/* $OpenBSD: ehci.c,v 1.204 2019/03/31 06:16:38 mglocker Exp $ */ /* $NetBSD: ehci.c,v 1.66 2004/06/30 03:11:56 mycroft Exp $ */ /* * Copyright (c) 2014-2015 Martin Pieuchot * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Copyright (c) 2004-2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net), Charles M. Hannum and * Jeremy Morse (jeremy.morse@gmail.com). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * TODO: * 1) The hub driver needs to handle and schedule the transaction translator, * to assign place in frame where different devices get to go. See chapter * on hubs in USB 2.0 for details. * * 2) Command failures are not recovered correctly. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cfdriver ehci_cd = { NULL, "ehci", DV_DULL }; #ifdef EHCI_DEBUG #define DPRINTF(x) do { if (ehcidebug) printf x; } while(0) #define DPRINTFN(n,x) do { if (ehcidebug>(n)) printf x; } while (0) int ehcidebug = 0; #define bitmask_snprintf(q,f,b,l) snprintf((b), (l), "%b", (q), (f)) #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif struct pool *ehcixfer; struct ehci_pipe { struct usbd_pipe pipe; struct ehci_soft_qh *sqh; union { /* Control pipe */ struct { struct usb_dma reqdma; } ctl; /* Iso pipe */ struct { u_int next_frame; u_int cur_xfers; } isoc; } u; }; u_int8_t ehci_reverse_bits(u_int8_t, int); usbd_status ehci_open(struct usbd_pipe *); int ehci_setaddr(struct usbd_device *, int); void ehci_poll(struct usbd_bus *); void ehci_softintr(void *); int ehci_intr1(struct ehci_softc *); void ehci_check_intr(struct ehci_softc *, struct usbd_xfer *); void ehci_check_qh_intr(struct ehci_softc *, struct usbd_xfer *); void ehci_check_itd_intr(struct ehci_softc *, struct usbd_xfer *); void ehci_idone(struct usbd_xfer *); void ehci_isoc_idone(struct usbd_xfer *); void ehci_timeout(void *); void ehci_timeout_task(void *); void ehci_intrlist_timeout(void *); struct usbd_xfer *ehci_allocx(struct usbd_bus *); void ehci_freex(struct usbd_bus *, struct usbd_xfer *); usbd_status ehci_root_ctrl_transfer(struct usbd_xfer *); usbd_status ehci_root_ctrl_start(struct usbd_xfer *); void ehci_root_ctrl_abort(struct usbd_xfer *); void ehci_root_ctrl_close(struct usbd_pipe *); void ehci_root_ctrl_done(struct usbd_xfer *); usbd_status ehci_root_intr_transfer(struct usbd_xfer *); usbd_status ehci_root_intr_start(struct usbd_xfer *); void ehci_root_intr_abort(struct usbd_xfer *); void ehci_root_intr_close(struct usbd_pipe *); void ehci_root_intr_done(struct usbd_xfer *); usbd_status ehci_device_ctrl_transfer(struct usbd_xfer *); usbd_status ehci_device_ctrl_start(struct usbd_xfer *); void ehci_device_ctrl_abort(struct usbd_xfer *); void ehci_device_ctrl_close(struct usbd_pipe *); void ehci_device_ctrl_done(struct usbd_xfer *); usbd_status ehci_device_bulk_transfer(struct usbd_xfer *); usbd_status ehci_device_bulk_start(struct usbd_xfer *); void ehci_device_bulk_abort(struct usbd_xfer *); void ehci_device_bulk_close(struct usbd_pipe *); void ehci_device_bulk_done(struct usbd_xfer *); usbd_status ehci_device_intr_transfer(struct usbd_xfer *); usbd_status ehci_device_intr_start(struct usbd_xfer *); void ehci_device_intr_abort(struct usbd_xfer *); void ehci_device_intr_close(struct usbd_pipe *); void ehci_device_intr_done(struct usbd_xfer *); usbd_status ehci_device_isoc_transfer(struct usbd_xfer *); usbd_status ehci_device_isoc_start(struct usbd_xfer *); void ehci_device_isoc_abort(struct usbd_xfer *); void ehci_device_isoc_close(struct usbd_pipe *); void ehci_device_isoc_done(struct usbd_xfer *); void ehci_device_clear_toggle(struct usbd_pipe *pipe); void ehci_pcd(struct ehci_softc *, struct usbd_xfer *); void ehci_disown(struct ehci_softc *, int, int); struct ehci_soft_qh *ehci_alloc_sqh(struct ehci_softc *); void ehci_free_sqh(struct ehci_softc *, struct ehci_soft_qh *); struct ehci_soft_qtd *ehci_alloc_sqtd(struct ehci_softc *); void ehci_free_sqtd(struct ehci_softc *, struct ehci_soft_qtd *); usbd_status ehci_alloc_sqtd_chain(struct ehci_softc *, u_int, struct usbd_xfer *, struct ehci_soft_qtd **, struct ehci_soft_qtd **); void ehci_free_sqtd_chain(struct ehci_softc *, struct ehci_xfer *); struct ehci_soft_itd *ehci_alloc_itd(struct ehci_softc *); void ehci_free_itd(struct ehci_softc *, struct ehci_soft_itd *); void ehci_rem_itd_chain(struct ehci_softc *, struct ehci_xfer *); void ehci_free_itd_chain(struct ehci_softc *, struct ehci_xfer *); int ehci_alloc_itd_chain(struct ehci_softc *, struct usbd_xfer *); int ehci_alloc_sitd_chain(struct ehci_softc *, struct usbd_xfer *); void ehci_abort_isoc_xfer(struct usbd_xfer *xfer, usbd_status status); usbd_status ehci_device_setintr(struct ehci_softc *, struct ehci_soft_qh *, int ival); void ehci_add_qh(struct ehci_soft_qh *, struct ehci_soft_qh *); void ehci_rem_qh(struct ehci_softc *, struct ehci_soft_qh *); void ehci_set_qh_qtd(struct ehci_soft_qh *, struct ehci_soft_qtd *); void ehci_sync_hc(struct ehci_softc *); void ehci_close_pipe(struct usbd_pipe *); void ehci_abort_xfer(struct usbd_xfer *, usbd_status); #ifdef EHCI_DEBUG void ehci_dump_regs(struct ehci_softc *); void ehci_dump(void); struct ehci_softc *theehci; void ehci_dump_link(ehci_link_t, int); void ehci_dump_sqtds(struct ehci_soft_qtd *); void ehci_dump_sqtd(struct ehci_soft_qtd *); void ehci_dump_qtd(struct ehci_qtd *); void ehci_dump_sqh(struct ehci_soft_qh *); #if notyet void ehci_dump_itd(struct ehci_soft_itd *); #endif #ifdef DIAGNOSTIC void ehci_dump_exfer(struct ehci_xfer *); #endif #endif #define EHCI_INTR_ENDPT 1 struct usbd_bus_methods ehci_bus_methods = { .open_pipe = ehci_open, .dev_setaddr = ehci_setaddr, .soft_intr = ehci_softintr, .do_poll = ehci_poll, .allocx = ehci_allocx, .freex = ehci_freex, }; struct usbd_pipe_methods ehci_root_ctrl_methods = { .transfer = ehci_root_ctrl_transfer, .start = ehci_root_ctrl_start, .abort = ehci_root_ctrl_abort, .close = ehci_root_ctrl_close, .done = ehci_root_ctrl_done, }; struct usbd_pipe_methods ehci_root_intr_methods = { .transfer = ehci_root_intr_transfer, .start = ehci_root_intr_start, .abort = ehci_root_intr_abort, .close = ehci_root_intr_close, .done = ehci_root_intr_done, }; struct usbd_pipe_methods ehci_device_ctrl_methods = { .transfer = ehci_device_ctrl_transfer, .start = ehci_device_ctrl_start, .abort = ehci_device_ctrl_abort, .close = ehci_device_ctrl_close, .done = ehci_device_ctrl_done, }; struct usbd_pipe_methods ehci_device_intr_methods = { .transfer = ehci_device_intr_transfer, .start = ehci_device_intr_start, .abort = ehci_device_intr_abort, .close = ehci_device_intr_close, .cleartoggle = ehci_device_clear_toggle, .done = ehci_device_intr_done, }; struct usbd_pipe_methods ehci_device_bulk_methods = { .transfer = ehci_device_bulk_transfer, .start = ehci_device_bulk_start, .abort = ehci_device_bulk_abort, .close = ehci_device_bulk_close, .cleartoggle = ehci_device_clear_toggle, .done = ehci_device_bulk_done, }; struct usbd_pipe_methods ehci_device_isoc_methods = { .transfer = ehci_device_isoc_transfer, .start = ehci_device_isoc_start, .abort = ehci_device_isoc_abort, .close = ehci_device_isoc_close, .done = ehci_device_isoc_done, }; /* * Reverse a number with nbits bits. Used to evenly distribute lower-level * interrupt heads in the periodic schedule. * Suitable for use with EHCI_IPOLLRATES <= 9. */ u_int8_t ehci_reverse_bits(u_int8_t c, int nbits) { c = ((c >> 1) & 0x55) | ((c << 1) & 0xaa); c = ((c >> 2) & 0x33) | ((c << 2) & 0xcc); c = ((c >> 4) & 0x0f) | ((c << 4) & 0xf0); return c >> (8 - nbits); } usbd_status ehci_init(struct ehci_softc *sc) { u_int32_t sparams, cparams, hcr; u_int i, j; usbd_status err; struct ehci_soft_qh *sqh; #ifdef EHCI_DEBUG u_int32_t vers; theehci = sc; DPRINTF(("ehci_init: start\n")); vers = EREAD2(sc, EHCI_HCIVERSION); DPRINTF(("%s: EHCI version %x.%x\n", sc->sc_bus.bdev.dv_xname, vers >> 8, vers & 0xff)); #endif sc->sc_offs = EREAD1(sc, EHCI_CAPLENGTH); sparams = EREAD4(sc, EHCI_HCSPARAMS); DPRINTF(("ehci_init: sparams=0x%x\n", sparams)); sc->sc_noport = EHCI_HCS_N_PORTS(sparams); cparams = EREAD4(sc, EHCI_HCCPARAMS); DPRINTF(("ehci_init: cparams=0x%x\n", cparams)); /* MUST clear segment register if 64 bit capable. */ if (EHCI_HCC_64BIT(cparams)) EWRITE4(sc, EHCI_CTRLDSSEGMENT, 0); sc->sc_bus.usbrev = USBREV_2_0; DPRINTF(("%s: resetting\n", sc->sc_bus.bdev.dv_xname)); err = ehci_reset(sc); if (err) return (err); if (ehcixfer == NULL) { ehcixfer = malloc(sizeof(struct pool), M_DEVBUF, M_NOWAIT); if (ehcixfer == NULL) { printf("%s: unable to allocate pool descriptor\n", sc->sc_bus.bdev.dv_xname); return (ENOMEM); } pool_init(ehcixfer, sizeof(struct ehci_xfer), 0, IPL_SOFTUSB, 0, "ehcixfer", NULL); } /* frame list size at default, read back what we got and use that */ switch (EHCI_CMD_FLS(EOREAD4(sc, EHCI_USBCMD))) { case 0: sc->sc_flsize = 1024; break; case 1: sc->sc_flsize = 512; break; case 2: sc->sc_flsize = 256; break; case 3: return (USBD_IOERROR); } err = usb_allocmem(&sc->sc_bus, sc->sc_flsize * sizeof(ehci_link_t), EHCI_FLALIGN_ALIGN, &sc->sc_fldma); if (err) return (err); DPRINTF(("%s: flsize=%d\n", sc->sc_bus.bdev.dv_xname,sc->sc_flsize)); sc->sc_flist = KERNADDR(&sc->sc_fldma, 0); for (i = 0; i < sc->sc_flsize; i++) sc->sc_flist[i] = htole32(EHCI_LINK_TERMINATE); EOWRITE4(sc, EHCI_PERIODICLISTBASE, DMAADDR(&sc->sc_fldma, 0)); sc->sc_softitds = mallocarray(sc->sc_flsize, sizeof(struct ehci_soft_itd *), M_USB, M_NOWAIT | M_ZERO); if (sc->sc_softitds == NULL) { usb_freemem(&sc->sc_bus, &sc->sc_fldma); return (ENOMEM); } LIST_INIT(&sc->sc_freeitds); TAILQ_INIT(&sc->sc_intrhead); /* Set up the bus struct. */ sc->sc_bus.methods = &ehci_bus_methods; sc->sc_bus.pipe_size = sizeof(struct ehci_pipe); sc->sc_eintrs = EHCI_NORMAL_INTRS; /* * Allocate the interrupt dummy QHs. These are arranged to give poll * intervals that are powers of 2 times 1ms. */ for (i = 0; i < EHCI_INTRQHS; i++) { sqh = ehci_alloc_sqh(sc); if (sqh == NULL) { err = USBD_NOMEM; goto bad1; } sc->sc_islots[i].sqh = sqh; } for (i = 0; i < EHCI_INTRQHS; i++) { sqh = sc->sc_islots[i].sqh; if (i == 0) { /* The last (1ms) QH terminates. */ sqh->qh.qh_link = htole32(EHCI_LINK_TERMINATE); sqh->next = NULL; } else { /* Otherwise the next QH has half the poll interval */ sqh->next = sc->sc_islots[(i + 1) / 2 - 1].sqh; sqh->qh.qh_link = htole32(sqh->next->physaddr | EHCI_LINK_QH); } sqh->qh.qh_endp = htole32(EHCI_QH_SET_EPS(EHCI_QH_SPEED_HIGH)); sqh->qh.qh_endphub = htole32(EHCI_QH_SET_MULT(1)); sqh->qh.qh_curqtd = htole32(EHCI_LINK_TERMINATE); sqh->qh.qh_qtd.qtd_next = htole32(EHCI_LINK_TERMINATE); sqh->qh.qh_qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_HALTED); sqh->sqtd = NULL; usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } /* Point the frame list at the last level (128ms). */ for (i = 0; i < (1 << (EHCI_IPOLLRATES - 1)); i++) for (j = i; j < sc->sc_flsize; j += 1 << (EHCI_IPOLLRATES - 1)) sc->sc_flist[j] = htole32(EHCI_LINK_QH | sc->sc_islots[ EHCI_IQHIDX(EHCI_IPOLLRATES - 1, ehci_reverse_bits( i, EHCI_IPOLLRATES - 1))].sqh->physaddr); usb_syncmem(&sc->sc_fldma, 0, sc->sc_flsize * sizeof(ehci_link_t), BUS_DMASYNC_PREWRITE); /* Allocate dummy QH that starts the async list. */ sqh = ehci_alloc_sqh(sc); if (sqh == NULL) { err = USBD_NOMEM; goto bad1; } /* Fill the QH */ sqh->qh.qh_endp = htole32(EHCI_QH_SET_EPS(EHCI_QH_SPEED_HIGH) | EHCI_QH_HRECL); sqh->qh.qh_link = htole32(sqh->physaddr | EHCI_LINK_QH); sqh->qh.qh_curqtd = htole32(EHCI_LINK_TERMINATE); sqh->prev = sqh; /*It's a circular list.. */ sqh->next = sqh; /* Fill the overlay qTD */ sqh->qh.qh_qtd.qtd_next = htole32(EHCI_LINK_TERMINATE); sqh->qh.qh_qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_HALTED); sqh->sqtd = NULL; usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); /* Point to async list */ sc->sc_async_head = sqh; EOWRITE4(sc, EHCI_ASYNCLISTADDR, sqh->physaddr | EHCI_LINK_QH); timeout_set(&sc->sc_tmo_intrlist, ehci_intrlist_timeout, sc); rw_init(&sc->sc_doorbell_lock, "ehcidb"); /* Turn on controller */ EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_ITC_2 | /* 2 microframes interrupt delay */ (EOREAD4(sc, EHCI_USBCMD) & EHCI_CMD_FLS_M) | EHCI_CMD_ASE | EHCI_CMD_PSE | EHCI_CMD_RS); /* Take over port ownership */ EOWRITE4(sc, EHCI_CONFIGFLAG, EHCI_CONF_CF); for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (!hcr) break; } if (hcr) { printf("%s: run timeout\n", sc->sc_bus.bdev.dv_xname); return (USBD_IOERROR); } /* Enable interrupts */ EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); return (USBD_NORMAL_COMPLETION); #if 0 bad2: ehci_free_sqh(sc, sc->sc_async_head); #endif bad1: free(sc->sc_softitds, M_USB, sc->sc_flsize * sizeof(struct ehci_soft_itd *)); usb_freemem(&sc->sc_bus, &sc->sc_fldma); return (err); } int ehci_intr(void *v) { struct ehci_softc *sc = v; if (sc == NULL || sc->sc_bus.dying) return (0); /* If we get an interrupt while polling, then just ignore it. */ if (sc->sc_bus.use_polling) { u_int32_t intrs = EHCI_STS_INTRS(EOREAD4(sc, EHCI_USBSTS)); if (intrs) EOWRITE4(sc, EHCI_USBSTS, intrs); /* Acknowledge */ return (0); } return (ehci_intr1(sc)); } int ehci_intr1(struct ehci_softc *sc) { u_int32_t intrs, eintrs; /* In case the interrupt occurs before initialization has completed. */ if (sc == NULL) { #ifdef DIAGNOSTIC printf("ehci_intr1: sc == NULL\n"); #endif return (0); } intrs = EOREAD4(sc, EHCI_USBSTS); if (intrs == 0xffffffff) { sc->sc_bus.dying = 1; return (0); } intrs = EHCI_STS_INTRS(intrs); if (!intrs) return (0); eintrs = intrs & sc->sc_eintrs; if (!eintrs) return (0); EOWRITE4(sc, EHCI_USBSTS, intrs); /* Acknowledge */ sc->sc_bus.no_intrs++; if (eintrs & EHCI_STS_HSE) { printf("%s: unrecoverable error, controller halted\n", sc->sc_bus.bdev.dv_xname); sc->sc_bus.dying = 1; return (1); } if (eintrs & EHCI_STS_IAA) { wakeup(&sc->sc_async_head); eintrs &= ~EHCI_STS_IAA; } if (eintrs & (EHCI_STS_INT | EHCI_STS_ERRINT)) { usb_schedsoftintr(&sc->sc_bus); eintrs &= ~(EHCI_STS_INT | EHCI_STS_ERRINT); } if (eintrs & EHCI_STS_PCD) { atomic_setbits_int(&sc->sc_flags, EHCIF_PCB_INTR); usb_schedsoftintr(&sc->sc_bus); eintrs &= ~EHCI_STS_PCD; } if (eintrs != 0) { /* Block unprocessed interrupts. */ sc->sc_eintrs &= ~eintrs; EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); printf("%s: blocking intrs 0x%x\n", sc->sc_bus.bdev.dv_xname, eintrs); } return (1); } void ehci_pcd(struct ehci_softc *sc, struct usbd_xfer *xfer) { u_char *p; int i, m; if (xfer == NULL) { /* Just ignore the change. */ return; } p = KERNADDR(&xfer->dmabuf, 0); m = min(sc->sc_noport, xfer->length * 8 - 1); memset(p, 0, xfer->length); for (i = 1; i <= m; i++) { /* Pick out CHANGE bits from the status reg. */ if (EOREAD4(sc, EHCI_PORTSC(i)) & EHCI_PS_CLEAR) p[i / 8] |= 1 << (i % 8); } xfer->actlen = xfer->length; xfer->status = USBD_NORMAL_COMPLETION; usb_transfer_complete(xfer); } /* * Work around the half configured control (default) pipe when setting * the address of a device. * * Because a single QH is setup per endpoint in ehci_open(), and the * control pipe is configured before we could have set the address * of the device or read the wMaxPacketSize of the endpoint, we have * to re-open the pipe twice here. */ int ehci_setaddr(struct usbd_device *dev, int addr) { /* Root Hub */ if (dev->depth == 0) return (0); /* Re-establish the default pipe with the new max packet size. */ ehci_close_pipe(dev->default_pipe); if (ehci_open(dev->default_pipe)) return (EINVAL); if (usbd_set_address(dev, addr)) return (1); dev->address = addr; /* Re-establish the default pipe with the new address. */ ehci_close_pipe(dev->default_pipe); if (ehci_open(dev->default_pipe)) return (EINVAL); return (0); } void ehci_softintr(void *v) { struct ehci_softc *sc = v; struct ehci_xfer *ex, *nextex; if (sc->sc_bus.dying) return; sc->sc_bus.intr_context++; if (sc->sc_flags & EHCIF_PCB_INTR) { atomic_clearbits_int(&sc->sc_flags, EHCIF_PCB_INTR); ehci_pcd(sc, sc->sc_intrxfer); } /* * The only explanation I can think of for why EHCI is as brain dead * as UHCI interrupt-wise is that Intel was involved in both. * An interrupt just tells us that something is done, we have no * clue what, so we need to scan through all active transfers. :-( */ for (ex = TAILQ_FIRST(&sc->sc_intrhead); ex; ex = nextex) { nextex = TAILQ_NEXT(ex, inext); ehci_check_intr(sc, &ex->xfer); } /* Schedule a callout to catch any dropped transactions. */ if ((sc->sc_flags & EHCIF_DROPPED_INTR_WORKAROUND) && !TAILQ_EMPTY(&sc->sc_intrhead)) { timeout_add_sec(&sc->sc_tmo_intrlist, 1); } if (sc->sc_softwake) { sc->sc_softwake = 0; wakeup(&sc->sc_softwake); } sc->sc_bus.intr_context--; } void ehci_check_intr(struct ehci_softc *sc, struct usbd_xfer *xfer) { int attr = xfer->pipe->endpoint->edesc->bmAttributes; if (UE_GET_XFERTYPE(attr) == UE_ISOCHRONOUS) ehci_check_itd_intr(sc, xfer); else ehci_check_qh_intr(sc, xfer); } void ehci_check_qh_intr(struct ehci_softc *sc, struct usbd_xfer *xfer) { struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct ehci_soft_qtd *sqtd, *lsqtd = ex->sqtdend; uint32_t status; KASSERT(ex->sqtdstart != NULL && ex->sqtdend != NULL); usb_syncmem(&lsqtd->dma, lsqtd->offs + offsetof(struct ehci_qtd, qtd_status), sizeof(lsqtd->qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); /* * If the last TD is still active we need to check whether there * is a an error somewhere in the middle, or whether there was a * short packet (SPD and not ACTIVE). */ if (letoh32(lsqtd->qtd.qtd_status) & EHCI_QTD_ACTIVE) { DPRINTFN(12, ("ehci_check_intr: active ex=%p\n", ex)); for (sqtd = ex->sqtdstart; sqtd != lsqtd; sqtd=sqtd->nextqtd) { usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(struct ehci_qtd, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); status = letoh32(sqtd->qtd.qtd_status); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(struct ehci_qtd, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_PREREAD); /* If there's an active QTD the xfer isn't done. */ if (status & EHCI_QTD_ACTIVE) break; /* Any kind of error makes the xfer done. */ if (status & EHCI_QTD_HALTED) goto done; /* We want short packets, and it is short: it's done */ if (EHCI_QTD_GET_BYTES(status) != 0) goto done; } DPRINTFN(12, ("ehci_check_intr: ex=%p std=%p still active\n", ex, ex->sqtdstart)); usb_syncmem(&lsqtd->dma, lsqtd->offs + offsetof(struct ehci_qtd, qtd_status), sizeof(lsqtd->qtd.qtd_status), BUS_DMASYNC_PREREAD); return; } done: TAILQ_REMOVE(&sc->sc_intrhead, ex, inext); timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->pipe->device, &xfer->abort_task); ehci_idone(xfer); } void ehci_check_itd_intr(struct ehci_softc *sc, struct usbd_xfer *xfer) { struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct ehci_soft_itd *itd = ex->itdend; int i; if (xfer != SIMPLEQ_FIRST(&xfer->pipe->queue)) return; KASSERT(ex->itdstart != NULL && ex->itdend != NULL); /* Check no active transfers in last itd, meaning we're finished */ if (xfer->device->speed == USB_SPEED_HIGH) { usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_itd, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); for (i = 0; i < 8; i++) { if (letoh32(itd->itd.itd_ctl[i]) & EHCI_ITD_ACTIVE) return; } } else { usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_sitd, sitd_trans), sizeof(itd->sitd.sitd_trans), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); if (le32toh(itd->sitd.sitd_trans) & EHCI_SITD_ACTIVE) return; } /* All descriptor(s) inactive, it's done */ TAILQ_REMOVE(&sc->sc_intrhead, ex, inext); timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->pipe->device, &xfer->abort_task); ehci_isoc_idone(xfer); } void ehci_isoc_idone(struct usbd_xfer *xfer) { struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct ehci_soft_itd *itd; int i, len, uframes, nframes = 0, actlen = 0; uint32_t status = 0; if (xfer->status == USBD_CANCELLED || xfer->status == USBD_TIMEOUT) return; if (xfer->device->speed == USB_SPEED_HIGH) { switch (xfer->pipe->endpoint->edesc->bInterval) { case 0: panic("isoc xfer suddenly has 0 bInterval, invalid"); case 1: uframes = 1; break; case 2: uframes = 2; break; case 3: uframes = 4; break; default: uframes = 8; break; } for (itd = ex->itdstart; itd != NULL; itd = itd->xfer_next) { usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_itd, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); for (i = 0; i < 8; i += uframes) { /* XXX - driver didn't fill in the frame full * of uframes. This leads to scheduling * inefficiencies, but working around * this doubles complexity of tracking * an xfer. */ if (nframes >= xfer->nframes) break; status = letoh32(itd->itd.itd_ctl[i]); len = EHCI_ITD_GET_LEN(status); if (EHCI_ITD_GET_STATUS(status) != 0) len = 0; /*No valid data on error*/ xfer->frlengths[nframes++] = len; actlen += len; } } } else { for (itd = ex->itdstart; itd != NULL; itd = itd->xfer_next) { usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_sitd, sitd_trans), sizeof(itd->sitd.sitd_trans), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); status = le32toh(itd->sitd.sitd_trans); len = EHCI_SITD_GET_LEN(status); if (xfer->frlengths[nframes] >= len) len = xfer->frlengths[nframes] - len; else len = 0; xfer->frlengths[nframes++] = len; actlen += len; } } #ifdef DIAGNOSTIC ex->isdone = 1; #endif xfer->actlen = actlen; xfer->status = USBD_NORMAL_COMPLETION; usb_transfer_complete(xfer); } void ehci_idone(struct usbd_xfer *xfer) { struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct ehci_soft_qtd *sqtd; u_int32_t status = 0, nstatus = 0; int actlen, cerr; #ifdef DIAGNOSTIC { int s = splhigh(); if (ex->isdone) { splx(s); printf("ehci_idone: ex=%p is done!\n", ex); return; } ex->isdone = 1; splx(s); } #endif if (xfer->status == USBD_CANCELLED || xfer->status == USBD_TIMEOUT) return; actlen = 0; for (sqtd = ex->sqtdstart; sqtd != NULL; sqtd = sqtd->nextqtd) { usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); nstatus = letoh32(sqtd->qtd.qtd_status); if (nstatus & EHCI_QTD_ACTIVE) break; status = nstatus; /* halt is ok if descriptor is last, and complete */ if (sqtd->qtd.qtd_next == htole32(EHCI_LINK_TERMINATE) && EHCI_QTD_GET_BYTES(status) == 0) status &= ~EHCI_QTD_HALTED; if (EHCI_QTD_GET_PID(status) != EHCI_QTD_PID_SETUP) actlen += sqtd->len - EHCI_QTD_GET_BYTES(status); } cerr = EHCI_QTD_GET_CERR(status); DPRINTFN(/*10*/2, ("ehci_idone: len=%d, actlen=%d, cerr=%d, " "status=0x%x\n", xfer->length, actlen, cerr, status)); xfer->actlen = actlen; if ((status & EHCI_QTD_HALTED) != 0) { if ((status & EHCI_QTD_BABBLE) == 0 && cerr > 0) xfer->status = USBD_STALLED; else xfer->status = USBD_IOERROR; /* more info XXX */ } else xfer->status = USBD_NORMAL_COMPLETION; /* XXX transfer_complete memcpys out transfer data (for in endpoints) * during this call, before methods->done is called: dma sync required * beforehand? */ usb_transfer_complete(xfer); DPRINTFN(/*12*/2, ("ehci_idone: ex=%p done\n", ex)); } void ehci_poll(struct usbd_bus *bus) { struct ehci_softc *sc = (struct ehci_softc *)bus; if (EOREAD4(sc, EHCI_USBSTS) & sc->sc_eintrs) ehci_intr1(sc); } int ehci_detach(struct device *self, int flags) { struct ehci_softc *sc = (struct ehci_softc *)self; int rv; rv = config_detach_children(self, flags); if (rv != 0) return (rv); timeout_del(&sc->sc_tmo_intrlist); ehci_reset(sc); usb_delay_ms(&sc->sc_bus, 300); /* XXX let stray task complete */ free(sc->sc_softitds, M_USB, sc->sc_flsize * sizeof(struct ehci_soft_itd *)); usb_freemem(&sc->sc_bus, &sc->sc_fldma); /* XXX free other data structures XXX */ return (rv); } int ehci_activate(struct device *self, int act) { struct ehci_softc *sc = (struct ehci_softc *)self; u_int32_t cmd, hcr, cparams; int i, rv = 0; switch (act) { case DVACT_SUSPEND: rv = config_activate_children(self, act); #ifdef DIAGNOSTIC if (!TAILQ_EMPTY(&sc->sc_intrhead)) { printf("%s: interrupt list not empty\n", sc->sc_bus.bdev.dv_xname); return (-1); } #endif sc->sc_bus.use_polling++; for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)); if ((cmd & (EHCI_PS_PO|EHCI_PS_PE)) == EHCI_PS_PE) EOWRITE4(sc, EHCI_PORTSC(i), cmd | EHCI_PS_SUSP); } /* * First tell the host to stop processing Asynchronous * and Periodic schedules. */ cmd = EOREAD4(sc, EHCI_USBCMD) & ~(EHCI_CMD_ASE | EHCI_CMD_PSE); EOWRITE4(sc, EHCI_USBCMD, cmd); for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = EOREAD4(sc, EHCI_USBSTS) & (EHCI_STS_ASS | EHCI_STS_PSS); if (hcr == 0) break; } if (hcr != 0) printf("%s: disable schedules timeout\n", sc->sc_bus.bdev.dv_xname); /* * Then reset the host as if it was a shutdown. * * All USB devices are disconnected/reconnected during * a suspend/resume cycle so keep it simple. */ ehci_reset(sc); sc->sc_bus.use_polling--; break; case DVACT_RESUME: sc->sc_bus.use_polling++; ehci_reset(sc); cparams = EREAD4(sc, EHCI_HCCPARAMS); /* MUST clear segment register if 64 bit capable. */ if (EHCI_HCC_64BIT(cparams)) EWRITE4(sc, EHCI_CTRLDSSEGMENT, 0); EOWRITE4(sc, EHCI_PERIODICLISTBASE, DMAADDR(&sc->sc_fldma, 0)); EOWRITE4(sc, EHCI_ASYNCLISTADDR, sc->sc_async_head->physaddr | EHCI_LINK_QH); hcr = 0; for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)); if ((cmd & (EHCI_PS_PO|EHCI_PS_SUSP)) == EHCI_PS_SUSP) { EOWRITE4(sc, EHCI_PORTSC(i), cmd | EHCI_PS_FPR); hcr = 1; } } if (hcr) { usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT); for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)); if ((cmd & (EHCI_PS_PO|EHCI_PS_SUSP)) == EHCI_PS_SUSP) EOWRITE4(sc, EHCI_PORTSC(i), cmd & ~EHCI_PS_FPR); } } /* Turn on controller */ EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_ITC_2 | /* 2 microframes interrupt delay */ (EOREAD4(sc, EHCI_USBCMD) & EHCI_CMD_FLS_M) | EHCI_CMD_ASE | EHCI_CMD_PSE | EHCI_CMD_RS); /* Take over port ownership */ EOWRITE4(sc, EHCI_CONFIGFLAG, EHCI_CONF_CF); for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (!hcr) break; } if (hcr) { printf("%s: run timeout\n", sc->sc_bus.bdev.dv_xname); /* XXX should we bail here? */ } EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT); sc->sc_bus.use_polling--; rv = config_activate_children(self, act); break; case DVACT_POWERDOWN: rv = config_activate_children(self, act); ehci_reset(sc); break; default: rv = config_activate_children(self, act); break; } return (rv); } usbd_status ehci_reset(struct ehci_softc *sc) { u_int32_t hcr, usbmode; int i; EOWRITE4(sc, EHCI_USBCMD, 0); /* Halt controller */ for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (hcr) break; } if (!hcr) printf("%s: halt timeout\n", sc->sc_bus.bdev.dv_xname); if (sc->sc_flags & EHCIF_USBMODE) usbmode = EOREAD4(sc, EHCI_USBMODE); EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_HCRESET); for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = EOREAD4(sc, EHCI_USBCMD) & EHCI_CMD_HCRESET; if (!hcr) break; } if (hcr) { printf("%s: reset timeout\n", sc->sc_bus.bdev.dv_xname); return (USBD_IOERROR); } if (sc->sc_flags & EHCIF_USBMODE) EOWRITE4(sc, EHCI_USBMODE, usbmode); return (USBD_NORMAL_COMPLETION); } struct usbd_xfer * ehci_allocx(struct usbd_bus *bus) { struct ehci_xfer *ex; ex = pool_get(ehcixfer, PR_NOWAIT | PR_ZERO); #ifdef DIAGNOSTIC if (ex != NULL) ex->isdone = 1; #endif return ((struct usbd_xfer *)ex); } void ehci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) { struct ehci_xfer *ex = (struct ehci_xfer*)xfer; #ifdef DIAGNOSTIC if (!ex->isdone) { printf("%s: !isdone\n", __func__); return; } #endif pool_put(ehcixfer, ex); } void ehci_device_clear_toggle(struct usbd_pipe *pipe) { struct ehci_pipe *epipe = (struct ehci_pipe *)pipe; #ifdef DIAGNOSTIC if ((epipe->sqh->qh.qh_qtd.qtd_status & htole32(EHCI_QTD_ACTIVE)) != 0) panic("ehci_device_clear_toggle: queue active"); #endif epipe->sqh->qh.qh_qtd.qtd_status &= htole32(~EHCI_QTD_TOGGLE_MASK); } #ifdef EHCI_DEBUG void ehci_dump_regs(struct ehci_softc *sc) { int i; printf("cmd=0x%08x, sts=0x%08x, ien=0x%08x\n", EOREAD4(sc, EHCI_USBCMD), EOREAD4(sc, EHCI_USBSTS), EOREAD4(sc, EHCI_USBINTR)); printf("frindex=0x%08x ctrdsegm=0x%08x periodic=0x%08x async=0x%08x\n", EOREAD4(sc, EHCI_FRINDEX), EOREAD4(sc, EHCI_CTRLDSSEGMENT), EOREAD4(sc, EHCI_PERIODICLISTBASE), EOREAD4(sc, EHCI_ASYNCLISTADDR)); for (i = 1; i <= sc->sc_noport; i++) printf("port %d status=0x%08x\n", i, EOREAD4(sc, EHCI_PORTSC(i))); } /* * Unused function - this is meant to be called from a kernel * debugger. */ void ehci_dump(void) { ehci_dump_regs(theehci); } void ehci_dump_link(ehci_link_t link, int type) { link = letoh32(link); printf("0x%08x", link); if (link & EHCI_LINK_TERMINATE) printf(""); else { printf("<"); if (type) { switch (EHCI_LINK_TYPE(link)) { case EHCI_LINK_ITD: printf("ITD"); break; case EHCI_LINK_QH: printf("QH"); break; case EHCI_LINK_SITD: printf("SITD"); break; case EHCI_LINK_FSTN: printf("FSTN"); break; } } printf(">"); } } void ehci_dump_sqtds(struct ehci_soft_qtd *sqtd) { int i; u_int32_t stop; stop = 0; for (i = 0; sqtd && i < 20 && !stop; sqtd = sqtd->nextqtd, i++) { ehci_dump_sqtd(sqtd); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(struct ehci_qtd, qtd_next), sizeof(sqtd->qtd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); stop = sqtd->qtd.qtd_next & htole32(EHCI_LINK_TERMINATE); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(struct ehci_qtd, qtd_next), sizeof(sqtd->qtd), BUS_DMASYNC_PREREAD); } if (!stop) printf("dump aborted, too many TDs\n"); } void ehci_dump_sqtd(struct ehci_soft_qtd *sqtd) { usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); printf("QTD(%p) at 0x%08x:\n", sqtd, sqtd->physaddr); ehci_dump_qtd(&sqtd->qtd); usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_PREREAD); } void ehci_dump_qtd(struct ehci_qtd *qtd) { u_int32_t s; char sbuf[128]; printf(" next="); ehci_dump_link(qtd->qtd_next, 0); printf(" altnext="); ehci_dump_link(qtd->qtd_altnext, 0); printf("\n"); s = letoh32(qtd->qtd_status); bitmask_snprintf(EHCI_QTD_GET_STATUS(s), "\20\10ACTIVE\7HALTED" "\6BUFERR\5BABBLE\4XACTERR\3MISSED\2SPLIT\1PING", sbuf, sizeof(sbuf)); printf(" status=0x%08x: toggle=%d bytes=0x%x ioc=%d c_page=0x%x\n", s, EHCI_QTD_GET_TOGGLE(s), EHCI_QTD_GET_BYTES(s), EHCI_QTD_GET_IOC(s), EHCI_QTD_GET_C_PAGE(s)); printf(" cerr=%d pid=%d stat=0x%s\n", EHCI_QTD_GET_CERR(s), EHCI_QTD_GET_PID(s), sbuf); for (s = 0; s < 5; s++) printf(" buffer[%d]=0x%08x\n", s, letoh32(qtd->qtd_buffer[s])); } void ehci_dump_sqh(struct ehci_soft_qh *sqh) { struct ehci_qh *qh = &sqh->qh; u_int32_t endp, endphub; usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); printf("QH(%p) at 0x%08x:\n", sqh, sqh->physaddr); printf(" link="); ehci_dump_link(qh->qh_link, 1); printf("\n"); endp = letoh32(qh->qh_endp); printf(" endp=0x%08x\n", endp); printf(" addr=0x%02x inact=%d endpt=%d eps=%d dtc=%d hrecl=%d\n", EHCI_QH_GET_ADDR(endp), EHCI_QH_GET_INACT(endp), EHCI_QH_GET_ENDPT(endp), EHCI_QH_GET_EPS(endp), EHCI_QH_GET_DTC(endp), EHCI_QH_GET_HRECL(endp)); printf(" mpl=0x%x ctl=%d nrl=%d\n", EHCI_QH_GET_MPL(endp), EHCI_QH_GET_CTL(endp), EHCI_QH_GET_NRL(endp)); endphub = letoh32(qh->qh_endphub); printf(" endphub=0x%08x\n", endphub); printf(" smask=0x%02x cmask=0x%02x huba=0x%02x port=%d mult=%d\n", EHCI_QH_GET_SMASK(endphub), EHCI_QH_GET_CMASK(endphub), EHCI_QH_GET_HUBA(endphub), EHCI_QH_GET_PORT(endphub), EHCI_QH_GET_MULT(endphub)); printf(" curqtd="); ehci_dump_link(qh->qh_curqtd, 0); printf("\n"); printf("Overlay qTD:\n"); ehci_dump_qtd(&qh->qh_qtd); usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREREAD); } #if notyet void ehci_dump_itd(struct ehci_soft_itd *itd) { ehci_isoc_trans_t t; ehci_isoc_bufr_ptr_t b, b2, b3; int i; printf("ITD: next phys=%X\n", itd->itd.itd_next); for (i = 0; i < 8; i++) { t = letoh32(itd->itd.itd_ctl[i]); printf("ITDctl %d: stat=%X len=%X ioc=%X pg=%X offs=%X\n", i, EHCI_ITD_GET_STATUS(t), EHCI_ITD_GET_LEN(t), EHCI_ITD_GET_IOC(t), EHCI_ITD_GET_PG(t), EHCI_ITD_GET_OFFS(t)); } printf("ITDbufr: "); for (i = 0; i < 7; i++) printf("%X,", EHCI_ITD_GET_BPTR(letoh32(itd->itd.itd_bufr[i]))); b = letoh32(itd->itd.itd_bufr[0]); b2 = letoh32(itd->itd.itd_bufr[1]); b3 = letoh32(itd->itd.itd_bufr[2]); printf("\nep=%X daddr=%X dir=%d maxpkt=%X multi=%X\n", EHCI_ITD_GET_EP(b), EHCI_ITD_GET_DADDR(b), EHCI_ITD_GET_DIR(b2), EHCI_ITD_GET_MAXPKT(b2), EHCI_ITD_GET_MULTI(b3)); } #endif #ifdef DIAGNOSTIC void ehci_dump_exfer(struct ehci_xfer *ex) { printf("ehci_dump_exfer: ex=%p sqtdstart=%p end=%p itdstart=%p end=%p " "isdone=%d\n", ex, ex->sqtdstart, ex->sqtdend, ex->itdstart, ex->itdend, ex->isdone); } #endif #endif /* EHCI_DEBUG */ usbd_status ehci_open(struct usbd_pipe *pipe) { struct usbd_device *dev = pipe->device; struct ehci_softc *sc = (struct ehci_softc *)dev->bus; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; u_int8_t addr = dev->address; u_int8_t xfertype = ed->bmAttributes & UE_XFERTYPE; struct ehci_pipe *epipe = (struct ehci_pipe *)pipe; struct ehci_soft_qh *sqh; usbd_status err; int s; int ival, speed, naks; int hshubaddr, hshubport; DPRINTFN(1, ("ehci_open: pipe=%p, addr=%d, endpt=%d\n", pipe, addr, ed->bEndpointAddress)); if (sc->sc_bus.dying) return (USBD_IOERROR); if (dev->myhsport) { hshubaddr = dev->myhsport->parent->address; hshubport = dev->myhsport->portno; } else { hshubaddr = 0; hshubport = 0; } /* Root Hub */ if (pipe->device->depth == 0) { switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->methods = &ehci_root_ctrl_methods; break; case UE_DIR_IN | EHCI_INTR_ENDPT: pipe->methods = &ehci_root_intr_methods; break; default: return (USBD_INVAL); } return (USBD_NORMAL_COMPLETION); } /* XXX All this stuff is only valid for async. */ switch (dev->speed) { case USB_SPEED_LOW: speed = EHCI_QH_SPEED_LOW; break; case USB_SPEED_FULL: speed = EHCI_QH_SPEED_FULL; break; case USB_SPEED_HIGH: speed = EHCI_QH_SPEED_HIGH; break; default: panic("ehci_open: bad device speed %d", dev->speed); } /* * NAK reload count: * must be zero with using periodic transfer. * Linux 4.20's driver (ehci-q.c) sets 4, we use same value. */ naks = ((xfertype == UE_CONTROL) || (xfertype == UE_BULK)) ? 4 : 0; /* Allocate sqh for everything, save isoc xfers */ if (xfertype != UE_ISOCHRONOUS) { sqh = ehci_alloc_sqh(sc); if (sqh == NULL) return (USBD_NOMEM); /* qh_link filled when the QH is added */ sqh->qh.qh_endp = htole32( EHCI_QH_SET_ADDR(addr) | EHCI_QH_SET_ENDPT(UE_GET_ADDR(ed->bEndpointAddress)) | EHCI_QH_SET_EPS(speed) | (xfertype == UE_CONTROL ? EHCI_QH_DTC : 0) | EHCI_QH_SET_MPL(UGETW(ed->wMaxPacketSize)) | (speed != EHCI_QH_SPEED_HIGH && xfertype == UE_CONTROL ? EHCI_QH_CTL : 0) | EHCI_QH_SET_NRL(naks) ); /* * To reduce conflict with split isochronous transfer, * schedule (split) interrupt transfer at latter half of * 1ms frame: * * |<-------------- H-Frame -------------->| * .H0 :H1 H2 H3 H4 H5 H6 H7 .H0" :H1" * . : . : * [HS] . : SS CS CS' CS" . : * [FS/LS] . : |<== >>>> >>>| . : * . : . : * .B7' :B0 B1 B2 B3 B4 B5 B6 .B7 :B0" * |<-------------- B-Frame -------------->| * */ sqh->qh.qh_endphub = htole32( EHCI_QH_SET_MULT(1) | EHCI_QH_SET_SMASK(xfertype == UE_INTERRUPT ? 0x08 : 0) ); if (speed != EHCI_QH_SPEED_HIGH) { sqh->qh.qh_endphub |= htole32( EHCI_QH_SET_HUBA(hshubaddr) | EHCI_QH_SET_PORT(hshubport) | EHCI_QH_SET_CMASK(0xe0) ); } sqh->qh.qh_curqtd = htole32(EHCI_LINK_TERMINATE); /* Fill the overlay qTD */ sqh->qh.qh_qtd.qtd_next = htole32(EHCI_LINK_TERMINATE); sqh->qh.qh_qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_SET_TOGGLE(pipe->endpoint->savedtoggle)); usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); epipe->sqh = sqh; } /*xfertype == UE_ISOC*/ switch (xfertype) { case UE_CONTROL: err = usb_allocmem(&sc->sc_bus, sizeof(usb_device_request_t), 0, &epipe->u.ctl.reqdma); if (err) { ehci_free_sqh(sc, sqh); return (err); } pipe->methods = &ehci_device_ctrl_methods; s = splusb(); ehci_add_qh(sqh, sc->sc_async_head); splx(s); break; case UE_BULK: pipe->methods = &ehci_device_bulk_methods; s = splusb(); ehci_add_qh(sqh, sc->sc_async_head); splx(s); break; case UE_INTERRUPT: pipe->methods = &ehci_device_intr_methods; ival = pipe->interval; if (ival == USBD_DEFAULT_INTERVAL) ival = ed->bInterval; s = splusb(); err = ehci_device_setintr(sc, sqh, ival); splx(s); return (err); case UE_ISOCHRONOUS: switch (speed) { case EHCI_QH_SPEED_HIGH: case EHCI_QH_SPEED_FULL: pipe->methods = &ehci_device_isoc_methods; break; case EHCI_QH_SPEED_LOW: default: return (USBD_INVAL); } /* Spec page 271 says intervals > 16 are invalid */ if (ed->bInterval == 0 || ed->bInterval > 16) { printf("ehci: opening pipe with invalid bInterval\n"); return (USBD_INVAL); } if (UGETW(ed->wMaxPacketSize) == 0) { printf("ehci: zero length endpoint open request\n"); return (USBD_INVAL); } epipe->u.isoc.next_frame = 0; epipe->u.isoc.cur_xfers = 0; break; default: DPRINTF(("ehci: bad xfer type %d\n", xfertype)); return (USBD_INVAL); } return (USBD_NORMAL_COMPLETION); } /* * Add an ED to the schedule. Called at splusb(). * If in the async schedule, it will always have a next. * If in the intr schedule it may not. */ void ehci_add_qh(struct ehci_soft_qh *sqh, struct ehci_soft_qh *head) { splsoftassert(IPL_SOFTUSB); usb_syncmem(&head->dma, head->offs + offsetof(struct ehci_qh, qh_link), sizeof(head->qh.qh_link), BUS_DMASYNC_POSTWRITE); sqh->next = head->next; sqh->prev = head; sqh->qh.qh_link = head->qh.qh_link; usb_syncmem(&sqh->dma, sqh->offs + offsetof(struct ehci_qh, qh_link), sizeof(sqh->qh.qh_link), BUS_DMASYNC_PREWRITE); head->next = sqh; if (sqh->next) sqh->next->prev = sqh; head->qh.qh_link = htole32(sqh->physaddr | EHCI_LINK_QH); usb_syncmem(&head->dma, head->offs + offsetof(struct ehci_qh, qh_link), sizeof(head->qh.qh_link), BUS_DMASYNC_PREWRITE); } /* * Remove an ED from the schedule. Called at splusb(). * Will always have a 'next' if it's in the async list as it's circular. */ void ehci_rem_qh(struct ehci_softc *sc, struct ehci_soft_qh *sqh) { splsoftassert(IPL_SOFTUSB); /* XXX */ usb_syncmem(&sqh->dma, sqh->offs + offsetof(struct ehci_qh, qh_link), sizeof(sqh->qh.qh_link), BUS_DMASYNC_POSTWRITE); sqh->prev->qh.qh_link = sqh->qh.qh_link; sqh->prev->next = sqh->next; if (sqh->next) sqh->next->prev = sqh->prev; usb_syncmem(&sqh->prev->dma, sqh->prev->offs + offsetof(struct ehci_qh, qh_link), sizeof(sqh->prev->qh.qh_link), BUS_DMASYNC_PREWRITE); ehci_sync_hc(sc); } void ehci_set_qh_qtd(struct ehci_soft_qh *sqh, struct ehci_soft_qtd *sqtd) { int i; u_int32_t status; /* Save toggle bit and ping status. */ usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); status = sqh->qh.qh_qtd.qtd_status & htole32(EHCI_QTD_TOGGLE_MASK | EHCI_QTD_SET_STATUS(EHCI_QTD_PINGSTATE)); /* Set HALTED to make hw leave it alone. */ sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_SET_STATUS(EHCI_QTD_HALTED)); usb_syncmem(&sqh->dma, sqh->offs + offsetof(struct ehci_qh, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sqh->qh.qh_curqtd = 0; sqh->qh.qh_qtd.qtd_next = htole32(sqtd->physaddr); sqh->qh.qh_qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); for (i = 0; i < EHCI_QTD_NBUFFERS; i++) sqh->qh.qh_qtd.qtd_buffer[i] = 0; sqh->sqtd = sqtd; usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); /* Set !HALTED && !ACTIVE to start execution, preserve some fields */ sqh->qh.qh_qtd.qtd_status = status; usb_syncmem(&sqh->dma, sqh->offs + offsetof(struct ehci_qh, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } /* * Ensure that the HC has released all references to the QH. We do this * by asking for a Async Advance Doorbell interrupt and then we wait for * the interrupt. * To make this easier we first obtain exclusive use of the doorbell. */ void ehci_sync_hc(struct ehci_softc *sc) { int s, error; int tries = 0; if (sc->sc_bus.dying) { return; } /* get doorbell */ rw_enter_write(&sc->sc_doorbell_lock); s = splhardusb(); do { EOWRITE4(sc, EHCI_USBCMD, EOREAD4(sc, EHCI_USBCMD) | EHCI_CMD_IAAD); error = tsleep(&sc->sc_async_head, PZERO, "ehcidi", hz / 2); } while (error && ++tries < 10); splx(s); /* release doorbell */ rw_exit_write(&sc->sc_doorbell_lock); #ifdef DIAGNOSTIC if (error) printf("ehci_sync_hc: tsleep() = %d\n", error); #endif } void ehci_rem_itd_chain(struct ehci_softc *sc, struct ehci_xfer *ex) { struct ehci_soft_itd *itd, *prev = NULL; splsoftassert(IPL_SOFTUSB); KASSERT(ex->itdstart != NULL && ex->itdend != NULL); for (itd = ex->itdstart; itd != NULL; itd = itd->xfer_next) { prev = itd->u.frame_list.prev; /* Unlink itd from hardware chain, or frame array */ if (prev == NULL) { /* We're at the table head */ sc->sc_softitds[itd->slot] = itd->u.frame_list.next; sc->sc_flist[itd->slot] = itd->itd.itd_next; usb_syncmem(&sc->sc_fldma, sizeof(uint32_t) * itd->slot, sizeof(uint32_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); if (itd->u.frame_list.next != NULL) itd->u.frame_list.next->u.frame_list.prev = NULL; } else { /* XXX this part is untested... */ prev->itd.itd_next = itd->itd.itd_next; usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_itd, itd_next), sizeof(itd->itd.itd_next), BUS_DMASYNC_PREWRITE); prev->u.frame_list.next = itd->u.frame_list.next; if (itd->u.frame_list.next != NULL) itd->u.frame_list.next->u.frame_list.prev = prev; } } } void ehci_free_itd_chain(struct ehci_softc *sc, struct ehci_xfer *ex) { struct ehci_soft_itd *itd, *prev = NULL; splsoftassert(IPL_SOFTUSB); KASSERT(ex->itdstart != NULL && ex->itdend != NULL); for (itd = ex->itdstart; itd != NULL; itd = itd->xfer_next) { if (prev != NULL) ehci_free_itd(sc, prev); prev = itd; } if (prev) ehci_free_itd(sc, prev); ex->itdstart = NULL; ex->itdend = NULL; } /* * Data structures and routines to emulate the root hub. */ usb_device_descriptor_t ehci_devd = { USB_DEVICE_DESCRIPTOR_SIZE, UDESC_DEVICE, /* type */ {0x00, 0x02}, /* USB version */ UDCLASS_HUB, /* class */ UDSUBCLASS_HUB, /* subclass */ UDPROTO_HSHUBSTT, /* protocol */ 64, /* max packet */ {0},{0},{0x00,0x01}, /* device id */ 1,2,0, /* string indicies */ 1 /* # of configurations */ }; usb_device_qualifier_t ehci_odevd = { USB_DEVICE_DESCRIPTOR_SIZE, UDESC_DEVICE_QUALIFIER, /* type */ {0x00, 0x02}, /* USB version */ UDCLASS_HUB, /* class */ UDSUBCLASS_HUB, /* subclass */ UDPROTO_FSHUB, /* protocol */ 64, /* max packet */ 1, /* # of configurations */ 0 }; usb_config_descriptor_t ehci_confd = { USB_CONFIG_DESCRIPTOR_SIZE, UDESC_CONFIG, {USB_CONFIG_DESCRIPTOR_SIZE + USB_INTERFACE_DESCRIPTOR_SIZE + USB_ENDPOINT_DESCRIPTOR_SIZE}, 1, 1, 0, UC_BUS_POWERED | UC_SELF_POWERED, 0 /* max power */ }; usb_interface_descriptor_t ehci_ifcd = { USB_INTERFACE_DESCRIPTOR_SIZE, UDESC_INTERFACE, 0, 0, 1, UICLASS_HUB, UISUBCLASS_HUB, UIPROTO_HSHUBSTT, 0 }; usb_endpoint_descriptor_t ehci_endpd = { USB_ENDPOINT_DESCRIPTOR_SIZE, UDESC_ENDPOINT, UE_DIR_IN | EHCI_INTR_ENDPT, UE_INTERRUPT, {8, 0}, /* max packet */ 12 }; usb_hub_descriptor_t ehci_hubd = { USB_HUB_DESCRIPTOR_SIZE, UDESC_HUB, 0, {0,0}, 0, 0, {0}, }; /* * Simulate a hardware hub by handling all the necessary requests. */ usbd_status ehci_root_ctrl_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ehci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ehci_root_ctrl_start(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; usb_device_request_t *req; void *buf = NULL; int port, i; int s, len, value, index, l, totlen = 0; usb_port_status_t ps; usb_hub_descriptor_t hubd; usbd_status err; u_int32_t v; if (sc->sc_bus.dying) return (USBD_IOERROR); #ifdef DIAGNOSTIC if (!(xfer->rqflags & URQ_REQUEST)) /* XXX panic */ return (USBD_INVAL); #endif req = &xfer->request; DPRINTFN(4,("ehci_root_ctrl_start: type=0x%02x request=%02x\n", req->bmRequestType, req->bRequest)); len = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); if (len != 0) buf = KERNADDR(&xfer->dmabuf, 0); #define C(x,y) ((x) | ((y) << 8)) switch(C(req->bRequest, req->bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): if (len > 0) { *(u_int8_t *)buf = sc->sc_conf; totlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): DPRINTFN(8,("ehci_root_ctrl_start: wValue=0x%04x\n", value)); switch(value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE); USETW(ehci_devd.idVendor, sc->sc_id_vendor); memcpy(buf, &ehci_devd, l); break; /* * We can't really operate at another speed, but the spec says * we need this descriptor. */ case UDESC_DEVICE_QUALIFIER: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE); memcpy(buf, &ehci_odevd, l); break; /* * We can't really operate at another speed, but the spec says * we need this descriptor. */ case UDESC_OTHER_SPEED_CONFIGURATION: case UDESC_CONFIG: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE); memcpy(buf, &ehci_confd, l); ((usb_config_descriptor_t *)buf)->bDescriptorType = value >> 8; buf = (char *)buf + l; len -= l; l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &ehci_ifcd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &ehci_endpd, l); break; case UDESC_STRING: if (len == 0) break; *(u_int8_t *)buf = 0; totlen = 1; switch (value & 0xff) { case 0: /* Language table */ totlen = usbd_str(buf, len, "\001"); break; case 1: /* Vendor */ totlen = usbd_str(buf, len, sc->sc_vendor); break; case 2: /* Product */ totlen = usbd_str(buf, len, "EHCI root hub"); break; } break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): if (len > 0) { *(u_int8_t *)buf = 0; totlen = 1; } break; case C(UR_GET_STATUS, UT_READ_DEVICE): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED); totlen = 2; } break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus, 0); totlen = 2; } break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= USB_MAX_DEVICES) { err = USBD_IOERROR; goto ret; } break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if (value != 0 && value != 1) { err = USBD_IOERROR; goto ret; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): err = USBD_IOERROR; goto ret; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(8, ("ehci_root_ctrl_start: UR_CLEAR_PORT_FEATURE " "port=%d feature=%d\n", index, value)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = EHCI_PORTSC(index); v = EOREAD4(sc, port) &~ EHCI_PS_CLEAR; switch(value) { case UHF_PORT_ENABLE: EOWRITE4(sc, port, v &~ EHCI_PS_PE); break; case UHF_PORT_SUSPEND: EOWRITE4(sc, port, v &~ EHCI_PS_SUSP); break; case UHF_PORT_POWER: EOWRITE4(sc, port, v &~ EHCI_PS_PP); break; case UHF_PORT_TEST: DPRINTFN(2,("ehci_root_ctrl_start: " "clear port test %d\n", index)); break; case UHF_PORT_INDICATOR: DPRINTFN(2,("ehci_root_ctrl_start: " "clear port index %d\n", index)); EOWRITE4(sc, port, v &~ EHCI_PS_PIC); break; case UHF_C_PORT_CONNECTION: EOWRITE4(sc, port, v | EHCI_PS_CSC); break; case UHF_C_PORT_ENABLE: EOWRITE4(sc, port, v | EHCI_PS_PEC); break; case UHF_C_PORT_SUSPEND: /* how? */ break; case UHF_C_PORT_OVER_CURRENT: EOWRITE4(sc, port, v | EHCI_PS_OCC); break; case UHF_C_PORT_RESET: sc->sc_isreset = 0; break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } hubd = ehci_hubd; hubd.bNbrPorts = sc->sc_noport; v = EREAD4(sc, EHCI_HCSPARAMS); USETW(hubd.wHubCharacteristics, (EHCI_HCS_PPC(v) ? UHD_PWR_INDIVIDUAL : UHD_PWR_NO_SWITCH) | (EHCI_HCS_P_INDICATOR(v) ? UHD_PORT_IND : 0)); hubd.bPwrOn2PwrGood = 200; /* XXX can't find out? */ for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8) hubd.DeviceRemovable[i++] = 0; /* XXX can't find out? */ hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i; l = min(len, hubd.bDescLength); totlen = l; memcpy(buf, &hubd, l); break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): if (len != 4) { err = USBD_IOERROR; goto ret; } memset(buf, 0, len); /* ? XXX */ totlen = len; break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): DPRINTFN(8,("ehci_root_ctrl_start: get port status i=%d\n", index)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } if (len != 4) { err = USBD_IOERROR; goto ret; } v = EOREAD4(sc, EHCI_PORTSC(index)); DPRINTFN(8,("ehci_root_ctrl_start: port status=0x%04x\n", v)); i = UPS_HIGH_SPEED; if (v & EHCI_PS_CS) i |= UPS_CURRENT_CONNECT_STATUS; if (v & EHCI_PS_PE) i |= UPS_PORT_ENABLED; if (v & EHCI_PS_SUSP) i |= UPS_SUSPEND; if (v & EHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR; if (v & EHCI_PS_PR) i |= UPS_RESET; if (v & EHCI_PS_PP) i |= UPS_PORT_POWER; USETW(ps.wPortStatus, i); i = 0; if (v & EHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS; if (v & EHCI_PS_PEC) i |= UPS_C_PORT_ENABLED; if (v & EHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR; if (sc->sc_isreset) i |= UPS_C_PORT_RESET; USETW(ps.wPortChange, i); l = min(len, sizeof(ps)); memcpy(buf, &ps, l); totlen = l; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): err = USBD_IOERROR; goto ret; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = EHCI_PORTSC(index); v = EOREAD4(sc, port) &~ EHCI_PS_CLEAR; switch(value) { case UHF_PORT_ENABLE: EOWRITE4(sc, port, v | EHCI_PS_PE); break; case UHF_PORT_SUSPEND: EOWRITE4(sc, port, v | EHCI_PS_SUSP); break; case UHF_PORT_DISOWN_TO_1_1: /* enter to Port Reset State */ v &= ~EHCI_PS_PE; EOWRITE4(sc, port, v | EHCI_PS_PR); ehci_disown(sc, index, 0); break; case UHF_PORT_RESET: DPRINTFN(5,("ehci_root_ctrl_start: reset port %d\n", index)); if (EHCI_PS_IS_LOWSPEED(v)) { /* Low speed device, give up ownership. */ ehci_disown(sc, index, 1); break; } /* Start reset sequence. */ v &= ~ (EHCI_PS_PE | EHCI_PS_PR); EOWRITE4(sc, port, v | EHCI_PS_PR); /* Wait for reset to complete. */ usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY); if (sc->sc_bus.dying) { err = USBD_IOERROR; goto ret; } /* Terminate reset sequence. */ v = EOREAD4(sc, port); EOWRITE4(sc, port, v & ~EHCI_PS_PR); /* Wait for HC to complete reset. */ usb_delay_ms(&sc->sc_bus, EHCI_PORT_RESET_COMPLETE); if (sc->sc_bus.dying) { err = USBD_IOERROR; goto ret; } v = EOREAD4(sc, port); DPRINTF(("ehci after reset, status=0x%08x\n", v)); if (v & EHCI_PS_PR) { printf("%s: port reset timeout\n", sc->sc_bus.bdev.dv_xname); err = USBD_IOERROR; goto ret; } if (!(v & EHCI_PS_PE)) { /* Not a high speed device, give up ownership.*/ ehci_disown(sc, index, 0); break; } sc->sc_isreset = 1; DPRINTF(("ehci port %d reset, status = 0x%08x\n", index, v)); break; case UHF_PORT_POWER: DPRINTFN(2,("ehci_root_ctrl_start: " "set port power %d\n", index)); EOWRITE4(sc, port, v | EHCI_PS_PP); break; case UHF_PORT_TEST: DPRINTFN(2,("ehci_root_ctrl_start: " "set port test %d\n", index)); break; case UHF_PORT_INDICATOR: DPRINTFN(2,("ehci_root_ctrl_start: " "set port ind %d\n", index)); EOWRITE4(sc, port, v | EHCI_PS_PIC); break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER): case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER): case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER): case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER): break; default: err = USBD_IOERROR; goto ret; } xfer->actlen = totlen; err = USBD_NORMAL_COMPLETION; ret: xfer->status = err; s = splusb(); usb_transfer_complete(xfer); splx(s); return (err); } void ehci_disown(struct ehci_softc *sc, int index, int lowspeed) { int port; u_int32_t v; port = EHCI_PORTSC(index); v = EOREAD4(sc, port) &~ EHCI_PS_CLEAR; EOWRITE4(sc, port, v | EHCI_PS_PO); } /* Abort a root control request. */ void ehci_root_ctrl_abort(struct usbd_xfer *xfer) { /* Nothing to do, all transfers are synchronous. */ } /* Close the root pipe. */ void ehci_root_ctrl_close(struct usbd_pipe *pipe) { /* Nothing to do. */ } void ehci_root_intr_done(struct usbd_xfer *xfer) { } usbd_status ehci_root_intr_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ehci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ehci_root_intr_start(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; if (sc->sc_bus.dying) return (USBD_IOERROR); sc->sc_intrxfer = xfer; return (USBD_IN_PROGRESS); } void ehci_root_intr_abort(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; int s; sc->sc_intrxfer = NULL; xfer->status = USBD_CANCELLED; s = splusb(); usb_transfer_complete(xfer); splx(s); } void ehci_root_intr_close(struct usbd_pipe *pipe) { } void ehci_root_ctrl_done(struct usbd_xfer *xfer) { } struct ehci_soft_qh * ehci_alloc_sqh(struct ehci_softc *sc) { struct ehci_soft_qh *sqh = NULL; usbd_status err; int i, offs; struct usb_dma dma; int s; s = splusb(); if (sc->sc_freeqhs == NULL) { DPRINTFN(2, ("ehci_alloc_sqh: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, EHCI_SQH_SIZE * EHCI_SQH_CHUNK, EHCI_PAGE_SIZE, &dma); if (err) goto out; for (i = 0; i < EHCI_SQH_CHUNK; i++) { offs = i * EHCI_SQH_SIZE; sqh = KERNADDR(&dma, offs); sqh->physaddr = DMAADDR(&dma, offs); sqh->dma = dma; sqh->offs = offs; sqh->next = sc->sc_freeqhs; sc->sc_freeqhs = sqh; } } sqh = sc->sc_freeqhs; sc->sc_freeqhs = sqh->next; memset(&sqh->qh, 0, sizeof(struct ehci_qh)); sqh->next = NULL; sqh->prev = NULL; out: splx(s); return (sqh); } void ehci_free_sqh(struct ehci_softc *sc, struct ehci_soft_qh *sqh) { int s; s = splusb(); sqh->next = sc->sc_freeqhs; sc->sc_freeqhs = sqh; splx(s); } struct ehci_soft_qtd * ehci_alloc_sqtd(struct ehci_softc *sc) { struct ehci_soft_qtd *sqtd = NULL; usbd_status err; int i, offs; struct usb_dma dma; int s; s = splusb(); if (sc->sc_freeqtds == NULL) { DPRINTFN(2, ("ehci_alloc_sqtd: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, EHCI_SQTD_SIZE*EHCI_SQTD_CHUNK, EHCI_PAGE_SIZE, &dma); if (err) goto out; for(i = 0; i < EHCI_SQTD_CHUNK; i++) { offs = i * EHCI_SQTD_SIZE; sqtd = KERNADDR(&dma, offs); sqtd->physaddr = DMAADDR(&dma, offs); sqtd->dma = dma; sqtd->offs = offs; sqtd->nextqtd = sc->sc_freeqtds; sc->sc_freeqtds = sqtd; } } sqtd = sc->sc_freeqtds; sc->sc_freeqtds = sqtd->nextqtd; memset(&sqtd->qtd, 0, sizeof(struct ehci_qtd)); sqtd->nextqtd = NULL; out: splx(s); return (sqtd); } void ehci_free_sqtd(struct ehci_softc *sc, struct ehci_soft_qtd *sqtd) { int s; s = splusb(); sqtd->nextqtd = sc->sc_freeqtds; sc->sc_freeqtds = sqtd; splx(s); } usbd_status ehci_alloc_sqtd_chain(struct ehci_softc *sc, u_int alen, struct usbd_xfer *xfer, struct ehci_soft_qtd **sp, struct ehci_soft_qtd **ep) { struct ehci_soft_qtd *next, *cur; ehci_physaddr_t dataphys, dataphyspage, dataphyslastpage, nextphys; u_int32_t qtdstatus; u_int len, curlen; int mps, i, iscontrol, forceshort; int rd = usbd_xfer_isread(xfer); struct usb_dma *dma = &xfer->dmabuf; DPRINTFN(alen<4*4096,("ehci_alloc_sqtd_chain: start len=%d\n", alen)); len = alen; iscontrol = (xfer->pipe->endpoint->edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL; dataphys = DMAADDR(dma, 0); dataphyslastpage = EHCI_PAGE(dataphys + len - 1); qtdstatus = EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(rd ? EHCI_QTD_PID_IN : EHCI_QTD_PID_OUT) | EHCI_QTD_SET_CERR(3); /* IOC and BYTES set below */ mps = UGETW(xfer->pipe->endpoint->edesc->wMaxPacketSize); forceshort = ((xfer->flags & USBD_FORCE_SHORT_XFER) || len == 0) && len % mps == 0; /* * The control transfer data stage always starts with a toggle of 1. * For other transfers we let the hardware track the toggle state. */ if (iscontrol) qtdstatus |= EHCI_QTD_SET_TOGGLE(1); cur = ehci_alloc_sqtd(sc); *sp = cur; if (cur == NULL) goto nomem; usb_syncmem(dma, 0, alen, rd ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); for (;;) { dataphyspage = EHCI_PAGE(dataphys); /* The EHCI hardware can handle at most 5 pages. */ if (dataphyslastpage - dataphyspage < EHCI_QTD_NBUFFERS * EHCI_PAGE_SIZE) { /* we can handle it in this QTD */ curlen = len; } else { /* must use multiple TDs, fill as much as possible. */ curlen = EHCI_QTD_NBUFFERS * EHCI_PAGE_SIZE - EHCI_PAGE_OFFSET(dataphys); #ifdef DIAGNOSTIC if (curlen > len) { printf("ehci_alloc_sqtd_chain: curlen=%u " "len=%u offs=0x%x\n", curlen, len, EHCI_PAGE_OFFSET(dataphys)); printf("lastpage=0x%x page=0x%x phys=0x%x\n", dataphyslastpage, dataphyspage, dataphys); curlen = len; } #endif /* the length must be a multiple of the max size */ curlen -= curlen % mps; DPRINTFN(1,("ehci_alloc_sqtd_chain: multiple QTDs, " "curlen=%u\n", curlen)); #ifdef DIAGNOSTIC if (curlen == 0) panic("ehci_alloc_std: curlen == 0"); #endif } DPRINTFN(4,("ehci_alloc_sqtd_chain: dataphys=0x%08x " "dataphyslastpage=0x%08x len=%u curlen=%u\n", dataphys, dataphyslastpage, len, curlen)); len -= curlen; /* * Allocate another transfer if there's more data left, * or if force last short transfer flag is set and we're * allocating a multiple of the max packet size. */ if (len != 0 || forceshort) { next = ehci_alloc_sqtd(sc); if (next == NULL) goto nomem; nextphys = htole32(next->physaddr); } else { next = NULL; nextphys = htole32(EHCI_LINK_TERMINATE); } for (i = 0; i * EHCI_PAGE_SIZE < curlen + EHCI_PAGE_OFFSET(dataphys); i++) { ehci_physaddr_t a = dataphys + i * EHCI_PAGE_SIZE; if (i != 0) /* use offset only in first buffer */ a = EHCI_PAGE(a); #ifdef DIAGNOSTIC if (i >= EHCI_QTD_NBUFFERS) { printf("ehci_alloc_sqtd_chain: i=%d\n", i); goto nomem; } #endif cur->qtd.qtd_buffer[i] = htole32(a); cur->qtd.qtd_buffer_hi[i] = 0; } cur->nextqtd = next; cur->qtd.qtd_next = cur->qtd.qtd_altnext = nextphys; cur->qtd.qtd_status = htole32(qtdstatus | EHCI_QTD_SET_BYTES(curlen)); cur->len = curlen; DPRINTFN(10,("ehci_alloc_sqtd_chain: cbp=0x%08x end=0x%08x\n", dataphys, dataphys + curlen)); DPRINTFN(10,("ehci_alloc_sqtd_chain: curlen=%u\n", curlen)); if (iscontrol) { /* * adjust the toggle based on the number of packets * in this qtd */ if ((((curlen + mps - 1) / mps) & 1) || curlen == 0) qtdstatus ^= EHCI_QTD_TOGGLE_MASK; } if (len == 0) { if (! forceshort) break; forceshort = 0; } usb_syncmem(&cur->dma, cur->offs, sizeof(cur->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); DPRINTFN(10,("ehci_alloc_sqtd_chain: extend chain\n")); dataphys += curlen; cur = next; } cur->qtd.qtd_status |= htole32(EHCI_QTD_IOC); usb_syncmem(&cur->dma, cur->offs, sizeof(cur->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); *ep = cur; DPRINTFN(10,("ehci_alloc_sqtd_chain: return sqtd=%p sqtdend=%p\n", *sp, *ep)); return (USBD_NORMAL_COMPLETION); nomem: /* XXX free chain */ DPRINTFN(-1,("ehci_alloc_sqtd_chain: no memory\n")); return (USBD_NOMEM); } void ehci_free_sqtd_chain(struct ehci_softc *sc, struct ehci_xfer *ex) { struct ehci_pipe *epipe = (struct ehci_pipe *)ex->xfer.pipe; struct ehci_soft_qtd *sqtd, *next; DPRINTFN(10,("ehci_free_sqtd_chain: sqtd=%p\n", ex->sqtdstart)); for (sqtd = ex->sqtdstart; sqtd != NULL; sqtd = next) { next = sqtd->nextqtd; ehci_free_sqtd(sc, sqtd); } ex->sqtdstart = ex->sqtdend = NULL; epipe->sqh->sqtd = NULL; } struct ehci_soft_itd * ehci_alloc_itd(struct ehci_softc *sc) { struct ehci_soft_itd *itd, *freeitd; usbd_status err; int i, s, offs, frindex, previndex; struct usb_dma dma; s = splusb(); /* Find an itd that wasn't freed this frame or last frame. This can * discard itds that were freed before frindex wrapped around * XXX - can this lead to thrashing? Could fix by enabling wrap-around * interrupt and fiddling with list when that happens */ frindex = (EOREAD4(sc, EHCI_FRINDEX) + 1) >> 3; previndex = (frindex != 0) ? frindex - 1 : sc->sc_flsize; freeitd = NULL; LIST_FOREACH(itd, &sc->sc_freeitds, u.free_list) { if (itd == NULL) break; if (itd->slot != frindex && itd->slot != previndex) { freeitd = itd; break; } } if (freeitd == NULL) { err = usb_allocmem(&sc->sc_bus, EHCI_ITD_SIZE * EHCI_ITD_CHUNK, EHCI_PAGE_SIZE, &dma); if (err) { splx(s); return (NULL); } for (i = 0; i < EHCI_ITD_CHUNK; i++) { offs = i * EHCI_ITD_SIZE; itd = KERNADDR(&dma, offs); itd->physaddr = DMAADDR(&dma, offs); itd->dma = dma; itd->offs = offs; LIST_INSERT_HEAD(&sc->sc_freeitds, itd, u.free_list); } freeitd = LIST_FIRST(&sc->sc_freeitds); } itd = freeitd; LIST_REMOVE(itd, u.free_list); memset(&itd->itd, 0, sizeof(struct ehci_itd)); usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_itd, itd_next), sizeof(itd->itd.itd_next), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); itd->u.frame_list.next = NULL; itd->u.frame_list.prev = NULL; itd->xfer_next = NULL; itd->slot = 0; splx(s); return (itd); } void ehci_free_itd(struct ehci_softc *sc, struct ehci_soft_itd *itd) { int s; s = splusb(); LIST_INSERT_HEAD(&sc->sc_freeitds, itd, u.free_list); splx(s); } /* * Close a reqular pipe. * Assumes that there are no pending transactions. */ void ehci_close_pipe(struct usbd_pipe *pipe) { struct ehci_pipe *epipe = (struct ehci_pipe *)pipe; struct ehci_softc *sc = (struct ehci_softc *)pipe->device->bus; struct ehci_soft_qh *sqh = epipe->sqh; int s; s = splusb(); ehci_rem_qh(sc, sqh); splx(s); pipe->endpoint->savedtoggle = EHCI_QTD_GET_TOGGLE(letoh32(sqh->qh.qh_qtd.qtd_status)); ehci_free_sqh(sc, epipe->sqh); } /* * Abort a device request. * If this routine is called at splusb() it guarantees that the request * will be removed from the hardware scheduling and that the callback * for it will be called with USBD_CANCELLED status. * It's impossible to guarantee that the requested transfer will not * have happened since the hardware runs concurrently. * If the transaction has already happened we rely on the ordinary * interrupt processing to process it. */ void ehci_abort_xfer(struct usbd_xfer *xfer, usbd_status status) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_pipe *epipe = (struct ehci_pipe *)xfer->pipe; struct ehci_xfer *ex = (struct ehci_xfer*)xfer; struct ehci_soft_qh *sqh = epipe->sqh; struct ehci_soft_qtd *sqtd; int s; if (sc->sc_bus.dying || xfer->status == USBD_NOT_STARTED) { s = splusb(); if (xfer->status != USBD_NOT_STARTED) TAILQ_REMOVE(&sc->sc_intrhead, ex, inext); xfer->status = status; /* make software ignore it */ timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); #ifdef DIAGNOSTIC ex->isdone = 1; #endif usb_transfer_complete(xfer); splx(s); return; } if (xfer->device->bus->intr_context) panic("ehci_abort_xfer: not in process context"); /* * If an abort is already in progress then just wait for it to * complete and return. */ if (ex->ehci_xfer_flags & EHCI_XFER_ABORTING) { DPRINTFN(2, ("ehci_abort_xfer: already aborting\n")); /* No need to wait if we're aborting from a timeout. */ if (status == USBD_TIMEOUT) return; /* Override the status which might be USBD_TIMEOUT. */ xfer->status = status; DPRINTFN(2, ("ehci_abort_xfer: waiting for abort to finish\n")); ex->ehci_xfer_flags |= EHCI_XFER_ABORTWAIT; while (ex->ehci_xfer_flags & EHCI_XFER_ABORTING) tsleep(&ex->ehci_xfer_flags, PZERO, "ehciaw", 0); return; } /* * Step 1: Make interrupt routine and timeouts ignore xfer. */ s = splusb(); ex->ehci_xfer_flags |= EHCI_XFER_ABORTING; xfer->status = status; /* make software ignore it */ TAILQ_REMOVE(&sc->sc_intrhead, ex, inext); timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); splx(s); /* * Step 2: Deactivate all of the qTDs that we will be removing, * otherwise the queue head may go active again. */ usb_syncmem(&sqh->dma, sqh->offs + offsetof(struct ehci_qh, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_HALTED); usb_syncmem(&sqh->dma, sqh->offs + offsetof(struct ehci_qh, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); for (sqtd = ex->sqtdstart; sqtd != NULL; sqtd = sqtd->nextqtd) { usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(struct ehci_qtd, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); sqtd->qtd.qtd_status = htole32(EHCI_QTD_HALTED); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(struct ehci_qtd, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } ehci_sync_hc(sc); /* * Step 3: Make sure the soft interrupt routine has run. This * should remove any completed items off the queue. * The hardware has no reference to completed items (TDs). * It's safe to remove them at any time. */ s = splusb(); sc->sc_softwake = 1; usb_schedsoftintr(&sc->sc_bus); tsleep(&sc->sc_softwake, PZERO, "ehciab", 0); #ifdef DIAGNOSTIC ex->isdone = 1; #endif /* Do the wakeup first to avoid touching the xfer after the callback. */ ex->ehci_xfer_flags &= ~EHCI_XFER_ABORTING; if (ex->ehci_xfer_flags & EHCI_XFER_ABORTWAIT) { ex->ehci_xfer_flags &= ~EHCI_XFER_ABORTWAIT; wakeup(&ex->ehci_xfer_flags); } usb_transfer_complete(xfer); splx(s); } void ehci_abort_isoc_xfer(struct usbd_xfer *xfer, usbd_status status) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; ehci_isoc_trans_t trans_status; struct ehci_soft_itd *itd; int i; splsoftassert(IPL_SOFTUSB); if (sc->sc_bus.dying || xfer->status == USBD_NOT_STARTED) { if (xfer->status != USBD_NOT_STARTED) TAILQ_REMOVE(&sc->sc_intrhead, ex, inext); xfer->status = status; timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); usb_transfer_complete(xfer); return; } /* Transfer is already done. */ if (xfer->status != USBD_IN_PROGRESS) { DPRINTF(("%s: already done \n", __func__)); return; } #ifdef DIAGNOSTIC ex->isdone = 1; #endif xfer->status = status; TAILQ_REMOVE(&sc->sc_intrhead, ex, inext); timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); if (xfer->device->speed == USB_SPEED_HIGH) { for (itd = ex->itdstart; itd != NULL; itd = itd->xfer_next) { usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_itd, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); for (i = 0; i < 8; i++) { trans_status = le32toh(itd->itd.itd_ctl[i]); trans_status &= ~EHCI_ITD_ACTIVE; itd->itd.itd_ctl[i] = htole32(trans_status); } usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_itd, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } } else { for (itd = ex->itdstart; itd != NULL; itd = itd->xfer_next) { usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_sitd, sitd_trans), sizeof(itd->sitd.sitd_trans), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); trans_status = le32toh(itd->sitd.sitd_trans); trans_status &= ~EHCI_SITD_ACTIVE; itd->sitd.sitd_trans = htole32(trans_status); usb_syncmem(&itd->dma, itd->offs + offsetof(struct ehci_sitd, sitd_trans), sizeof(itd->sitd.sitd_trans), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } } sc->sc_softwake = 1; usb_schedsoftintr(&sc->sc_bus); tsleep(&sc->sc_softwake, PZERO, "ehciab", 0); usb_transfer_complete(xfer); } void ehci_timeout(void *addr) { struct usbd_xfer *xfer = addr; struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; if (sc->sc_bus.dying) { ehci_timeout_task(addr); return; } usb_init_task(&xfer->abort_task, ehci_timeout_task, addr, USB_TASK_TYPE_ABORT); usb_add_task(xfer->device, &xfer->abort_task); } void ehci_timeout_task(void *addr) { struct usbd_xfer *xfer = addr; int s; s = splusb(); ehci_abort_xfer(xfer, USBD_TIMEOUT); splx(s); } /* * Some EHCI chips from VIA / ATI seem to trigger interrupts before writing * back the qTD status, or miss signalling occasionally under heavy load. * If the host machine is too fast, we can miss transaction completion - when * we scan the active list the transaction still seems to be active. This * generally exhibits itself as a umass stall that never recovers. * * We work around this behaviour by setting up this callback after any softintr * that completes with transactions still pending, giving us another chance to * check for completion after the writeback has taken place. */ void ehci_intrlist_timeout(void *arg) { struct ehci_softc *sc = arg; int s; if (sc->sc_bus.dying) return; s = splusb(); DPRINTFN(1, ("ehci_intrlist_timeout\n")); usb_schedsoftintr(&sc->sc_bus); splx(s); } usbd_status ehci_device_ctrl_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ehci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ehci_device_ctrl_start(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_pipe *epipe = (struct ehci_pipe *)xfer->pipe; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; usb_device_request_t *req = &xfer->request; struct ehci_soft_qtd *setup, *stat, *next; struct ehci_soft_qh *sqh; u_int len = UGETW(req->wLength); usbd_status err; int s; KASSERT(xfer->rqflags & URQ_REQUEST); if (sc->sc_bus.dying) return (USBD_IOERROR); setup = ehci_alloc_sqtd(sc); if (setup == NULL) { err = USBD_NOMEM; goto bad1; } stat = ehci_alloc_sqtd(sc); if (stat == NULL) { err = USBD_NOMEM; goto bad2; } sqh = epipe->sqh; /* Set up data transaction */ if (len != 0) { struct ehci_soft_qtd *end; err = ehci_alloc_sqtd_chain(sc, len, xfer, &next, &end); if (err) goto bad3; end->qtd.qtd_status &= htole32(~EHCI_QTD_IOC); end->nextqtd = stat; end->qtd.qtd_next = end->qtd.qtd_altnext = htole32(stat->physaddr); usb_syncmem(&end->dma, end->offs, sizeof(end->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } else { next = stat; } memcpy(KERNADDR(&epipe->u.ctl.reqdma, 0), req, sizeof(*req)); usb_syncmem(&epipe->u.ctl.reqdma, 0, sizeof *req, BUS_DMASYNC_PREWRITE); /* Clear toggle */ setup->qtd.qtd_status = htole32( EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(EHCI_QTD_PID_SETUP) | EHCI_QTD_SET_CERR(3) | EHCI_QTD_SET_TOGGLE(0) | EHCI_QTD_SET_BYTES(sizeof(*req))); setup->qtd.qtd_buffer[0] = htole32(DMAADDR(&epipe->u.ctl.reqdma, 0)); setup->qtd.qtd_buffer_hi[0] = 0; setup->nextqtd = next; setup->qtd.qtd_next = setup->qtd.qtd_altnext = htole32(next->physaddr); setup->len = sizeof(*req); usb_syncmem(&setup->dma, setup->offs, sizeof(setup->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); stat->qtd.qtd_status = htole32( EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(usbd_xfer_isread(xfer) ? EHCI_QTD_PID_OUT : EHCI_QTD_PID_IN) | EHCI_QTD_SET_CERR(3) | EHCI_QTD_SET_TOGGLE(1) | EHCI_QTD_IOC); stat->qtd.qtd_buffer[0] = 0; /* XXX not needed? */ stat->qtd.qtd_buffer_hi[0] = 0; /* XXX not needed? */ stat->nextqtd = NULL; stat->qtd.qtd_next = stat->qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); stat->len = 0; usb_syncmem(&stat->dma, stat->offs, sizeof(stat->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ex->sqtdstart = setup; ex->sqtdend = stat; #ifdef DIAGNOSTIC if (!ex->isdone) { printf("%s: not done, ex=%p\n", __func__, ex); } ex->isdone = 0; #endif /* Insert qTD in QH list. */ s = splusb(); ehci_set_qh_qtd(sqh, setup); if (xfer->timeout && !sc->sc_bus.use_polling) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, ehci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } TAILQ_INSERT_TAIL(&sc->sc_intrhead, ex, inext); xfer->status = USBD_IN_PROGRESS; splx(s); return (USBD_IN_PROGRESS); bad3: ehci_free_sqtd(sc, stat); bad2: ehci_free_sqtd(sc, setup); bad1: xfer->status = err; usb_transfer_complete(xfer); return (err); } void ehci_device_ctrl_done(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; KASSERT(xfer->rqflags & URQ_REQUEST); if (xfer->status != USBD_NOMEM) { ehci_free_sqtd_chain(sc, ex); } } void ehci_device_ctrl_abort(struct usbd_xfer *xfer) { ehci_abort_xfer(xfer, USBD_CANCELLED); } void ehci_device_ctrl_close(struct usbd_pipe *pipe) { ehci_close_pipe(pipe); } usbd_status ehci_device_bulk_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ehci_device_bulk_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ehci_device_bulk_start(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_pipe *epipe = (struct ehci_pipe *)xfer->pipe; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct ehci_soft_qtd *data, *dataend; struct ehci_soft_qh *sqh; usbd_status err; int s; KASSERT(!(xfer->rqflags & URQ_REQUEST)); if (sc->sc_bus.dying) return (USBD_IOERROR); sqh = epipe->sqh; err = ehci_alloc_sqtd_chain(sc, xfer->length, xfer, &data, &dataend); if (err) { xfer->status = err; usb_transfer_complete(xfer); return (err); } /* Set up interrupt info. */ ex->sqtdstart = data; ex->sqtdend = dataend; #ifdef DIAGNOSTIC if (!ex->isdone) { printf("ehci_device_bulk_start: not done, ex=%p\n", ex); } ex->isdone = 0; #endif s = splusb(); ehci_set_qh_qtd(sqh, data); if (xfer->timeout && !sc->sc_bus.use_polling) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, ehci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } TAILQ_INSERT_TAIL(&sc->sc_intrhead, ex, inext); xfer->status = USBD_IN_PROGRESS; splx(s); return (USBD_IN_PROGRESS); } void ehci_device_bulk_abort(struct usbd_xfer *xfer) { ehci_abort_xfer(xfer, USBD_CANCELLED); } /* * Close a device bulk pipe. */ void ehci_device_bulk_close(struct usbd_pipe *pipe) { ehci_close_pipe(pipe); } void ehci_device_bulk_done(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; if (xfer->status != USBD_NOMEM) { ehci_free_sqtd_chain(sc, ex); } } usbd_status ehci_device_setintr(struct ehci_softc *sc, struct ehci_soft_qh *sqh, int ival) { struct ehci_soft_islot *isp; int islot, lev; /* Find a poll rate that is large enough. */ for (lev = EHCI_IPOLLRATES - 1; lev > 0; lev--) if (EHCI_ILEV_IVAL(lev) <= ival) break; /* Pick an interrupt slot at the right level. */ /* XXX could do better than picking at random */ islot = EHCI_IQHIDX(lev, arc4random()); sqh->islot = islot; isp = &sc->sc_islots[islot]; ehci_add_qh(sqh, isp->sqh); return (USBD_NORMAL_COMPLETION); } usbd_status ehci_device_intr_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* * Pipe isn't running (otherwise err would be USBD_INPROG), * so start it first. */ return (ehci_device_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ehci_device_intr_start(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct ehci_pipe *epipe = (struct ehci_pipe *)xfer->pipe; struct ehci_soft_qtd *data, *dataend; struct ehci_soft_qh *sqh; usbd_status err; int s; KASSERT(!(xfer->rqflags & URQ_REQUEST)); if (sc->sc_bus.dying) return (USBD_IOERROR); sqh = epipe->sqh; err = ehci_alloc_sqtd_chain(sc, xfer->length, xfer, &data, &dataend); if (err) { xfer->status = err; usb_transfer_complete(xfer); return (err); } /* Set up interrupt info. */ ex->sqtdstart = data; ex->sqtdend = dataend; #ifdef DIAGNOSTIC if (!ex->isdone) printf("ehci_device_intr_start: not done, ex=%p\n", ex); ex->isdone = 0; #endif s = splusb(); ehci_set_qh_qtd(sqh, data); if (xfer->timeout && !sc->sc_bus.use_polling) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, ehci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } TAILQ_INSERT_TAIL(&sc->sc_intrhead, ex, inext); xfer->status = USBD_IN_PROGRESS; splx(s); return (USBD_IN_PROGRESS); } void ehci_device_intr_abort(struct usbd_xfer *xfer) { KASSERT(!xfer->pipe->repeat || xfer->pipe->intrxfer == xfer); /* * XXX - abort_xfer uses ehci_sync_hc, which syncs via the advance * async doorbell. That's dependant on the async list, wheras * intr xfers are periodic, should not use this? */ ehci_abort_xfer(xfer, USBD_CANCELLED); } void ehci_device_intr_close(struct usbd_pipe *pipe) { ehci_close_pipe(pipe); } void ehci_device_intr_done(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_pipe *epipe = (struct ehci_pipe *)xfer->pipe; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct ehci_soft_qtd *data, *dataend; struct ehci_soft_qh *sqh; usbd_status err; int s; if (xfer->pipe->repeat) { ehci_free_sqtd_chain(sc, ex); usb_syncmem(&xfer->dmabuf, 0, xfer->length, usbd_xfer_isread(xfer) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); sqh = epipe->sqh; err = ehci_alloc_sqtd_chain(sc, xfer->length, xfer, &data, &dataend); if (err) { xfer->status = err; return; } /* Set up interrupt info. */ ex->sqtdstart = data; ex->sqtdend = dataend; #ifdef DIAGNOSTIC if (!ex->isdone) { printf("ehci_device_intr_done: not done, ex=%p\n", ex); } ex->isdone = 0; #endif s = splusb(); ehci_set_qh_qtd(sqh, data); if (xfer->timeout && !sc->sc_bus.use_polling) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, ehci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } TAILQ_INSERT_TAIL(&sc->sc_intrhead, ex, inext); xfer->status = USBD_IN_PROGRESS; splx(s); } else if (xfer->status != USBD_NOMEM) { ehci_free_sqtd_chain(sc, ex); } } usbd_status ehci_device_isoc_transfer(struct usbd_xfer *xfer) { usbd_status err; err = usb_insert_transfer(xfer); if (err && err != USBD_IN_PROGRESS) return (err); return (ehci_device_isoc_start(xfer)); } usbd_status ehci_device_isoc_start(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_pipe *epipe = (struct ehci_pipe *)xfer->pipe; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; usb_endpoint_descriptor_t *ed = xfer->pipe->endpoint->edesc; uint8_t ival = ed->bInterval; struct ehci_soft_itd *itd; int s, frindex; uint32_t link; KASSERT(!(xfer->rqflags & URQ_REQUEST)); KASSERT(ival > 0 && ival <= 16); /* * To allow continuous transfers, above we start all transfers * immediately. However, we're still going to get usbd_start_next call * this when another xfer completes. So, check if this is already * in progress or not */ if (ex->itdstart != NULL) return (USBD_IN_PROGRESS); if (sc->sc_bus.dying) return (USBD_IOERROR); /* Why would you do that anyway? */ if (sc->sc_bus.use_polling) return (USBD_INVAL); /* * To avoid complication, don't allow a request right now that'll span * the entire frame table. To within 4 frames, to allow some leeway * on either side of where the hc currently is. */ if ((1 << (ival - 1)) * xfer->nframes >= (sc->sc_flsize - 4) * 8) return (USBD_INVAL); /* * Step 1: Allocate and initialize itds. */ if (xfer->device->speed == USB_SPEED_HIGH) { if (ehci_alloc_itd_chain(sc, xfer)) return (USBD_INVAL); link = EHCI_LINK_ITD; } else { if (ehci_alloc_sitd_chain(sc, xfer)) return (USBD_INVAL); link = EHCI_LINK_SITD; } #ifdef DIAGNOSTIC if (!ex->isdone) { printf("%s: not done, ex=%p\n", __func__, ex); } ex->isdone = 0; #endif /* * Part 2: Transfer descriptors have now been set up, now they must * be scheduled into the period frame list. Erk. Not wanting to * complicate matters, transfer is denied if the transfer spans * more than the period frame list. */ s = splusb(); /* Start inserting frames */ if (epipe->u.isoc.cur_xfers > 0) { frindex = epipe->u.isoc.next_frame; } else { frindex = EOREAD4(sc, EHCI_FRINDEX); frindex = frindex >> 3; /* Erase microframe index */ frindex += 2; } if (frindex >= sc->sc_flsize) frindex &= (sc->sc_flsize - 1); /* What's the frame interval? */ ival = (1 << (ival - 1)); if (ival / 8 == 0) ival = 1; else ival /= 8; /* Abuse the fact that itd_next == sitd_next. */ for (itd = ex->itdstart; itd != NULL; itd = itd->xfer_next) { itd->itd.itd_next = sc->sc_flist[frindex]; if (itd->itd.itd_next == 0) itd->itd.itd_next = htole32(EHCI_LINK_TERMINATE); sc->sc_flist[frindex] = htole32(link | itd->physaddr); itd->u.frame_list.next = sc->sc_softitds[frindex]; sc->sc_softitds[frindex] = itd; if (itd->u.frame_list.next != NULL) itd->u.frame_list.next->u.frame_list.prev = itd; itd->slot = frindex; itd->u.frame_list.prev = NULL; frindex += ival; if (frindex >= sc->sc_flsize) frindex -= sc->sc_flsize; } epipe->u.isoc.cur_xfers++; epipe->u.isoc.next_frame = frindex; TAILQ_INSERT_TAIL(&sc->sc_intrhead, ex, inext); xfer->status = USBD_IN_PROGRESS; xfer->done = 0; splx(s); return (USBD_IN_PROGRESS); } int ehci_alloc_itd_chain(struct ehci_softc *sc, struct usbd_xfer *xfer) { struct ehci_xfer *ex = (struct ehci_xfer *)xfer; usb_endpoint_descriptor_t *ed = xfer->pipe->endpoint->edesc; const uint32_t mps = UGETW(ed->wMaxPacketSize); struct ehci_soft_itd *itd = NULL, *pitd = NULL; int i, j, nframes, uframes, ufrperframe; int offs = 0, trans_count = 0; /* * How many itds do we need? One per transfer if interval >= 8 * microframes, fewer if we use multiple microframes per frame. */ switch (ed->bInterval) { case 1: ufrperframe = 8; break; case 2: ufrperframe = 4; break; case 3: ufrperframe = 2; break; default: ufrperframe = 1; break; } nframes = (xfer->nframes + (ufrperframe - 1)) / ufrperframe; uframes = 8 / ufrperframe; if (nframes == 0) return (1); for (i = 0; i < nframes; i++) { uint32_t froffs = offs; itd = ehci_alloc_itd(sc); if (itd == NULL) { ehci_free_itd_chain(sc, ex); return (1); } if (pitd != NULL) pitd->xfer_next = itd; else ex->itdstart = itd; /* * Step 1.5, initialize uframes */ for (j = 0; j < 8; j += uframes) { /* Calculate which page in the list this starts in */ int addr = DMAADDR(&xfer->dmabuf, froffs); addr = EHCI_PAGE_OFFSET(addr) + (offs - froffs); addr = EHCI_PAGE(addr) / EHCI_PAGE_SIZE; /* This gets the initial offset into the first page, * looks how far further along the current uframe * offset is. Works out how many pages that is. */ itd->itd.itd_ctl[j] = htole32( EHCI_ITD_ACTIVE | EHCI_ITD_SET_LEN(xfer->frlengths[trans_count]) | EHCI_ITD_SET_PG(addr) | EHCI_ITD_SET_OFFS(DMAADDR(&xfer->dmabuf, offs)) ); offs += xfer->frlengths[trans_count]; trans_count++; if (trans_count >= xfer->nframes) { /*Set IOC*/ itd->itd.itd_ctl[j] |= htole32(EHCI_ITD_IOC); break; } } /* Step 1.75, set buffer pointers. To simplify matters, all * pointers are filled out for the next 7 hardware pages in * the dma block, so no need to worry what pages to cover * and what to not. */ for (j = 0; j < 7; j++) { /* * Don't try to lookup a page that's past the end * of buffer */ int page_offs = EHCI_PAGE(froffs + (EHCI_PAGE_SIZE * j)); if (page_offs >= xfer->dmabuf.block->size) break; long long page = DMAADDR(&xfer->dmabuf, page_offs); page = EHCI_PAGE(page); itd->itd.itd_bufr[j] = htole32(page); itd->itd.itd_bufr_hi[j] = htole32(page >> 32); } /* * Other special values */ itd->itd.itd_bufr[0] |= htole32( EHCI_ITD_SET_ENDPT(UE_GET_ADDR(ed->bEndpointAddress)) | EHCI_ITD_SET_DADDR(xfer->pipe->device->address) ); itd->itd.itd_bufr[1] |= htole32( (usbd_xfer_isread(xfer) ? EHCI_ITD_SET_DIR(1) : 0) | EHCI_ITD_SET_MAXPKT(UE_GET_SIZE(mps)) ); /* FIXME: handle invalid trans */ itd->itd.itd_bufr[2] |= htole32( EHCI_ITD_SET_MULTI(UE_GET_TRANS(mps)+1) ); pitd = itd; } ex->itdend = itd; return (0); } int ehci_alloc_sitd_chain(struct ehci_softc *sc, struct usbd_xfer *xfer) { struct ehci_xfer *ex = (struct ehci_xfer *)xfer; struct usbd_device *hshub = xfer->device->myhsport->parent; usb_endpoint_descriptor_t *ed = xfer->pipe->endpoint->edesc; struct ehci_soft_itd *itd = NULL, *pitd = NULL; uint8_t smask, cmask, tp, uf; int i, nframes, offs = 0; uint32_t endp; nframes = xfer->nframes; if (nframes == 0) return (1); endp = EHCI_SITD_SET_ENDPT(UE_GET_ADDR(ed->bEndpointAddress)) | EHCI_SITD_SET_ADDR(xfer->device->address) | EHCI_SITD_SET_PORT(xfer->device->myhsport->portno) | EHCI_SITD_SET_HUBA(hshub->address); if (usbd_xfer_isread(xfer)) endp |= EHCI_SITD_SET_DIR(1); for (i = 0; i < nframes; i++) { uint32_t addr = DMAADDR(&xfer->dmabuf, offs); uint32_t page = EHCI_PAGE(addr + xfer->frlengths[i] - 1); itd = ehci_alloc_itd(sc); if (itd == NULL) { ehci_free_itd_chain(sc, ex); return (1); } if (pitd) pitd->xfer_next = itd; else ex->itdstart = itd; itd->sitd.sitd_endp = htole32(endp); itd->sitd.sitd_back = htole32(EHCI_LINK_TERMINATE); itd->sitd.sitd_trans = htole32( EHCI_SITD_ACTIVE | EHCI_SITD_SET_LEN(xfer->frlengths[i]) | ((i == nframes - 1) ? EHCI_SITD_IOC : 0) ); uf = max(1, ((xfer->frlengths[i] + 187) / 188)); /* * Since we do not yet budget and schedule micro-frames * we assume there is no other transfer using the same * TT. */ if (usbd_xfer_isread(xfer)) { smask = 0x01; cmask = ((1 << (uf + 2)) - 1) << 2; } else { /* Is the payload is greater than 188 bytes? */ if (uf == 1) tp = EHCI_SITD_TP_ALL; else tp = EHCI_SITD_TP_BEGIN; page |= EHCI_SITD_SET_TCOUNT(uf) | EHCI_SITD_SET_TP(tp); smask = (1 << uf) - 1; cmask = 0x00; } itd->sitd.sitd_sched = htole32( EHCI_SITD_SET_SMASK(smask) | EHCI_SITD_SET_CMASK(cmask) ); itd->sitd.sitd_bufr[0] = htole32(addr); itd->sitd.sitd_bufr[1] = htole32(page); offs += xfer->frlengths[i]; pitd = itd; } ex->itdend = itd; return (0); } void ehci_device_isoc_abort(struct usbd_xfer *xfer) { int s; s = splusb(); ehci_abort_isoc_xfer(xfer, USBD_CANCELLED); splx(s); } void ehci_device_isoc_close(struct usbd_pipe *pipe) { } void ehci_device_isoc_done(struct usbd_xfer *xfer) { struct ehci_softc *sc = (struct ehci_softc *)xfer->device->bus; struct ehci_pipe *epipe = (struct ehci_pipe *)xfer->pipe; struct ehci_xfer *ex = (struct ehci_xfer *)xfer; int s; s = splusb(); epipe->u.isoc.cur_xfers--; if (xfer->status != USBD_NOMEM) { ehci_rem_itd_chain(sc, ex); ehci_free_itd_chain(sc, ex); } splx(s); }