/* $OpenBSD: if_aue.c,v 1.42 2005/08/01 05:36:47 brad Exp $ */ /* $NetBSD: if_aue.c,v 1.82 2003/03/05 17:37:36 shiba Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/usb/if_aue.c,v 1.11 2000/01/14 01:36:14 wpaul Exp $ */ /* * ADMtek AN986 Pegasus and AN8511 Pegasus II USB to ethernet driver. * Datasheet is available from http://www.admtek.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet * support: the control endpoint for reading/writing registers, burst * read endpoint for packet reception, burst write for packet transmission * and one for "interrupts." The chip uses the same RX filter scheme * as the other ADMtek ethernet parts: one perfect filter entry for the * the station address and a 64-bit multicast hash table. The chip supports * both MII and HomePNA attachments. * * Since the maximum data transfer speed of USB is supposed to be 12Mbps, * you're never really going to get 100Mbps speeds from this device. I * think the idea is to allow the device to connect to 10 or 100Mbps * networks, not necessarily to provide 100Mbps performance. Also, since * the controller uses an external PHY chip, it's possible that board * designers might simply choose a 10Mbps PHY. * * Registers are accessed using usbd_do_request(). Packet transfers are * done using usbd_transfer() and friends. */ /* * Ported to NetBSD and somewhat rewritten by Lennart Augustsson. */ /* * TODO: * better error messages from rxstat * split out if_auevar.h * add thread to avoid register reads from interrupt context * more error checks * investigate short rx problem * proper cleanup on errors */ #if defined(__NetBSD__) #include "opt_inet.h" #include "opt_ns.h" #include "rnd.h" #endif #include "bpfilter.h" #include #include #include #include #include #include #include #if defined(__OpenBSD__) #include #endif #include #include #if NRND > 0 #include #endif #include #if defined(__NetBSD__) #include #endif #include #include #define BPF_MTAP(ifp, m) bpf_mtap((ifp)->if_bpf, (m)) #if NBPFILTER > 0 #include #endif #if defined(__NetBSD__) #include #ifdef INET #include #include #endif #endif /* defined(__NetBSD__) */ #if defined(__OpenBSD__) #ifdef INET #include #include #include #include #include #endif #endif /* defined(__OpenBSD__) */ #include #include #include #include #include #include #include #ifdef AUE_DEBUG #define DPRINTF(x) do { if (auedebug) logprintf x; } while (0) #define DPRINTFN(n,x) do { if (auedebug >= (n)) logprintf x; } while (0) int auedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * Various supported device vendors/products. */ struct aue_type { struct usb_devno aue_dev; u_int16_t aue_flags; #define LSYS 0x0001 /* use Linksys reset */ #define PNA 0x0002 /* has Home PNA */ #define PII 0x0004 /* Pegasus II chip */ }; Static const struct aue_type aue_devs[] = { {{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460B}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX1}, PNA|PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX2}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE1000}, LSYS }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX4}, PNA }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX5}, PNA }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX6}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX7}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX8}, PII }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX9}, PNA }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_XX10}, 0 }, {{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_DSB650TX_PNA}, 0 }, {{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_USB320_EC}, 0 }, {{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SS1001}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUS}, PNA }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_2}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_3}, PII }, {{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUSII_4}, PII }, {{ USB_VENDOR_AEI, USB_PRODUCT_AEI_FASTETHERNET}, PII }, {{ USB_VENDOR_ALLIEDTELESYN, USB_PRODUCT_ALLIEDTELESYN_ATUSB100}, PII }, {{ USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC110T}, PII }, {{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_USB2LAN}, PII }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB100}, 0 }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBLP100}, PNA }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBEL100}, 0 }, {{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USBE100}, PII }, {{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TX}, 0 }, {{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TXS},PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX4}, LSYS|PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX1}, LSYS }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX}, LSYS }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX_PNA}, PNA }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX3}, LSYS|PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX2}, LSYS|PII }, {{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650}, 0 }, {{ USB_VENDOR_ELCON, USB_PRODUCT_ELCON_PLAN}, PNA|PII }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX0}, 0 }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX1}, LSYS }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX2}, 0 }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBTX3}, LSYS }, {{ USB_VENDOR_ELECOM, USB_PRODUCT_ELECOM_LDUSBLTX}, PII }, {{ USB_VENDOR_ELSA, USB_PRODUCT_ELSA_USB2ETHERNET}, 0 }, {{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNBR402W}, 0 }, {{ USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_UF100}, PII }, {{ USB_VENDOR_HP, USB_PRODUCT_HP_HN210E}, PII }, {{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTX}, 0 }, {{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETTXS}, PII }, {{ USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_KNU101TX}, 0 }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX1}, LSYS|PII }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T}, LSYS }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100TX}, LSYS }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100H1}, LSYS|PNA }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TA}, LSYS }, {{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TX2}, LSYS|PII }, {{ USB_VENDOR_MICROSOFT, USB_PRODUCT_MICROSOFT_MN110}, PII }, {{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX1}, 0 }, {{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX5}, 0 }, {{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUA2TX5}, PII }, {{ USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EASIDOCK}, 0 }, {{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA101}, PII }, {{ USB_VENDOR_SIEMENS, USB_PRODUCT_SIEMENS_SPEEDSTREAM}, PII }, {{ USB_VENDOR_SIIG2, USB_PRODUCT_SIIG2_USBTOETHER}, PII }, {{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTNIC},PII }, {{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2202USB}, 0 }, {{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2206USB}, PII }, {{ USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB100}, 0 }, {{ USB_VENDOR_SOHOWARE, USB_PRODUCT_SOHOWARE_NUB110}, PII }, }; #define aue_lookup(v, p) ((struct aue_type *)usb_lookup(aue_devs, v, p)) USB_DECLARE_DRIVER_CLASS(aue, DV_IFNET); Static void aue_reset_pegasus_II(struct aue_softc *sc); Static int aue_tx_list_init(struct aue_softc *); Static int aue_rx_list_init(struct aue_softc *); Static int aue_newbuf(struct aue_softc *, struct aue_chain *, struct mbuf *); Static int aue_send(struct aue_softc *, struct mbuf *, int); Static void aue_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void aue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void aue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void aue_tick(void *); Static void aue_tick_task(void *); Static void aue_start(struct ifnet *); Static int aue_ioctl(struct ifnet *, u_long, caddr_t); Static void aue_init(void *); Static void aue_stop(struct aue_softc *); Static void aue_watchdog(struct ifnet *); Static int aue_openpipes(struct aue_softc *); Static int aue_ifmedia_upd(struct ifnet *); Static void aue_ifmedia_sts(struct ifnet *, struct ifmediareq *); Static int aue_eeprom_getword(struct aue_softc *, int); Static void aue_read_mac(struct aue_softc *, u_char *); Static int aue_miibus_readreg(device_ptr_t, int, int); Static void aue_miibus_writereg(device_ptr_t, int, int, int); Static void aue_miibus_statchg(device_ptr_t); Static void aue_lock_mii(struct aue_softc *); Static void aue_unlock_mii(struct aue_softc *); Static void aue_setmulti(struct aue_softc *); Static u_int32_t aue_crc(caddr_t); Static void aue_reset(struct aue_softc *); Static int aue_csr_read_1(struct aue_softc *, int); Static int aue_csr_write_1(struct aue_softc *, int, int); Static int aue_csr_read_2(struct aue_softc *, int); Static int aue_csr_write_2(struct aue_softc *, int, int); #define AUE_SETBIT(sc, reg, x) \ aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) | (x)) #define AUE_CLRBIT(sc, reg, x) \ aue_csr_write_1(sc, reg, aue_csr_read_1(sc, reg) & ~(x)) Static int aue_csr_read_1(struct aue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; uByte val = 0; if (sc->aue_dying) return (0); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { DPRINTF(("%s: aue_csr_read_1: reg=0x%x err=%s\n", USBDEVNAME(sc->aue_dev), reg, usbd_errstr(err))); return (0); } return (val); } Static int aue_csr_read_2(struct aue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; uWord val; if (sc->aue_dying) return (0); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AUE_UR_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { DPRINTF(("%s: aue_csr_read_2: reg=0x%x err=%s\n", USBDEVNAME(sc->aue_dev), reg, usbd_errstr(err))); return (0); } return (UGETW(val)); } Static int aue_csr_write_1(struct aue_softc *sc, int reg, int aval) { usb_device_request_t req; usbd_status err; uByte val; if (sc->aue_dying) return (0); val = aval; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { DPRINTF(("%s: aue_csr_write_1: reg=0x%x err=%s\n", USBDEVNAME(sc->aue_dev), reg, usbd_errstr(err))); return (-1); } return (0); } Static int aue_csr_write_2(struct aue_softc *sc, int reg, int aval) { usb_device_request_t req; usbd_status err; uWord val; if (sc->aue_dying) return (0); USETW(val, aval); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AUE_UR_WRITEREG; USETW(req.wValue, aval); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request(sc->aue_udev, &req, &val); if (err) { DPRINTF(("%s: aue_csr_write_2: reg=0x%x err=%s\n", USBDEVNAME(sc->aue_dev), reg, usbd_errstr(err))); return (-1); } return (0); } /* * Read a word of data stored in the EEPROM at address 'addr.' */ Static int aue_eeprom_getword(struct aue_softc *sc, int addr) { int i; aue_csr_write_1(sc, AUE_EE_REG, addr); aue_csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ); for (i = 0; i < AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_EE_CTL) & AUE_EECTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("%s: EEPROM read timed out\n", USBDEVNAME(sc->aue_dev)); } return (aue_csr_read_2(sc, AUE_EE_DATA)); } /* * Read the MAC from the EEPROM. It's at offset 0. */ Static void aue_read_mac(struct aue_softc *sc, u_char *dest) { int i; int off = 0; int word; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); for (i = 0; i < 3; i++) { word = aue_eeprom_getword(sc, off + i); dest[2 * i] = (u_char)word; dest[2 * i + 1] = (u_char)(word >> 8); } } /* Get exclusive access to the MII registers */ Static void aue_lock_mii(struct aue_softc *sc) { sc->aue_refcnt++; usb_lockmgr(&sc->aue_mii_lock, LK_EXCLUSIVE, NULL, curproc); } Static void aue_unlock_mii(struct aue_softc *sc) { usb_lockmgr(&sc->aue_mii_lock, LK_RELEASE, NULL, curproc); if (--sc->aue_refcnt < 0) usb_detach_wakeup(USBDEV(sc->aue_dev)); } Static int aue_miibus_readreg(device_ptr_t dev, int phy, int reg) { struct aue_softc *sc = USBGETSOFTC(dev); int i; u_int16_t val; if (sc->aue_dying) { #ifdef DIAGNOSTIC printf("%s: dying\n", USBDEVNAME(sc->aue_dev)); #endif return 0; } #if 0 /* * The Am79C901 HomePNA PHY actually contains * two transceivers: a 1Mbps HomePNA PHY and a * 10Mbps full/half duplex ethernet PHY with * NWAY autoneg. However in the ADMtek adapter, * only the 1Mbps PHY is actually connected to * anything, so we ignore the 10Mbps one. It * happens to be configured for MII address 3, * so we filter that out. */ if (sc->aue_vendor == USB_VENDOR_ADMTEK && sc->aue_product == USB_PRODUCT_ADMTEK_PEGASUS) { if (phy == 3) return (0); } #endif aue_lock_mii(sc); aue_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_READ); for (i = 0; i < AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("%s: MII read timed out\n", USBDEVNAME(sc->aue_dev)); } val = aue_csr_read_2(sc, AUE_PHY_DATA); DPRINTFN(11,("%s: %s: phy=%d reg=%d => 0x%04x\n", USBDEVNAME(sc->aue_dev), __func__, phy, reg, val)); aue_unlock_mii(sc); return (val); } Static void aue_miibus_writereg(device_ptr_t dev, int phy, int reg, int data) { struct aue_softc *sc = USBGETSOFTC(dev); int i; #if 0 if (sc->aue_vendor == USB_VENDOR_ADMTEK && sc->aue_product == USB_PRODUCT_ADMTEK_PEGASUS) { if (phy == 3) return; } #endif DPRINTFN(11,("%s: %s: phy=%d reg=%d data=0x%04x\n", USBDEVNAME(sc->aue_dev), __func__, phy, reg, data)); aue_lock_mii(sc); aue_csr_write_2(sc, AUE_PHY_DATA, data); aue_csr_write_1(sc, AUE_PHY_ADDR, phy); aue_csr_write_1(sc, AUE_PHY_CTL, reg | AUE_PHYCTL_WRITE); for (i = 0; i < AUE_TIMEOUT; i++) { if (aue_csr_read_1(sc, AUE_PHY_CTL) & AUE_PHYCTL_DONE) break; } if (i == AUE_TIMEOUT) { printf("%s: MII read timed out\n", USBDEVNAME(sc->aue_dev)); } aue_unlock_mii(sc); } Static void aue_miibus_statchg(device_ptr_t dev) { struct aue_softc *sc = USBGETSOFTC(dev); struct mii_data *mii = GET_MII(sc); DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); aue_lock_mii(sc); AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } else { AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL); } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); else AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX); AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB | AUE_CTL0_TX_ENB); aue_unlock_mii(sc); /* * Set the LED modes on the LinkSys adapter. * This turns on the 'dual link LED' bin in the auxmode * register of the Broadcom PHY. */ if (!sc->aue_dying && (sc->aue_flags & LSYS)) { u_int16_t auxmode; auxmode = aue_miibus_readreg(dev, 0, 0x1b); aue_miibus_writereg(dev, 0, 0x1b, auxmode | 0x04); } DPRINTFN(5,("%s: %s: exit\n", USBDEVNAME(sc->aue_dev), __func__)); } #define AUE_POLY 0xEDB88320 #define AUE_BITS 6 Static u_int32_t aue_crc(caddr_t addr) { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? AUE_POLY : 0); } return (crc & ((1 << AUE_BITS) - 1)); } Static void aue_setmulti(struct aue_softc *sc) { struct ifnet *ifp; struct ether_multi *enm; struct ether_multistep step; u_int32_t h = 0, i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); ifp = GET_IFP(sc); if (ifp->if_flags & IFF_PROMISC) { allmulti: ifp->if_flags |= IFF_ALLMULTI; AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); return; } AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI); /* first, zot all the existing hash bits */ for (i = 0; i < 8; i++) aue_csr_write_1(sc, AUE_MAR0 + i, 0); /* now program new ones */ #if defined(__NetBSD__) ETHER_FIRST_MULTI(step, &sc->aue_ec, enm); #else ETHER_FIRST_MULTI(step, &sc->arpcom, enm); #endif while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; h = aue_crc(enm->enm_addrlo); AUE_SETBIT(sc, AUE_MAR + (h >> 3), 1 << (h & 0x7)); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; } Static void aue_reset_pegasus_II(struct aue_softc *sc) { /* Magic constants taken from Linux driver. */ aue_csr_write_1(sc, AUE_REG_1D, 0); aue_csr_write_1(sc, AUE_REG_7B, 2); #if 0 if ((sc->aue_flags & HAS_HOME_PNA) && mii_mode) aue_csr_write_1(sc, AUE_REG_81, 6); else #endif aue_csr_write_1(sc, AUE_REG_81, 2); } Static void aue_reset(struct aue_softc *sc) { int i; DPRINTFN(2,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC); for (i = 0; i < AUE_TIMEOUT; i++) { if (!(aue_csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC)) break; } if (i == AUE_TIMEOUT) printf("%s: reset failed\n", USBDEVNAME(sc->aue_dev)); #if 0 /* XXX what is mii_mode supposed to be */ if (sc->aue_mii_mode && (sc->aue_flags & PNA)) aue_csr_write_1(sc, AUE_GPIO1, 0x34); else aue_csr_write_1(sc, AUE_GPIO1, 0x26); #endif /* * The PHY(s) attached to the Pegasus chip may be held * in reset until we flip on the GPIO outputs. Make sure * to set the GPIO pins high so that the PHY(s) will * be enabled. * * Note: We force all of the GPIO pins low first, *then* * enable the ones we want. */ if (sc->aue_flags & LSYS) { /* Grrr. LinkSys has to be different from everyone else. */ aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0 | AUE_GPIO_SEL1); } else { aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0 | AUE_GPIO_SEL0); } aue_csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0 | AUE_GPIO_SEL0 | AUE_GPIO_SEL1); if (sc->aue_flags & PII) aue_reset_pegasus_II(sc); /* Wait a little while for the chip to get its brains in order. */ delay(10000); /* XXX */ } /* * Probe for a Pegasus chip. */ USB_MATCH(aue) { USB_MATCH_START(aue, uaa); if (uaa->iface != NULL) return (UMATCH_NONE); return (aue_lookup(uaa->vendor, uaa->product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ USB_ATTACH(aue) { USB_ATTACH_START(aue, sc, uaa); char *devinfop; int s; u_char eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; struct mii_data *mii; usbd_device_handle dev = uaa->device; usbd_interface_handle iface; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; DPRINTFN(5,(" : aue_attach: sc=%p", sc)); devinfop = usbd_devinfo_alloc(uaa->device, 0); USB_ATTACH_SETUP; printf("%s: %s\n", USBDEVNAME(sc->aue_dev), devinfop); usbd_devinfo_free(devinfop); err = usbd_set_config_no(dev, AUE_CONFIG_NO, 1); if (err) { printf("%s: setting config no failed\n", USBDEVNAME(sc->aue_dev)); USB_ATTACH_ERROR_RETURN; } usb_init_task(&sc->aue_tick_task, aue_tick_task, sc); usb_init_task(&sc->aue_stop_task, (void (*)(void *))aue_stop, sc); lockinit(&sc->aue_mii_lock, PZERO, "auemii", 0, 0); err = usbd_device2interface_handle(dev, AUE_IFACE_IDX, &iface); if (err) { printf("%s: getting interface handle failed\n", USBDEVNAME(sc->aue_dev)); USB_ATTACH_ERROR_RETURN; } sc->aue_flags = aue_lookup(uaa->vendor, uaa->product)->aue_flags; sc->aue_udev = dev; sc->aue_iface = iface; sc->aue_product = uaa->product; sc->aue_vendor = uaa->vendor; id = usbd_get_interface_descriptor(iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(iface, i); if (ed == NULL) { printf("%s: couldn't get endpoint descriptor %d\n", USBDEVNAME(sc->aue_dev), i); USB_ATTACH_ERROR_RETURN; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->aue_ed[AUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->aue_ed[AUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->aue_ed[AUE_ENDPT_INTR] = ed->bEndpointAddress; } } if (sc->aue_ed[AUE_ENDPT_RX] == 0 || sc->aue_ed[AUE_ENDPT_TX] == 0 || sc->aue_ed[AUE_ENDPT_INTR] == 0) { printf("%s: missing endpoint\n", USBDEVNAME(sc->aue_dev)); USB_ATTACH_ERROR_RETURN; } s = splnet(); /* Reset the adapter. */ aue_reset(sc); /* * Get station address from the EEPROM. */ aue_read_mac(sc, eaddr); /* * A Pegasus chip was detected. Inform the world. */ ifp = GET_IFP(sc); printf("%s: address %s\n", USBDEVNAME(sc->aue_dev), ether_sprintf(eaddr)); #if defined(__OpenBSD__) bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); #endif /* Initialize interface info.*/ ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = aue_ioctl; ifp->if_start = aue_start; ifp->if_watchdog = aue_watchdog; strlcpy(ifp->if_xname, USBDEVNAME(sc->aue_dev), IFNAMSIZ); IFQ_SET_READY(&ifp->if_snd); /* Initialize MII/media info. */ mii = &sc->aue_mii; mii->mii_ifp = ifp; mii->mii_readreg = aue_miibus_readreg; mii->mii_writereg = aue_miibus_writereg; mii->mii_statchg = aue_miibus_statchg; mii->mii_flags = MIIF_AUTOTSLEEP; ifmedia_init(&mii->mii_media, 0, aue_ifmedia_upd, aue_ifmedia_sts); mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* Attach the interface. */ if_attach(ifp); Ether_ifattach(ifp, eaddr); #if NRND > 0 rnd_attach_source(&sc->rnd_source, USBDEVNAME(sc->aue_dev), RND_TYPE_NET, 0); #endif usb_callout_init(sc->aue_stat_ch); sc->aue_attached = 1; splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->aue_udev, USBDEV(sc->aue_dev)); USB_ATTACH_SUCCESS_RETURN; } USB_DETACH(aue) { USB_DETACH_START(aue, sc); struct ifnet *ifp = GET_IFP(sc); int s; DPRINTFN(2,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); if (!sc->aue_attached) { /* Detached before attached finished, so just bail out. */ return (0); } usb_uncallout(sc->aue_stat_ch, aue_tick, sc); /* * Remove any pending tasks. They cannot be executing because they run * in the same thread as detach. */ usb_rem_task(sc->aue_udev, &sc->aue_tick_task); usb_rem_task(sc->aue_udev, &sc->aue_stop_task); s = splusb(); if (ifp->if_flags & IFF_RUNNING) aue_stop(sc); #if defined(__NetBSD__) #if NRND > 0 rnd_detach_source(&sc->rnd_source); #endif #endif /* __NetBSD__ */ mii_detach(&sc->aue_mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_delete_instance(&sc->aue_mii.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); #ifdef DIAGNOSTIC if (sc->aue_ep[AUE_ENDPT_TX] != NULL || sc->aue_ep[AUE_ENDPT_RX] != NULL || sc->aue_ep[AUE_ENDPT_INTR] != NULL) printf("%s: detach has active endpoints\n", USBDEVNAME(sc->aue_dev)); #endif sc->aue_attached = 0; if (--sc->aue_refcnt >= 0) { /* Wait for processes to go away. */ usb_detach_wait(USBDEV(sc->aue_dev)); } splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->aue_udev, USBDEV(sc->aue_dev)); return (0); } int aue_activate(device_ptr_t self, enum devact act) { struct aue_softc *sc = (struct aue_softc *)self; DPRINTFN(2,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); switch (act) { case DVACT_ACTIVATE: return (EOPNOTSUPP); break; case DVACT_DEACTIVATE: if_deactivate(&sc->aue_ec.ec_if); sc->aue_dying = 1; break; } return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ Static int aue_newbuf(struct aue_softc *sc, struct aue_chain *c, struct mbuf *m) { struct mbuf *m_new = NULL; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev),__func__)); if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for rx list " "-- packet dropped!\n", USBDEVNAME(sc->aue_dev)); return (ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("%s: no memory for rx list " "-- packet dropped!\n", USBDEVNAME(sc->aue_dev)); m_freem(m_new); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); c->aue_mbuf = m_new; return (0); } Static int aue_rx_list_init(struct aue_softc *sc) { struct aue_cdata *cd; struct aue_chain *c; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); cd = &sc->aue_cdata; for (i = 0; i < AUE_RX_LIST_CNT; i++) { c = &cd->aue_rx_chain[i]; c->aue_sc = sc; c->aue_idx = i; if (aue_newbuf(sc, c, NULL) == ENOBUFS) return (ENOBUFS); if (c->aue_xfer == NULL) { c->aue_xfer = usbd_alloc_xfer(sc->aue_udev); if (c->aue_xfer == NULL) return (ENOBUFS); c->aue_buf = usbd_alloc_buffer(c->aue_xfer, AUE_BUFSZ); if (c->aue_buf == NULL) return (ENOBUFS); /* XXX free xfer */ } } return (0); } Static int aue_tx_list_init(struct aue_softc *sc) { struct aue_cdata *cd; struct aue_chain *c; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); cd = &sc->aue_cdata; for (i = 0; i < AUE_TX_LIST_CNT; i++) { c = &cd->aue_tx_chain[i]; c->aue_sc = sc; c->aue_idx = i; c->aue_mbuf = NULL; if (c->aue_xfer == NULL) { c->aue_xfer = usbd_alloc_xfer(sc->aue_udev); if (c->aue_xfer == NULL) return (ENOBUFS); c->aue_buf = usbd_alloc_buffer(c->aue_xfer, AUE_BUFSZ); if (c->aue_buf == NULL) return (ENOBUFS); } } return (0); } Static void aue_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct aue_softc *sc = priv; struct ifnet *ifp = GET_IFP(sc); struct aue_intrpkt *p = &sc->aue_cdata.aue_ibuf; DPRINTFN(15,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev),__func__)); if (sc->aue_dying) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { return; } sc->aue_intr_errs++; if (usbd_ratecheck(&sc->aue_rx_notice)) { printf("%s: %u usb errors on intr: %s\n", USBDEVNAME(sc->aue_dev), sc->aue_intr_errs, usbd_errstr(status)); sc->aue_intr_errs = 0; } if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]); return; } if (p->aue_txstat0) ifp->if_oerrors++; if (p->aue_txstat0 & (AUE_TXSTAT0_LATECOLL | AUE_TXSTAT0_EXCESSCOLL)) ifp->if_collisions++; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ Static void aue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct aue_chain *c = priv; struct aue_softc *sc = c->aue_sc; struct ifnet *ifp = GET_IFP(sc); struct mbuf *m; u_int32_t total_len; struct aue_rxpkt r; int s; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev),__func__)); if (sc->aue_dying) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; sc->aue_rx_errs++; if (usbd_ratecheck(&sc->aue_rx_notice)) { printf("%s: %u usb errors on rx: %s\n", USBDEVNAME(sc->aue_dev), sc->aue_rx_errs, usbd_errstr(status)); sc->aue_rx_errs = 0; } if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); memcpy(mtod(c->aue_mbuf, char *), c->aue_buf, total_len); if (total_len <= 4 + ETHER_CRC_LEN) { ifp->if_ierrors++; goto done; } memcpy(&r, c->aue_buf + total_len - 4, sizeof(r)); /* Turn off all the non-error bits in the rx status word. */ r.aue_rxstat &= AUE_RXSTAT_MASK; if (r.aue_rxstat) { ifp->if_ierrors++; goto done; } /* No errors; receive the packet. */ m = c->aue_mbuf; total_len -= ETHER_CRC_LEN + 4; m->m_pkthdr.len = m->m_len = total_len; ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; s = splnet(); /* XXX ugly */ if (aue_newbuf(sc, c, NULL) == ENOBUFS) { ifp->if_ierrors++; goto done1; } #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (ifp->if_bpf) BPF_MTAP(ifp, m); #endif DPRINTFN(10,("%s: %s: deliver %d\n", USBDEVNAME(sc->aue_dev), __func__, m->m_len)); IF_INPUT(ifp, m); done1: splx(s); done: /* Setup new transfer. */ usbd_setup_xfer(xfer, sc->aue_ep[AUE_ENDPT_RX], c, c->aue_buf, AUE_BUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, aue_rxeof); usbd_transfer(xfer); DPRINTFN(10,("%s: %s: start rx\n", USBDEVNAME(sc->aue_dev), __func__)); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ Static void aue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct aue_chain *c = priv; struct aue_softc *sc = c->aue_sc; struct ifnet *ifp = GET_IFP(sc); int s; if (sc->aue_dying) return; s = splnet(); DPRINTFN(10,("%s: %s: enter status=%d\n", USBDEVNAME(sc->aue_dev), __func__, status)); ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; printf("%s: usb error on tx: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_TX]); splx(s); return; } ifp->if_opackets++; m_freem(c->aue_mbuf); c->aue_mbuf = NULL; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) aue_start(ifp); splx(s); } Static void aue_tick(void *xsc) { struct aue_softc *sc = xsc; DPRINTFN(15,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev),__func__)); if (sc == NULL) return; if (sc->aue_dying) return; /* Perform periodic stuff in process context. */ usb_add_task(sc->aue_udev, &sc->aue_tick_task); } Static void aue_tick_task(void *xsc) { struct aue_softc *sc = xsc; struct ifnet *ifp; struct mii_data *mii; int s; DPRINTFN(15,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev),__func__)); if (sc->aue_dying) return; ifp = GET_IFP(sc); mii = GET_MII(sc); if (mii == NULL) return; s = splnet(); mii_tick(mii); if (!sc->aue_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { DPRINTFN(2,("%s: %s: got link\n", USBDEVNAME(sc->aue_dev),__func__)); sc->aue_link++; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) aue_start(ifp); } usb_callout(sc->aue_stat_ch, hz, aue_tick, sc); splx(s); } Static int aue_send(struct aue_softc *sc, struct mbuf *m, int idx) { int total_len; struct aue_chain *c; usbd_status err; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev),__func__)); c = &sc->aue_cdata.aue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->aue_buf + 2); c->aue_mbuf = m; /* * The ADMtek documentation says that the packet length is * supposed to be specified in the first two bytes of the * transfer, however it actually seems to ignore this info * and base the frame size on the bulk transfer length. */ c->aue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->aue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); total_len = m->m_pkthdr.len + 2; usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_TX], c, c->aue_buf, total_len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, AUE_TX_TIMEOUT, aue_txeof); /* Transmit */ err = usbd_transfer(c->aue_xfer); if (err != USBD_IN_PROGRESS) { printf("%s: aue_send error=%s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); /* Stop the interface from process context. */ usb_add_task(sc->aue_udev, &sc->aue_stop_task); return (EIO); } DPRINTFN(5,("%s: %s: send %d bytes\n", USBDEVNAME(sc->aue_dev), __func__, total_len)); sc->aue_cdata.aue_tx_cnt++; return (0); } Static void aue_start(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; DPRINTFN(5,("%s: %s: enter, link=%d\n", USBDEVNAME(sc->aue_dev), __func__, sc->aue_link)); if (sc->aue_dying) return; if (!sc->aue_link) return; if (ifp->if_flags & IFF_OACTIVE) return; IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) return; if (aue_send(sc, m_head, 0)) { ifp->if_flags |= IFF_OACTIVE; return; } IFQ_DEQUEUE(&ifp->if_snd, m_head); #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) BPF_MTAP(ifp, m_head); #endif ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } Static void aue_init(void *xsc) { struct aue_softc *sc = xsc; struct ifnet *ifp = GET_IFP(sc); struct mii_data *mii = GET_MII(sc); int i, s; u_char *eaddr; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); if (sc->aue_dying) return; if (ifp->if_flags & IFF_RUNNING) return; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ aue_reset(sc); #if defined(__OpenBSD__) eaddr = sc->arpcom.ac_enaddr; #elif defined(__NetBSD__) eaddr = LLADDR(ifp->if_sadl); #endif /* defined(__NetBSD__) */ for (i = 0; i < ETHER_ADDR_LEN; i++) aue_csr_write_1(sc, AUE_PAR0 + i, eaddr[i]); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); else AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); /* Init TX ring. */ if (aue_tx_list_init(sc) == ENOBUFS) { printf("%s: tx list init failed\n", USBDEVNAME(sc->aue_dev)); splx(s); return; } /* Init RX ring. */ if (aue_rx_list_init(sc) == ENOBUFS) { printf("%s: rx list init failed\n", USBDEVNAME(sc->aue_dev)); splx(s); return; } /* Load the multicast filter. */ aue_setmulti(sc); /* Enable RX and TX */ aue_csr_write_1(sc, AUE_CTL0, AUE_CTL0_RXSTAT_APPEND | AUE_CTL0_RX_ENB); AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB); AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR); mii_mediachg(mii); if (sc->aue_ep[AUE_ENDPT_RX] == NULL) { if (aue_openpipes(sc)) { splx(s); return; } } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); usb_callout(sc->aue_stat_ch, hz, aue_tick, sc); } Static int aue_openpipes(struct aue_softc *sc) { struct aue_chain *c; usbd_status err; int i; /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_RX]); if (err) { printf("%s: open rx pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); return (EIO); } err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_TX]); if (err) { printf("%s: open tx pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); return (EIO); } err = usbd_open_pipe_intr(sc->aue_iface, sc->aue_ed[AUE_ENDPT_INTR], USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_INTR], sc, &sc->aue_cdata.aue_ibuf, AUE_INTR_PKTLEN, aue_intr, AUE_INTR_INTERVAL); if (err) { printf("%s: open intr pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); return (EIO); } /* Start up the receive pipe. */ for (i = 0; i < AUE_RX_LIST_CNT; i++) { c = &sc->aue_cdata.aue_rx_chain[i]; usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_RX], c, c->aue_buf, AUE_BUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, aue_rxeof); (void)usbd_transfer(c->aue_xfer); /* XXX */ DPRINTFN(5,("%s: %s: start read\n", USBDEVNAME(sc->aue_dev), __func__)); } return (0); } /* * Set media options. */ Static int aue_ifmedia_upd(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); if (sc->aue_dying) return (0); sc->aue_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return (0); } /* * Report current media status. */ Static void aue_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct aue_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } Static int aue_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct aue_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int s, error = 0; if (sc->aue_dying) return (EIO); s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; aue_init(sc); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: #if defined(__NetBSD__) arp_ifinit(ifp, ifa); #else arp_ifinit(&sc->arpcom, ifa); #endif break; #endif /* INET */ } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->aue_if_flags & IFF_PROMISC)) { AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->aue_if_flags & IFF_PROMISC) { AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC); } else if (!(ifp->if_flags & IFF_RUNNING)) aue_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) aue_stop(sc); } sc->aue_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) aue_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = GET_MII(sc); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } splx(s); return (error); } Static void aue_watchdog(struct ifnet *ifp) { struct aue_softc *sc = ifp->if_softc; struct aue_chain *c; usbd_status stat; int s; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); ifp->if_oerrors++; printf("%s: watchdog timeout\n", USBDEVNAME(sc->aue_dev)); s = splusb(); c = &sc->aue_cdata.aue_tx_chain[0]; usbd_get_xfer_status(c->aue_xfer, NULL, NULL, NULL, &stat); aue_txeof(c->aue_xfer, c, stat); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) aue_start(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ Static void aue_stop(struct aue_softc *sc) { usbd_status err; struct ifnet *ifp; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->aue_dev), __func__)); ifp = GET_IFP(sc); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); aue_csr_write_1(sc, AUE_CTL0, 0); aue_csr_write_1(sc, AUE_CTL1, 0); aue_reset(sc); usb_uncallout(sc->aue_stat_ch, aue_tick, sc); /* Stop transfers. */ if (sc->aue_ep[AUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]); if (err) { printf("%s: abort rx pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_RX]); if (err) { printf("%s: close rx pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_RX] = NULL; } if (sc->aue_ep[AUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (err) { printf("%s: abort tx pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_TX]); if (err) { printf("%s: close tx pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_TX] = NULL; } if (sc->aue_ep[AUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]); if (err) { printf("%s: abort intr pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_INTR]); if (err) { printf("%s: close intr pipe failed: %s\n", USBDEVNAME(sc->aue_dev), usbd_errstr(err)); } sc->aue_ep[AUE_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < AUE_RX_LIST_CNT; i++) { if (sc->aue_cdata.aue_rx_chain[i].aue_mbuf != NULL) { m_freem(sc->aue_cdata.aue_rx_chain[i].aue_mbuf); sc->aue_cdata.aue_rx_chain[i].aue_mbuf = NULL; } if (sc->aue_cdata.aue_rx_chain[i].aue_xfer != NULL) { usbd_free_xfer(sc->aue_cdata.aue_rx_chain[i].aue_xfer); sc->aue_cdata.aue_rx_chain[i].aue_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < AUE_TX_LIST_CNT; i++) { if (sc->aue_cdata.aue_tx_chain[i].aue_mbuf != NULL) { m_freem(sc->aue_cdata.aue_tx_chain[i].aue_mbuf); sc->aue_cdata.aue_tx_chain[i].aue_mbuf = NULL; } if (sc->aue_cdata.aue_tx_chain[i].aue_xfer != NULL) { usbd_free_xfer(sc->aue_cdata.aue_tx_chain[i].aue_xfer); sc->aue_cdata.aue_tx_chain[i].aue_xfer = NULL; } } sc->aue_link = 0; }