/* $OpenBSD: if_cue.c,v 1.52 2009/10/13 19:33:17 pirofti Exp $ */ /* $NetBSD: if_cue.c,v 1.40 2002/07/11 21:14:26 augustss Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/usb/if_cue.c,v 1.4 2000/01/16 22:45:06 wpaul Exp $ */ /* * CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate * adapters and others. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The * RX filter uses a 512-bit multicast hash table, single perfect entry * for the station address, and promiscuous mode. Unlike the ADMtek * and KLSI chips, the CATC ASIC supports read and write combining * mode where multiple packets can be transferred using a single bulk * transaction, which helps performance a great deal. */ /* * Ported to NetBSD and somewhat rewritten by Lennart Augustsson. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #ifdef CUE_DEBUG #define DPRINTF(x) do { if (cuedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (cuedebug >= (n)) printf x; } while (0) int cuedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * Various supported device vendors/products. */ struct usb_devno cue_devs[] = { { USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE }, { USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2 }, { USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK }, /* Belkin F5U111 adapter covered by NETMATE entry */ }; #define cue_lookup(v, p) (usb_lookup(cue_devs, v, p)) int cue_match(struct device *, void *, void *); void cue_attach(struct device *, struct device *, void *); int cue_detach(struct device *, int); int cue_activate(struct device *, int); struct cfdriver cue_cd = { NULL, "cue", DV_IFNET }; const struct cfattach cue_ca = { sizeof(struct cue_softc), cue_match, cue_attach, cue_detach, cue_activate, }; int cue_open_pipes(struct cue_softc *); int cue_tx_list_init(struct cue_softc *); int cue_rx_list_init(struct cue_softc *); int cue_newbuf(struct cue_softc *, struct cue_chain *, struct mbuf *); int cue_send(struct cue_softc *, struct mbuf *, int); void cue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void cue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void cue_tick(void *); void cue_tick_task(void *); void cue_start(struct ifnet *); int cue_ioctl(struct ifnet *, u_long, caddr_t); void cue_init(void *); void cue_stop(struct cue_softc *); void cue_watchdog(struct ifnet *); void cue_setmulti(struct cue_softc *); void cue_reset(struct cue_softc *); int cue_csr_read_1(struct cue_softc *, int); int cue_csr_write_1(struct cue_softc *, int, int); int cue_csr_read_2(struct cue_softc *, int); #if 0 int cue_csr_write_2(struct cue_softc *, int, int); #endif int cue_mem(struct cue_softc *, int, int, void *, int); int cue_getmac(struct cue_softc *, void *); #define CUE_SETBIT(sc, reg, x) \ cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) | (x)) #define CUE_CLRBIT(sc, reg, x) \ cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) & ~(x)) int cue_csr_read_1(struct cue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; u_int8_t val = 0; if (sc->cue_dying) return (0); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request(sc->cue_udev, &req, &val); if (err) { DPRINTF(("%s: cue_csr_read_1: reg=0x%x err=%s\n", sc->cue_dev.dv_xname, reg, usbd_errstr(err))); return (0); } DPRINTFN(10,("%s: cue_csr_read_1 reg=0x%x val=0x%x\n", sc->cue_dev.dv_xname, reg, val)); return (val); } int cue_csr_read_2(struct cue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; uWord val; if (sc->cue_dying) return (0); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request(sc->cue_udev, &req, &val); DPRINTFN(10,("%s: cue_csr_read_2 reg=0x%x val=0x%x\n", sc->cue_dev.dv_xname, reg, UGETW(val))); if (err) { DPRINTF(("%s: cue_csr_read_2: reg=0x%x err=%s\n", sc->cue_dev.dv_xname, reg, usbd_errstr(err))); return (0); } return (UGETW(val)); } int cue_csr_write_1(struct cue_softc *sc, int reg, int val) { usb_device_request_t req; usbd_status err; if (sc->cue_dying) return (0); DPRINTFN(10,("%s: cue_csr_write_1 reg=0x%x val=0x%x\n", sc->cue_dev.dv_xname, reg, val)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); err = usbd_do_request(sc->cue_udev, &req, NULL); if (err) { DPRINTF(("%s: cue_csr_write_1: reg=0x%x err=%s\n", sc->cue_dev.dv_xname, reg, usbd_errstr(err))); return (-1); } DPRINTFN(20,("%s: cue_csr_write_1, after reg=0x%x val=0x%x\n", sc->cue_dev.dv_xname, reg, cue_csr_read_1(sc, reg))); return (0); } #if 0 int cue_csr_write_2(struct cue_softc *sc, int reg, int aval) { usb_device_request_t req; usbd_status err; uWord val; int s; if (sc->cue_dying) return (0); DPRINTFN(10,("%s: cue_csr_write_2 reg=0x%x val=0x%x\n", sc->cue_dev.dv_xname, reg, aval)); USETW(val, aval); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); err = usbd_do_request(sc->cue_udev, &req, NULL); if (err) { DPRINTF(("%s: cue_csr_write_2: reg=0x%x err=%s\n", sc->cue_dev.dv_xname, reg, usbd_errstr(err))); return (-1); } return (0); } #endif int cue_mem(struct cue_softc *sc, int cmd, int addr, void *buf, int len) { usb_device_request_t req; usbd_status err; DPRINTFN(10,("%s: cue_mem cmd=0x%x addr=0x%x len=%d\n", sc->cue_dev.dv_xname, cmd, addr, len)); if (cmd == CUE_CMD_READSRAM) req.bmRequestType = UT_READ_VENDOR_DEVICE; else req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = cmd; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); err = usbd_do_request(sc->cue_udev, &req, buf); if (err) { DPRINTF(("%s: cue_csr_mem: addr=0x%x err=%s\n", sc->cue_dev.dv_xname, addr, usbd_errstr(err))); return (-1); } return (0); } int cue_getmac(struct cue_softc *sc, void *buf) { usb_device_request_t req; usbd_status err; DPRINTFN(10,("%s: cue_getmac\n", sc->cue_dev.dv_xname)); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_GET_MACADDR; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, ETHER_ADDR_LEN); err = usbd_do_request(sc->cue_udev, &req, buf); if (err) { printf("%s: read MAC address failed\n", sc->cue_dev.dv_xname); return (-1); } return (0); } #define CUE_BITS 9 void cue_setmulti(struct cue_softc *sc) { struct ifnet *ifp; struct ether_multi *enm; struct ether_multistep step; u_int32_t h, i; ifp = GET_IFP(sc); DPRINTFN(2,("%s: cue_setmulti if_flags=0x%x\n", sc->cue_dev.dv_xname, ifp->if_flags)); if (ifp->if_flags & IFF_PROMISC) { allmulti: ifp->if_flags |= IFF_ALLMULTI; for (i = 0; i < CUE_MCAST_TABLE_LEN; i++) sc->cue_mctab[i] = 0xFF; cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &sc->cue_mctab, CUE_MCAST_TABLE_LEN); return; } /* first, zot all the existing hash bits */ for (i = 0; i < CUE_MCAST_TABLE_LEN; i++) sc->cue_mctab[i] = 0; /* now program new ones */ ETHER_FIRST_MULTI(step, &sc->arpcom, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & ((1 << CUE_BITS) - 1); sc->cue_mctab[h >> 3] |= 1 << (h & 0x7); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; /* * Also include the broadcast address in the filter * so we can receive broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { h = ether_crc32_le(etherbroadcastaddr, ETHER_ADDR_LEN) & ((1 << CUE_BITS) - 1); sc->cue_mctab[h >> 3] |= 1 << (h & 0x7); } cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &sc->cue_mctab, CUE_MCAST_TABLE_LEN); } void cue_reset(struct cue_softc *sc) { usb_device_request_t req; usbd_status err; DPRINTFN(2,("%s: cue_reset\n", sc->cue_dev.dv_xname)); if (sc->cue_dying) return; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_RESET; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = usbd_do_request(sc->cue_udev, &req, NULL); if (err) printf("%s: reset failed\n", sc->cue_dev.dv_xname); /* Wait a little while for the chip to get its brains in order. */ usbd_delay_ms(sc->cue_udev, 1); } /* * Probe for a CATC chip. */ int cue_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface != NULL) return (UMATCH_NONE); return (cue_lookup(uaa->vendor, uaa->product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void cue_attach(struct device *parent, struct device *self, void *aux) { struct cue_softc *sc = (struct cue_softc *)self; struct usb_attach_arg *uaa = aux; int s; u_char eaddr[ETHER_ADDR_LEN]; usbd_device_handle dev = uaa->device; usbd_interface_handle iface; usbd_status err; struct ifnet *ifp; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; DPRINTFN(5,(" : cue_attach: sc=%p, dev=%p", sc, dev)); err = usbd_set_config_no(dev, CUE_CONFIG_NO, 1); if (err) { printf("%s: setting config no failed\n", sc->cue_dev.dv_xname); return; } sc->cue_udev = dev; sc->cue_product = uaa->product; sc->cue_vendor = uaa->vendor; usb_init_task(&sc->cue_tick_task, cue_tick_task, sc); usb_init_task(&sc->cue_stop_task, (void (*)(void *))cue_stop, sc); err = usbd_device2interface_handle(dev, CUE_IFACE_IDX, &iface); if (err) { printf("%s: getting interface handle failed\n", sc->cue_dev.dv_xname); return; } sc->cue_iface = iface; id = usbd_get_interface_descriptor(iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(iface, i); if (ed == NULL) { printf("%s: couldn't get ep %d\n", sc->cue_dev.dv_xname, i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->cue_ed[CUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->cue_ed[CUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->cue_ed[CUE_ENDPT_INTR] = ed->bEndpointAddress; } } #if 0 /* Reset the adapter. */ cue_reset(sc); #endif /* * Get station address. */ cue_getmac(sc, &eaddr); s = splnet(); /* * A CATC chip was detected. Inform the world. */ printf("%s: address %s\n", sc->cue_dev.dv_xname, ether_sprintf(eaddr)); bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); /* Initialize interface info.*/ ifp = GET_IFP(sc); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = cue_ioctl; ifp->if_start = cue_start; ifp->if_watchdog = cue_watchdog; strlcpy(ifp->if_xname, sc->cue_dev.dv_xname, IFNAMSIZ); IFQ_SET_READY(&ifp->if_snd); /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->cue_stat_ch, cue_tick, sc); sc->cue_attached = 1; splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->cue_udev, &sc->cue_dev); } int cue_detach(struct device *self, int flags) { struct cue_softc *sc = (struct cue_softc *)self; struct ifnet *ifp = GET_IFP(sc); int s; DPRINTFN(2,("%s: %s: enter\n", sc->cue_dev.dv_xname, __func__)); timeout_del(&sc->cue_stat_ch); /* * Remove any pending task. It cannot be executing because it run * in the same thread as detach. */ usb_rem_task(sc->cue_udev, &sc->cue_tick_task); usb_rem_task(sc->cue_udev, &sc->cue_stop_task); if (!sc->cue_attached) { /* Detached before attached finished, so just bail out. */ return (0); } s = splusb(); if (ifp->if_flags & IFF_RUNNING) cue_stop(sc); ether_ifdetach(ifp); if_detach(ifp); #ifdef DIAGNOSTIC if (sc->cue_ep[CUE_ENDPT_TX] != NULL || sc->cue_ep[CUE_ENDPT_RX] != NULL || sc->cue_ep[CUE_ENDPT_INTR] != NULL) printf("%s: detach has active endpoints\n", sc->cue_dev.dv_xname); #endif sc->cue_attached = 0; splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->cue_udev, &sc->cue_dev); return (0); } int cue_activate(struct device *self, int act) { struct cue_softc *sc = (struct cue_softc *)self; DPRINTFN(2,("%s: %s: enter\n", sc->cue_dev.dv_xname, __func__)); switch (act) { case DVACT_ACTIVATE: break; case DVACT_DEACTIVATE: sc->cue_dying = 1; break; } return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int cue_newbuf(struct cue_softc *sc, struct cue_chain *c, struct mbuf *m) { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for rx list " "-- packet dropped!\n", sc->cue_dev.dv_xname); return (ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("%s: no memory for rx list " "-- packet dropped!\n", sc->cue_dev.dv_xname); m_freem(m_new); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); c->cue_mbuf = m_new; return (0); } int cue_rx_list_init(struct cue_softc *sc) { struct cue_cdata *cd; struct cue_chain *c; int i; cd = &sc->cue_cdata; for (i = 0; i < CUE_RX_LIST_CNT; i++) { c = &cd->cue_rx_chain[i]; c->cue_sc = sc; c->cue_idx = i; if (cue_newbuf(sc, c, NULL) == ENOBUFS) return (ENOBUFS); if (c->cue_xfer == NULL) { c->cue_xfer = usbd_alloc_xfer(sc->cue_udev); if (c->cue_xfer == NULL) return (ENOBUFS); c->cue_buf = usbd_alloc_buffer(c->cue_xfer, CUE_BUFSZ); if (c->cue_buf == NULL) { usbd_free_xfer(c->cue_xfer); return (ENOBUFS); } } } return (0); } int cue_tx_list_init(struct cue_softc *sc) { struct cue_cdata *cd; struct cue_chain *c; int i; cd = &sc->cue_cdata; for (i = 0; i < CUE_TX_LIST_CNT; i++) { c = &cd->cue_tx_chain[i]; c->cue_sc = sc; c->cue_idx = i; c->cue_mbuf = NULL; if (c->cue_xfer == NULL) { c->cue_xfer = usbd_alloc_xfer(sc->cue_udev); if (c->cue_xfer == NULL) return (ENOBUFS); c->cue_buf = usbd_alloc_buffer(c->cue_xfer, CUE_BUFSZ); if (c->cue_buf == NULL) { usbd_free_xfer(c->cue_xfer); return (ENOBUFS); } } } return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void cue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct cue_chain *c = priv; struct cue_softc *sc = c->cue_sc; struct ifnet *ifp = GET_IFP(sc); struct mbuf *m; int total_len = 0; u_int16_t len; int s; DPRINTFN(10,("%s: %s: enter status=%d\n", sc->cue_dev.dv_xname, __func__, status)); if (sc->cue_dying) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; sc->cue_rx_errs++; if (usbd_ratecheck(&sc->cue_rx_notice)) { printf("%s: %u usb errors on rx: %s\n", sc->cue_dev.dv_xname, sc->cue_rx_errs, usbd_errstr(status)); sc->cue_rx_errs = 0; } if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->cue_ep[CUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); memcpy(mtod(c->cue_mbuf, char *), c->cue_buf, total_len); m = c->cue_mbuf; len = UGETW(mtod(m, u_int8_t *)); /* No errors; receive the packet. */ total_len = len; if (len < sizeof(struct ether_header)) { ifp->if_ierrors++; goto done; } ifp->if_ipackets++; m_adj(m, sizeof(u_int16_t)); m->m_pkthdr.len = m->m_len = total_len; m->m_pkthdr.rcvif = ifp; s = splnet(); /* XXX ugly */ if (cue_newbuf(sc, c, NULL) == ENOBUFS) { ifp->if_ierrors++; goto done1; } #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif DPRINTFN(10,("%s: %s: deliver %d\n", sc->cue_dev.dv_xname, __func__, m->m_len)); ether_input_mbuf(ifp, m); done1: splx(s); done: /* Setup new transfer. */ usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX], c, c->cue_buf, CUE_BUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, cue_rxeof); usbd_transfer(c->cue_xfer); DPRINTFN(10,("%s: %s: start rx\n", sc->cue_dev.dv_xname, __func__)); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void cue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct cue_chain *c = priv; struct cue_softc *sc = c->cue_sc; struct ifnet *ifp = GET_IFP(sc); int s; if (sc->cue_dying) return; s = splnet(); DPRINTFN(10,("%s: %s: enter status=%d\n", sc->cue_dev.dv_xname, __func__, status)); ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; printf("%s: usb error on tx: %s\n", sc->cue_dev.dv_xname, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->cue_ep[CUE_ENDPT_TX]); splx(s); return; } ifp->if_opackets++; m_freem(c->cue_mbuf); c->cue_mbuf = NULL; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) cue_start(ifp); splx(s); } void cue_tick(void *xsc) { struct cue_softc *sc = xsc; if (sc == NULL) return; if (sc->cue_dying) return; DPRINTFN(2,("%s: %s: enter\n", sc->cue_dev.dv_xname, __func__)); /* Perform statistics update in process context. */ usb_add_task(sc->cue_udev, &sc->cue_tick_task); } void cue_tick_task(void *xsc) { struct cue_softc *sc = xsc; struct ifnet *ifp; if (sc->cue_dying) return; DPRINTFN(2,("%s: %s: enter\n", sc->cue_dev.dv_xname, __func__)); ifp = GET_IFP(sc); ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_SINGLECOLL); ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_MULTICOLL); ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_EXCESSCOLL); if (cue_csr_read_2(sc, CUE_RX_FRAMEERR)) ifp->if_ierrors++; } int cue_send(struct cue_softc *sc, struct mbuf *m, int idx) { int total_len; struct cue_chain *c; usbd_status err; c = &sc->cue_cdata.cue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->cue_buf + 2); c->cue_mbuf = m; total_len = m->m_pkthdr.len + 2; DPRINTFN(10,("%s: %s: total_len=%d\n", sc->cue_dev.dv_xname, __func__, total_len)); /* The first two bytes are the frame length */ c->cue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->cue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); /* XXX 10000 */ usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_TX], c, c->cue_buf, total_len, USBD_NO_COPY, 10000, cue_txeof); /* Transmit */ err = usbd_transfer(c->cue_xfer); if (err != USBD_IN_PROGRESS) { printf("%s: cue_send error=%s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); /* Stop the interface from process context. */ usb_add_task(sc->cue_udev, &sc->cue_stop_task); return (EIO); } sc->cue_cdata.cue_tx_cnt++; return (0); } void cue_start(struct ifnet *ifp) { struct cue_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; if (sc->cue_dying) return; DPRINTFN(10,("%s: %s: enter\n", sc->cue_dev.dv_xname,__func__)); if (ifp->if_flags & IFF_OACTIVE) return; IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) return; if (cue_send(sc, m_head, 0)) { ifp->if_flags |= IFF_OACTIVE; return; } IFQ_DEQUEUE(&ifp->if_snd, m_head); #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void cue_init(void *xsc) { struct cue_softc *sc = xsc; struct ifnet *ifp = GET_IFP(sc); int i, s, ctl; u_char *eaddr; if (sc->cue_dying) return; DPRINTFN(10,("%s: %s: enter\n", sc->cue_dev.dv_xname,__func__)); if (ifp->if_flags & IFF_RUNNING) return; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ #if 1 cue_reset(sc); #endif /* Set advanced operation modes. */ cue_csr_write_1(sc, CUE_ADVANCED_OPMODES, CUE_AOP_EMBED_RXLEN | 0x03); /* 1 wait state */ eaddr = sc->arpcom.ac_enaddr; /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) cue_csr_write_1(sc, CUE_PAR0 - i, eaddr[i]); /* Enable RX logic. */ ctl = CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON; if (ifp->if_flags & IFF_PROMISC) ctl |= CUE_ETHCTL_PROMISC; cue_csr_write_1(sc, CUE_ETHCTL, ctl); /* Init TX ring. */ if (cue_tx_list_init(sc) == ENOBUFS) { printf("%s: tx list init failed\n", sc->cue_dev.dv_xname); splx(s); return; } /* Init RX ring. */ if (cue_rx_list_init(sc) == ENOBUFS) { printf("%s: rx list init failed\n", sc->cue_dev.dv_xname); splx(s); return; } /* Load the multicast filter. */ cue_setmulti(sc); /* * Set the number of RX and TX buffers that we want * to reserve inside the ASIC. */ cue_csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES); cue_csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES); /* Set advanced operation modes. */ cue_csr_write_1(sc, CUE_ADVANCED_OPMODES, CUE_AOP_EMBED_RXLEN | 0x01); /* 1 wait state */ /* Program the LED operation. */ cue_csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK); if (sc->cue_ep[CUE_ENDPT_RX] == NULL) { if (cue_open_pipes(sc)) { splx(s); return; } } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_add_sec(&sc->cue_stat_ch, 1); } int cue_open_pipes(struct cue_softc *sc) { struct cue_chain *c; usbd_status err; int i; /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_RX]); if (err) { printf("%s: open rx pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); return (EIO); } err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_TX]); if (err) { printf("%s: open tx pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); return (EIO); } /* Start up the receive pipe. */ for (i = 0; i < CUE_RX_LIST_CNT; i++) { c = &sc->cue_cdata.cue_rx_chain[i]; usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX], c, c->cue_buf, CUE_BUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, cue_rxeof); usbd_transfer(c->cue_xfer); } return (0); } int cue_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct cue_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; if (sc->cue_dying) return (EIO); s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; cue_init(sc); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->cue_if_flags & IFF_PROMISC)) { CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); cue_setmulti(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->cue_if_flags & IFF_PROMISC) { CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); cue_setmulti(sc); } else if (!(ifp->if_flags & IFF_RUNNING)) cue_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) cue_stop(sc); } sc->cue_if_flags = ifp->if_flags; error = 0; break; default: error = ether_ioctl(ifp, &sc->arpcom, command, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) cue_setmulti(sc); error = 0; } splx(s); return (error); } void cue_watchdog(struct ifnet *ifp) { struct cue_softc *sc = ifp->if_softc; struct cue_chain *c; usbd_status stat; int s; DPRINTFN(5,("%s: %s: enter\n", sc->cue_dev.dv_xname,__func__)); if (sc->cue_dying) return; ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->cue_dev.dv_xname); s = splusb(); c = &sc->cue_cdata.cue_tx_chain[0]; usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &stat); cue_txeof(c->cue_xfer, c, stat); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) cue_start(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void cue_stop(struct cue_softc *sc) { usbd_status err; struct ifnet *ifp; int i; DPRINTFN(10,("%s: %s: enter\n", sc->cue_dev.dv_xname,__func__)); ifp = GET_IFP(sc); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); cue_csr_write_1(sc, CUE_ETHCTL, 0); cue_reset(sc); timeout_del(&sc->cue_stat_ch); /* Stop transfers. */ if (sc->cue_ep[CUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]); if (err) { printf("%s: abort rx pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); } err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_RX]); if (err) { printf("%s: close rx pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); } sc->cue_ep[CUE_ENDPT_RX] = NULL; } if (sc->cue_ep[CUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]); if (err) { printf("%s: abort tx pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); } err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_TX]); if (err) { printf("%s: close tx pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); } sc->cue_ep[CUE_ENDPT_TX] = NULL; } if (sc->cue_ep[CUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]); if (err) { printf("%s: abort intr pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); } err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_INTR]); if (err) { printf("%s: close intr pipe failed: %s\n", sc->cue_dev.dv_xname, usbd_errstr(err)); } sc->cue_ep[CUE_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < CUE_RX_LIST_CNT; i++) { if (sc->cue_cdata.cue_rx_chain[i].cue_mbuf != NULL) { m_freem(sc->cue_cdata.cue_rx_chain[i].cue_mbuf); sc->cue_cdata.cue_rx_chain[i].cue_mbuf = NULL; } if (sc->cue_cdata.cue_rx_chain[i].cue_xfer != NULL) { usbd_free_xfer(sc->cue_cdata.cue_rx_chain[i].cue_xfer); sc->cue_cdata.cue_rx_chain[i].cue_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < CUE_TX_LIST_CNT; i++) { if (sc->cue_cdata.cue_tx_chain[i].cue_mbuf != NULL) { m_freem(sc->cue_cdata.cue_tx_chain[i].cue_mbuf); sc->cue_cdata.cue_tx_chain[i].cue_mbuf = NULL; } if (sc->cue_cdata.cue_tx_chain[i].cue_xfer != NULL) { usbd_free_xfer(sc->cue_cdata.cue_tx_chain[i].cue_xfer); sc->cue_cdata.cue_tx_chain[i].cue_xfer = NULL; } } }