/* $OpenBSD: if_axe.c,v 1.143 2024/05/23 03:21:08 jsg Exp $ */ /* * Copyright (c) 2005, 2006, 2007 Jonathan Gray * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Copyright (c) 1997, 1998, 1999, 2000-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * ASIX Electronics AX88172 USB 2.0 ethernet driver. Used in the * LinkSys USB200M and various other adapters. * * Manuals available from: * http://www.asix.com.tw/datasheet/mac/Ax88172.PDF * Note: you need the manual for the AX88170 chip (USB 1.x ethernet * controller) to find the definitions for the RX control register. * http://www.asix.com.tw/datasheet/mac/Ax88170.PDF * * Written by Bill Paul * Senior Engineer * Wind River Systems */ /* * The AX88172 provides USB ethernet supports at 10 and 100Mbps. * It uses an external PHY (reference designs use a Realtek chip), * and has a 64-bit multicast hash filter. There is some information * missing from the manual which one needs to know in order to make * the chip function: * * - You must set bit 7 in the RX control register, otherwise the * chip won't receive any packets. * - You must initialize all 3 IPG registers, or you won't be able * to send any packets. * * Note that this device appears to only support loading the station * address via autoload from the EEPROM (i.e. there's no way to manually * set it). * * (Adam Weinberger wanted me to name this driver if_gir.c.) */ /* * Ported to OpenBSD 3/28/2004 by Greg Taleck * with bits and pieces from the aue and url drivers. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef AXE_DEBUG #define DPRINTF(x) do { if (axedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (axedebug >= (n)) printf x; } while (0) int axedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * Various supported device vendors/products. */ const struct axe_type axe_devs[] = { { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UF200}, 0 }, { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2}, 0 }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET }, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172}, 0 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772}, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772A}, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B}, AX772 | AX772B }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B_1}, AX772 | AX772B }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178}, AX178 }, { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T}, 0 }, { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 }, { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR}, 0}, { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772 }, { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0}, { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100}, 0 }, { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 }, { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100C1 }, AX772 | AX772B }, { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E}, 0 }, { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 }, { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1}, 0 }, { { USB_VENDOR_LENOVO, USB_PRODUCT_LENOVO_ETHERNET }, AX772 | AX772B }, { { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_HG20F9}, AX772 | AX772B }, { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M}, 0 }, { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 }, { { USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 }, { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2GT}, AX178 }, { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX}, 0 }, { { USB_VENDOR_MSI, USB_PRODUCT_MSI_AX88772A}, AX772 }, { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120}, 0 }, { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 }, { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 }, { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 }, { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029}, 0 }, { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 } }; #define axe_lookup(v, p) ((struct axe_type *)usb_lookup(axe_devs, v, p)) int axe_match(struct device *, void *, void *); void axe_attach(struct device *, struct device *, void *); int axe_detach(struct device *, int); struct cfdriver axe_cd = { NULL, "axe", DV_IFNET }; const struct cfattach axe_ca = { sizeof(struct axe_softc), axe_match, axe_attach, axe_detach }; int axe_tx_list_init(struct axe_softc *); int axe_rx_list_init(struct axe_softc *); struct mbuf *axe_newbuf(void); int axe_encap(struct axe_softc *, struct mbuf *, int); void axe_rxeof(struct usbd_xfer *, void *, usbd_status); void axe_txeof(struct usbd_xfer *, void *, usbd_status); void axe_tick(void *); void axe_tick_task(void *); void axe_start(struct ifnet *); int axe_ioctl(struct ifnet *, u_long, caddr_t); void axe_init(void *); void axe_stop(struct axe_softc *); void axe_watchdog(struct ifnet *); int axe_miibus_readreg(struct device *, int, int); void axe_miibus_writereg(struct device *, int, int, int); void axe_miibus_statchg(struct device *); int axe_cmd(struct axe_softc *, int, int, int, void *); int axe_ifmedia_upd(struct ifnet *); void axe_ifmedia_sts(struct ifnet *, struct ifmediareq *); void axe_reset(struct axe_softc *sc); void axe_iff(struct axe_softc *); void axe_lock_mii(struct axe_softc *sc); void axe_unlock_mii(struct axe_softc *sc); void axe_ax88178_init(struct axe_softc *); void axe_ax88772_init(struct axe_softc *); /* Get exclusive access to the MII registers */ void axe_lock_mii(struct axe_softc *sc) { sc->axe_refcnt++; rw_enter_write(&sc->axe_mii_lock); } void axe_unlock_mii(struct axe_softc *sc) { rw_exit_write(&sc->axe_mii_lock); if (--sc->axe_refcnt < 0) usb_detach_wakeup(&sc->axe_dev); } int axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf) { usb_device_request_t req; usbd_status err; if (usbd_is_dying(sc->axe_udev)) return(0); if (AXE_CMD_DIR(cmd)) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AXE_CMD_CMD(cmd); USETW(req.wValue, val); USETW(req.wIndex, index); USETW(req.wLength, AXE_CMD_LEN(cmd)); err = usbd_do_request(sc->axe_udev, &req, buf); if (err) { DPRINTF(("axe_cmd err: cmd: %d\n", cmd)); return(-1); } return(0); } int axe_miibus_readreg(struct device *dev, int phy, int reg) { struct axe_softc *sc = (void *)dev; usbd_status err; uWord val; int ival; if (usbd_is_dying(sc->axe_udev)) { DPRINTF(("axe: dying\n")); return(0); } #ifdef notdef /* * The chip tells us the MII address of any supported * PHYs attached to the chip, so only read from those. */ DPRINTF(("axe_miibus_readreg: phy 0x%x reg 0x%x\n", phy, reg)); if (sc->axe_phyaddrs[0] != AXE_NOPHY && phy != sc->axe_phyaddrs[0]) return (0); if (sc->axe_phyaddrs[1] != AXE_NOPHY && phy != sc->axe_phyaddrs[1]) return (0); #endif if (sc->axe_phyno != phy) return (0); USETW(val, 0); axe_lock_mii(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, val); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); axe_unlock_mii(sc); if (err) { printf("axe%d: read PHY failed\n", sc->axe_unit); return(-1); } DPRINTF(("axe_miibus_readreg: phy 0x%x reg 0x%x val 0x%x\n", phy, reg, UGETW(val))); ival = UGETW(val); if ((sc->axe_flags & AX772) != 0 && reg == MII_BMSR) { /* * BMSR of AX88772 indicates that it supports extended * capability but the extended status register is * revered for embedded ethernet PHY. So clear the * extended capability bit of BMSR. */ ival &= ~BMSR_EXTCAP; } return (ival); } void axe_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct axe_softc *sc = (void *)dev; usbd_status err; uWord uval; if (usbd_is_dying(sc->axe_udev)) return; if (sc->axe_phyno != phy) return; USETW(uval, val); axe_lock_mii(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, uval); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); axe_unlock_mii(sc); if (err) { printf("axe%d: write PHY failed\n", sc->axe_unit); return; } } void axe_miibus_statchg(struct device *dev) { struct axe_softc *sc = (void *)dev; struct mii_data *mii = GET_MII(sc); struct ifnet *ifp; int val, err; ifp = GET_IFP(sc); if (mii == NULL || ifp == NULL || (ifp->if_flags & IFF_RUNNING) == 0) return; sc->axe_link = 0; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->axe_link++; break; case IFM_1000_T: if ((sc->axe_flags & AX178) == 0) break; sc->axe_link++; break; default: break; } } /* Lost link, do nothing. */ if (sc->axe_link == 0) return; val = 0; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) val |= AXE_MEDIA_FULL_DUPLEX; if (sc->axe_flags & AX178 || sc->axe_flags & AX772) { val |= (AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC); if (sc->axe_flags & AX178) val |= AXE_178_MEDIA_ENCK; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK; break; case IFM_100_TX: val |= AXE_178_MEDIA_100TX; break; case IFM_10_T: /* doesn't need to be handled */ break; } } DPRINTF(("axe_miibus_statchg: val=0x%x\n", val)); err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL); if (err) { printf("%s: media change failed\n", sc->axe_dev.dv_xname); return; } } /* * Set media options. */ int axe_ifmedia_upd(struct ifnet *ifp) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return (0); } /* * Report current media status. */ void axe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } void axe_iff(struct axe_softc *sc) { struct ifnet *ifp = GET_IFP(sc); struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t h = 0; uWord urxmode; u_int16_t rxmode; u_int8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; if (usbd_is_dying(sc->axe_udev)) return; axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, urxmode); rxmode = UGETW(urxmode); rxmode &= ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_MULTICAST | AXE_RXCMD_PROMISC); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast frames. * Always accept frames destined to our station address. */ rxmode |= AXE_RXCMD_BROADCAST; if ((sc->axe_flags & (AX178 | AX772)) == 0) rxmode |= AXE_172_RXCMD_UNICAST; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; rxmode |= AXE_RXCMD_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) rxmode |= AXE_RXCMD_PROMISC; } else { rxmode |= AXE_RXCMD_MULTICAST; /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; hashtbl[h / 8] |= 1 << (h % 8); ETHER_NEXT_MULTI(step, enm); } } axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, (void *)&hashtbl); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); } void axe_reset(struct axe_softc *sc) { if (usbd_is_dying(sc->axe_udev)) return; /* XXX What to reset? */ /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } #define AXE_GPIO_WRITE(x,y) do { \ axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \ usbd_delay_ms(sc->axe_udev, (y)); \ } while (0) void axe_ax88178_init(struct axe_softc *sc) { int gpio0 = 0, phymode = 0, ledmode; u_int16_t eeprom, val; axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL); /* XXX magic */ axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom); axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL); eeprom = letoh16(eeprom); DPRINTF((" EEPROM is 0x%x\n", eeprom)); /* if EEPROM is invalid we have to use to GPIO0 */ if (eeprom == 0xffff) { phymode = AXE_PHY_MODE_MARVELL; gpio0 = 1; ledmode = 0; } else { phymode = eeprom & 0x7f; gpio0 = (eeprom & 0x80) ? 0 : 1; ledmode = eeprom >> 8; } DPRINTF(("use gpio0: %d, phymode 0x%02x, eeprom 0x%04x\n", gpio0, phymode, eeprom)); /* power up external phy */ AXE_GPIO_WRITE(AXE_GPIO1|AXE_GPIO1_EN | AXE_GPIO_RELOAD_EEPROM, 40); if (ledmode == 1) { AXE_GPIO_WRITE(AXE_GPIO1_EN, 30); AXE_GPIO_WRITE(AXE_GPIO1_EN | AXE_GPIO1, 30); } else { val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN : AXE_GPIO1 | AXE_GPIO1_EN; AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, 30); AXE_GPIO_WRITE(val | AXE_GPIO2_EN, 300); AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, 30); } /* initialize phy */ if (phymode == AXE_PHY_MODE_REALTEK_8211CL) { axe_miibus_writereg(&sc->axe_dev, sc->axe_phyno, 0x1f, 0x0005); axe_miibus_writereg(&sc->axe_dev, sc->axe_phyno, 0x0c, 0x0000); val = axe_miibus_readreg(&sc->axe_dev, sc->axe_phyno, 0x0001); axe_miibus_writereg(&sc->axe_dev, sc->axe_phyno, 0x01, val | 0x0080); axe_miibus_writereg(&sc->axe_dev, sc->axe_phyno, 0x1f, 0x0000); } /* soft reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); usbd_delay_ms(sc->axe_udev, 150); axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL); usbd_delay_ms(sc->axe_udev, 150); /* Enable MII/GMII/RGMII for external PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL); usbd_delay_ms(sc->axe_udev, 10); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } /* Read Ethernet Address from EEPROM if it is zero */ void axe_ax88772b_nodeid(struct axe_softc *sc, u_char *eaddr) { int i; uint16_t val; for (i = 0; i < ETHER_ADDR_LEN; i++) { if (eaddr[i] != 0) break; } /* We already have an ethernet address */ if (i != ETHER_ADDR_LEN) return; /* read from EEPROM */ for (i = 0; i < ETHER_ADDR_LEN/2; i++) { axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_NODEID + i, &val); val = ntohs(val); *eaddr++ = (u_char)((val >> 8) & 0xff); *eaddr++ = (u_char)(val & 0xff); } } void axe_ax88772_init(struct axe_softc *sc) { axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL); usbd_delay_ms(sc->axe_udev, 40); if (sc->axe_phyno == AXE_PHY_NO_AX772_EPHY) { /* ask for the embedded PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x01, NULL); usbd_delay_ms(sc->axe_udev, 10); /* power down and reset state, pin reset state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); usbd_delay_ms(sc->axe_udev, 60); /* power down/reset state, pin operating state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); usbd_delay_ms(sc->axe_udev, 150); /* power up, reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL); /* power up, operating */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL); } else { /* ask for external PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x00, NULL); usbd_delay_ms(sc->axe_udev, 10); /* power down internal PHY */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); } usbd_delay_ms(sc->axe_udev, 150); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } static int axe_get_phyno(struct axe_softc *sc, int sel) { int phyno = -1; switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) { case PHY_TYPE_100_HOME: case PHY_TYPE_GIG: phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]); break; case PHY_TYPE_SPECIAL: /* FALLTHROUGH */ case PHY_TYPE_RSVD: /* FALLTHROUGH */ case PHY_TYPE_NON_SUP: /* FALLTHROUGH */ default: break; } return (phyno); } /* * Probe for a AX88172 chip. */ int axe_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface == NULL || uaa->configno != 1) return (UMATCH_NONE); return (axe_lookup(uaa->vendor, uaa->product) != NULL ? UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void axe_attach(struct device *parent, struct device *self, void *aux) { struct axe_softc *sc = (struct axe_softc *)self; struct usb_attach_arg *uaa = aux; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; struct mii_data *mii; u_char eaddr[ETHER_ADDR_LEN]; char *devname = sc->axe_dev.dv_xname; struct ifnet *ifp; int i, s; sc->axe_unit = self->dv_unit; /*device_get_unit(self);*/ sc->axe_udev = uaa->device; sc->axe_iface = uaa->iface; sc->axe_flags = axe_lookup(uaa->vendor, uaa->product)->axe_flags; usb_init_task(&sc->axe_tick_task, axe_tick_task, sc, USB_TASK_TYPE_GENERIC); rw_init(&sc->axe_mii_lock, "axemii"); usb_init_task(&sc->axe_stop_task, (void (*)(void *))axe_stop, sc, USB_TASK_TYPE_GENERIC); sc->axe_product = uaa->product; sc->axe_vendor = uaa->vendor; id = usbd_get_interface_descriptor(sc->axe_iface); /* decide on what our bufsize will be */ if (sc->axe_flags & (AX178 | AX772)) sc->axe_bufsz = (sc->axe_udev->speed == USB_SPEED_HIGH) ? AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ; else sc->axe_bufsz = AXE_172_BUFSZ; /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->axe_iface, i); if (!ed) { printf("%s: couldn't get ep %d\n", sc->axe_dev.dv_xname, i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->axe_ed[AXE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->axe_ed[AXE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->axe_ed[AXE_ENDPT_INTR] = ed->bEndpointAddress; } } s = splnet(); /* We need the PHYID for init dance in some cases */ axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, (void *)&sc->axe_phyaddrs); DPRINTF((" phyaddrs[0]: %x phyaddrs[1]: %x\n", sc->axe_phyaddrs[0], sc->axe_phyaddrs[1])); sc->axe_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI); if (sc->axe_phyno == -1) sc->axe_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC); if (sc->axe_phyno == -1) { printf("%s:", sc->axe_dev.dv_xname); printf(" no valid PHY address found, assuming PHY address 0\n"); sc->axe_phyno = 0; } DPRINTF((" get_phyno %d\n", sc->axe_phyno)); if (sc->axe_flags & AX178) axe_ax88178_init(sc); else if (sc->axe_flags & AX772) axe_ax88772_init(sc); /* * Get station address. */ if (sc->axe_flags & (AX178 | AX772)) axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, &eaddr); else axe_cmd(sc, AXE_172_CMD_READ_NODEID, 0, 0, &eaddr); if (sc->axe_flags & AX772B) axe_ax88772b_nodeid(sc, eaddr); /* * Load IPG values */ axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, (void *)&sc->axe_ipgs); /* * An ASIX chip was detected. Inform the world. */ printf("%s:", sc->axe_dev.dv_xname); if (sc->axe_flags & AX178) printf(" AX88178"); else if (sc->axe_flags & AX772B) printf(" AX88772B"); else if (sc->axe_flags & AX772) printf(" AX88772"); else printf(" AX88172"); printf(", address %s\n", ether_sprintf(eaddr)); bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); /* Initialize interface info.*/ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; strlcpy(ifp->if_xname, devname, IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = axe_ioctl; ifp->if_start = axe_start; ifp->if_watchdog = axe_watchdog; ifp->if_capabilities = IFCAP_VLAN_MTU; /* Initialize MII/media info. */ mii = &sc->axe_mii; mii->mii_ifp = ifp; mii->mii_readreg = axe_miibus_readreg; mii->mii_writereg = axe_miibus_writereg; mii->mii_statchg = axe_miibus_statchg; mii->mii_flags = MIIF_AUTOTSLEEP; ifmedia_init(&mii->mii_media, 0, axe_ifmedia_upd, axe_ifmedia_sts); mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->axe_stat_ch, axe_tick, sc); splx(s); } int axe_detach(struct device *self, int flags) { struct axe_softc *sc = (struct axe_softc *)self; int s; struct ifnet *ifp = GET_IFP(sc); DPRINTFN(2,("%s: %s: enter\n", sc->axe_dev.dv_xname, __func__)); if (timeout_initialized(&sc->axe_stat_ch)) timeout_del(&sc->axe_stat_ch); if (sc->axe_ep[AXE_ENDPT_TX] != NULL) usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_TX]); if (sc->axe_ep[AXE_ENDPT_RX] != NULL) usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_RX]); if (sc->axe_ep[AXE_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_INTR]); /* * Remove any pending tasks. They cannot be executing because they run * in the same thread as detach. */ usb_rem_task(sc->axe_udev, &sc->axe_tick_task); usb_rem_task(sc->axe_udev, &sc->axe_stop_task); s = splusb(); if (--sc->axe_refcnt >= 0) { /* Wait for processes to go away */ usb_detach_wait(&sc->axe_dev); } if (ifp->if_flags & IFF_RUNNING) axe_stop(sc); mii_detach(&sc->axe_mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_delete_instance(&sc->axe_mii.mii_media, IFM_INST_ANY); if (ifp->if_softc != NULL) { ether_ifdetach(ifp); if_detach(ifp); } #ifdef DIAGNOSTIC if (sc->axe_ep[AXE_ENDPT_TX] != NULL || sc->axe_ep[AXE_ENDPT_RX] != NULL || sc->axe_ep[AXE_ENDPT_INTR] != NULL) printf("%s: detach has active endpoints\n", sc->axe_dev.dv_xname); #endif splx(s); return (0); } struct mbuf * axe_newbuf(void) { struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (NULL); MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return (NULL); } m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); return (m); } int axe_rx_list_init(struct axe_softc *sc) { struct axe_cdata *cd; struct axe_chain *c; int i; DPRINTF(("%s: %s: enter\n", sc->axe_dev.dv_xname, __func__)); cd = &sc->axe_cdata; for (i = 0; i < AXE_RX_LIST_CNT; i++) { c = &cd->axe_rx_chain[i]; c->axe_sc = sc; c->axe_idx = i; c->axe_mbuf = NULL; if (c->axe_xfer == NULL) { c->axe_xfer = usbd_alloc_xfer(sc->axe_udev); if (c->axe_xfer == NULL) return (ENOBUFS); c->axe_buf = usbd_alloc_buffer(c->axe_xfer, sc->axe_bufsz); if (c->axe_buf == NULL) { usbd_free_xfer(c->axe_xfer); return (ENOBUFS); } } } return (0); } int axe_tx_list_init(struct axe_softc *sc) { struct axe_cdata *cd; struct axe_chain *c; int i; DPRINTF(("%s: %s: enter\n", sc->axe_dev.dv_xname, __func__)); cd = &sc->axe_cdata; for (i = 0; i < AXE_TX_LIST_CNT; i++) { c = &cd->axe_tx_chain[i]; c->axe_sc = sc; c->axe_idx = i; c->axe_mbuf = NULL; if (c->axe_xfer == NULL) { c->axe_xfer = usbd_alloc_xfer(sc->axe_udev); if (c->axe_xfer == NULL) return (ENOBUFS); c->axe_buf = usbd_alloc_buffer(c->axe_xfer, sc->axe_bufsz); if (c->axe_buf == NULL) { usbd_free_xfer(c->axe_xfer); return (ENOBUFS); } } } return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void axe_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct axe_chain *c = (struct axe_chain *)priv; struct axe_softc *sc = c->axe_sc; struct ifnet *ifp = GET_IFP(sc); struct mbuf_list ml = MBUF_LIST_INITIALIZER(); u_char *buf = c->axe_buf; u_int32_t total_len; u_int16_t pktlen = 0; struct mbuf *m; struct axe_sframe_hdr hdr; int s; DPRINTFN(10,("%s: %s: enter\n", sc->axe_dev.dv_xname,__func__)); if (usbd_is_dying(sc->axe_udev)) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (usbd_ratecheck(&sc->axe_rx_notice)) { printf("%s: usb errors on rx: %s\n", sc->axe_dev.dv_xname, usbd_errstr(status)); } if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->axe_ep[AXE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); do { if (sc->axe_flags & (AX178 | AX772)) { if (total_len < sizeof(hdr)) { ifp->if_ierrors++; goto done; } buf += pktlen; memcpy(&hdr, buf, sizeof(hdr)); total_len -= sizeof(hdr); if (((letoh16(hdr.len) & AXE_RH1M_RXLEN_MASK) ^ (letoh16(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) != AXE_RH1M_RXLEN_MASK) { ifp->if_ierrors++; goto done; } pktlen = letoh16(hdr.len) & AXE_RH1M_RXLEN_MASK; if (pktlen > total_len) { ifp->if_ierrors++; goto done; } buf += sizeof(hdr); if ((pktlen % 2) != 0) pktlen++; if (total_len < pktlen) total_len = 0; else total_len -= pktlen; } else { pktlen = total_len; /* crc on the end? */ total_len = 0; } m = axe_newbuf(); if (m == NULL) { ifp->if_ierrors++; goto done; } m->m_pkthdr.len = m->m_len = pktlen; memcpy(mtod(m, char *), buf, pktlen); ml_enqueue(&ml, m); } while (total_len > 0); done: /* push the packet up */ s = splnet(); if_input(ifp, &ml); splx(s); memset(c->axe_buf, 0, sc->axe_bufsz); /* Setup new transfer. */ usbd_setup_xfer(xfer, sc->axe_ep[AXE_ENDPT_RX], c, c->axe_buf, sc->axe_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, axe_rxeof); usbd_transfer(xfer); DPRINTFN(10,("%s: %s: start rx\n", sc->axe_dev.dv_xname, __func__)); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void axe_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct axe_softc *sc; struct axe_chain *c; struct ifnet *ifp; int s; c = priv; sc = c->axe_sc; ifp = &sc->arpcom.ac_if; if (usbd_is_dying(sc->axe_udev)) return; s = splnet(); if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; printf("axe%d: usb error on tx: %s\n", sc->axe_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->axe_ep[AXE_ENDPT_TX]); splx(s); return; } ifp->if_timer = 0; ifq_clr_oactive(&ifp->if_snd); m_freem(c->axe_mbuf); c->axe_mbuf = NULL; if (ifq_empty(&ifp->if_snd) == 0) axe_start(ifp); splx(s); return; } void axe_tick(void *xsc) { struct axe_softc *sc = xsc; if (sc == NULL) return; DPRINTFN(0xff, ("%s: %s: enter\n", sc->axe_dev.dv_xname, __func__)); if (usbd_is_dying(sc->axe_udev)) return; /* Perform periodic stuff in process context */ usb_add_task(sc->axe_udev, &sc->axe_tick_task); } void axe_tick_task(void *xsc) { int s; struct axe_softc *sc; struct ifnet *ifp; struct mii_data *mii; sc = xsc; if (sc == NULL) return; if (usbd_is_dying(sc->axe_udev)) return; ifp = GET_IFP(sc); mii = GET_MII(sc); if (mii == NULL) return; s = splnet(); mii_tick(mii); if (sc->axe_link == 0) axe_miibus_statchg(&sc->axe_dev); timeout_add_sec(&sc->axe_stat_ch, 1); splx(s); } int axe_encap(struct axe_softc *sc, struct mbuf *m, int idx) { struct axe_chain *c; usbd_status err; struct axe_sframe_hdr hdr; int length, boundary; c = &sc->axe_cdata.axe_tx_chain[idx]; if (sc->axe_flags & (AX178 | AX772)) { boundary = (sc->axe_udev->speed == USB_SPEED_HIGH) ? 512 : 64; hdr.len = htole16(m->m_pkthdr.len); hdr.ilen = ~hdr.len; memcpy(c->axe_buf, &hdr, sizeof(hdr)); length = sizeof(hdr); m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf + length); length += m->m_pkthdr.len; if ((length % boundary) == 0) { hdr.len = 0x0000; hdr.ilen = 0xffff; memcpy(c->axe_buf + length, &hdr, sizeof(hdr)); length += sizeof(hdr); } } else { m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf); length = m->m_pkthdr.len; } c->axe_mbuf = m; usbd_setup_xfer(c->axe_xfer, sc->axe_ep[AXE_ENDPT_TX], c, c->axe_buf, length, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 10000, axe_txeof); /* Transmit */ err = usbd_transfer(c->axe_xfer); if (err != USBD_IN_PROGRESS) { c->axe_mbuf = NULL; axe_stop(sc); return(EIO); } sc->axe_cdata.axe_tx_cnt++; return(0); } void axe_start(struct ifnet *ifp) { struct axe_softc *sc; struct mbuf *m_head = NULL; sc = ifp->if_softc; if (!sc->axe_link) return; if (ifq_is_oactive(&ifp->if_snd)) return; m_head = ifq_dequeue(&ifp->if_snd); if (m_head == NULL) return; if (axe_encap(sc, m_head, 0)) { m_freem(m_head); ifq_set_oactive(&ifp->if_snd); return; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif ifq_set_oactive(&ifp->if_snd); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } void axe_init(void *xsc) { struct axe_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct axe_chain *c; usbd_status err; uWord urxmode; int rxmode; int i, s; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ axe_reset(sc); /* set MAC address */ if (sc->axe_flags & (AX178 | AX772)) axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, &sc->arpcom.ac_enaddr); /* Enable RX logic. */ /* Init RX ring. */ if (axe_rx_list_init(sc) == ENOBUFS) { printf("axe%d: rx list init failed\n", sc->axe_unit); splx(s); return; } /* Init TX ring. */ if (axe_tx_list_init(sc) == ENOBUFS) { printf("axe%d: tx list init failed\n", sc->axe_unit); splx(s); return; } /* Set transmitter IPG values */ if (sc->axe_flags & (AX178 | AX772)) axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2], (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL); else { axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL); } /* Program promiscuous mode and multicast filters. */ axe_iff(sc); /* Enable receiver, set RX mode */ axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, urxmode); rxmode = UGETW(urxmode); rxmode |= AXE_RXCMD_ENABLE; if (sc->axe_flags & AX772B) rxmode |= AXE_772B_RXCMD_RH1M; else if (sc->axe_flags & (AX178 | AX772)) { if (sc->axe_udev->speed == USB_SPEED_HIGH) { /* largest possible USB buffer size for AX88178 */ rxmode |= AXE_178_RXCMD_MFB; } } axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->axe_ep[AXE_ENDPT_RX]); if (err) { printf("axe%d: open rx pipe failed: %s\n", sc->axe_unit, usbd_errstr(err)); splx(s); return; } err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->axe_ep[AXE_ENDPT_TX]); if (err) { printf("axe%d: open tx pipe failed: %s\n", sc->axe_unit, usbd_errstr(err)); splx(s); return; } /* Start up the receive pipe. */ for (i = 0; i < AXE_RX_LIST_CNT; i++) { c = &sc->axe_cdata.axe_rx_chain[i]; usbd_setup_xfer(c->axe_xfer, sc->axe_ep[AXE_ENDPT_RX], c, c->axe_buf, sc->axe_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, axe_rxeof); usbd_transfer(c->axe_xfer); } sc->axe_link = 0; ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); splx(s); timeout_add_sec(&sc->axe_stat_ch, 1); return; } int axe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct axe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch(cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) axe_init(sc); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else axe_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) axe_stop(sc); } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->axe_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->arpcom, cmd, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) axe_iff(sc); error = 0; } splx(s); return(error); } void axe_watchdog(struct ifnet *ifp) { struct axe_softc *sc; struct axe_chain *c; usbd_status stat; int s; sc = ifp->if_softc; ifp->if_oerrors++; printf("axe%d: watchdog timeout\n", sc->axe_unit); s = splusb(); c = &sc->axe_cdata.axe_tx_chain[0]; usbd_get_xfer_status(c->axe_xfer, NULL, NULL, NULL, &stat); axe_txeof(c->axe_xfer, c, stat); if (!ifq_empty(&ifp->if_snd)) axe_start(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void axe_stop(struct axe_softc *sc) { usbd_status err; struct ifnet *ifp; int i; axe_reset(sc); ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); timeout_del(&sc->axe_stat_ch); /* Stop transfers. */ if (sc->axe_ep[AXE_ENDPT_RX] != NULL) { err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_RX]); if (err) { printf("axe%d: close rx pipe failed: %s\n", sc->axe_unit, usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_RX] = NULL; } if (sc->axe_ep[AXE_ENDPT_TX] != NULL) { err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_TX]); if (err) { printf("axe%d: close tx pipe failed: %s\n", sc->axe_unit, usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_TX] = NULL; } if (sc->axe_ep[AXE_ENDPT_INTR] != NULL) { err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_INTR]); if (err) { printf("axe%d: close intr pipe failed: %s\n", sc->axe_unit, usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < AXE_RX_LIST_CNT; i++) { if (sc->axe_cdata.axe_rx_chain[i].axe_mbuf != NULL) { m_freem(sc->axe_cdata.axe_rx_chain[i].axe_mbuf); sc->axe_cdata.axe_rx_chain[i].axe_mbuf = NULL; } if (sc->axe_cdata.axe_rx_chain[i].axe_xfer != NULL) { usbd_free_xfer(sc->axe_cdata.axe_rx_chain[i].axe_xfer); sc->axe_cdata.axe_rx_chain[i].axe_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < AXE_TX_LIST_CNT; i++) { if (sc->axe_cdata.axe_tx_chain[i].axe_mbuf != NULL) { m_freem(sc->axe_cdata.axe_tx_chain[i].axe_mbuf); sc->axe_cdata.axe_tx_chain[i].axe_mbuf = NULL; } if (sc->axe_cdata.axe_tx_chain[i].axe_xfer != NULL) { usbd_free_xfer(sc->axe_cdata.axe_tx_chain[i].axe_xfer); sc->axe_cdata.axe_tx_chain[i].axe_xfer = NULL; } } sc->axe_link = 0; }