/* $OpenBSD: dwc2_hcd.h,v 1.13 2015/06/28 11:48:18 jmatthew Exp $ */ /* $NetBSD: dwc2_hcd.h,v 1.9 2014/09/03 10:00:08 skrll Exp $ */ /* * hcd.h - DesignWare HS OTG Controller host-mode declarations * * Copyright (C) 2004-2013 Synopsys, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the above-listed copyright holders may not be used * to endorse or promote products derived from this software without * specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __DWC2_HCD_H__ #define __DWC2_HCD_H__ /* * This file contains the structures, constants, and interfaces for the * Host Contoller Driver (HCD) * * The Host Controller Driver (HCD) is responsible for translating requests * from the USB Driver into the appropriate actions on the DWC_otg controller. * It isolates the USBD from the specifics of the controller by providing an * API to the USBD. */ struct dwc2_qh; /** * struct dwc2_host_chan - Software host channel descriptor * * @hc_num: Host channel number, used for register address lookup * @dev_addr: Address of the device * @ep_num: Endpoint of the device * @ep_is_in: Endpoint direction * @speed: Device speed. One of the following values: * - USB_SPEED_LOW * - USB_SPEED_FULL * - USB_SPEED_HIGH * @ep_type: Endpoint type. One of the following values: * - USB_ENDPOINT_XFER_CONTROL: 0 * - USB_ENDPOINT_XFER_ISOC: 1 * - USB_ENDPOINT_XFER_BULK: 2 * - USB_ENDPOINT_XFER_INTR: 3 * @max_packet: Max packet size in bytes * @data_pid_start: PID for initial transaction. * 0: DATA0 * 1: DATA2 * 2: DATA1 * 3: MDATA (non-Control EP), * SETUP (Control EP) * @multi_count: Number of additional periodic transactions per * (micro)frame * @xfer_buf: Pointer to current transfer buffer position * @xfer_dma: DMA address of xfer_buf * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not * DWORD aligned * @xfer_len: Total number of bytes to transfer * @xfer_count: Number of bytes transferred so far * @start_pkt_count: Packet count at start of transfer * @xfer_started: True if the transfer has been started * @ping: True if a PING request should be issued on this channel * @error_state: True if the error count for this transaction is non-zero * @halt_on_queue: True if this channel should be halted the next time a * request is queued for the channel. This is necessary in * slave mode if no request queue space is available when * an attempt is made to halt the channel. * @halt_pending: True if the host channel has been halted, but the core * is not finished flushing queued requests * @do_split: Enable split for the channel * @complete_split: Enable complete split * @hub_addr: Address of high speed hub for the split * @hub_port: Port of the low/full speed device for the split * @xact_pos: Split transaction position. One of the following values: * - DWC2_HCSPLT_XACTPOS_MID * - DWC2_HCSPLT_XACTPOS_BEGIN * - DWC2_HCSPLT_XACTPOS_END * - DWC2_HCSPLT_XACTPOS_ALL * @requests: Number of requests issued for this channel since it was * assigned to the current transfer (not counting PINGs) * @schinfo: Scheduling micro-frame bitmap * @ntd: Number of transfer descriptors for the transfer * @halt_status: Reason for halting the host channel * @hcint Contents of the HCINT register when the interrupt came * @qh: QH for the transfer being processed by this channel * @hc_list_entry: For linking to list of host channels * @desc_list_addr: Current QH's descriptor list DMA address * * This structure represents the state of a single host channel when acting in * host mode. It contains the data items needed to transfer packets to an * endpoint via a host channel. */ struct dwc2_host_chan { u8 hc_num; unsigned dev_addr:7; unsigned ep_num:4; unsigned ep_is_in:1; unsigned speed:4; unsigned ep_type:2; unsigned max_packet:11; unsigned data_pid_start:2; #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP unsigned multi_count:2; struct usb_dma *xfer_usbdma; u8 *xfer_buf; dma_addr_t xfer_dma; dma_addr_t align_buf; u32 xfer_len; u32 xfer_count; u16 start_pkt_count; u8 xfer_started; u8 do_ping; u8 error_state; u8 halt_on_queue; u8 halt_pending; u8 do_split; u8 complete_split; u8 hub_addr; u8 hub_port; u8 xact_pos; #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL u8 requests; u8 schinfo; u16 ntd; enum dwc2_halt_status halt_status; u32 hcint; struct dwc2_qh *qh; LIST_ENTRY(dwc2_host_chan) hc_list_entry; dma_addr_t desc_list_addr; int in_freelist; }; struct dwc2_hcd_pipe_info { u8 dev_addr; u8 ep_num; u8 pipe_type; u8 pipe_dir; u16 mps; }; struct dwc2_hcd_iso_packet_desc { u32 offset; u32 length; u32 actual_length; u32 status; }; struct dwc2_qtd; struct dwc2_hcd_urb { void *priv; /* the xfer handle */ struct dwc2_qtd *qtd; struct usb_dma *usbdma; u8 *buf; dma_addr_t dma; struct usb_dma *setup_usbdma; void *setup_packet; dma_addr_t setup_dma; u32 length; u32 actual_length; u32 status; u32 error_count; u32 packet_count; u32 flags; u16 interval; struct dwc2_hcd_pipe_info pipe_info; struct dwc2_hcd_iso_packet_desc iso_descs[0]; }; /* Phases for control transfers */ enum dwc2_control_phase { DWC2_CONTROL_SETUP, DWC2_CONTROL_DATA, DWC2_CONTROL_STATUS, }; /* Transaction types */ enum dwc2_transaction_type { DWC2_TRANSACTION_NONE, DWC2_TRANSACTION_PERIODIC, DWC2_TRANSACTION_NON_PERIODIC, DWC2_TRANSACTION_ALL, }; /** * struct dwc2_qh - Software queue head structure * * @ep_type: Endpoint type. One of the following values: * - USB_ENDPOINT_XFER_CONTROL * - USB_ENDPOINT_XFER_BULK * - USB_ENDPOINT_XFER_INT * - USB_ENDPOINT_XFER_ISOC * @ep_is_in: Endpoint direction * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor * @dev_speed: Device speed. One of the following values: * - USB_SPEED_LOW * - USB_SPEED_FULL * - USB_SPEED_HIGH * @data_toggle: Determines the PID of the next data packet for * non-controltransfers. Ignored for control transfers. * One of the following values: * - DWC2_HC_PID_DATA0 * - DWC2_HC_PID_DATA1 * @ping_state: Ping state * @do_split: Full/low speed endpoint on high-speed hub requires split * @td_first: Index of first activated isochronous transfer descriptor * @td_last: Index of last activated isochronous transfer descriptor * @usecs: Bandwidth in microseconds per (micro)frame * @interval: Interval between transfers in (micro)frames * @sched_frame: (Micro)frame to initialize a periodic transfer. * The transfer executes in the following (micro)frame. * @nak_frame: Internal variable used by the NAK holdoff code * @frame_usecs: Internal variable used by the microframe scheduler * @start_split_frame: (Micro)frame at which last start split was initialized * @ntd: Actual number of transfer descriptors in a list * @dw_align_buf: Used instead of original buffer if its physical address * is not dword-aligned * @dw_align_buf_dma: DMA address for align_buf * @qtd_list: List of QTDs for this QH * @channel: Host channel currently processing transfers for this QH * @qh_list_entry: Entry for QH in either the periodic or non-periodic * schedule * @desc_list: List of transfer descriptors * @desc_list_dma: Physical address of desc_list * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer * descriptor and indicates original XferSize value for the * descriptor * @tt_buffer_dirty True if clear_tt_buffer_complete is pending * * A Queue Head (QH) holds the static characteristics of an endpoint and * maintains a list of transfers (QTDs) for that endpoint. A QH structure may * be entered in either the non-periodic or periodic schedule. */ struct dwc2_qh { u8 ep_type; u8 ep_is_in; u16 maxp; u8 dev_speed; u8 data_toggle; u8 ping_state; u8 do_split; u8 td_first; u8 td_last; u16 usecs; u16 interval; u16 sched_frame; u16 nak_frame; u16 frame_usecs[8]; u16 start_split_frame; u16 ntd; struct usb_dma dw_align_buf_usbdma; u8 *dw_align_buf; dma_addr_t dw_align_buf_dma; TAILQ_HEAD(, dwc2_qtd) qtd_list; struct dwc2_host_chan *channel; TAILQ_ENTRY(dwc2_qh) qh_list_entry; struct usb_dma desc_list_usbdma; struct dwc2_hcd_dma_desc *desc_list; dma_addr_t desc_list_dma; u32 *n_bytes; unsigned tt_buffer_dirty:1; unsigned linked:1; }; /** * struct dwc2_qtd - Software queue transfer descriptor (QTD) * * @control_phase: Current phase for control transfers (Setup, Data, or * Status) * @in_process: Indicates if this QTD is currently processed by HW * @data_toggle: Determines the PID of the next data packet for the * data phase of control transfers. Ignored for other * transfer types. One of the following values: * - DWC2_HC_PID_DATA0 * - DWC2_HC_PID_DATA1 * @complete_split: Keeps track of the current split type for FS/LS * endpoints on a HS Hub * @isoc_split_pos: Position of the ISOC split in full/low speed * @isoc_frame_index: Index of the next frame descriptor for an isochronous * transfer. A frame descriptor describes the buffer * position and length of the data to be transferred in the * next scheduled (micro)frame of an isochronous transfer. * It also holds status for that transaction. The frame * index starts at 0. * @isoc_split_offset: Position of the ISOC split in the buffer for the * current frame * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT * @error_count: Holds the number of bus errors that have occurred for * a transaction within this transfer * @n_desc: Number of DMA descriptors for this QTD * @isoc_frame_index_last: Last activated frame (packet) index, used in * descriptor DMA mode only * @urb: URB for this transfer * @qh: Queue head for this QTD * @qtd_list_entry: For linking to the QH's list of QTDs * * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, * interrupt, or isochronous transfer. A single QTD is created for each URB * (of one of these types) submitted to the HCD. The transfer associated with * a QTD may require one or multiple transactions. * * A QTD is linked to a Queue Head, which is entered in either the * non-periodic or periodic schedule for execution. When a QTD is chosen for * execution, some or all of its transactions may be executed. After * execution, the state of the QTD is updated. The QTD may be retired if all * its transactions are complete or if an error occurred. Otherwise, it * remains in the schedule so more transactions can be executed later. */ struct dwc2_qtd { enum dwc2_control_phase control_phase; u8 in_process; u8 data_toggle; u8 complete_split; u8 isoc_split_pos; u16 isoc_frame_index; u16 isoc_split_offset; u32 ssplit_out_xfer_count; u8 error_count; u8 n_desc; u16 isoc_frame_index_last; struct dwc2_hcd_urb *urb; struct dwc2_qh *qh; TAILQ_ENTRY(dwc2_qtd) qtd_list_entry; }; #ifdef DEBUG struct hc_xfer_info { struct dwc2_hsotg *hsotg; struct dwc2_host_chan *chan; }; #endif /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */ STATIC_INLINE struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg) { return (struct usb_hcd *)hsotg->priv; } /* * Inline used to disable one channel interrupt. Channel interrupts are * disabled when the channel is halted or released by the interrupt handler. * There is no need to handle further interrupts of that type until the * channel is re-assigned. In fact, subsequent handling may cause crashes * because the channel structures are cleaned up when the channel is released. */ STATIC_INLINE void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr) { u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum)); mask &= ~intr; DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask); } /* * Returns the mode of operation, host or device */ STATIC_INLINE int dwc2_is_host_mode(struct dwc2_hsotg *hsotg) { return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0; } STATIC_INLINE int dwc2_is_device_mode(struct dwc2_hsotg *hsotg) { return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0; } /* * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they * are read as 1, they won't clear when written back. */ STATIC_INLINE u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg) { u32 hprt0 = DWC2_READ_4(hsotg, HPRT0); hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG); return hprt0; } STATIC_INLINE u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe) { return pipe->ep_num; } STATIC_INLINE u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type; } STATIC_INLINE u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe) { return pipe->mps; } STATIC_INLINE u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe) { return pipe->dev_addr; } STATIC_INLINE u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC; } STATIC_INLINE u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_INT; } STATIC_INLINE u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_BULK; } STATIC_INLINE u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL; } STATIC_INLINE u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_dir == USB_DIR_IN; } STATIC_INLINE u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe) { return !dwc2_hcd_is_pipe_in(pipe); } extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, const struct dwc2_core_params *params); extern int dwc2_hcd_dma_config(struct dwc2_hsotg *hsotg, struct dwc2_core_dma_config *config); extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg); extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg, const struct dwc2_core_params *params); extern void dwc2_set_all_params(struct dwc2_core_params *params, int value); extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg); /* Transaction Execution Functions */ extern enum dwc2_transaction_type dwc2_hcd_select_transactions( struct dwc2_hsotg *hsotg); extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, enum dwc2_transaction_type tr_type); /* Schedule Queue Functions */ /* Implemented in hcd_queue.c */ extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg); extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, int sched_csplit); extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb); extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, struct dwc2_qh **qh, int mem_flags); /* Removes and frees a QTD */ extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, struct dwc2_qh *qh); /* Descriptor DMA support functions */ extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, enum dwc2_halt_status halt_status); extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, gfp_t mem_flags); extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); /* Check if QH is non-periodic */ #define dwc2_qh_is_non_per(_qh_ptr_) \ ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \ (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL) #ifdef DWC2_DEBUG STATIC_INLINE bool dbg_hc(struct dwc2_host_chan *hc) { return true; } STATIC_INLINE bool dbg_qh(struct dwc2_qh *qh) { return true; } STATIC_INLINE bool dbg_perio(void) { return true; } #else /* !DWC2_DEBUG */ STATIC_INLINE bool dbg_hc(struct dwc2_host_chan *hc) { return hc->ep_type == USB_ENDPOINT_XFER_BULK || hc->ep_type == USB_ENDPOINT_XFER_CONTROL; } STATIC_INLINE bool dbg_qh(struct dwc2_qh *qh) { return qh->ep_type == USB_ENDPOINT_XFER_BULK || qh->ep_type == USB_ENDPOINT_XFER_CONTROL; } STATIC_INLINE bool dbg_perio(void) { return false; } #endif /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */ #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03)) /* Packet size for any kind of endpoint descriptor */ #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff) /* * Returns true if frame1 is less than or equal to frame2. The comparison is * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the * frame number when the max frame number is reached. */ STATIC_INLINE int dwc2_frame_num_le(u16 frame1, u16 frame2) { return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1); } /* * Returns true if frame1 is greater than frame2. The comparison is done * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame * number when the max frame number is reached. */ STATIC_INLINE int dwc2_frame_num_gt(u16 frame1, u16 frame2) { return (frame1 != frame2) && ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1); } /* * Increments frame by the amount specified by inc. The addition is done * modulo HFNUM_MAX_FRNUM. Returns the incremented value. */ STATIC_INLINE u16 dwc2_frame_num_inc(u16 frame, u16 inc) { return (frame + inc) & HFNUM_MAX_FRNUM; } STATIC_INLINE u16 dwc2_full_frame_num(u16 frame) { return (frame & HFNUM_MAX_FRNUM) >> 3; } STATIC_INLINE u16 dwc2_micro_frame_num(u16 frame) { return frame & 0x7; } /* * Returns the Core Interrupt Status register contents, ANDed with the Core * Interrupt Mask register contents */ STATIC_INLINE u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg) { return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK); } STATIC_INLINE u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb) { return dwc2_urb->status; } STATIC_INLINE u32 dwc2_hcd_urb_get_actual_length( struct dwc2_hcd_urb *dwc2_urb) { return dwc2_urb->actual_length; } STATIC_INLINE u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb) { return dwc2_urb->error_count; } STATIC_INLINE void dwc2_hcd_urb_set_iso_desc_params( struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset, u32 length) { dwc2_urb->iso_descs[desc_num].offset = offset; dwc2_urb->iso_descs[desc_num].length = length; } STATIC_INLINE u32 dwc2_hcd_urb_get_iso_desc_status( struct dwc2_hcd_urb *dwc2_urb, int desc_num) { return dwc2_urb->iso_descs[desc_num].status; } STATIC_INLINE u32 dwc2_hcd_urb_get_iso_desc_actual_length( struct dwc2_hcd_urb *dwc2_urb, int desc_num) { return dwc2_urb->iso_descs[desc_num].actual_length; } STATIC_INLINE int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg, struct usbd_xfer *xfer) { struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer); struct dwc2_qh *qh = dpipe->priv; if (qh && qh->linked) return 1; return 0; } STATIC_INLINE u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg, struct dwc2_pipe *dpipe) { struct dwc2_qh *qh = dpipe->priv; if (!qh) { WARN_ON(1); return 0; } return qh->usecs; } extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, struct dwc2_qtd *qtd); /* HCD Core API */ /** * dwc2_handle_hcd_intr() - Called on every hardware interrupt * * @hsotg: The DWC2 HCD * * Returns IRQ_HANDLED if interrupt is handled * Return IRQ_NONE if interrupt is not handled */ extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_stop() - Halts the DWC_otg host mode operation * * @hsotg: The DWC2 HCD */ extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg); extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg); extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host, * and 0 otherwise * * @hsotg: The DWC2 HCD */ extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_get_frame_number() - Returns current frame number * * @hsotg: The DWC2 HCD */ extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_dump_state() - Dumps hsotg state * * @hsotg: The DWC2 HCD * * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF * * @hsotg: The DWC2 HCD * * This can be used to determine average interrupt latency. Frame remaining is * also shown for start transfer and two additional sample points. * * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg); /* URB interface */ /* Transfer flags */ #define URB_GIVEBACK_ASAP 0x1 #define URB_SEND_ZERO_PACKET 0x2 /* Host driver callbacks */ extern void dwc2_host_start(struct dwc2_hsotg *hsotg); extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg); extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr, int *hub_port); extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context); extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, int status); #ifdef DEBUG /* * Macro to sample the remaining PHY clocks left in the current frame. This * may be used during debugging to determine the average time it takes to * execute sections of code. There are two possible sample points, "a" and * "b", so the _letter_ argument must be one of these values. * * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For * example, "cat /sys/devices/lm0/hcd_frrem". */ #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \ do { \ struct hfnum_data _hfnum_; \ struct dwc2_qtd *_qtd_; \ \ _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \ qtd_list_entry); \ if (usb_pipeint(_qtd_->urb->pipe) && \ (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \ _hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM); \ switch (_hfnum_.b.frnum & 0x7) { \ case 7: \ (_hcd_)->hfnum_7_samples_##_letter_++; \ (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \ _hfnum_.b.frrem; \ break; \ case 0: \ (_hcd_)->hfnum_0_samples_##_letter_++; \ (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \ _hfnum_.b.frrem; \ break; \ default: \ (_hcd_)->hfnum_other_samples_##_letter_++; \ (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \ _hfnum_.b.frrem; \ break; \ } \ } \ } while (0) #else #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0) #endif void dwc2_wakeup_detected(void *); int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *); void dwc2_hcd_reinit(struct dwc2_hsotg *); int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16); struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *); int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *, struct dwc2_hcd_urb *, void **, gfp_t); void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *, u8 ,u8, u8, u8, u16); void dwc2_conn_id_status_change(void *); void dwc2_hcd_start_func(void *); void dwc2_hcd_reset_func(void *); struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t); void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int); int _dwc2_hcd_start(struct dwc2_hsotg *); int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *); #endif /* __DWC2_HCD_H__ */