/* $OpenBSD: if_kue.c,v 1.15 2001/12/17 02:18:18 deraadt Exp $ */ /* $NetBSD: if_kue.c,v 1.43 2001/10/08 03:37:53 augustss Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/usb/if_kue.c,v 1.14 2000/01/14 01:36:15 wpaul Exp $ */ /* * Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The KLSI USB to ethernet adapter chip contains an USB serial interface, * ethernet MAC and embedded microcontroller (called the QT Engine). * The chip must have firmware loaded into it before it will operate. * Packets are passed between the chip and host via bulk transfers. * There is an interrupt endpoint mentioned in the software spec, however * it's currently unused. This device is 10Mbps half-duplex only, hence * there is no media selection logic. The MAC supports a 128 entry * multicast filter, though the exact size of the filter can depend * on the firmware. Curiously, while the software spec describes various * ethernet statistics counters, my sample adapter and firmware combination * claims not to support any statistics counters at all. * * Note that once we load the firmware in the device, we have to be * careful not to load it again: if you restart your computer but * leave the adapter attached to the USB controller, it may remain * powered on and retain its firmware. In this case, we don't need * to load the firmware a second time. * * Special thanks to Rob Furr for providing an ADS Technologies * adapter for development and testing. No monkeys were harmed during * the development of this driver. */ /* * Ported to NetBSD and somewhat rewritten by Lennart Augustsson. */ #if defined(__NetBSD__) #include "opt_inet.h" #include "opt_ns.h" #include "bpfilter.h" #include "rnd.h" #elif defined(__OpenBSD__) #include "bpfilter.h" #endif #include #include #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #if defined(__NetBSD__) #include #endif #include #define BPF_MTAP(ifp, m) bpf_mtap((ifp)->if_bpf, (m)) #if NBPFILTER > 0 #include #endif #if defined(__NetBSD__) #include #ifdef INET #include #include #endif #endif /* defined (__NetBSD__) */ #if defined(__OpenBSD__) #ifdef INET #include #include #include #include #include #endif #endif /* defined (__OpenBSD__) */ #ifdef NS #include #include #endif #include #include #include #include #include #include #ifdef KUE_DEBUG #define DPRINTF(x) if (kuedebug) logprintf x #define DPRINTFN(n,x) if (kuedebug >= (n)) logprintf x int kuedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * Various supported device vendors/products. */ Static const struct kue_type kue_devs[] = { { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 }, { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460 }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450 }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX }, { USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 }, { USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2 }, { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT }, { USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA }, { USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1 }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN }, { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T }, { USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9 }, { USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA }, { USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA }, { USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB }, { 0, 0 } }; USB_DECLARE_DRIVER(kue); Static int kue_tx_list_init(struct kue_softc *); Static int kue_rx_list_init(struct kue_softc *); Static int kue_newbuf(struct kue_softc *, struct kue_chain *,struct mbuf *); Static int kue_send(struct kue_softc *, struct mbuf *, int); Static int kue_open_pipes(struct kue_softc *); Static void kue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void kue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void kue_start(struct ifnet *); Static int kue_ioctl(struct ifnet *, u_long, caddr_t); Static void kue_init(void *); Static void kue_stop(struct kue_softc *); Static void kue_watchdog(struct ifnet *); Static void kue_setmulti(struct kue_softc *); Static void kue_reset(struct kue_softc *); Static usbd_status kue_ctl(struct kue_softc *, int, u_int8_t, u_int16_t, void *, u_int32_t); Static usbd_status kue_setword(struct kue_softc *, u_int8_t, u_int16_t); Static int kue_load_fw(struct kue_softc *); Static usbd_status kue_setword(struct kue_softc *sc, u_int8_t breq, u_int16_t word) { usb_device_request_t req; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, word); USETW(req.wIndex, 0); USETW(req.wLength, 0); return (usbd_do_request(sc->kue_udev, &req, NULL)); } Static usbd_status kue_ctl(struct kue_softc *sc, int rw, u_int8_t breq, u_int16_t val, void *data, u_int32_t len) { usb_device_request_t req; DPRINTFN(10,("%s: %s: enter, len=%d\n", USBDEVNAME(sc->kue_dev), __FUNCTION__, len)); if (rw == KUE_CTL_WRITE) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, val); USETW(req.wIndex, 0); USETW(req.wLength, len); return (usbd_do_request(sc->kue_udev, &req, data)); } Static int kue_load_fw(struct kue_softc *sc) { usb_device_descriptor_t dd; usbd_status err; DPRINTFN(1,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); /* * First, check if we even need to load the firmware. * If the device was still attached when the system was * rebooted, it may already have firmware loaded in it. * If this is the case, we don't need to do it again. * And in fact, if we try to load it again, we'll hang, * so we have to avoid this condition if we don't want * to look stupid. * * We can test this quickly by checking the bcdRevision * code. The NIC will return a different revision code if * it's probed while the firmware is still loaded and * running. */ if (usbd_get_device_desc(sc->kue_udev, &dd)) return (EIO); if (UGETW(dd.bcdDevice) == KUE_WARM_REV) { printf("%s: warm boot, no firmware download\n", USBDEVNAME(sc->kue_dev)); return (0); } printf("%s: cold boot, downloading firmware\n", USBDEVNAME(sc->kue_dev)); /* Load code segment */ DPRINTFN(1,("%s: kue_load_fw: download code_seg\n", USBDEVNAME(sc->kue_dev))); err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, (void *)kue_code_seg, sizeof(kue_code_seg)); if (err) { printf("%s: failed to load code segment: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); return (EIO); } /* Load fixup segment */ DPRINTFN(1,("%s: kue_load_fw: download fix_seg\n", USBDEVNAME(sc->kue_dev))); err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, (void *)kue_fix_seg, sizeof(kue_fix_seg)); if (err) { printf("%s: failed to load fixup segment: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); return (EIO); } /* Send trigger command. */ DPRINTFN(1,("%s: kue_load_fw: download trig_seg\n", USBDEVNAME(sc->kue_dev))); err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, (void *)kue_trig_seg, sizeof(kue_trig_seg)); if (err) { printf("%s: failed to load trigger segment: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); return (EIO); } usbd_delay_ms(sc->kue_udev, 10); /* * Reload device descriptor. * Why? The chip without the firmware loaded returns * one revision code. The chip with the firmware * loaded and running returns a *different* revision * code. This confuses the quirk mechanism, which is * dependent on the revision data. */ (void)usbd_reload_device_desc(sc->kue_udev); DPRINTFN(1,("%s: %s: done\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); /* Reset the adapter. */ kue_reset(sc); return (0); } Static void kue_setmulti(struct kue_softc *sc) { struct ifnet *ifp = GET_IFP(sc); struct ether_multi *enm; struct ether_multistep step; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); if (ifp->if_flags & IFF_PROMISC) { allmulti: ifp->if_flags |= IFF_ALLMULTI; sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI; sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); return; } sc->kue_rxfilt &= ~KUE_RXFILT_ALLMULTI; i = 0; #if defined (__NetBSD__) ETHER_FIRST_MULTI(step, &sc->kue_ec, enm); #else ETHER_FIRST_MULTI(step, &sc->arpcom, enm); #endif while (enm != NULL) { if (i == KUE_MCFILTCNT(sc) || memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; memcpy(KUE_MCFILT(sc, i), enm->enm_addrlo, ETHER_ADDR_LEN); ETHER_NEXT_MULTI(step, enm); i++; } ifp->if_flags &= ~IFF_ALLMULTI; sc->kue_rxfilt |= KUE_RXFILT_MULTICAST; kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS, i, sc->kue_mcfilters, i * ETHER_ADDR_LEN); kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } /* * Issue a SET_CONFIGURATION command to reset the MAC. This should be * done after the firmware is loaded into the adapter in order to * bring it into proper operation. */ Static void kue_reset(struct kue_softc *sc) { usbd_status err; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); err = usbd_set_config_no(sc->kue_udev, KUE_CONFIG_NO, 1); if (err) printf("%s: reset failed\n", USBDEVNAME(sc->kue_dev)); /* Wait a little while for the chip to get its brains in order. */ usbd_delay_ms(sc->kue_udev, 10); } /* * Probe for a KLSI chip. */ USB_MATCH(kue) { USB_MATCH_START(kue, uaa); const struct kue_type *t; DPRINTFN(25,("kue_match: enter\n")); if (uaa->iface != NULL) return (UMATCH_NONE); for (t = kue_devs; t->kue_vid != 0; t++) if (uaa->vendor == t->kue_vid && uaa->product == t->kue_did) return (UMATCH_VENDOR_PRODUCT); return (UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do * setup and ethernet/BPF attach. */ USB_ATTACH(kue) { USB_ATTACH_START(kue, sc, uaa); char devinfo[1024]; int s; struct ifnet *ifp; usbd_device_handle dev = uaa->device; usbd_interface_handle iface; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; DPRINTFN(5,(" : kue_attach: sc=%p, dev=%p", sc, dev)); usbd_devinfo(dev, 0, devinfo); USB_ATTACH_SETUP; printf("%s: %s\n", USBDEVNAME(sc->kue_dev), devinfo); err = usbd_set_config_no(dev, KUE_CONFIG_NO, 1); if (err) { printf("%s: setting config no failed\n", USBDEVNAME(sc->kue_dev)); USB_ATTACH_ERROR_RETURN; } sc->kue_udev = dev; sc->kue_product = uaa->product; sc->kue_vendor = uaa->vendor; /* Load the firmware into the NIC. */ if (kue_load_fw(sc)) { printf("%s: loading firmware failed\n", USBDEVNAME(sc->kue_dev)); USB_ATTACH_ERROR_RETURN; } err = usbd_device2interface_handle(dev, KUE_IFACE_IDX, &iface); if (err) { printf("%s: getting interface handle failed\n", USBDEVNAME(sc->kue_dev)); USB_ATTACH_ERROR_RETURN; } sc->kue_iface = iface; id = usbd_get_interface_descriptor(iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(iface, i); if (ed == NULL) { printf("%s: couldn't get ep %d\n", USBDEVNAME(sc->kue_dev), i); USB_ATTACH_ERROR_RETURN; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->kue_ed[KUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->kue_ed[KUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->kue_ed[KUE_ENDPT_INTR] = ed->bEndpointAddress; } } if (sc->kue_ed[KUE_ENDPT_RX] == 0 || sc->kue_ed[KUE_ENDPT_TX] == 0) { printf("%s: missing endpoint\n", USBDEVNAME(sc->kue_dev)); USB_ATTACH_ERROR_RETURN; } /* Read ethernet descriptor */ err = kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR, 0, &sc->kue_desc, sizeof(sc->kue_desc)); if (err) { printf("%s: could not read Ethernet descriptor\n", USBDEVNAME(sc->kue_dev)); USB_ATTACH_ERROR_RETURN; } sc->kue_mcfilters = malloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN, M_USBDEV, M_NOWAIT); if (sc->kue_mcfilters == NULL) { printf("%s: no memory for multicast filter buffer\n", USBDEVNAME(sc->kue_dev)); USB_ATTACH_ERROR_RETURN; } s = splnet(); /* * A KLSI chip was detected. Inform the world. */ printf("%s: Ethernet address %s\n", USBDEVNAME(sc->kue_dev), ether_sprintf(sc->kue_desc.kue_macaddr)); #if defined(__OpenBSD__) bcopy(sc->kue_desc.kue_macaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); #endif /* Initialize interface info.*/ ifp = GET_IFP(sc); ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = kue_ioctl; ifp->if_start = kue_start; ifp->if_watchdog = kue_watchdog; strncpy(ifp->if_xname, USBDEVNAME(sc->kue_dev), IFNAMSIZ); IFQ_SET_READY(&ifp->if_snd); /* Attach the interface. */ if_attach(ifp); Ether_ifattach(ifp, sc->kue_desc.kue_macaddr); #if NRND > 0 rnd_attach_source(&sc->rnd_source, USBDEVNAME(sc->kue_dev), RND_TYPE_NET, 0); #endif sc->kue_attached = 1; splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->kue_udev, USBDEV(sc->kue_dev)); USB_ATTACH_SUCCESS_RETURN; } USB_DETACH(kue) { USB_DETACH_START(kue, sc); struct ifnet *ifp = GET_IFP(sc); int s; s = splusb(); /* XXX why? */ if (sc->kue_mcfilters != NULL) { free(sc->kue_mcfilters, M_USBDEV); sc->kue_mcfilters = NULL; } if (!sc->kue_attached) { /* Detached before attached finished, so just bail out. */ splx(s); return (0); } if (ifp->if_flags & IFF_RUNNING) kue_stop(sc); #if defined(__NetBSD__) #if NRND > 0 rnd_detach_source(&sc->rnd_source); #endif #if NBPFILTER > 0 bpfdetach(ifp); #endif #endif /* __NetBSD__ */ ether_ifdetach(ifp); if_detach(ifp); #ifdef DIAGNOSTIC if (sc->kue_ep[KUE_ENDPT_TX] != NULL || sc->kue_ep[KUE_ENDPT_RX] != NULL || sc->kue_ep[KUE_ENDPT_INTR] != NULL) printf("%s: detach has active endpoints\n", USBDEVNAME(sc->kue_dev)); #endif sc->kue_attached = 0; splx(s); return (0); } int kue_activate(device_ptr_t self, enum devact act) { struct kue_softc *sc = (struct kue_softc *)self; DPRINTFN(2,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); switch (act) { case DVACT_ACTIVATE: return (EOPNOTSUPP); break; case DVACT_DEACTIVATE: #if defined(__NetBSD__) /* Deactivate the interface. */ if_deactivate(&sc->kue_ec.ec_if); #endif sc->kue_dying = 1; break; } return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ Static int kue_newbuf(struct kue_softc *sc, struct kue_chain *c, struct mbuf *m) { struct mbuf *m_new = NULL; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for rx list " "-- packet dropped!\n", USBDEVNAME(sc->kue_dev)); return (ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("%s: no memory for rx list " "-- packet dropped!\n", USBDEVNAME(sc->kue_dev)); m_freem(m_new); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } c->kue_mbuf = m_new; return (0); } Static int kue_rx_list_init(struct kue_softc *sc) { struct kue_cdata *cd; struct kue_chain *c; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); cd = &sc->kue_cdata; for (i = 0; i < KUE_RX_LIST_CNT; i++) { c = &cd->kue_rx_chain[i]; c->kue_sc = sc; c->kue_idx = i; if (kue_newbuf(sc, c, NULL) == ENOBUFS) return (ENOBUFS); if (c->kue_xfer == NULL) { c->kue_xfer = usbd_alloc_xfer(sc->kue_udev); if (c->kue_xfer == NULL) return (ENOBUFS); c->kue_buf = usbd_alloc_buffer(c->kue_xfer, KUE_BUFSZ); if (c->kue_buf == NULL) return (ENOBUFS); /* XXX free xfer */ } } return (0); } Static int kue_tx_list_init(struct kue_softc *sc) { struct kue_cdata *cd; struct kue_chain *c; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); cd = &sc->kue_cdata; for (i = 0; i < KUE_TX_LIST_CNT; i++) { c = &cd->kue_tx_chain[i]; c->kue_sc = sc; c->kue_idx = i; c->kue_mbuf = NULL; if (c->kue_xfer == NULL) { c->kue_xfer = usbd_alloc_xfer(sc->kue_udev); if (c->kue_xfer == NULL) return (ENOBUFS); c->kue_buf = usbd_alloc_buffer(c->kue_xfer, KUE_BUFSZ); if (c->kue_buf == NULL) return (ENOBUFS); } } return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ Static void kue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct kue_chain *c = priv; struct kue_softc *sc = c->kue_sc; struct ifnet *ifp = GET_IFP(sc); struct mbuf *m; int total_len = 0; int s; DPRINTFN(10,("%s: %s: enter status=%d\n", USBDEVNAME(sc->kue_dev), __FUNCTION__, status)); if (sc->kue_dying) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; sc->kue_rx_errs++; if (usbd_ratecheck(&sc->kue_rx_notice)) { printf("%s: %u usb errors on rx: %s\n", USBDEVNAME(sc->kue_dev), sc->kue_rx_errs, usbd_errstr(status)); sc->kue_rx_errs = 0; } if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); DPRINTFN(10,("%s: %s: total_len=%d len=%d\n", USBDEVNAME(sc->kue_dev), __FUNCTION__, total_len, UGETW(mtod(c->kue_mbuf, u_int8_t *)))); if (total_len <= 1) goto done; m = c->kue_mbuf; /* copy data to mbuf */ memcpy(mtod(m, char*), c->kue_buf, total_len); /* No errors; receive the packet. */ total_len = UGETW(mtod(m, u_int8_t *)); m_adj(m, sizeof(u_int16_t)); if (total_len < sizeof(struct ether_header)) { ifp->if_ierrors++; goto done; } ifp->if_ipackets++; m->m_pkthdr.len = m->m_len = total_len; m->m_pkthdr.rcvif = ifp; s = splnet(); /* XXX ugly */ if (kue_newbuf(sc, c, NULL) == ENOBUFS) { ifp->if_ierrors++; goto done1; } #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (ifp->if_bpf) BPF_MTAP(ifp, m); #endif DPRINTFN(10,("%s: %s: deliver %d\n", USBDEVNAME(sc->kue_dev), __FUNCTION__, m->m_len)); IF_INPUT(ifp, m); done1: splx(s); done: /* Setup new transfer. */ usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, c->kue_buf, KUE_BUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, kue_rxeof); usbd_transfer(c->kue_xfer); DPRINTFN(10,("%s: %s: start rx\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ Static void kue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct kue_chain *c = priv; struct kue_softc *sc = c->kue_sc; struct ifnet *ifp = GET_IFP(sc); int s; if (sc->kue_dying) return; s = splnet(); DPRINTFN(10,("%s: %s: enter status=%d\n", USBDEVNAME(sc->kue_dev), __FUNCTION__, status)); ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; printf("%s: usb error on tx: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->kue_ep[KUE_ENDPT_TX]); splx(s); return; } ifp->if_opackets++; m_freem(c->kue_mbuf); c->kue_mbuf = NULL; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) kue_start(ifp); splx(s); } Static int kue_send(struct kue_softc *sc, struct mbuf *m, int idx) { int total_len; struct kue_chain *c; usbd_status err; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); c = &sc->kue_cdata.kue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->kue_buf + 2); c->kue_mbuf = m; total_len = m->m_pkthdr.len + 2; /* XXX what's this? */ total_len += 64 - (total_len % 64); /* Frame length is specified in the first 2 bytes of the buffer. */ c->kue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->kue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_TX], c, c->kue_buf, total_len, USBD_NO_COPY, USBD_DEFAULT_TIMEOUT, kue_txeof); /* Transmit */ err = usbd_transfer(c->kue_xfer); if (err != USBD_IN_PROGRESS) { printf("%s: kue_send error=%s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); kue_stop(sc); return (EIO); } sc->kue_cdata.kue_tx_cnt++; return (0); } Static void kue_start(struct ifnet *ifp) { struct kue_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); if (sc->kue_dying) return; if (ifp->if_flags & IFF_OACTIVE) return; IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) return; if (kue_send(sc, m_head, 0)) { ifp->if_flags |= IFF_OACTIVE; return; } IFQ_DEQUEUE(&ifp->if_snd, m_head); #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) BPF_MTAP(ifp, m_head); #endif ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 6; } Static void kue_init(void *xsc) { struct kue_softc *sc = xsc; struct ifnet *ifp = GET_IFP(sc); int s; u_char *eaddr; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); if (ifp->if_flags & IFF_RUNNING) return; s = splnet(); #if defined(__NetBSD__) eaddr = LLADDR(ifp->if_sadl); #else eaddr = sc->arpcom.ac_enaddr; #endif /* defined(__NetBSD__) */ /* Set MAC address */ kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, eaddr, ETHER_ADDR_LEN); sc->kue_rxfilt = KUE_RXFILT_UNICAST | KUE_RXFILT_BROADCAST; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); /* I'm not sure how to tune these. */ #if 0 /* * Leave this one alone for now; setting it * wrong causes lockups on some machines/controllers. */ kue_setword(sc, KUE_CMD_SET_SOFS, 1); #endif kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64); /* Init TX ring. */ if (kue_tx_list_init(sc) == ENOBUFS) { printf("%s: tx list init failed\n", USBDEVNAME(sc->kue_dev)); splx(s); return; } /* Init RX ring. */ if (kue_rx_list_init(sc) == ENOBUFS) { printf("%s: rx list init failed\n", USBDEVNAME(sc->kue_dev)); splx(s); return; } /* Load the multicast filter. */ kue_setmulti(sc); if (sc->kue_ep[KUE_ENDPT_RX] == NULL) { if (kue_open_pipes(sc)) { splx(s); return; } } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); } Static int kue_open_pipes(struct kue_softc *sc) { usbd_status err; struct kue_chain *c; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("%s: open rx pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); return (EIO); } err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("%s: open tx pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); return (EIO); } /* Start up the receive pipe. */ for (i = 0; i < KUE_RX_LIST_CNT; i++) { c = &sc->kue_cdata.kue_rx_chain[i]; usbd_setup_xfer(c->kue_xfer, sc->kue_ep[KUE_ENDPT_RX], c, c->kue_buf, KUE_BUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, kue_rxeof); DPRINTFN(5,("%s: %s: start read\n", USBDEVNAME(sc->kue_dev), __FUNCTION__)); usbd_transfer(c->kue_xfer); } return (0); } Static int kue_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct kue_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); if (sc->kue_dying) return (EIO); #ifdef DIAGNOSTIC if (!curproc) { printf("%s: no proc!!\n", USBDEVNAME(sc->kue_dev)); return EIO; } #endif s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; kue_init(sc); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: #if defined(__NetBSD__) arp_ifinit(ifp, ifa); #else arp_ifinit(&sc->arpcom, ifa); #endif break; #endif /* INET */ #ifdef NS case AF_NS: { struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *) LLADDR(ifp->if_sadl); else memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host, ifp->if_addrlen); break; } #endif /* NS */ } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->kue_if_flags & IFF_PROMISC)) { sc->kue_rxfilt |= KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->kue_if_flags & IFF_PROMISC) { sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC; kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } else if (!(ifp->if_flags & IFF_RUNNING)) kue_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) kue_stop(sc); } sc->kue_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: kue_setmulti(sc); error = 0; break; default: error = EINVAL; break; } splx(s); return (error); } Static void kue_watchdog(struct ifnet *ifp) { struct kue_softc *sc = ifp->if_softc; struct kue_chain *c; usbd_status stat; int s; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); if (sc->kue_dying) return; ifp->if_oerrors++; printf("%s: watchdog timeout\n", USBDEVNAME(sc->kue_dev)); s = splusb(); c = &sc->kue_cdata.kue_tx_chain[0]; usbd_get_xfer_status(c->kue_xfer, NULL, NULL, NULL, &stat); kue_txeof(c->kue_xfer, c, stat); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) kue_start(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ Static void kue_stop(struct kue_softc *sc) { usbd_status err; struct ifnet *ifp; int i; DPRINTFN(5,("%s: %s: enter\n", USBDEVNAME(sc->kue_dev),__FUNCTION__)); ifp = GET_IFP(sc); ifp->if_timer = 0; /* Stop transfers. */ if (sc->kue_ep[KUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("%s: abort rx pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_RX]); if (err) { printf("%s: close rx pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_RX] = NULL; } if (sc->kue_ep[KUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("%s: abort tx pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_TX]); if (err) { printf("%s: close tx pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_TX] = NULL; } if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { printf("%s: abort intr pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_INTR]); if (err) { printf("%s: close intr pipe failed: %s\n", USBDEVNAME(sc->kue_dev), usbd_errstr(err)); } sc->kue_ep[KUE_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < KUE_RX_LIST_CNT; i++) { if (sc->kue_cdata.kue_rx_chain[i].kue_mbuf != NULL) { m_freem(sc->kue_cdata.kue_rx_chain[i].kue_mbuf); sc->kue_cdata.kue_rx_chain[i].kue_mbuf = NULL; } if (sc->kue_cdata.kue_rx_chain[i].kue_xfer != NULL) { usbd_free_xfer(sc->kue_cdata.kue_rx_chain[i].kue_xfer); sc->kue_cdata.kue_rx_chain[i].kue_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < KUE_TX_LIST_CNT; i++) { if (sc->kue_cdata.kue_tx_chain[i].kue_mbuf != NULL) { m_freem(sc->kue_cdata.kue_tx_chain[i].kue_mbuf); sc->kue_cdata.kue_tx_chain[i].kue_mbuf = NULL; } if (sc->kue_cdata.kue_tx_chain[i].kue_xfer != NULL) { usbd_free_xfer(sc->kue_cdata.kue_tx_chain[i].kue_xfer); sc->kue_cdata.kue_tx_chain[i].kue_xfer = NULL; } } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); }