm_devname, c, new_state); /* ok to go to splbio since this only happens in error path */ s = splbio(); old_state = sd->sd_vol.sv_chunks[c]->src_meta.scm_status; /* multiple IOs to the same chunk that fail will come through here */ if (old_state == new_state) goto done; switch (old_state) { case BIOC_SDONLINE: switch (new_state) { case BIOC_SDOFFLINE: case BIOC_SDSCRUB: break; default: goto die; } break; case BIOC_SDOFFLINE: if (new_state == BIOC_SDREBUILD) { ; } else goto die; break; case BIOC_SDSCRUB: switch (new_state) { case BIOC_SDONLINE: case BIOC_SDOFFLINE: break; default: goto die; } break; case BIOC_SDREBUILD: switch (new_state) { case BIOC_SDONLINE: case BIOC_SDOFFLINE: break; default: goto die; } break; default: die: splx(s); /* XXX */ panic("%s: %s: %s: invalid chunk state transition " "%d -> %d", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_vol.sv_chunks[c]->src_meta.scmi.scm_devname, old_state, new_state); /* NOTREACHED */ } sd->sd_vol.sv_chunks[c]->src_meta.scm_status = new_state; sd->sd_set_vol_state(sd); sd->sd_must_flush = 1; workq_add_task(NULL, 0, sr_meta_save_callback, sd, NULL); done: splx(s); } void sr_raidp_set_vol_state(struct sr_discipline *sd) { int states[SR_MAX_STATES]; int new_state, i, s, nd; int old_state = sd->sd_vol_status; DNPRINTF(SR_D_STATE, "%s: %s: sr_raid_set_vol_state\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname); nd = sd->sd_meta->ssdi.ssd_chunk_no; for (i = 0; i < SR_MAX_STATES; i++) states[i] = 0; for (i = 0; i < nd; i++) { s = sd->sd_vol.sv_chunks[i]->src_meta.scm_status; if (s >= SR_MAX_STATES) panic("%s: %s: %s: invalid chunk state", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_vol.sv_chunks[i]->src_meta.scmi.scm_devname); states[s]++; } if (states[BIOC_SDONLINE] == nd) new_state = BIOC_SVONLINE; else if (states[BIOC_SDONLINE] < nd - 1) new_state = BIOC_SVOFFLINE; else if (states[BIOC_SDSCRUB] != 0) new_state = BIOC_SVSCRUB; else if (states[BIOC_SDREBUILD] != 0) new_state = BIOC_SVREBUILD; else if (states[BIOC_SDONLINE] == nd - 1) new_state = BIOC_SVDEGRADED; else { #ifdef SR_DEBUG DNPRINTF(SR_D_STATE, "%s: invalid volume state, old state " "was %d\n", DEVNAME(sd->sd_sc), old_state); for (i = 0; i < nd; i++) DNPRINTF(SR_D_STATE, "%s: chunk %d status = %d\n", DEVNAME(sd->sd_sc), i, sd->sd_vol.sv_chunks[i]->src_meta.scm_status); #endif panic("invalid volume state"); } DNPRINTF(SR_D_STATE, "%s: %s: sr_raidp_set_vol_state %d -> %d\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, old_state, new_state); switch (old_state) { case BIOC_SVONLINE: switch (new_state) { case BIOC_SVONLINE: /* can go to same state */ case BIOC_SVDEGRADED: case BIOC_SVREBUILD: /* happens on boot */ break; default: goto die; } break; case BIOC_SVOFFLINE: /* XXX this might be a little too much */ goto die; case BIOC_SVSCRUB: switch (new_state) { case BIOC_SVONLINE: case BIOC_SVOFFLINE: case BIOC_SVDEGRADED: case BIOC_SVSCRUB: /* can go to same state */ break; default: goto die; } break; case BIOC_SVREBUILD: switch (new_state) { case BIOC_SVONLINE: case BIOC_SVOFFLINE: case BIOC_SVDEGRADED: case BIOC_SVREBUILD: /* can go to the same state */ break; default: goto die; } break; case BIOC_SVDEGRADED: switch (new_state) { case BIOC_SVOFFLINE: case BIOC_SVREBUILD: case BIOC_SVDEGRADED: /* can go to the same state */ break; default: goto die; } break; default: die: panic("%s: %s: invalid volume state transition %d -> %d", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, old_state, new_state); /* NOTREACHED */ } sd->sd_vol_status = new_state; } int sr_raidp_rw(struct sr_workunit *wu) { struct sr_workunit *wu_r = NULL; struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct sr_chunk *scp; int s, i; daddr64_t blk, lbaoffs, strip_no, chunk, row_size; daddr64_t strip_size, no_chunk, lba, chunk_offs, phys_offs; daddr64_t strip_bits, length, parity, strip_offs, datalen; void *xorbuf, *data; /* blk and scsi error will be handled by sr_validate_io */ if (sr_validate_io(wu, &blk, "sr_raidp_rw")) goto bad; strip_size = sd->sd_meta->ssdi.ssd_strip_size; strip_bits = sd->mds.mdd_raidp.srp_strip_bits; no_chunk = sd->sd_meta->ssdi.ssd_chunk_no - 1; row_size = (no_chunk << strip_bits) >> DEV_BSHIFT; data = xs->data; datalen = xs->datalen; lbaoffs = blk << DEV_BSHIFT; if (xs->flags & SCSI_DATA_OUT) /* create write workunit */ if ((wu_r = scsi_io_get(&sd->sd_iopool, SCSI_NOSLEEP)) == NULL){ printf("%s: can't get wu_r", DEVNAME(sd->sd_sc)); goto bad; } wu->swu_blk_start = 0; while (datalen != 0) { strip_no = lbaoffs >> strip_bits; strip_offs = lbaoffs & (strip_size - 1); chunk_offs = (strip_no / no_chunk) << strip_bits; phys_offs = chunk_offs + strip_offs + (sd->sd_meta->ssd_data_offset << DEV_BSHIFT); /* get size remaining in this stripe */ length = MIN(strip_size - strip_offs, datalen); /* map disk offset to parity/data drive */ chunk = strip_no % no_chunk; if (sd->sd_type == SR_MD_RAID4) parity = no_chunk; /* RAID4: Parity is always drive N */ else { /* RAID5: left asymmetric algorithm */ parity = no_chunk - ((strip_no / no_chunk) % (no_chunk + 1)); if (chunk >= parity) chunk++; } lba = phys_offs >> DEV_BSHIFT; /* XXX big hammer.. exclude I/O from entire stripe */ if (wu->swu_blk_start == 0) wu->swu_blk_start = (strip_no / no_chunk) * row_size; wu->swu_blk_end = (strip_no / no_chunk) * row_size + (row_size - 1); scp = sd->sd_vol.sv_chunks[chunk]; if (xs->flags & SCSI_DATA_IN) { switch (scp->src_meta.scm_status) { case BIOC_SDONLINE: case BIOC_SDSCRUB: /* drive is good. issue single read request */ if (sr_raidp_addio(wu, chunk, lba, length, data, xs->flags, 0, NULL)) goto bad; break; case BIOC_SDOFFLINE: case BIOC_SDREBUILD: case BIOC_SDHOTSPARE: /* * XXX only works if this LBA has already * been scrubbed */ printf("Disk %llx offline, " "regenerating buffer\n", chunk); memset(data, 0, length); for (i = 0; i <= no_chunk; i++) { /* * read all other drives: xor result * into databuffer. */ if (i != chunk) { if (sr_raidp_addio(wu, i, lba, length, NULL, SCSI_DATA_IN, SR_CCBF_FREEBUF, data)) goto bad; } } break; default: printf("%s: is offline, can't read\n", DEVNAME(sd->sd_sc)); goto bad; } } else { /* XXX handle writes to failed/offline disk? */ if (scp->src_meta.scm_status == BIOC_SDOFFLINE) goto bad; /* * initialize XORBUF with contents of new data to be * written. This will be XORed with old data and old * parity in the intr routine. The result in xorbuf * is the new parity data. */ xorbuf = sr_get_block(sd, length); if (xorbuf == NULL) goto bad; memcpy(xorbuf, data, length); /* xor old data */ if (sr_raidp_addio(wu_r, chunk, lba, length, NULL, SCSI_DATA_IN, SR_CCBF_FREEBUF, xorbuf)) goto bad; /* xor old parity */ if (sr_raidp_addio(wu_r, parity, lba, length, NULL, SCSI_DATA_IN, SR_CCBF_FREEBUF, xorbuf)) goto bad; /* write new data */ if (sr_raidp_addio(wu, chunk, lba, length, data, xs->flags, 0, NULL)) goto bad; /* write new parity */ if (sr_raidp_addio(wu, parity, lba, length, xorbuf, xs->flags, SR_CCBF_FREEBUF, NULL)) goto bad; } /* advance to next block */ lbaoffs += length; datalen -= length; data += length; } s = splbio(); if (wu_r) { /* collide write request with reads */ wu_r->swu_blk_start = wu->swu_blk_start; wu_r->swu_blk_end = wu->swu_blk_end; wu->swu_state = SR_WU_DEFERRED; wu_r->swu_collider = wu; TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu, swu_link); wu = wu_r; } /* rebuild io, let rebuild routine deal with it */ if (wu->swu_flags & SR_WUF_REBUILD) goto queued; /* current io failed, restart */ if (wu->swu_state == SR_WU_RESTART) goto start; /* deferred io failed, don't restart */ if (wu->swu_state == SR_WU_REQUEUE) goto queued; if (sr_check_io_collision(wu)) goto queued; start: sr_raid_startwu(wu); queued: splx(s); return (0); bad: /* wu is unwound by sr_wu_put */ if (wu_r) scsi_io_put(&sd->sd_iopool, wu_r); return (1); } void sr_raidp_intr(struct buf *bp) { struct sr_ccb *ccb = (struct sr_ccb *)bp; struct sr_workunit *wu = ccb->ccb_wu, *wup; struct sr_discipline *sd = wu->swu_dis; struct scsi_xfer *xs = wu->swu_xs; struct sr_softc *sc = sd->sd_sc; int s, pend; DNPRINTF(SR_D_INTR, "%s: sr_intr bp %p xs %p\n", DEVNAME(sc), bp, xs); DNPRINTF(SR_D_INTR, "%s: sr_intr: b_bcount: %d b_resid: %d" " b_flags: 0x%0x block: %lld target: %d\n", DEVNAME(sc), ccb->ccb_buf.b_bcount, ccb->ccb_buf.b_resid, ccb->ccb_buf.b_flags, ccb->ccb_buf.b_blkno, ccb->ccb_target); s = splbio(); if (ccb->ccb_buf.b_flags & B_ERROR) { DNPRINTF(SR_D_INTR, "%s: i/o error on block %lld target: %d\n", DEVNAME(sc), ccb->ccb_buf.b_blkno, ccb->ccb_target); printf("io error: disk %x\n", ccb->ccb_target); wu->swu_ios_failed++; ccb->ccb_state = SR_CCB_FAILED; if (ccb->ccb_target != -1) sd->sd_set_chunk_state(sd, ccb->ccb_target, BIOC_SDOFFLINE); else panic("%s: invalid target on wu: %p", DEVNAME(sc), wu); } else { ccb->ccb_state = SR_CCB_OK; wu->swu_ios_succeeded++; /* XOR data to result */ if (ccb->ccb_opaque) sr_raidp_xor(ccb->ccb_opaque, ccb->ccb_buf.b_data, ccb->ccb_buf.b_bcount); } /* free allocated data buffer */ if (ccb->ccb_flag & SR_CCBF_FREEBUF) { sr_put_block(sd, ccb->ccb_buf.b_data, ccb->ccb_buf.b_bcount); ccb->ccb_buf.b_data = NULL; } wu->swu_ios_complete++; DNPRINTF(SR_D_INTR, "%s: sr_intr: comp: %d count: %d failed: %d\n", DEVNAME(sc), wu->swu_ios_complete, wu->swu_io_count, wu->swu_ios_failed); if (wu->swu_ios_complete >= wu->swu_io_count) { /* if all ios failed, retry reads and give up on writes */ if (wu->swu_ios_failed == wu->swu_ios_complete) { if (xs->flags & SCSI_DATA_IN) { printf("%s: retrying read on block %lld\n", DEVNAME(sc), ccb->ccb_buf.b_blkno); sr_ccb_put(ccb); TAILQ_INIT(&wu->swu_ccb); wu->swu_state = SR_WU_RESTART; if (sd->sd_scsi_rw(wu)) goto bad; else goto retry; } else { printf("%s: permanently fail write on block " "%lld\n", DEVNAME(sc), ccb->ccb_buf.b_blkno); xs->error = XS_DRIVER_STUFFUP; goto bad; } } if (xs != NULL) { xs->error = XS_NOERROR; xs->resid = 0; } pend = 0; TAILQ_FOREACH(wup, &sd->sd_wu_pendq, swu_link) { if (wu == wup) { /* wu on pendq, remove */ TAILQ_REMOVE(&sd->sd_wu_pendq, wu, swu_link); pend = 1; if (wu->swu_collider) { if (wu->swu_ios_failed) /* toss all ccbs and recreate */ sr_raidp_recreate_wu(wu->swu_collider); /* restart deferred wu */ wu->swu_collider->swu_state = SR_WU_INPROGRESS; TAILQ_REMOVE(&sd->sd_wu_defq, wu->swu_collider, swu_link); sr_raid_startwu(wu->swu_collider); } break; } } if (!pend) printf("%s: wu: %p not on pending queue\n", DEVNAME(sc), wu); if (wu->swu_flags & SR_WUF_REBUILD) { if (wu->swu_xs->flags & SCSI_DATA_OUT) { wu->swu_flags |= SR_WUF_REBUILDIOCOMP; wakeup(wu); } } else { if (xs != NULL) scsi_done(xs); else scsi_io_put(&sd->sd_iopool, wu); } if (sd->sd_sync && sd->sd_wu_pending == 0) wakeup(sd); } retry: splx(s); return; bad: xs->error = XS_DRIVER_STUFFUP; if (wu->swu_flags & SR_WUF_REBUILD) { wu->swu_flags |= SR_WUF_REBUILDIOCOMP; wakeup(wu); } else { scsi_done(xs); } splx(s); } void sr_raidp_recreate_wu(struct sr_workunit *wu) { struct sr_discipline *sd = wu->swu_dis; struct sr_workunit *wup = wu; struct sr_ccb *ccb; do { DNPRINTF(SR_D_INTR, "%s: sr_raidp_recreate_wu: %p\n", wup); /* toss all ccbs */ while ((ccb = TAILQ_FIRST(&wup->swu_ccb)) != NULL) { TAILQ_REMOVE(&wup->swu_ccb, ccb, ccb_link); sr_ccb_put(ccb); } TAILQ_INIT(&wup->swu_ccb); /* recreate ccbs */ wup->swu_state = SR_WU_REQUEUE; if (sd->sd_scsi_rw(wup)) panic("could not requeue io"); wup = wup->swu_collider; } while (wup); } int sr_raidp_addio(struct sr_workunit *wu, int dsk, daddr64_t blk, daddr64_t len, void *data, int flag, int ccbflag, void *xorbuf) { struct sr_discipline *sd = wu->swu_dis; struct sr_ccb *ccb; ccb = sr_ccb_get(sd); if (!ccb) return (-1); /* allocate temporary buffer */ if (data == NULL) { data = sr_get_block(sd, len); if (data == NULL) return (-1); } DNPRINTF(0, "%sio: %d.%llx %llx %s\n", flag & SCSI_DATA_IN ? "read" : "write", dsk, blk, len, xorbuf ? "X0R" : "-"); ccb->ccb_flag = ccbflag; if (flag & SCSI_POLL) { ccb->ccb_buf.b_flags = 0; ccb->ccb_buf.b_iodone = NULL; } else { ccb->ccb_buf.b_flags = B_CALL; ccb->ccb_buf.b_iodone = sr_raidp_intr; } if (flag & SCSI_DATA_IN) ccb->ccb_buf.b_flags |= B_READ; else ccb->ccb_buf.b_flags |= B_WRITE; /* add offset for metadata */ ccb->ccb_buf.b_flags |= B_PHYS; ccb->ccb_buf.b_blkno = blk; ccb->ccb_buf.b_bcount = len; ccb->ccb_buf.b_bufsize = len; ccb->ccb_buf.b_resid = len; ccb->ccb_buf.b_data = data; ccb->ccb_buf.b_error = 0; ccb->ccb_buf.b_proc = curproc; ccb->ccb_buf.b_dev = sd->sd_vol.sv_chunks[dsk]->src_dev_mm; ccb->ccb_buf.b_vp = sd->sd_vol.sv_chunks[dsk]->src_vn; ccb->ccb_buf.b_bq = NULL; if ((ccb->ccb_buf.b_flags & B_READ) == 0) ccb->ccb_buf.b_vp->v_numoutput++; ccb->ccb_wu = wu; ccb->ccb_target = dsk; ccb->ccb_opaque = xorbuf; LIST_INIT(&ccb->ccb_buf.b_dep); TAILQ_INSERT_TAIL(&wu->swu_ccb, ccb, ccb_link); DNPRINTF(SR_D_DIS, "%s: %s: sr_raidp: b_bcount: %d " "b_blkno: %x b_flags 0x%0x b_data %p\n", DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, ccb->ccb_buf.b_bcount, ccb->ccb_buf.b_blkno, ccb->ccb_buf.b_flags, ccb->ccb_buf.b_data); wu->swu_io_count++; return (0); } void sr_dump(void *blk, int len) { uint8_t *b = blk; int i, j, c; for (i = 0; i < len; i += 16) { for (j = 0; j < 16; j++) printf("%.2x ", b[i + j]); printf(" "); for (j = 0; j < 16; j++) { c = b[i + j]; if (c < ' ' || c > 'z' || i + j > len) c = '.'; printf("%c", c); } printf("\n"); } } void sr_raidp_xor(void *a, void *b, int len) { uint32_t *xa = a, *xb = b; len >>= 2; while (len--) *xa++ ^= *xb++; } #if 0 void sr_raidp_scrub(struct sr_discipline *sd) { daddr64_t strip_no, strip_size, no_chunk, parity, max_strip, strip_bits; daddr64_t i; struct sr_workunit *wu_r, *wu_w; int s, slept; void *xorbuf; if ((wu_w = scsi_io_get(&sd->sd_iopool, 0)) == NULL) goto done; if ((wu_r = scsi_io_get(&sd->sd_iopool, 0)) == NULL) goto done; no_chunk = sd->sd_meta->ssdi.ssd_chunk_no - 1; strip_size = sd->sd_meta->ssdi.ssd_strip_size; strip_bits = sd->mds.mdd_raidp.srp_strip_bits; max_strip = sd->sd_meta->ssdi.ssd_size >> strip_bits; for (strip_no = 0; strip_no < max_strip; strip_no++) { if (sd->sd_type == SR_MD_RAID4) parity = no_chunk; else parity = no_chunk - ((strip_no / no_chunk) % (no_chunk + 1)); xorbuf = sr_get_block(sd, strip_size); for (i = 0; i <= no_chunk; i++) { if (i != parity) sr_raidp_addio(wu_r, i, 0xBADCAFE, strip_size, NULL, SCSI_DATA_IN, SR_CCBF_FREEBUF, xorbuf); } sr_raidp_addio(wu_w, parity, 0xBADCAFE, strip_size, xorbuf, SCSI_DATA_OUT, SR_CCBF_FREEBUF, NULL); wu_r->swu_flags |= SR_WUF_REBUILD; /* Collide wu_w with wu_r */ wu_w->swu_state = SR_WU_DEFERRED; wu_r->swu_collider = wu_w; s = splbio(); TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu_w, swu_link); if (sr_check_io_collision(wu_r)) goto queued; sr_raid_startwu(wu_r); queued: splx(s); slept = 0; while ((wu_w->swu_flags & SR_WUF_REBUILDIOCOMP) == 0) { tsleep(wu_w, PRIBIO, "sr_scrub", 0); slept = 1; } if (!slept) tsleep(sd->sd_sc, PWAIT, "sr_yield", 1); } done: return; } #endif void * sr_get_block(struct sr_discipline *sd, int length) { return dma_alloc(length, PR_NOWAIT | PR_ZERO); } void sr_put_block(struct sr_discipline *sd, void *ptr, int length) { dma_free(ptr, length); }