/* $OpenBSD: if_mtw.c,v 1.3 2021/12/30 15:09:49 kevlo Exp $ */ /* * Copyright (c) 2008-2010 Damien Bergamini * Copyright (c) 2013-2014 Kevin Lo * Copyright (c) 2021 James Hastings * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * MediaTek MT7601U 802.11b/g/n WLAN. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MTW_DEBUG #define DPRINTF(x) do { if (mtw_debug) printf x; } while (0) #define DPRINTFN(n, x) do { if (mtw_debug >= (n)) printf x; } while (0) int mtw_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif #define USB_ID(v, p) { USB_VENDOR_##v, USB_PRODUCT_##v##_##p } static const struct usb_devno mtw_devs[] = { USB_ID(ASUS, USBN10V2), USB_ID(AZUREWAVE, MT7601_1), USB_ID(AZUREWAVE, MT7601_2), USB_ID(DLINK, DWA127B1), USB_ID(EDIMAX, EW7711UANV2), USB_ID(MEDIATEK, MT7601_1), USB_ID(MEDIATEK, MT7601_2), USB_ID(RALINK, MT7601), USB_ID(RALINK, MT7601_2), USB_ID(RALINK, MT7601_3), USB_ID(RALINK, MT7601_4), USB_ID(RALINK, MT7601_5), USB_ID(XIAOMI, MT7601U), }; int mtw_match(struct device *, void *, void *); void mtw_attach(struct device *, struct device *, void *); int mtw_detach(struct device *, int); void mtw_attachhook(struct device *); int mtw_alloc_rx_ring(struct mtw_softc *, int); void mtw_free_rx_ring(struct mtw_softc *, int); int mtw_alloc_tx_ring(struct mtw_softc *, int); void mtw_free_tx_ring(struct mtw_softc *, int); int mtw_alloc_mcu_ring(struct mtw_softc *); void mtw_free_mcu_ring(struct mtw_softc *); int mtw_ucode_write(struct mtw_softc *, const uint8_t *, uint32_t, uint32_t); void mtw_ucode_setup(struct mtw_softc *); int mtw_load_microcode(struct mtw_softc *); int mtw_reset(struct mtw_softc *); int mtw_read(struct mtw_softc *, uint16_t, uint32_t *); int mtw_read_cfg(struct mtw_softc *, uint16_t, uint32_t *); int mtw_read_region_1(struct mtw_softc *, uint16_t, uint8_t *, int); int mtw_write_2(struct mtw_softc *, uint16_t, uint16_t); int mtw_write(struct mtw_softc *, uint16_t, uint32_t); int mtw_write_cfg(struct mtw_softc *, uint16_t, uint32_t); int mtw_write_ivb(struct mtw_softc *, const uint8_t *, uint16_t); int mtw_write_region_1(struct mtw_softc *, uint16_t, uint8_t *, int); int mtw_set_region_4(struct mtw_softc *, uint16_t, uint32_t, int); int mtw_efuse_read_2(struct mtw_softc *, uint16_t, uint16_t *); int mtw_eeprom_read_2(struct mtw_softc *, uint16_t, uint16_t *); int mtw_rf_read(struct mtw_softc *, uint8_t, uint8_t, uint8_t *); int mtw_rf_write(struct mtw_softc *, uint8_t, uint8_t, uint8_t); int mtw_bbp_read(struct mtw_softc *, uint8_t, uint8_t *); int mtw_bbp_write(struct mtw_softc *, uint8_t, uint8_t); int mtw_usb_dma_read(struct mtw_softc *, uint32_t *); int mtw_usb_dma_write(struct mtw_softc *, uint32_t); int mtw_mcu_calibrate(struct mtw_softc *, int, uint32_t); int mtw_mcu_channel(struct mtw_softc *, uint32_t, uint32_t, uint32_t); int mtw_mcu_radio(struct mtw_softc *, int, uint32_t); int mtw_mcu_cmd(struct mtw_softc *, int, void *, int); const char * mtw_get_rf(int); void mtw_get_txpower(struct mtw_softc *); int mtw_read_eeprom(struct mtw_softc *); struct ieee80211_node *mtw_node_alloc(struct ieee80211com *); int mtw_media_change(struct ifnet *); void mtw_next_scan(void *); void mtw_task(void *); void mtw_do_async(struct mtw_softc *, void (*)(struct mtw_softc *, void *), void *, int); int mtw_newstate(struct ieee80211com *, enum ieee80211_state, int); void mtw_newstate_cb(struct mtw_softc *, void *); void mtw_updateedca(struct ieee80211com *); void mtw_updateedca_cb(struct mtw_softc *, void *); void mtw_updateslot(struct ieee80211com *); void mtw_updateslot_cb(struct mtw_softc *, void *); int mtw_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void mtw_set_key_cb(struct mtw_softc *, void *); void mtw_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void mtw_delete_key_cb(struct mtw_softc *, void *); void mtw_calibrate_to(void *); void mtw_calibrate_cb(struct mtw_softc *, void *); void mtw_newassoc(struct ieee80211com *, struct ieee80211_node *, int); void mtw_rx_frame(struct mtw_softc *, uint8_t *, int, struct mbuf_list *); void mtw_rxeof(struct usbd_xfer *, void *, usbd_status); void mtw_txeof(struct usbd_xfer *, void *, usbd_status); int mtw_tx(struct mtw_softc *, struct mbuf *, struct ieee80211_node *); void mtw_start(struct ifnet *); void mtw_watchdog(struct ifnet *); int mtw_ioctl(struct ifnet *, u_long, caddr_t); void mtw_select_chan_group(struct mtw_softc *, int); void mt7601_set_agc(struct mtw_softc *, uint8_t); void mt7601_set_chan(struct mtw_softc *, u_int); int mtw_set_chan(struct mtw_softc *, struct ieee80211_channel *); void mtw_enable_tsf_sync(struct mtw_softc *); void mtw_abort_tsf_sync(struct mtw_softc *); void mtw_enable_mrr(struct mtw_softc *); void mtw_set_txrts(struct mtw_softc *); void mtw_set_txpreamble(struct mtw_softc *); void mtw_set_basicrates(struct mtw_softc *); void mtw_set_leds(struct mtw_softc *, uint16_t); void mtw_set_bssid(struct mtw_softc *, const uint8_t *); void mtw_set_macaddr(struct mtw_softc *, const uint8_t *); #if NBPFILTER > 0 int8_t mtw_rssi2dbm(struct mtw_softc *, uint8_t, uint8_t); #endif int mt7601_bbp_init(struct mtw_softc *); int mt7601_rf_init(struct mtw_softc *); int mt7601_rf_setup(struct mtw_softc *); int mt7601_rf_temperature(struct mtw_softc *, int8_t *); int mt7601_r49_read(struct mtw_softc *, uint8_t, int8_t *); int mt7601_rxdc_cal(struct mtw_softc *); int mtw_wlan_enable(struct mtw_softc *, int); int mtw_txrx_enable(struct mtw_softc *); int mtw_init(struct ifnet *); void mtw_stop(struct ifnet *, int); struct cfdriver mtw_cd = { NULL, "mtw", DV_IFNET }; const struct cfattach mtw_ca = { sizeof (struct mtw_softc), mtw_match, mtw_attach, mtw_detach }; static const struct { uint32_t reg; uint32_t val; } mt7601_def_mac[] = { MT7601_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } mt7601_def_bbp[] = { MT7601_DEF_BBP }; static const struct { u_int chan; uint8_t r17, r18, r19, r20; } mt7601_rf_chan[] = { MT7601_RF_CHAN }; static const struct { uint8_t reg; uint8_t val; } mt7601_rf_bank0[] = { MT7601_BANK0_RF },mt7601_rf_bank4[] = { MT7601_BANK4_RF },mt7601_rf_bank5[] = { MT7601_BANK5_RF }; int mtw_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface == NULL || uaa->configno != 1) return UMATCH_NONE; return (usb_lookup(mtw_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE; } void mtw_attach(struct device *parent, struct device *self, void *aux) { struct mtw_softc *sc = (struct mtw_softc *)self; struct usb_attach_arg *uaa = aux; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i, error, nrx, ntx, ntries; uint32_t ver; sc->sc_udev = uaa->device; sc->sc_iface = uaa->iface; /* * Find all bulk endpoints. */ nrx = ntx = 0; id = usbd_get_interface_descriptor(sc->sc_iface); for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK) continue; if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) { sc->rxq[nrx].pipe_no = ed->bEndpointAddress; nrx++; } else if (ntx < 6) { if (ntx == 0) sc->txq[MTW_TXQ_MCU].pipe_no = ed->bEndpointAddress; else sc->txq[ntx - 1].pipe_no = ed->bEndpointAddress; ntx++; } } /* make sure we've got them all */ if (nrx < 2 || ntx < 6) { printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); return; } /* wait for the chip to settle */ for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_ASIC_VER, &ver)) != 0) return; if (ver != 0 && ver != 0xffffffff) break; DPRINTF(("%08x ", ver)); DELAY(10); } if (ntries == 100) { printf("%s: timeout waiting for NIC to initialize\n", sc->sc_dev.dv_xname); return; } sc->asic_ver = ver >> 16; sc->asic_rev = ver & 0xffff; usb_init_task(&sc->sc_task, mtw_task, sc, USB_TASK_TYPE_GENERIC); timeout_set(&sc->scan_to, mtw_next_scan, sc); timeout_set(&sc->calib_to, mtw_calibrate_to, sc); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; config_mountroot(self, mtw_attachhook); } int mtw_detach(struct device *self, int flags) { struct mtw_softc *sc = (struct mtw_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int qid, s; s = splusb(); if (timeout_initialized(&sc->scan_to)) timeout_del(&sc->scan_to); if (timeout_initialized(&sc->calib_to)) timeout_del(&sc->calib_to); /* wait for all queued asynchronous commands to complete */ usb_rem_wait_task(sc->sc_udev, &sc->sc_task); usbd_ref_wait(sc->sc_udev); if (ifp->if_softc != NULL) { ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); ieee80211_ifdetach(ifp); if_detach(ifp); } /* free rings and close pipes */ mtw_free_mcu_ring(sc); for (qid = 0; qid < MTW_TXQ_COUNT; qid++) mtw_free_tx_ring(sc, qid); mtw_free_rx_ring(sc, 0); mtw_free_rx_ring(sc, 1); splx(s); return 0; } void mtw_attachhook(struct device *self) { struct mtw_softc *sc = (struct mtw_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; uint32_t tmp; int ntries, error, i; if (usbd_is_dying(sc->sc_udev)) return; /* enable WLAN core */ if ((error = mtw_wlan_enable(sc, 1)) != 0) { printf("%s: could not enable WLAN core\n", sc->sc_dev.dv_xname); return; } /* load firmware */ if ((error = mtw_load_microcode(sc)) != 0) { printf("%s: could not load microcode\n", sc->sc_dev.dv_xname); goto fail; } mtw_usb_dma_read(sc, &tmp); mtw_usb_dma_write(sc, tmp | (MTW_USB_RX_EN | MTW_USB_TX_EN)); /* read MAC version */ for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_MAC_VER_ID, &tmp)) != 0) goto fail; if (tmp != 0 && tmp != 0xffffffff) break; DELAY(10); } if (ntries == 100) { printf("%s: failed reading MAC\n", sc->sc_dev.dv_xname); goto fail; } sc->mac_ver = tmp >> 16; sc->mac_rev = tmp & 0xffff; /* retrieve RF rev. no and various other things from EEPROM */ mtw_read_eeprom(sc); printf("%s: MAC/BBP MT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), " "address %s\n", sc->sc_dev.dv_xname, sc->mac_ver, sc->mac_rev, mtw_get_rf(sc->rf_rev), sc->ntxchains, sc->nrxchains, ether_sprintf(ic->ic_myaddr)); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* WEP */ IEEE80211_C_RSN; /* WPA/RSN */ /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = mtw_ioctl; ifp->if_start = mtw_start; ifp->if_watchdog = mtw_watchdog; memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = mtw_node_alloc; ic->ic_newassoc = mtw_newassoc; ic->ic_updateslot = mtw_updateslot; ic->ic_updateedca = mtw_updateedca; ic->ic_set_key = mtw_set_key; ic->ic_delete_key = mtw_delete_key; /* override 802.11 state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = mtw_newstate; ieee80211_media_init(ifp, mtw_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(MTW_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(MTW_TX_RADIOTAP_PRESENT); #endif fail: return; } int mtw_alloc_rx_ring(struct mtw_softc *sc, int qid) { struct mtw_rx_ring *rxq = &sc->rxq[qid]; int i, error; if ((error = usbd_open_pipe(sc->sc_iface, rxq->pipe_no, 0, &rxq->pipeh)) != 0) goto fail; for (i = 0; i < MTW_RX_RING_COUNT; i++) { struct mtw_rx_data *data = &rxq->data[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_RXSZ); if (data->buf == NULL) { error = ENOMEM; goto fail; } } if (error != 0) fail: mtw_free_rx_ring(sc, 0); return error; } void mtw_free_rx_ring(struct mtw_softc *sc, int qid) { struct mtw_rx_ring *rxq = &sc->rxq[qid]; int i; if (rxq->pipeh != NULL) { usbd_close_pipe(rxq->pipeh); rxq->pipeh = NULL; } for (i = 0; i < MTW_RX_RING_COUNT; i++) { if (rxq->data[i].xfer != NULL) usbd_free_xfer(rxq->data[i].xfer); rxq->data[i].xfer = NULL; } } int mtw_alloc_tx_ring(struct mtw_softc *sc, int qid) { struct mtw_tx_ring *txq = &sc->txq[qid]; int i, error; uint16_t txwisize; txwisize = sizeof(struct mtw_txwi); txq->cur = txq->queued = 0; if ((error = usbd_open_pipe(sc->sc_iface, txq->pipe_no, 0, &txq->pipeh)) != 0) goto fail; for (i = 0; i < MTW_TX_RING_COUNT; i++) { struct mtw_tx_data *data = &txq->data[i]; data->sc = sc; /* backpointer for callbacks */ data->qid = qid; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_TXSZ); if (data->buf == NULL) { error = ENOMEM; goto fail; } /* zeroize the TXD + TXWI part */ memset(data->buf, 0, MTW_MAX_TXSZ); } if (error != 0) fail: mtw_free_tx_ring(sc, qid); return error; } void mtw_free_tx_ring(struct mtw_softc *sc, int qid) { struct mtw_tx_ring *txq = &sc->txq[qid]; int i; if (txq->pipeh != NULL) { usbd_close_pipe(txq->pipeh); txq->pipeh = NULL; } for (i = 0; i < MTW_TX_RING_COUNT; i++) { if (txq->data[i].xfer != NULL) usbd_free_xfer(txq->data[i].xfer); txq->data[i].xfer = NULL; } } int mtw_alloc_mcu_ring(struct mtw_softc *sc) { struct mtw_tx_ring *ring = &sc->sc_mcu; struct mtw_tx_data *data = &ring->data[0]; int error = 0; ring->cur = ring->queued = 0; data->sc = sc; /* backpointer for callbacks */ data->qid = 5; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, MTW_MAX_TXSZ); if (data->buf == NULL) { error = ENOMEM; goto fail; } /* zeroize the TXD */ memset(data->buf, 0, 4); if (error != 0) fail: mtw_free_mcu_ring(sc); return error; } void mtw_free_mcu_ring(struct mtw_softc *sc) { struct mtw_tx_ring *txq = &sc->sc_mcu; if (txq->data[0].xfer != NULL) usbd_free_xfer(txq->data[0].xfer); txq->data[0].xfer = NULL; } int mtw_ucode_write(struct mtw_softc *sc, const uint8_t *fw, uint32_t len, uint32_t offset) { struct mtw_tx_ring *ring = &sc->txq[MTW_TXQ_MCU]; struct usbd_xfer *xfer; struct mtw_txd *txd; uint8_t *buf; uint32_t blksz, sent, tmp, xferlen; int error; blksz = 0x2000; if (sc->asic_ver == 0x7612 && offset >= 0x90000) blksz = 0x800; /* MT7612 ROM Patch */ xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == NULL) { error = ENOMEM; goto fail; } buf = usbd_alloc_buffer(xfer, blksz + 12); if (buf == NULL) { error = ENOMEM; goto fail; } sent = 0; for (;;) { xferlen = min(len - sent, blksz); if (xferlen == 0) break; txd = (struct mtw_txd *)buf; txd->len = htole16(xferlen); txd->flags = htole16(MTW_TXD_DATA | MTW_TXD_MCU); memcpy(buf + sizeof(struct mtw_txd), fw + sent, xferlen); memset(buf + sizeof(struct mtw_txd) + xferlen, 0, MTW_DMA_PAD); mtw_write_cfg(sc, MTW_MCU_DMA_ADDR, offset + sent); mtw_write_cfg(sc, MTW_MCU_DMA_LEN, (xferlen << 16)); usbd_setup_xfer(xfer, ring->pipeh, NULL, buf, xferlen + sizeof(struct mtw_txd) + MTW_DMA_PAD, USBD_SHORT_XFER_OK | USBD_SYNCHRONOUS | USBD_NO_COPY, MTW_TX_TIMEOUT, NULL); if ((error = usbd_transfer(xfer)) != 0) break; mtw_read_cfg(sc, MTW_MCU_DMA_LEN, &tmp); mtw_read(sc, MTW_MCU_FW_IDX, &tmp); mtw_write(sc, MTW_MCU_FW_IDX, tmp++); sent += xferlen; } fail: if (xfer != NULL) { usbd_free_xfer(xfer); xfer = NULL; } return error; } void mtw_ucode_setup(struct mtw_softc *sc) { mtw_usb_dma_write(sc, (MTW_USB_TX_EN | MTW_USB_RX_EN)); mtw_write(sc, MTW_FCE_PSE_CTRL, 1); mtw_write(sc, MTW_TX_CPU_FCE_BASE, 0x400230); mtw_write(sc, MTW_TX_CPU_FCE_MAX_COUNT, 1); mtw_write(sc, MTW_MCU_FW_IDX, 1); mtw_write(sc, MTW_FCE_PDMA, 0x44); mtw_write(sc, MTW_FCE_SKIP_FS, 3); } int mtw_load_microcode(struct mtw_softc *sc) { const struct mtw_ucode_hdr *hdr; const struct mtw_ucode *fw; const char *fwname; u_char *ucode; size_t size; uint32_t tmp, iofs, dofs; int ntries, error; int dlen, ilen; /* is firmware already running? */ mtw_read_cfg(sc, MTW_MCU_DMA_ADDR, &tmp); if (tmp == MTW_MCU_READY) return 0; /* open MCU pipe */ if ((error = usbd_open_pipe(sc->sc_iface, sc->txq[MTW_TXQ_MCU].pipe_no, 0, &sc->txq[MTW_TXQ_MCU].pipeh)) != 0) return error; if (sc->asic_ver == 0x7612) { fwname = "mtw-mt7662u_rom_patch"; if ((error = loadfirmware(fwname, &ucode, &size)) != 0) { printf("%s: failed loadfirmware of file %s (error %d)\n", sc->sc_dev.dv_xname, fwname, error); return error; } fw = (const struct mtw_ucode *) ucode + 0x1e; ilen = size - 0x1e; mtw_ucode_setup(sc); if ((error = mtw_ucode_write(sc, fw->data, ilen, 0x90000)) != 0) goto fail; mtw_read_cfg(sc, 0x0208, &tmp); mtw_usb_dma_write(sc, 0x00e41814); free(ucode, M_DEVBUF, size); } fwname = "mtw-mt7601u"; iofs = 0x40; dofs = 0; if (sc->asic_ver == 0x7612) { fwname = "mtw-mt7662u"; iofs = 0x80040; dofs = 0x110800; } else if (sc->asic_ver == 0x7610) { fwname = "mtw-mt7610u"; dofs = 0x80000; } if ((error = loadfirmware(fwname, &ucode, &size)) != 0) { printf("%s: failed loadfirmware of file %s (error %d)\n", sc->sc_dev.dv_xname, fwname, error); return error; } if (size < sizeof(struct mtw_ucode_hdr)) { printf("%s: firmware header too short\n", sc->sc_dev.dv_xname); goto fail; } fw = (const struct mtw_ucode *) ucode; hdr = (const struct mtw_ucode_hdr *) &fw->hdr; if (size < sizeof(struct mtw_ucode_hdr) + letoh32(hdr->ilm_len) + letoh32(hdr->dlm_len)) { printf("%s: firmware payload too short\n", sc->sc_dev.dv_xname); goto fail; } ilen = le32toh(hdr->ilm_len) - MTW_MCU_IVB_LEN; dlen = le32toh(hdr->dlm_len); if (ilen > size || dlen > size) { printf("%s: firmware payload too large\n", sc->sc_dev.dv_xname); goto fail; } mtw_write(sc, MTW_FCE_PDMA, 0); mtw_write(sc, MTW_FCE_PSE_CTRL, 0); mtw_ucode_setup(sc); if ((error = mtw_ucode_write(sc, fw->data, ilen, iofs)) != 0) goto fail; if (dlen > 0 && dofs > 0) { if ((error = mtw_ucode_write(sc, fw->data + ilen, dlen, dofs)) != 0) goto fail; } /* write interrupt vectors */ if (sc->asic_ver == 0x7612) { /* MT7612 */ if ((error = mtw_ucode_write(sc, fw->ivb, MTW_MCU_IVB_LEN, 0x80000)) != 0) goto fail; mtw_write_cfg(sc, MTW_MCU_DMA_ADDR, 0x00095000); mtw_write_ivb(sc, NULL, 0); } else { /* MT7601/MT7610 */ if ((error = mtw_write_ivb(sc, fw->ivb, MTW_MCU_IVB_LEN)) != 0) goto fail; } /* wait until microcontroller is ready */ usbd_delay_ms(sc->sc_udev, 10); for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read_cfg(sc, MTW_MCU_DMA_ADDR, &tmp)) != 0) return error; if (tmp & MTW_MCU_READY) break; usbd_delay_ms(sc->sc_udev, 100); } if (ntries == 100) { printf("%s: timeout waiting for MCU to initialize\n", sc->sc_dev.dv_xname); error = ETIMEDOUT; } DPRINTF(("%s: loaded firmware ver %d.%d\n", sc->sc_dev.dv_xname, le16toh(hdr->build_ver), le16toh(hdr->fw_ver))); fail: free(ucode, M_DEVBUF, size); usbd_close_pipe(sc->txq[MTW_TXQ_MCU].pipeh); sc->txq[MTW_TXQ_MCU].pipeh = NULL; return error; } int mtw_reset(struct mtw_softc *sc) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = MTW_RESET; USETW(req.wValue, 1); USETW(req.wIndex, 0); USETW(req.wLength, 0); return usbd_do_request(sc->sc_udev, &req, NULL); } int mtw_read(struct mtw_softc *sc, uint16_t reg, uint32_t *val) { uint32_t tmp; int error; error = mtw_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp); if (error == 0) *val = letoh32(tmp); else *val = 0xffffffff; return error; } int mtw_read_cfg(struct mtw_softc *sc, uint16_t reg, uint32_t *val) { usb_device_request_t req; uint32_t tmp; int error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = MTW_READ_CFG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 4); error = usbd_do_request(sc->sc_udev, &req, &tmp); if (error == 0) *val = letoh32(tmp); else *val = 0xffffffff; return error; } int mtw_read_region_1(struct mtw_softc *sc, uint16_t reg, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = MTW_READ_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); return usbd_do_request(sc->sc_udev, &req, buf); } int mtw_write_2(struct mtw_softc *sc, uint16_t reg, uint16_t val) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = MTW_WRITE_2; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); return usbd_do_request(sc->sc_udev, &req, NULL); } int mtw_write(struct mtw_softc *sc, uint16_t reg, uint32_t val) { int error; if ((error = mtw_write_2(sc, reg, val & 0xffff)) == 0) error = mtw_write_2(sc, reg + 2, val >> 16); return error; } int mtw_write_cfg(struct mtw_softc *sc, uint16_t reg, uint32_t val) { usb_device_request_t req; int error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = MTW_WRITE_CFG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 4); error = usbd_do_request(sc->sc_udev, &req, &val); return error; } int mtw_write_ivb(struct mtw_softc *sc, const uint8_t *buf, uint16_t len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = MTW_RESET; USETW(req.wValue, 0x12); USETW(req.wIndex, 0); USETW(req.wLength, len); return usbd_do_request(sc->sc_udev, &req, (void *)buf); } int mtw_write_region_1(struct mtw_softc *sc, uint16_t reg, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = MTW_WRITE_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); return usbd_do_request(sc->sc_udev, &req, buf); } int mtw_set_region_4(struct mtw_softc *sc, uint16_t reg, uint32_t val, int count) { int error = 0; for (; count > 0 && error == 0; count--, reg += 4) error = mtw_write(sc, reg, val); return error; } /* Read 16-bit from eFUSE ROM. */ int mtw_efuse_read_2(struct mtw_softc *sc, uint16_t addr, uint16_t *val) { uint32_t tmp; uint16_t reg; int error, ntries; if ((error = mtw_read(sc, MTW_EFUSE_CTRL, &tmp)) != 0) return error; addr *= 2; /* * Read one 16-byte block into registers EFUSE_DATA[0-3]: * DATA0: 3 2 1 0 * DATA1: 7 6 5 4 * DATA2: B A 9 8 * DATA3: F E D C */ tmp &= ~(MTW_EFSROM_MODE_MASK | MTW_EFSROM_AIN_MASK); tmp |= (addr & ~0xf) << MTW_EFSROM_AIN_SHIFT | MTW_EFSROM_KICK; mtw_write(sc, MTW_EFUSE_CTRL, tmp); for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_EFUSE_CTRL, &tmp)) != 0) return error; if (!(tmp & MTW_EFSROM_KICK)) break; DELAY(2); } if (ntries == 100) return ETIMEDOUT; if ((tmp & MTW_EFUSE_AOUT_MASK) == MTW_EFUSE_AOUT_MASK) { *val = 0xffff; /* address not found */ return 0; } /* determine to which 32-bit register our 16-bit word belongs */ reg = MTW_EFUSE_DATA0 + (addr & 0xc); if ((error = mtw_read(sc, reg, &tmp)) != 0) return error; *val = (addr & 2) ? tmp >> 16 : tmp & 0xffff; return 0; } int mtw_eeprom_read_2(struct mtw_softc *sc, uint16_t addr, uint16_t *val) { usb_device_request_t req; uint16_t tmp; int error; addr *= 2; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = MTW_EEPROM_READ; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, sizeof tmp); error = usbd_do_request(sc->sc_udev, &req, &tmp); if (error == 0) *val = letoh16(tmp); else *val = 0xffff; return error; } static __inline int mtw_srom_read(struct mtw_softc *sc, uint16_t addr, uint16_t *val) { /* either eFUSE ROM or EEPROM */ return sc->sc_srom_read(sc, addr, val); } int mtw_rf_read(struct mtw_softc *sc, uint8_t bank, uint8_t reg, uint8_t *val) { uint32_t tmp; int error, ntries, shift; for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0) return error; if (!(tmp & MTW_RF_CSR_KICK)) break; } if (ntries == 100) return ETIMEDOUT; if (sc->mac_ver == 0x7601) shift = MT7601_BANK_SHIFT; else shift = MT7610_BANK_SHIFT; tmp = MTW_RF_CSR_KICK | (bank & 0xf) << shift | reg << 8; if ((error = mtw_write(sc, MTW_RF_CSR, tmp)) != 0) return error; for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0) return error; if (!(tmp & MTW_RF_CSR_KICK)) break; } if (ntries == 100) return ETIMEDOUT; *val = tmp & 0xff; return 0; } int mtw_rf_write(struct mtw_softc *sc, uint8_t bank, uint8_t reg, uint8_t val) { uint32_t tmp; int error, ntries, shift; for (ntries = 0; ntries < 10; ntries++) { if ((error = mtw_read(sc, MTW_RF_CSR, &tmp)) != 0) return error; if (!(tmp & MTW_RF_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; if (sc->mac_ver == 0x7601) shift = MT7601_BANK_SHIFT; else shift = MT7610_BANK_SHIFT; tmp = MTW_RF_CSR_WRITE | MTW_RF_CSR_KICK | (bank & 0xf) << shift | reg << 8 | val; return mtw_write(sc, MTW_RF_CSR, tmp); } int mtw_bbp_read(struct mtw_softc *sc, uint8_t reg, uint8_t *val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0) return error; if (!(tmp & MTW_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = MTW_BBP_CSR_READ | MTW_BBP_CSR_KICK | reg << MTW_BBP_ADDR_SHIFT; if ((error = mtw_write(sc, MTW_BBP_CSR, tmp)) != 0) return error; for (ntries = 0; ntries < 10; ntries++) { if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0) return error; if (!(tmp & MTW_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; *val = tmp & 0xff; return 0; } int mtw_bbp_write(struct mtw_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = mtw_read(sc, MTW_BBP_CSR, &tmp)) != 0) return error; if (!(tmp & MTW_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = MTW_BBP_CSR_KICK | reg << MTW_BBP_ADDR_SHIFT | val; return mtw_write(sc, MTW_BBP_CSR, tmp); } int mtw_usb_dma_read(struct mtw_softc *sc, uint32_t *val) { if (sc->asic_ver == 0x7612) return mtw_read_cfg(sc, MTW_USB_U3DMA_CFG, val); else return mtw_read(sc, MTW_USB_DMA_CFG, val); } int mtw_usb_dma_write(struct mtw_softc *sc, uint32_t val) { if (sc->asic_ver == 0x7612) return mtw_write_cfg(sc, MTW_USB_U3DMA_CFG, val); else return mtw_write(sc, MTW_USB_DMA_CFG, val); } int mtw_mcu_calibrate(struct mtw_softc *sc, int func, uint32_t val) { struct mtw_mcu_cmd_8 cmd; cmd.func = htole32(func); cmd.val = htole32(val); return mtw_mcu_cmd(sc, 31, &cmd, sizeof(struct mtw_mcu_cmd_8)); } int mtw_mcu_channel(struct mtw_softc *sc, uint32_t r1, uint32_t r2, uint32_t r4) { struct mtw_mcu_cmd_16 cmd; cmd.r1 = htole32(r1); cmd.r2 = htole32(r2); cmd.r3 = 0; cmd.r4 = htole32(r4); return mtw_mcu_cmd(sc, 30, &cmd, sizeof(struct mtw_mcu_cmd_16)); } int mtw_mcu_radio(struct mtw_softc *sc, int func, uint32_t val) { struct mtw_mcu_cmd_16 cmd; cmd.r1 = htole32(func); cmd.r2 = htole32(val); cmd.r3 = 0; cmd.r4 = 0; return mtw_mcu_cmd(sc, 20, &cmd, sizeof(struct mtw_mcu_cmd_16)); } int mtw_mcu_cmd(struct mtw_softc *sc, int cmd, void *buf, int len) { struct mtw_tx_ring *ring = &sc->sc_mcu; struct mtw_tx_data *data = &ring->data[0]; struct mtw_txd *txd; int xferlen; txd = (struct mtw_txd *)(data->buf); txd->len = htole16(len); txd->flags = htole16(MTW_TXD_CMD | MTW_TXD_MCU | (cmd & 0x1f) << MTW_TXD_CMD_SHIFT | (sc->cmd_seq & 0xf)); memcpy(&txd[1], buf, len); memset(&txd[1] + len, 0, MTW_DMA_PAD); xferlen = len + sizeof(struct mtw_txd) + MTW_DMA_PAD; usbd_setup_xfer(data->xfer, sc->txq[MTW_TXQ_MCU].pipeh, NULL, data->buf, xferlen, USBD_SHORT_XFER_OK | USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, MTW_TX_TIMEOUT, NULL); return usbd_transfer(data->xfer); } /* * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. * Used to adjust per-rate Tx power registers. */ static __inline uint32_t b4inc(uint32_t b32, int8_t delta) { int8_t i, b4; for (i = 0; i < 8; i++) { b4 = b32 & 0xf; b4 += delta; if (b4 < 0) b4 = 0; else if (b4 > 0xf) b4 = 0xf; b32 = b32 >> 4 | b4 << 28; } return b32; } const char * mtw_get_rf(int rev) { switch (rev) { case MT7601_RF_7601: return "MT7601"; case MT7610_RF_7610: return "MT7610"; case MT7612_RF_7612: return "MT7612"; } return "unknown"; } void mtw_get_txpower(struct mtw_softc *sc) { uint16_t val; int i; /* Read power settings for 2GHz channels. */ for (i = 0; i < 14; i += 2) { mtw_srom_read(sc, MTW_EEPROM_PWR2GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 0] = (int8_t)(val & 0xff); sc->txpow1[i + 1] = (int8_t)(val >> 8); mtw_srom_read(sc, MTW_EEPROM_PWR2GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 0] = (int8_t)(val & 0xff); sc->txpow2[i + 1] = (int8_t)(val >> 8); } /* Fix broken Tx power entries. */ for (i = 0; i < 14; i++) { if (sc->txpow1[i] < 0 || sc->txpow1[i] > 27) sc->txpow1[i] = 5; if (sc->txpow2[i] < 0 || sc->txpow2[i] > 27) sc->txpow2[i] = 5; DPRINTF(("chan %d: power1=%d, power2=%d\n", mt7601_rf_chan[i].chan, sc->txpow1[i], sc->txpow2[i])); } #if 0 /* Read power settings for 5GHz channels. */ for (i = 0; i < 40; i += 2) { mtw_srom_read(sc, MTW_EEPROM_PWR5GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 14] = (int8_t)(val & 0xff); sc->txpow1[i + 15] = (int8_t)(val >> 8); mtw_srom_read(sc, MTW_EEPROM_PWR5GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 14] = (int8_t)(val & 0xff); sc->txpow2[i + 15] = (int8_t)(val >> 8); } /* Fix broken Tx power entries. */ for (i = 0; i < 40; i++ ) { if (sc->mac_ver != 0x5592) { if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) sc->txpow1[14 + i] = 5; if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) sc->txpow2[14 + i] = 5; } DPRINTF(("chan %d: power1=%d, power2=%d\n", mt7601_rf_chan[14 + i].chan, sc->txpow1[14 + i], sc->txpow2[14 + i])); } #endif } int mtw_read_eeprom(struct mtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int8_t delta_2ghz, delta_5ghz; uint16_t val; int ridx, ant; sc->sc_srom_read = mtw_efuse_read_2; /* read RF information */ mtw_srom_read(sc, MTW_EEPROM_CHIPID, &val); sc->rf_rev = val; mtw_srom_read(sc, MTW_EEPROM_ANTENNA, &val); sc->ntxchains = (val >> 4) & 0xf; sc->nrxchains = val & 0xf; DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n", sc->rf_rev, sc->ntxchains, sc->nrxchains)); /* read ROM version */ mtw_srom_read(sc, MTW_EEPROM_VERSION, &val); DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8)); /* read MAC address */ mtw_srom_read(sc, MTW_EEPROM_MAC01, &val); ic->ic_myaddr[0] = val & 0xff; ic->ic_myaddr[1] = val >> 8; mtw_srom_read(sc, MTW_EEPROM_MAC23, &val); ic->ic_myaddr[2] = val & 0xff; ic->ic_myaddr[3] = val >> 8; mtw_srom_read(sc, MTW_EEPROM_MAC45, &val); ic->ic_myaddr[4] = val & 0xff; ic->ic_myaddr[5] = val >> 8; #if 0 printf("eFUSE ROM\n00: "); for (int i = 0; i < 256; i++) { if (((i % 8) == 0) && i > 0) printf("\n%02x: ", i); mtw_srom_read(sc, i, &val); printf(" %04x", val); } printf("\n"); #endif /* check if RF supports automatic Tx access gain control */ mtw_srom_read(sc, MTW_EEPROM_CONFIG, &val); DPRINTF(("EEPROM CFG 0x%04x\n", val)); if ((val & 0xff) != 0xff) { sc->ext_5ghz_lna = (val >> 3) & 1; sc->ext_2ghz_lna = (val >> 2) & 1; /* check if RF supports automatic Tx access gain control */ sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1; /* check if we have a hardware radio switch */ sc->rfswitch = val & 1; } /* read RF frequency offset from EEPROM */ mtw_srom_read(sc, MTW_EEPROM_FREQ_OFFSET, &val); if ((val & 0xff) != 0xff) sc->rf_freq_offset = val; else sc->rf_freq_offset = 0; DPRINTF(("frequency offset 0x%x\n", sc->rf_freq_offset)); /* Read Tx power settings. */ mtw_get_txpower(sc); /* read Tx power compensation for each Tx rate */ mtw_srom_read(sc, MTW_EEPROM_DELTAPWR, &val); delta_2ghz = delta_5ghz = 0; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_2ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_2ghz = -delta_2ghz; } val >>= 8; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_5ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_5ghz = -delta_5ghz; } DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n", delta_2ghz, delta_5ghz)); for (ridx = 0; ridx < 5; ridx++) { uint32_t reg; mtw_srom_read(sc, MTW_EEPROM_RPWR + ridx * 2, &val); reg = val; mtw_srom_read(sc, MTW_EEPROM_RPWR + ridx * 2 + 1, &val); reg |= (uint32_t)val << 16; sc->txpow20mhz[ridx] = reg; sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx])); } /* read RSSI offsets and LNA gains from EEPROM */ val = 0; mtw_srom_read(sc, MTW_EEPROM_RSSI1_2GHZ, &val); sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ sc->rssi_2ghz[1] = val >> 8; /* Ant B */ mtw_srom_read(sc, MTW_EEPROM_RSSI2_2GHZ, &val); /* * On RT3070 chips (limited to 2 Rx chains), this ROM * field contains the Tx mixer gain for the 2GHz band. */ if ((val & 0xff) != 0xff) sc->txmixgain_2ghz = val & 0x7; DPRINTF(("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz)); sc->lna[2] = val >> 8; /* channel group 2 */ mtw_srom_read(sc, MTW_EEPROM_RSSI1_5GHZ, &val); sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ sc->rssi_5ghz[1] = val >> 8; /* Ant B */ mtw_srom_read(sc, MTW_EEPROM_RSSI2_5GHZ, &val); sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ sc->lna[3] = val >> 8; /* channel group 3 */ mtw_srom_read(sc, MTW_EEPROM_LNA, &val); sc->lna[0] = val & 0xff; /* channel group 0 */ sc->lna[1] = val >> 8; /* channel group 1 */ DPRINTF(("LNA0 0x%x\n", sc->lna[0])); /* fix broken 5GHz LNA entries */ if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 2)); sc->lna[2] = sc->lna[1]; } if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 3)); sc->lna[3] = sc->lna[1]; } /* fix broken RSSI offset entries */ for (ant = 0; ant < 3; ant++) { if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n", ant + 1, sc->rssi_2ghz[ant])); sc->rssi_2ghz[ant] = 0; } if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n", ant + 1, sc->rssi_5ghz[ant])); sc->rssi_5ghz[ant] = 0; } } return 0; } struct ieee80211_node * mtw_node_alloc(struct ieee80211com *ic) { struct mtw_node *mn; mn = malloc(sizeof (struct mtw_node), M_USBDEV, M_NOWAIT | M_ZERO); return (struct ieee80211_node *)mn; } int mtw_media_change(struct ifnet *ifp) { struct mtw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx <= MTW_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { mtw_stop(ifp, 0); error = mtw_init(ifp); } return error; } void mtw_next_scan(void *arg) { struct mtw_softc *sc = arg; int s; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); s = splnet(); if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&sc->sc_ic.ic_if); splx(s); usbd_ref_decr(sc->sc_udev); } void mtw_task(void *arg) { struct mtw_softc *sc = arg; struct mtw_host_cmd_ring *ring = &sc->cmdq; struct mtw_host_cmd *cmd; int s; if (usbd_is_dying(sc->sc_udev)) return; /* process host commands */ s = splusb(); while (ring->next != ring->cur) { cmd = &ring->cmd[ring->next]; splx(s); /* callback */ cmd->cb(sc, cmd->data); s = splusb(); ring->queued--; ring->next = (ring->next + 1) % MTW_HOST_CMD_RING_COUNT; } splx(s); } void mtw_do_async(struct mtw_softc *sc, void (*cb)(struct mtw_softc *, void *), void *arg, int len) { struct mtw_host_cmd_ring *ring = &sc->cmdq; struct mtw_host_cmd *cmd; int s; if (usbd_is_dying(sc->sc_udev)) return; s = splusb(); cmd = &ring->cmd[ring->cur]; cmd->cb = cb; KASSERT(len <= sizeof (cmd->data)); memcpy(cmd->data, arg, len); ring->cur = (ring->cur + 1) % MTW_HOST_CMD_RING_COUNT; /* if there is no pending command already, schedule a task */ if (++ring->queued == 1) usb_add_task(sc->sc_udev, &sc->sc_task); splx(s); } int mtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct mtw_softc *sc = ic->ic_softc; struct mtw_cmd_newstate cmd; /* do it in a process context */ cmd.state = nstate; cmd.arg = arg; mtw_do_async(sc, mtw_newstate_cb, &cmd, sizeof cmd); return 0; } void mtw_newstate_cb(struct mtw_softc *sc, void *arg) { struct mtw_cmd_newstate *cmd = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; struct ieee80211_node *ni; uint32_t sta[3]; uint8_t wcid; int s; s = splnet(); ostate = ic->ic_state; if (ostate == IEEE80211_S_RUN) { /* turn link LED on */ mtw_set_leds(sc, MTW_LED_MODE_ON); } switch (cmd->state) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ mtw_abort_tsf_sync(sc); } break; case IEEE80211_S_SCAN: mtw_set_chan(sc, ic->ic_bss->ni_chan); if (!usbd_is_dying(sc->sc_udev)) timeout_add_msec(&sc->scan_to, 200); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: mtw_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: mtw_set_chan(sc, ic->ic_bss->ni_chan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { mtw_updateslot(ic); mtw_enable_mrr(sc); mtw_set_txpreamble(sc); mtw_set_basicrates(sc); mtw_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_STA) { /* add BSS entry to the WCID table */ wcid = MTW_AID2WCID(ni->ni_associd); mtw_write_region_1(sc, MTW_WCID_ENTRY(wcid), ni->ni_macaddr, IEEE80211_ADDR_LEN); /* fake a join to init the tx rate */ mtw_newassoc(ic, ni, 1); } if (ic->ic_opmode != IEEE80211_M_MONITOR) { mtw_enable_tsf_sync(sc); /* clear statistic registers used by AMRR */ mtw_read_region_1(sc, MTW_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); /* start calibration timer */ if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 1); } /* turn link LED on */ mtw_set_leds(sc, MTW_LED_MODE_BLINK_TX); break; } (void)sc->sc_newstate(ic, cmd->state, cmd->arg); splx(s); } void mtw_updateedca(struct ieee80211com *ic) { /* do it in a process context */ mtw_do_async(ic->ic_softc, mtw_updateedca_cb, NULL, 0); } /* ARGSUSED */ void mtw_updateedca_cb(struct mtw_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_ic; int s, aci; s = splnet(); /* update MAC TX configuration registers */ for (aci = 0; aci < EDCA_NUM_AC; aci++) { mtw_write(sc, MTW_EDCA_AC_CFG(aci), ic->ic_edca_ac[aci].ac_ecwmax << 16 | ic->ic_edca_ac[aci].ac_ecwmin << 12 | ic->ic_edca_ac[aci].ac_aifsn << 8 | ic->ic_edca_ac[aci].ac_txoplimit); } /* update SCH/DMA registers too */ mtw_write(sc, MTW_WMM_AIFSN_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_aifsn << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_aifsn << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_aifsn << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_aifsn); mtw_write(sc, MTW_WMM_CWMIN_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmin << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmin << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmin << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmin); mtw_write(sc, MTW_WMM_CWMAX_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmax << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmax << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmax << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmax); mtw_write(sc, MTW_WMM_TXOP0_CFG, ic->ic_edca_ac[EDCA_AC_BK].ac_txoplimit << 16 | ic->ic_edca_ac[EDCA_AC_BE].ac_txoplimit); mtw_write(sc, MTW_WMM_TXOP1_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_txoplimit << 16 | ic->ic_edca_ac[EDCA_AC_VI].ac_txoplimit); splx(s); } void mtw_updateslot(struct ieee80211com *ic) { /* do it in a process context */ mtw_do_async(ic->ic_softc, mtw_updateslot_cb, NULL, 0); } /* ARGSUSED */ void mtw_updateslot_cb(struct mtw_softc *sc, void *arg) { uint32_t tmp; mtw_read(sc, MTW_BKOFF_SLOT_CFG, &tmp); tmp &= ~0xff; tmp |= (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT; mtw_write(sc, MTW_BKOFF_SLOT_CFG, tmp); } int mtw_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct mtw_softc *sc = ic->ic_softc; struct mtw_cmd_key cmd; /* defer setting of WEP keys until interface is brought up */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return 0; /* do it in a process context */ cmd.key = *k; cmd.ni = ni; mtw_do_async(sc, mtw_set_key_cb, &cmd, sizeof cmd); sc->sc_key_tasks++; return EBUSY; } void mtw_set_key_cb(struct mtw_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_ic; struct mtw_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; uint32_t attr; uint16_t base; uint8_t mode, wcid, iv[8]; sc->sc_key_tasks--; /* map net80211 cipher to RT2860 security mode */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: mode = MTW_MODE_WEP40; break; case IEEE80211_CIPHER_WEP104: mode = MTW_MODE_WEP104; break; case IEEE80211_CIPHER_TKIP: mode = MTW_MODE_TKIP; break; case IEEE80211_CIPHER_CCMP: mode = MTW_MODE_AES_CCMP; break; default: if (cmd->ni != NULL) { IEEE80211_SEND_MGMT(ic, cmd->ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_AUTH_LEAVE); } ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return; } if (k->k_flags & IEEE80211_KEY_GROUP) { wcid = 0; /* NB: update WCID0 for group keys */ base = MTW_SKEY(0, k->k_id); } else { wcid = (cmd->ni != NULL) ? MTW_AID2WCID(cmd->ni->ni_associd) : 0; base = MTW_PKEY(wcid); } if (k->k_cipher == IEEE80211_CIPHER_TKIP) { mtw_write_region_1(sc, base, k->k_key, 16); mtw_write_region_1(sc, base + 16, &k->k_key[24], 8); mtw_write_region_1(sc, base + 24, &k->k_key[16], 8); } else { /* roundup len to 16-bit: XXX fix write_region_1() instead */ mtw_write_region_1(sc, base, k->k_key, (k->k_len + 1) & ~1); } if (!(k->k_flags & IEEE80211_KEY_GROUP) || (k->k_flags & IEEE80211_KEY_TX)) { /* set initial packet number in IV+EIV */ if (k->k_cipher == IEEE80211_CIPHER_WEP40 || k->k_cipher == IEEE80211_CIPHER_WEP104) { memset(iv, 0, sizeof iv); iv[3] = sc->sc_ic.ic_def_txkey << 6; } else { if (k->k_cipher == IEEE80211_CIPHER_TKIP) { iv[0] = k->k_tsc >> 8; iv[1] = (iv[0] | 0x20) & 0x7f; iv[2] = k->k_tsc; } else /* CCMP */ { iv[0] = k->k_tsc; iv[1] = k->k_tsc >> 8; iv[2] = 0; } iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; iv[4] = k->k_tsc >> 16; iv[5] = k->k_tsc >> 24; iv[6] = k->k_tsc >> 32; iv[7] = k->k_tsc >> 40; } mtw_write_region_1(sc, MTW_IVEIV(wcid), iv, 8); } if (k->k_flags & IEEE80211_KEY_GROUP) { /* install group key */ mtw_read(sc, MTW_SKEY_MODE_0_7, &attr); attr &= ~(0xf << (k->k_id * 4)); attr |= mode << (k->k_id * 4); mtw_write(sc, MTW_SKEY_MODE_0_7, attr); if (k->k_cipher & (IEEE80211_CIPHER_WEP104 | IEEE80211_CIPHER_WEP40)) { mtw_read(sc, MTW_WCID_ATTR(wcid + 1), &attr); attr = (attr & ~0xf) | (mode << 1); mtw_write(sc, MTW_WCID_ATTR(wcid + 1), attr); mtw_set_region_4(sc, MTW_IVEIV(0), 0, 4); mtw_read(sc, MTW_WCID_ATTR(wcid), &attr); attr = (attr & ~0xf) | (mode << 1); mtw_write(sc, MTW_WCID_ATTR(wcid), attr); } } else { /* install pairwise key */ mtw_read(sc, MTW_WCID_ATTR(wcid), &attr); attr = (attr & ~0xf) | (mode << 1) | MTW_RX_PKEY_EN; mtw_write(sc, MTW_WCID_ATTR(wcid), attr); } if (sc->sc_key_tasks == 0) { if (cmd->ni != NULL) cmd->ni->ni_port_valid = 1; ieee80211_set_link_state(ic, LINK_STATE_UP); } } void mtw_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct mtw_softc *sc = ic->ic_softc; struct mtw_cmd_key cmd; if (!(ic->ic_if.if_flags & IFF_RUNNING) || ic->ic_state != IEEE80211_S_RUN) return; /* nothing to do */ /* do it in a process context */ cmd.key = *k; cmd.ni = ni; mtw_do_async(sc, mtw_delete_key_cb, &cmd, sizeof cmd); } void mtw_delete_key_cb(struct mtw_softc *sc, void *arg) { struct mtw_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; uint32_t attr; uint8_t wcid; if (k->k_flags & IEEE80211_KEY_GROUP) { /* remove group key */ mtw_read(sc, MTW_SKEY_MODE_0_7, &attr); attr &= ~(0xf << (k->k_id * 4)); mtw_write(sc, MTW_SKEY_MODE_0_7, attr); } else { /* remove pairwise key */ wcid = (cmd->ni != NULL) ? MTW_AID2WCID(cmd->ni->ni_associd) : 0; mtw_read(sc, MTW_WCID_ATTR(wcid), &attr); attr &= ~0xf; mtw_write(sc, MTW_WCID_ATTR(wcid), attr); } } void mtw_calibrate_to(void *arg) { /* do it in a process context */ mtw_do_async(arg, mtw_calibrate_cb, NULL, 0); /* next timeout will be rescheduled in the calibration task */ } /* ARGSUSED */ void mtw_calibrate_cb(struct mtw_softc *sc, void *arg) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t sta[3]; int s, error; /* read statistic counters (clear on read) and update AMRR state */ error = mtw_read_region_1(sc, MTW_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); if (error != 0) goto skip; DPRINTF(("retrycnt=%d txcnt=%d failcnt=%d\n", letoh32(sta[1]) >> 16, letoh32(sta[1]) & 0xffff, letoh32(sta[0]) & 0xffff)); s = splnet(); /* count failed TX as errors */ ifp->if_oerrors += letoh32(sta[0]) & 0xffff; sc->amn.amn_retrycnt = (letoh32(sta[0]) & 0xffff) + /* failed TX count */ (letoh32(sta[1]) >> 16); /* TX retransmission count */ sc->amn.amn_txcnt = sc->amn.amn_retrycnt + (letoh32(sta[1]) & 0xffff); /* successful TX count */ ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); splx(s); skip: if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 1); } void mtw_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct mtw_softc *sc = ic->ic_softc; struct mtw_node *mn = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; uint8_t rate; int ridx, i, j; DPRINTF(("new assoc isnew=%d addr=%s\n", isnew, ether_sprintf(ni->ni_macaddr))); ieee80211_amrr_node_init(&sc->amrr, &sc->amn); /* start at lowest available bit-rate, AMRR will raise */ ni->ni_txrate = 0; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; /* convert 802.11 rate to hardware rate index */ for (ridx = 0; ridx < MTW_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; mn->ridx[i] = ridx; /* determine rate of control response frames */ for (j = i; j >= 0; j--) { if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) && rt2860_rates[mn->ridx[i]].phy == rt2860_rates[mn->ridx[j]].phy) break; } if (j >= 0) { mn->ctl_ridx[i] = mn->ridx[j]; } else { /* no basic rate found, use mandatory one */ mn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx; } DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n", rs->rs_rates[i], mn->ridx[i], mn->ctl_ridx[i])); } } /* * Return the Rx chain with the highest RSSI for a given frame. */ static __inline uint8_t mtw_maxrssi_chain(struct mtw_softc *sc, const struct mtw_rxwi *rxwi) { uint8_t rxchain = 0; if (sc->nrxchains > 1) { if (rxwi->rssi[1] > rxwi->rssi[rxchain]) rxchain = 1; } return rxchain; } void mtw_rx_frame(struct mtw_softc *sc, uint8_t *buf, int dmalen, struct mbuf_list *ml) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mtw_rxwi *rxwi; struct mbuf *m; uint32_t flags; uint16_t len; #if NBPFILTER > 0 uint16_t phy; #endif uint16_t rxwisize; uint8_t ant, rssi; int s; /* Rx Wireless Information */ rxwi = (struct mtw_rxwi *)(buf); rxwisize = sizeof(struct mtw_rxwi); len = letoh16(rxwi->len) & 0xfff; if (__predict_false(len > dmalen)) { DPRINTF(("bad RXWI length %u > %u\n", len, dmalen)); return; } if (len > MCLBYTES) { DPRINTF(("frame too large (length=%d)\n", len)); ifp->if_ierrors++; return; } flags = letoh32(rxwi->flags); if (__predict_false(flags & (MTW_RX_CRCERR | MTW_RX_ICVERR))) { ifp->if_ierrors++; return; } if (__predict_false((flags & MTW_RX_MICERR))) { /* report MIC failures to net80211 for TKIP */ ic->ic_stats.is_rx_locmicfail++; ieee80211_michael_mic_failure(ic, 0/* XXX */); ifp->if_ierrors++; return; } wh = (struct ieee80211_frame *)(buf + rxwisize); rxi.rxi_flags = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; rxi.rxi_flags |= IEEE80211_RXI_HWDEC; } if (flags & MTW_RX_L2PAD) { u_int hdrlen = ieee80211_get_hdrlen(wh); memmove((caddr_t)wh + 2, wh, hdrlen); wh = (struct ieee80211_frame *)((caddr_t)wh + 2); } /* could use m_devget but net80211 wants contig mgmt frames */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (__predict_false(m == NULL)) { ifp->if_ierrors++; return; } if (len > MHLEN) { MCLGET(m, M_DONTWAIT); if (__predict_false(!(m->m_flags & M_EXT))) { ifp->if_ierrors++; m_freem(m); return; } } /* finalize mbuf */ memcpy(mtod(m, caddr_t), wh, len); m->m_pkthdr.len = m->m_len = len; ant = mtw_maxrssi_chain(sc, rxwi); rssi = rxwi->rssi[ant]; #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct mtw_rx_radiotap_header *tap = &sc->sc_rxtap; struct mbuf mb; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antsignal = rssi; tap->wr_antenna = ant; tap->wr_dbm_antsignal = mtw_rssi2dbm(sc, rssi, ant); tap->wr_rate = 2; /* in case it can't be found below */ phy = letoh16(rxwi->phy); switch (phy & MTW_PHY_MODE) { case MTW_PHY_CCK: switch ((phy & MTW_PHY_MCS) & ~MTW_PHY_SHPRE) { case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; } if (phy & MTW_PHY_SHPRE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case MTW_PHY_OFDM: switch (phy & MTW_PHY_MCS) { case 0: tap->wr_rate = 12; break; case 1: tap->wr_rate = 18; break; case 2: tap->wr_rate = 24; break; case 3: tap->wr_rate = 36; break; case 4: tap->wr_rate = 48; break; case 5: tap->wr_rate = 72; break; case 6: tap->wr_rate = 96; break; case 7: tap->wr_rate = 108; break; } break; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif s = splnet(); ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_rssi = rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_inputm(ifp, m, ni, &rxi, ml); /* node is no longer needed */ ieee80211_release_node(ic, ni); splx(s); } void mtw_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct mtw_rx_data *data = priv; struct mtw_softc *sc = data->sc; uint8_t *buf; uint32_t dmalen; int xferlen; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("RX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->rxq[0].pipeh); if (status != USBD_CANCELLED) goto skip; return; } usbd_get_xfer_status(xfer, NULL, NULL, &xferlen, NULL); if (__predict_false(xferlen < sizeof(uint32_t) + sizeof (struct mtw_rxwi) + sizeof(struct mtw_rxd))) { DPRINTF(("RX xfer too short %d\n", xferlen)); goto skip; } /* HW can aggregate multiple 802.11 frames in a single USB xfer */ buf = data->buf; while (xferlen > 8) { dmalen = letoh32(*(uint32_t *)buf) & MTW_RXD_LEN; if (__predict_false(dmalen == 0 || (dmalen & 3) != 0)) { DPRINTF(("bad DMA length %u\n", dmalen)); break; } if (__predict_false(dmalen + 8 > xferlen)) { DPRINTF(("bad DMA length %u > %d\n", dmalen + 8, xferlen)); break; } mtw_rx_frame(sc, buf + sizeof(struct mtw_rxd), dmalen, &ml); buf += dmalen + 8; xferlen -= dmalen + 8; } if_input(&sc->sc_ic.ic_if, &ml); skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->rxq[0].pipeh, data, data->buf, MTW_MAX_RXSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, mtw_rxeof); (void)usbd_transfer(data->xfer); } void mtw_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct mtw_tx_data *data = priv; struct mtw_softc *sc = data->sc; struct mtw_tx_ring *txq = &sc->txq[data->qid]; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; if (usbd_is_dying(sc->sc_udev)) return; s = splnet(); txq->queued--; sc->qfullmsk &= ~(1 << data->qid); if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("TX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(txq->pipeh); ifp->if_oerrors++; splx(s); return; } sc->sc_tx_timer = 0; if (ifq_is_oactive(&ifp->if_snd)) { ifq_clr_oactive(&ifp->if_snd); mtw_start(ifp); } splx(s); } int mtw_tx(struct mtw_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct mtw_node *mn = (void *)ni; struct ieee80211_frame *wh; struct mtw_tx_ring *ring; struct mtw_tx_data *data; struct mtw_txd *txd; struct mtw_txwi *txwi; uint16_t qos, dur; uint16_t txwisize; uint8_t type, mcs, tid, qid; int error, hasqos, ridx, ctl_ridx, xferlen; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* select queue */ if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = ieee80211_up_to_ac(ic, tid); } else { qos = 0; tid = 0; qid = EDCA_AC_BE; } /* management frames go to MCU queue */ if (type == IEEE80211_FC0_TYPE_MGT) qid = MTW_TXQ_MCU; ring = &sc->txq[qid]; data = &ring->data[ring->cur]; /* pickup a rate index */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? MTW_RIDX_OFDM6 : MTW_RIDX_CCK1; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else if (ic->ic_fixed_rate != -1) { ridx = sc->fixed_ridx; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else { ridx = mn->ridx[ni->ni_txrate]; ctl_ridx = mn->ctl_ridx[ni->ni_txrate]; } txwisize = sizeof(struct mtw_txwi); xferlen = txwisize + m->m_pkthdr.len; /* roundup to 32-bit alignment */ xferlen = (xferlen + 3) & ~3; /* setup TX descriptor */ txd = (struct mtw_txd *)data->buf; txd->flags = htole16(MTW_TXD_DATA | MTW_TXD_80211 | MTW_TXD_WLAN | MTW_TXD_QSEL_EDCA); if (type != IEEE80211_FC0_TYPE_DATA) txd->flags |= htole16(MTW_TXD_WIV); txd->len = htole16(xferlen); xferlen += sizeof(struct mtw_txd); /* get MCS code from rate index */ mcs = rt2860_rates[ridx].mcs; /* setup TX Wireless Information */ txwi = (struct mtw_txwi *)(txd + 1); txwi->flags = 0; txwi->xflags = hasqos ? 0 : MTW_TX_NSEQ; txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ? MTW_AID2WCID(ni->ni_associd) : 0xff; txwi->len = htole16(m->m_pkthdr.len); txwi->txop = MTW_TX_TXOP_BACKOFF; if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { txwi->phy = htole16(MTW_PHY_CCK); if (ridx != MTW_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) mcs |= MTW_PHY_SHPRE; } else if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM) txwi->phy = htole16(MTW_PHY_OFDM); txwi->phy |= htole16(mcs); if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) != IEEE80211_QOS_ACK_POLICY_NOACK)) { txwi->xflags |= MTW_TX_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) dur = rt2860_rates[ctl_ridx].sp_ack_dur; else dur = rt2860_rates[ctl_ridx].lp_ack_dur; *(uint16_t *)wh->i_dur = htole16(dur); } #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct mtw_tx_radiotap_header *tap = &sc->sc_txtap; struct mbuf mb; tap->wt_flags = 0; tap->wt_rate = rt2860_rates[ridx].rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); if (mcs & MTW_PHY_SHPRE) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif /* copy payload */ m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)txwi + txwisize); m_freem(m); /* 4-byte pad */ memset(data->buf + xferlen, 0, MTW_DMA_PAD); xferlen += MTW_DMA_PAD; usbd_setup_xfer(data->xfer, ring->pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, MTW_TX_TIMEOUT, mtw_txeof); error = usbd_transfer(data->xfer); if (__predict_false(error != USBD_IN_PROGRESS && error != 0)) return error; ieee80211_release_node(ic, ni); ring->cur = (ring->cur + 1) % MTW_TX_RING_COUNT; if (++ring->queued >= MTW_TX_RING_COUNT) sc->qfullmsk |= 1 << qid; return 0; } void mtw_start(struct ifnet *ifp) { struct mtw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; for (;;) { if (sc->qfullmsk != 0) { ifq_set_oactive(&ifp->if_snd); break; } /* send pending management frames first */ m = mq_dequeue(&ic->ic_mgtq); if (m != NULL) { ni = m->m_pkthdr.ph_cookie; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; /* encapsulate and send data frames */ m = ifq_dequeue(&ifp->if_snd); if (m == NULL) break; #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) continue; sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (mtw_tx(sc, m, ni) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void mtw_watchdog(struct ifnet *ifp) { struct mtw_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); /* mtw_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int mtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct mtw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int s, error = 0; if (usbd_is_dying(sc->sc_udev)) return ENXIO; usbd_ref_incr(sc->sc_udev); s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) mtw_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) mtw_stop(ifp, 1); } break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) mtw_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { mtw_stop(ifp, 0); error = mtw_init(ifp); } else error = 0; } splx(s); usbd_ref_decr(sc->sc_udev); return error; } void mtw_select_chan_group(struct mtw_softc *sc, int group) { uint32_t tmp; uint8_t bbp; /* Tx band 20MHz 2G */ mtw_read(sc, MTW_TX_BAND_CFG, &tmp); tmp &= ~(MTW_TX_BAND_SEL_2G | MTW_TX_BAND_SEL_5G | MTW_TX_BAND_UPPER_40M); tmp |= (group == 0) ? MTW_TX_BAND_SEL_2G : MTW_TX_BAND_SEL_5G; mtw_write(sc, MTW_TX_BAND_CFG, tmp); /* select 20 MHz bandwidth */ mtw_bbp_read(sc, 4, &bbp); bbp &= ~0x18; bbp |= 0x40; mtw_bbp_write(sc, 4, bbp); /* calibrate BBP */ mtw_bbp_write(sc, 69, 0x12); mtw_bbp_write(sc, 91, 0x07); mtw_bbp_write(sc, 195, 0x23); mtw_bbp_write(sc, 196, 0x17); mtw_bbp_write(sc, 195, 0x24); mtw_bbp_write(sc, 196, 0x06); mtw_bbp_write(sc, 195, 0x81); mtw_bbp_write(sc, 196, 0x12); mtw_bbp_write(sc, 195, 0x83); mtw_bbp_write(sc, 196, 0x17); mtw_rf_write(sc, 5, 8, 0x00); mtw_mcu_calibrate(sc, 0x6, 0x10001); /* set initial AGC value */ mt7601_set_agc(sc, 0x14); } void mt7601_set_agc(struct mtw_softc *sc, uint8_t agc) { uint8_t bbp; mtw_bbp_write(sc, 66, agc); mtw_bbp_write(sc, 195, 0x87); bbp = (agc & 0xf0) | 0x08; mtw_bbp_write(sc, 196, bbp); } void mt7601_set_chan(struct mtw_softc *sc, u_int chan) { uint32_t tmp; uint8_t bbp, rf, txpow1; int i; /* find the settings for this channel */ for (i = 0; mt7601_rf_chan[i].chan != chan; i++) mtw_rf_write(sc, 0, 17, mt7601_rf_chan[i].r17); mtw_rf_write(sc, 0, 18, mt7601_rf_chan[i].r18); mtw_rf_write(sc, 0, 19, mt7601_rf_chan[i].r19); mtw_rf_write(sc, 0, 20, mt7601_rf_chan[i].r20); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; /* Tx automatic level control */ mtw_read(sc, MTW_TX_ALC_CFG0, &tmp); tmp &= ~0x3f3f; tmp |= (txpow1 & 0x3f); mtw_write(sc, MTW_TX_ALC_CFG0, tmp); /* LNA */ mtw_bbp_write(sc, 62, 0x37 - sc->lna[0]); mtw_bbp_write(sc, 63, 0x37 - sc->lna[0]); mtw_bbp_write(sc, 64, 0x37 - sc->lna[0]); /* VCO calibration */ mtw_rf_write(sc, 0, 4, 0x0a); mtw_rf_write(sc, 0, 5, 0x20); mtw_rf_read(sc, 0, 4, &rf); mtw_rf_write(sc, 0, 4, rf | 0x80); /* select 20 MHz bandwidth */ mtw_bbp_read(sc, 4, &bbp); bbp &= ~0x18; bbp |= 0x40; mtw_bbp_write(sc, 4, bbp); mtw_bbp_write(sc, 178, 0xff); } int mtw_set_chan(struct mtw_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; u_int chan, group; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return EINVAL; /* determine channel group */ if (chan <= 14) group = 0; else if (chan <= 64) group = 1; else if (chan <= 128) group = 2; else group = 3; if (group != sc->sc_chan_group || !sc->sc_bw_calibrated) mtw_select_chan_group(sc, group); sc->sc_chan_group = group; /* chipset specific */ if (sc->mac_ver == 0x7601) mt7601_set_chan(sc, chan); DELAY(1000); return 0; } void mtw_enable_tsf_sync(struct mtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; mtw_read(sc, MTW_BCN_TIME_CFG, &tmp); tmp &= ~0x1fffff; tmp |= ic->ic_bss->ni_intval * 16; tmp |= MTW_TSF_TIMER_EN | MTW_TBTT_TIMER_EN; /* local TSF is always updated with remote TSF on beacon reception */ tmp |= 1 << MTW_TSF_SYNC_MODE_SHIFT; mtw_write(sc, MTW_BCN_TIME_CFG, tmp); } void mtw_abort_tsf_sync(struct mtw_softc *sc) { uint32_t tmp; mtw_read(sc, MTW_BCN_TIME_CFG, &tmp); tmp &= ~(MTW_BCN_TX_EN | MTW_TSF_TIMER_EN | MTW_TBTT_TIMER_EN); mtw_write(sc, MTW_BCN_TIME_CFG, tmp); } void mtw_enable_mrr(struct mtw_softc *sc) { #define CCK(mcs) (mcs) #define OFDM(mcs) (1 << 3 | (mcs)) mtw_write(sc, MTW_LG_FBK_CFG0, OFDM(6) << 28 | /* 54->48 */ OFDM(5) << 24 | /* 48->36 */ OFDM(4) << 20 | /* 36->24 */ OFDM(3) << 16 | /* 24->18 */ OFDM(2) << 12 | /* 18->12 */ OFDM(1) << 8 | /* 12-> 9 */ OFDM(0) << 4 | /* 9-> 6 */ OFDM(0)); /* 6-> 6 */ mtw_write(sc, MTW_LG_FBK_CFG1, CCK(2) << 12 | /* 11->5.5 */ CCK(1) << 8 | /* 5.5-> 2 */ CCK(0) << 4 | /* 2-> 1 */ CCK(0)); /* 1-> 1 */ #undef OFDM #undef CCK } void mtw_set_txrts(struct mtw_softc *sc) { uint32_t tmp; /* set RTS threshold */ mtw_read(sc, MTW_TX_RTS_CFG, &tmp); tmp &= ~0xffff00; tmp |= 0x1000 << MTW_RTS_THRES_SHIFT; mtw_write(sc, MTW_TX_RTS_CFG, tmp); } void mtw_set_txpreamble(struct mtw_softc *sc) { uint32_t tmp; mtw_read(sc, MTW_AUTO_RSP_CFG, &tmp); if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= MTW_CCK_SHORT_EN; else tmp &= ~MTW_CCK_SHORT_EN; mtw_write(sc, MTW_AUTO_RSP_CFG, tmp); } void mtw_set_basicrates(struct mtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* set basic rates mask */ if (ic->ic_curmode == IEEE80211_MODE_11B) mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x003); else if (ic->ic_curmode == IEEE80211_MODE_11A) mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x150); else /* 11g */ mtw_write(sc, MTW_LEGACY_BASIC_RATE, 0x17f); } void mtw_set_leds(struct mtw_softc *sc, uint16_t which) { struct mtw_mcu_cmd_8 cmd; cmd.func = htole32(0x1); cmd.val = htole32(which); mtw_mcu_cmd(sc, 16, &cmd, sizeof(struct mtw_mcu_cmd_8)); } void mtw_set_bssid(struct mtw_softc *sc, const uint8_t *bssid) { mtw_write(sc, MTW_MAC_BSSID_DW0, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); mtw_write(sc, MTW_MAC_BSSID_DW1, bssid[4] | bssid[5] << 8); } void mtw_set_macaddr(struct mtw_softc *sc, const uint8_t *addr) { mtw_write(sc, MTW_MAC_ADDR_DW0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); mtw_write(sc, MTW_MAC_ADDR_DW1, addr[4] | addr[5] << 8 | 0xff << 16); } #if NBPFILTER > 0 int8_t mtw_rssi2dbm(struct mtw_softc *sc, uint8_t rssi, uint8_t rxchain) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c = ic->ic_ibss_chan; int delta; if (IEEE80211_IS_CHAN_5GHZ(c)) { u_int chan = ieee80211_chan2ieee(ic, c); delta = sc->rssi_5ghz[rxchain]; /* determine channel group */ if (chan <= 64) delta -= sc->lna[1]; else if (chan <= 128) delta -= sc->lna[2]; else delta -= sc->lna[3]; } else delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; return -12 - delta - rssi; } #endif int mt7601_bbp_init(struct mtw_softc *sc) { uint8_t bbp; int i, error, ntries; /* wait for BBP to wake up */ for (ntries = 0; ntries < 20; ntries++) { if ((error = mtw_bbp_read(sc, 0, &bbp)) != 0) return error; if (bbp != 0 && bbp != 0xff) break; } if (ntries == 20) return ETIMEDOUT; mtw_bbp_read(sc, 3, &bbp); mtw_bbp_write(sc, 3, 0); mtw_bbp_read(sc, 105, &bbp); mtw_bbp_write(sc, 105, 0); /* initialize BBP registers to default values */ for (i = 0; i < nitems(mt7601_def_bbp); i++) { if ((error = mtw_bbp_write(sc, mt7601_def_bbp[i].reg, mt7601_def_bbp[i].val)) != 0) return error; } sc->sc_bw_calibrated = 0; return 0; } int mt7601_rf_init(struct mtw_softc *sc) { int i, error; /* RF bank 0 */ for (i = 0; i < nitems(mt7601_rf_bank0); i++) { error = mtw_rf_write(sc, 0, mt7601_rf_bank0[i].reg, mt7601_rf_bank0[i].val); if (error != 0) return error; } /* RF bank 4 */ for (i = 0; i < nitems(mt7601_rf_bank4); i++) { error = mtw_rf_write(sc, 4, mt7601_rf_bank4[i].reg, mt7601_rf_bank4[i].val); if (error != 0) return error; } /* RF bank 5 */ for (i = 0; i < nitems(mt7601_rf_bank5); i++) { error = mtw_rf_write(sc, 5, mt7601_rf_bank5[i].reg, mt7601_rf_bank5[i].val); if (error != 0) return error; } return 0; } int mt7601_rf_setup(struct mtw_softc *sc) { uint32_t tmp; uint8_t rf; int error; if (sc->sc_rf_calibrated) return 0; /* init RF registers */ if ((error = mt7601_rf_init(sc)) != 0) return error; /* init frequency offset */ mtw_rf_write(sc, 0, 12, sc->rf_freq_offset); mtw_rf_read(sc, 0, 12, &rf); /* read temperature */ mt7601_rf_temperature(sc, &rf); sc->bbp_temp = rf; DPRINTF(("BBP temp 0x%x ", rf)); mtw_rf_read(sc, 0, 7, &rf); if ((error = mtw_mcu_calibrate(sc, 0x1, 0)) != 0) return error; usbd_delay_ms(sc->sc_udev, 100); mtw_rf_read(sc, 0, 7, &rf); /* Calibrate VCO RF 0/4 */ mtw_rf_write(sc, 0, 4, 0x0a); mtw_rf_write(sc, 0, 4, 0x20); mtw_rf_read(sc, 0, 4, &rf); mtw_rf_write(sc, 0, 4, rf | 0x80); if ((error = mtw_mcu_calibrate(sc, 0x9, 0)) != 0) return error; if ((error = mt7601_rxdc_cal(sc)) != 0) return error; if ((error = mtw_mcu_calibrate(sc, 0x6, 1)) != 0) return error; if ((error = mtw_mcu_calibrate(sc, 0x6, 0)) != 0) return error; if ((error = mtw_mcu_calibrate(sc, 0x4, 0)) != 0) return error; if ((error = mtw_mcu_calibrate(sc, 0x5, 0)) != 0) return error; mtw_read(sc, MTW_LDO_CFG0, &tmp); tmp &= ~(1 << 4); tmp |= (1 << 2); mtw_write(sc, MTW_LDO_CFG0, tmp); if ((error = mtw_mcu_calibrate(sc, 0x8, 0)) != 0) return error; if ((error = mt7601_rxdc_cal(sc)) != 0) return error; sc->sc_rf_calibrated = 1; return 0; } int mt7601_rf_temperature(struct mtw_softc *sc, int8_t *val) { uint32_t rfb, rfs; uint8_t bbp; int ntries; mtw_read(sc, MTW_RF_BYPASS0, &rfb); mtw_read(sc, MTW_RF_SETTING0, &rfs); mtw_write(sc, MTW_RF_BYPASS0, 0); mtw_write(sc, MTW_RF_SETTING0, 0x10); mtw_write(sc, MTW_RF_BYPASS0, 0x10); mtw_bbp_read(sc, 47, &bbp); bbp &= ~0x7f; bbp |= 0x10; mtw_bbp_write(sc, 47, bbp); mtw_bbp_write(sc, 22, 0x40); for (ntries = 0; ntries < 10; ntries++) { mtw_bbp_read(sc, 47, &bbp); if ((bbp & 0x10) == 0) break; } if (ntries == 10) return ETIMEDOUT; mt7601_r49_read(sc, MT7601_R47_TEMP, val); mtw_bbp_write(sc, 22, 0); mtw_bbp_read(sc, 21, &bbp); bbp |= 0x02; mtw_bbp_write(sc, 21, bbp); bbp &= ~0x02; mtw_bbp_write(sc, 21, bbp); mtw_write(sc, MTW_RF_BYPASS0, 0); mtw_write(sc, MTW_RF_SETTING0, rfs); mtw_write(sc, MTW_RF_BYPASS0, rfb); return 0; } int mt7601_r49_read(struct mtw_softc *sc, uint8_t flag, int8_t *val) { uint8_t bbp; mtw_bbp_read(sc, 47, &bbp); bbp = 0x90; mtw_bbp_write(sc, 47, bbp); bbp &= ~0x0f; bbp |= flag; mtw_bbp_write(sc, 47, bbp); return mtw_bbp_read(sc, 49, val); } int mt7601_rxdc_cal(struct mtw_softc *sc) { uint32_t tmp; uint8_t bbp; int ntries; mtw_read(sc, MTW_MAC_SYS_CTRL, &tmp); mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_MAC_RX_EN); mtw_bbp_write(sc, 158, 0x8d); mtw_bbp_write(sc, 159, 0xfc); mtw_bbp_write(sc, 158, 0x8c); mtw_bbp_write(sc, 159, 0x4c); for (ntries = 0; ntries < 20; ntries++) { DELAY(300); mtw_bbp_write(sc, 158, 0x8c); mtw_bbp_read(sc, 159, &bbp); if (bbp == 0x0c) break; } if (ntries == 20) return ETIMEDOUT; mtw_write(sc, MTW_MAC_SYS_CTRL, 0); mtw_bbp_write(sc, 158, 0x8d); mtw_bbp_write(sc, 159, 0xe0); mtw_write(sc, MTW_MAC_SYS_CTRL, tmp); return 0; } int mtw_wlan_enable(struct mtw_softc *sc, int enable) { uint32_t tmp; int error = 0; if (enable) { mtw_read(sc, MTW_WLAN_CTRL, &tmp); if (sc->asic_ver == 0x7612) tmp &= ~0xfffff000; tmp &= ~MTW_WLAN_CLK_EN; tmp |= MTW_WLAN_EN; mtw_write(sc, MTW_WLAN_CTRL, tmp); usbd_delay_ms(sc->sc_udev, 2); tmp |= MTW_WLAN_CLK_EN; if (sc->asic_ver == 0x7612) { tmp |= (MTW_WLAN_RESET | MTW_WLAN_RESET_RF); } mtw_write(sc, MTW_WLAN_CTRL, tmp); usbd_delay_ms(sc->sc_udev, 2); mtw_read(sc, MTW_OSC_CTRL, &tmp); tmp |= MTW_OSC_EN; mtw_write(sc, MTW_OSC_CTRL, tmp); tmp |= MTW_OSC_CAL_REQ; mtw_write(sc, MTW_OSC_CTRL, tmp); } else { mtw_read(sc, MTW_WLAN_CTRL, &tmp); tmp &= ~(MTW_WLAN_CLK_EN | MTW_WLAN_EN); mtw_write(sc, MTW_WLAN_CTRL, tmp); mtw_read(sc, MTW_OSC_CTRL, &tmp); tmp &= ~MTW_OSC_EN; mtw_write(sc, MTW_OSC_CTRL, tmp); } return error; } int mtw_txrx_enable(struct mtw_softc *sc) { uint32_t tmp; int error, ntries; mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_MAC_TX_EN); for (ntries = 0; ntries < 200; ntries++) { if ((error = mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp)) != 0) return error; if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 200) return ETIMEDOUT; DELAY(50); tmp |= MTW_RX_DMA_EN | MTW_TX_DMA_EN | MTW_TX_WB_DDONE; mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp); /* enable Rx bulk aggregation (set timeout and limit) */ tmp = MTW_USB_TX_EN | MTW_USB_RX_EN | MTW_USB_RX_AGG_EN | MTW_USB_RX_AGG_TO(128) | MTW_USB_RX_AGG_LMT(2); mtw_write(sc, MTW_USB_DMA_CFG, tmp); /* set Rx filter */ tmp = MTW_DROP_CRC_ERR | MTW_DROP_PHY_ERR; if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) { tmp |= MTW_DROP_UC_NOME | MTW_DROP_DUPL | MTW_DROP_CTS | MTW_DROP_BA | MTW_DROP_ACK | MTW_DROP_VER_ERR | MTW_DROP_CTRL_RSV | MTW_DROP_CFACK | MTW_DROP_CFEND; if (sc->sc_ic.ic_opmode == IEEE80211_M_STA) tmp |= MTW_DROP_RTS | MTW_DROP_PSPOLL; } mtw_write(sc, MTW_RX_FILTR_CFG, tmp); mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_MAC_RX_EN | MTW_MAC_TX_EN); return 0; } int mtw_init(struct ifnet *ifp) { struct mtw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int i, error, ridx, ntries, qid; if (usbd_is_dying(sc->sc_udev)) return ENXIO; /* init Tx rings (4 EDCAs, 1 HCCA, 1 MGMT) */ for (qid = 0; qid < MTW_TXQ_COUNT; qid++) { if ((error = mtw_alloc_tx_ring(sc, qid)) != 0) goto fail; } /* init Rx ring */ if ((error = mtw_alloc_rx_ring(sc, 0)) != 0) goto fail; /* init MCU Tx ring */ if ((error = mtw_alloc_mcu_ring(sc)) != 0) goto fail; /* init host command ring */ sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0; for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp)) != 0) goto fail; if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for DMA engine\n", sc->sc_dev.dv_xname); error = ETIMEDOUT; goto fail; } tmp &= 0xff0; tmp |= MTW_TX_WB_DDONE; mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp); /* reset MAC and baseband */ mtw_write(sc, MTW_MAC_SYS_CTRL, MTW_BBP_HRST | MTW_MAC_SRST); mtw_write(sc, MTW_USB_DMA_CFG, 0); mtw_write(sc, MTW_MAC_SYS_CTRL, 0); /* init MAC values */ if (sc->mac_ver == 0x7601) { for (i = 0; i < nitems(mt7601_def_mac); i++) mtw_write(sc, mt7601_def_mac[i].reg, mt7601_def_mac[i].val); } /* wait while MAC is busy */ for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_MAC_STATUS_REG, &tmp)) != 0) goto fail; if (!(tmp & (MTW_RX_STATUS_BUSY | MTW_TX_STATUS_BUSY))) break; DELAY(1000); } if (ntries == 100) { error = ETIMEDOUT; goto fail; } /* set MAC address */ IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); mtw_set_macaddr(sc, ic->ic_myaddr); /* clear WCID attribute table */ mtw_set_region_4(sc, MTW_WCID_ATTR(0), 1, 8 * 32); mtw_write(sc, 0x1648, 0x00830083); mtw_read(sc, MTW_FCE_L2_STUFF, &tmp); tmp &= ~MTW_L2S_WR_MPDU_LEN_EN; mtw_write(sc, MTW_FCE_L2_STUFF, tmp); /* RTS config */ mtw_set_txrts(sc); /* clear Host to MCU mailbox */ mtw_write(sc, MTW_BBP_CSR, 0); mtw_write(sc, MTW_H2M_MAILBOX, 0); /* clear RX WCID search table */ mtw_set_region_4(sc, MTW_WCID_ENTRY(0), 0xffffffff, 512); /* abort TSF synchronization */ mtw_abort_tsf_sync(sc); mtw_read(sc, MTW_US_CYC_CNT, &tmp); tmp = (tmp & ~0xff); if (sc->mac_ver == 0x7601) tmp |= 0x1e; mtw_write(sc, MTW_US_CYC_CNT, tmp); /* clear shared key table */ mtw_set_region_4(sc, MTW_SKEY(0, 0), 0, 8 * 32); /* clear IV/EIV table */ mtw_set_region_4(sc, MTW_IVEIV(0), 0, 8 * 32); /* clear shared key mode */ mtw_write(sc, MTW_SKEY_MODE_0_7, 0); mtw_write(sc, MTW_SKEY_MODE_8_15, 0); /* txop truncation */ mtw_write(sc, MTW_TXOP_CTRL_CFG, 0x0000583f); /* init Tx power for all Tx rates */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; mtw_write(sc, MTW_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); } mtw_write(sc, MTW_TX_PWR_CFG7, 0); mtw_write(sc, MTW_TX_PWR_CFG9, 0); mtw_read(sc, MTW_CMB_CTRL, &tmp); tmp &= ~(1 << 18 | 1 << 14); mtw_write(sc, MTW_CMB_CTRL, tmp); /* clear USB DMA */ mtw_write(sc, MTW_USB_DMA_CFG, MTW_USB_TX_EN | MTW_USB_RX_EN | MTW_USB_RX_AGG_EN | MTW_USB_TX_CLEAR | MTW_USB_TXOP_HALT | MTW_USB_RX_WL_DROP); usbd_delay_ms(sc->sc_udev, 50); mtw_read(sc, MTW_USB_DMA_CFG, &tmp); tmp &= ~(MTW_USB_TX_CLEAR | MTW_USB_TXOP_HALT | MTW_USB_RX_WL_DROP); mtw_write(sc, MTW_USB_DMA_CFG, tmp); /* enable radio */ mtw_mcu_radio(sc, 0x31, 0); /* init RF registers */ if (sc->mac_ver == 0x7601) mt7601_rf_init(sc); /* init baseband registers */ if (sc->mac_ver == 0x7601) error = mt7601_bbp_init(sc); if (error != 0) { printf("%s: could not initialize BBP\n", sc->sc_dev.dv_xname); goto fail; } /* setup and calibrate RF */ if (sc->mac_ver == 0x7601) error = mt7601_rf_setup(sc); if (error != 0) { printf("%s: could not initialize RF\n", sc->sc_dev.dv_xname); goto fail; } /* select default channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; mtw_set_chan(sc, ic->ic_ibss_chan); for (i = 0; i < MTW_RX_RING_COUNT; i++) { struct mtw_rx_data *data = &sc->rxq[MTW_RXQ_WLAN].data[i]; usbd_setup_xfer(data->xfer, sc->rxq[MTW_RXQ_WLAN].pipeh, data, data->buf, MTW_MAX_RXSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, mtw_rxeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) goto fail; } if ((error = mtw_txrx_enable(sc)) != 0) goto fail; /* init LEDs */ mtw_set_leds(sc, MTW_LED_MODE_ON); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); if (ic->ic_flags & IEEE80211_F_WEPON) { /* install WEP keys */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (ic->ic_nw_keys[i].k_cipher != IEEE80211_CIPHER_NONE) (void)mtw_set_key(ic, NULL, &ic->ic_nw_keys[i]); } } if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); if (error != 0) fail: mtw_stop(ifp, 1); return error; } void mtw_stop(struct ifnet *ifp, int disable) { struct mtw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int s, ntries, error, qid; if (ifp->if_flags & IFF_RUNNING) mtw_set_leds(sc, MTW_LED_MODE_ON); sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); timeout_del(&sc->scan_to); timeout_del(&sc->calib_to); s = splusb(); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* wait for all queued asynchronous commands to complete */ usb_wait_task(sc->sc_udev, &sc->sc_task); splx(s); /* Disable Tx/Rx DMA. */ mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp); tmp &= ~(MTW_RX_DMA_EN | MTW_TX_DMA_EN); mtw_write(sc, MTW_WPDMA_GLO_CFG, tmp); mtw_usb_dma_write(sc, 0); for (ntries = 0; ntries < 100; ntries++) { if (mtw_read(sc, MTW_WPDMA_GLO_CFG, &tmp) != 0) break; if ((tmp & (MTW_TX_DMA_BUSY | MTW_RX_DMA_BUSY)) == 0) break; DELAY(10); } if (ntries == 100) { printf("%s: timeout waiting for DMA engine\n", sc->sc_dev.dv_xname); } /* stop MAC Tx/Rx */ mtw_read(sc, MTW_MAC_SYS_CTRL, &tmp); tmp &= ~(MTW_MAC_RX_EN | MTW_MAC_TX_EN); mtw_write(sc, MTW_MAC_SYS_CTRL, tmp); /* disable RTS retry */ mtw_read(sc, MTW_TX_RTS_CFG, &tmp); tmp &= ~0xff; mtw_write(sc, MTW_TX_RTS_CFG, tmp); /* US_CYC_CFG */ mtw_read(sc, MTW_US_CYC_CNT, &tmp); tmp = (tmp & ~0xff); mtw_write(sc, MTW_US_CYC_CNT, tmp); /* stop PBF */ mtw_read(sc, MTW_PBF_CFG, &tmp); tmp &= ~0x3; mtw_write(sc, MTW_PBF_CFG, tmp); /* wait for pending Tx to complete */ for (ntries = 0; ntries < 100; ntries++) { if ((error = mtw_read(sc, MTW_TXRXQ_PCNT, &tmp)) != 0) break; if ((tmp & MTW_TX2Q_PCNT_MASK) == 0) break; } DELAY(1000); /* delete keys */ for (qid = 0; qid < 4; qid++) { mtw_read(sc, MTW_SKEY_MODE_0_7, &tmp); tmp &= ~(0xf << qid * 4); mtw_write(sc, MTW_SKEY_MODE_0_7, tmp); } if (disable) { /* disable radio */ error = mtw_mcu_radio(sc, 0x30, 0x1); usbd_delay_ms(sc->sc_udev, 10); } /* free Tx and Rx rings */ sc->qfullmsk = 0; mtw_free_mcu_ring(sc); for (qid = 0; qid < MTW_TXQ_COUNT; qid++) mtw_free_tx_ring(sc, qid); mtw_free_rx_ring(sc, 0); }