/* $OpenBSD: if_otus.c,v 1.32 2012/10/12 19:53:24 haesbaert Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros AR9001U chipset. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USB_DEBUG #define OTUS_DEBUG #endif #ifdef OTUS_DEBUG #define DPRINTF(x) do { if (otus_debug) printf x; } while (0) #define DPRINTFN(n, x) do { if (otus_debug >= (n)) printf x; } while (0) int otus_debug = 1; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static const struct usb_devno otus_devs[] = { { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512 }, { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275 }, { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N }, { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170 }, { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612 }, { USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2 }, { USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN }, { USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2 }, { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2 }, { USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2 }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000 }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100 }, { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300 }, { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494 }, { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600 }, { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81 }, { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82 }, { USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221 }, { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N } }; int otus_match(struct device *, void *, void *); void otus_attach(struct device *, struct device *, void *); int otus_detach(struct device *, int); int otus_activate(struct device *, int); void otus_attachhook(void *); void otus_get_chanlist(struct otus_softc *); int otus_load_firmware(struct otus_softc *, const char *, uint32_t); int otus_open_pipes(struct otus_softc *); void otus_close_pipes(struct otus_softc *); int otus_alloc_tx_cmd(struct otus_softc *); void otus_free_tx_cmd(struct otus_softc *); int otus_alloc_tx_data_list(struct otus_softc *); void otus_free_tx_data_list(struct otus_softc *); int otus_alloc_rx_data_list(struct otus_softc *); void otus_free_rx_data_list(struct otus_softc *); void otus_next_scan(void *); void otus_task(void *); void otus_do_async(struct otus_softc *, void (*)(struct otus_softc *, void *), void *, int); int otus_newstate(struct ieee80211com *, enum ieee80211_state, int); void otus_newstate_cb(struct otus_softc *, void *); int otus_cmd(struct otus_softc *, uint8_t, const void *, int, void *); void otus_write(struct otus_softc *, uint32_t, uint32_t); int otus_write_barrier(struct otus_softc *); struct ieee80211_node *otus_node_alloc(struct ieee80211com *); int otus_media_change(struct ifnet *); int otus_read_eeprom(struct otus_softc *); void otus_newassoc(struct ieee80211com *, struct ieee80211_node *, int); void otus_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int); void otus_sub_rxeof(struct otus_softc *, uint8_t *, int); void otus_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void otus_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); int otus_tx(struct otus_softc *, struct mbuf *, struct ieee80211_node *); void otus_start(struct ifnet *); void otus_watchdog(struct ifnet *); int otus_ioctl(struct ifnet *, u_long, caddr_t); int otus_set_multi(struct otus_softc *); void otus_updateedca(struct ieee80211com *); void otus_updateedca_cb(struct otus_softc *, void *); void otus_updateslot(struct ieee80211com *); void otus_updateslot_cb(struct otus_softc *, void *); int otus_init_mac(struct otus_softc *); uint32_t otus_phy_get_def(struct otus_softc *, uint32_t); int otus_set_board_values(struct otus_softc *, struct ieee80211_channel *); int otus_program_phy(struct otus_softc *, struct ieee80211_channel *); int otus_set_rf_bank4(struct otus_softc *, struct ieee80211_channel *); void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *); int otus_set_chan(struct otus_softc *, struct ieee80211_channel *, int); int otus_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void otus_set_key_cb(struct otus_softc *, void *); void otus_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void otus_delete_key_cb(struct otus_softc *, void *); void otus_calibrate_to(void *); int otus_set_bssid(struct otus_softc *, const uint8_t *); int otus_set_macaddr(struct otus_softc *, const uint8_t *); void otus_led_newstate_type1(struct otus_softc *); void otus_led_newstate_type2(struct otus_softc *); void otus_led_newstate_type3(struct otus_softc *); int otus_init(struct ifnet *); void otus_stop(struct ifnet *); struct cfdriver otus_cd = { NULL, "otus", DV_IFNET }; const struct cfattach otus_ca = { sizeof (struct otus_softc), otus_match, otus_attach, otus_detach, otus_activate }; int otus_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } void otus_attach(struct device *parent, struct device *self, void *aux) { struct otus_softc *sc = (struct otus_softc *)self; struct usb_attach_arg *uaa = aux; int error; sc->sc_udev = uaa->device; usb_init_task(&sc->sc_task, otus_task, sc, USB_TASK_TYPE_GENERIC); timeout_set(&sc->scan_to, otus_next_scan, sc); timeout_set(&sc->calib_to, otus_calibrate_to, sc); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) { printf("%s: could not set configuration no\n", sc->sc_dev.dv_xname); return; } /* Get the first interface handle. */ error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface); if (error != 0) { printf("%s: could not get interface handle\n", sc->sc_dev.dv_xname); return; } if ((error = otus_open_pipes(sc)) != 0) { printf("%s: could not open pipes\n", sc->sc_dev.dv_xname); return; } if (rootvp == NULL) mountroothook_establish(otus_attachhook, sc); else otus_attachhook(sc); } int otus_detach(struct device *self, int flags) { struct otus_softc *sc = (struct otus_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); if (timeout_initialized(&sc->scan_to)) timeout_del(&sc->scan_to); if (timeout_initialized(&sc->calib_to)) timeout_del(&sc->calib_to); /* Wait for all queued asynchronous commands to complete. */ usb_rem_wait_task(sc->sc_udev, &sc->sc_task); usbd_ref_wait(sc->sc_udev); if (ifp->if_softc != NULL) { ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_ifdetach(ifp); if_detach(ifp); } otus_close_pipes(sc); splx(s); return 0; } int otus_activate(struct device *self, int act) { struct otus_softc *sc = (struct otus_softc *)self; switch (act) { case DVACT_DEACTIVATE: usbd_deactivate(sc->sc_udev); break; } return 0; } void otus_attachhook(void *xsc) { struct otus_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usb_device_request_t req; uint32_t in, out; int error; error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR); if (error != 0) { printf("%s: could not load %s firmware\n", sc->sc_dev.dv_xname, "init"); return; } usbd_delay_ms(sc->sc_udev, 1000); error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR); if (error != 0) { printf("%s: could not load %s firmware\n", sc->sc_dev.dv_xname, "main"); return; } /* Tell device that firmware transfer is complete. */ req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AR_FW_DOWNLOAD_COMPLETE; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) { printf("%s: firmware initialization failed\n", sc->sc_dev.dv_xname); return; } /* Send an ECHO command to check that everything is settled. */ in = 0xbadc0ffe; if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) { printf("%s: echo command failed\n", sc->sc_dev.dv_xname); return; } if (in != out) { printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n", sc->sc_dev.dv_xname, in, out); return; } /* Read entire EEPROM. */ if (otus_read_eeprom(sc) != 0) { printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); return; } sc->txmask = sc->eeprom.baseEepHeader.txMask; sc->rxmask = sc->eeprom.baseEepHeader.rxMask; sc->capflags = sc->eeprom.baseEepHeader.opCapFlags; IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr); sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */ printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n", sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ? 0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101), (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1, ether_sprintf(ic->ic_myaddr)); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* WEP */ IEEE80211_C_RSN; /* WPA/RSN */ if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { /* Set supported .11b and .11g rates. */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { /* Set supported .11a rates. */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; } /* Build the list of supported channels. */ otus_get_chanlist(sc); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = otus_ioctl; ifp->if_start = otus_start; ifp->if_watchdog = otus_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = otus_node_alloc; ic->ic_newassoc = otus_newassoc; ic->ic_updateslot = otus_updateslot; ic->ic_updateedca = otus_updateedca; #ifdef notyet ic->ic_set_key = otus_set_key; ic->ic_delete_key = otus_delete_key; #endif /* Override state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = otus_newstate; ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT); #endif } void otus_get_chanlist(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t domain; uint8_t chan; int i; /* XXX regulatory domain. */ domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]); DPRINTF(("regdomain=0x%04x\n", domain)); if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { for (i = 0; i < 14; i++) { chan = ar_chans[i]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { for (i = 14; i < nitems(ar_chans); i++) { chan = ar_chans[i]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; } } } int otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr) { usb_device_request_t req; size_t size; u_char *fw, *ptr; int mlen, error; /* Read firmware image from the filesystem. */ if ((error = loadfirmware(name, &fw, &size)) != 0) { printf("%s: failed loadfirmware of file %s (error %d)\n", sc->sc_dev.dv_xname, name, error); return error; } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AR_FW_DOWNLOAD; USETW(req.wIndex, 0); ptr = fw; addr >>= 8; while (size > 0) { mlen = MIN(size, 4096); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) { error = EIO; break; } addr += mlen >> 8; ptr += mlen; size -= mlen; } free(fw, M_DEVBUF); return error; } int otus_open_pipes(struct otus_softc *sc) { usb_endpoint_descriptor_t *ed; int i, isize, error; error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0, &sc->data_rx_pipe); if (error != 0) { printf("%s: could not open Rx bulk pipe\n", sc->sc_dev.dv_xname); goto fail; } ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO); if (ed == NULL) { printf("%s: could not retrieve Rx intr pipe descriptor\n", sc->sc_dev.dv_xname); goto fail; } isize = UGETW(ed->wMaxPacketSize); if (isize == 0) { printf("%s: invalid Rx intr pipe descriptor\n", sc->sc_dev.dv_xname); goto fail; } sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); if (sc->ibuf == NULL) { printf("%s: could not allocate Rx intr buffer\n", sc->sc_dev.dv_xname); goto fail; } error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO, USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize, otus_intr, USBD_DEFAULT_INTERVAL); if (error != 0) { printf("%s: could not open Rx intr pipe\n", sc->sc_dev.dv_xname); goto fail; } error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0, &sc->data_tx_pipe); if (error != 0) { printf("%s: could not open Tx bulk pipe\n", sc->sc_dev.dv_xname); goto fail; } error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0, &sc->cmd_tx_pipe); if (error != 0) { printf("%s: could not open Tx intr pipe\n", sc->sc_dev.dv_xname); goto fail; } if (otus_alloc_tx_cmd(sc) != 0) { printf("%s: could not allocate command xfer\n", sc->sc_dev.dv_xname); goto fail; } if (otus_alloc_tx_data_list(sc) != 0) { printf("%s: could not allocate Tx xfers\n", sc->sc_dev.dv_xname); goto fail; } if (otus_alloc_rx_data_list(sc) != 0) { printf("%s: could not allocate Rx xfers\n", sc->sc_dev.dv_xname); goto fail; } for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) { struct otus_rx_data *data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, otus_rxeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { printf("%s: could not queue Rx xfer\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: otus_close_pipes(sc); return error; } void otus_close_pipes(struct otus_softc *sc) { otus_free_tx_cmd(sc); otus_free_tx_data_list(sc); otus_free_rx_data_list(sc); if (sc->data_rx_pipe != NULL) usbd_close_pipe(sc->data_rx_pipe); if (sc->cmd_rx_pipe != NULL) { usbd_abort_pipe(sc->cmd_rx_pipe); usbd_close_pipe(sc->cmd_rx_pipe); } if (sc->ibuf != NULL) free(sc->ibuf, M_USBDEV); if (sc->data_tx_pipe != NULL) usbd_close_pipe(sc->data_tx_pipe); if (sc->cmd_tx_pipe != NULL) usbd_close_pipe(sc->cmd_tx_pipe); } int otus_alloc_tx_cmd(struct otus_softc *sc) { struct otus_tx_cmd *cmd = &sc->tx_cmd; cmd->xfer = usbd_alloc_xfer(sc->sc_udev); if (cmd->xfer == NULL) { printf("%s: could not allocate xfer\n", sc->sc_dev.dv_xname); return ENOMEM; } cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ); if (cmd->buf == NULL) { printf("%s: could not allocate xfer buffer\n", sc->sc_dev.dv_xname); usbd_free_xfer(cmd->xfer); return ENOMEM; } return 0; } void otus_free_tx_cmd(struct otus_softc *sc) { /* Make sure no transfers are pending. */ usbd_abort_pipe(sc->cmd_tx_pipe); if (sc->tx_cmd.xfer != NULL) usbd_free_xfer(sc->tx_cmd.xfer); } int otus_alloc_tx_data_list(struct otus_softc *sc) { struct otus_tx_data *data; int i, error; for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; /* Backpointer for callbacks. */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate xfer buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } } return 0; fail: otus_free_tx_data_list(sc); return error; } void otus_free_tx_data_list(struct otus_softc *sc) { int i; /* Make sure no transfers are pending. */ usbd_abort_pipe(sc->data_tx_pipe); for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) if (sc->tx_data[i].xfer != NULL) usbd_free_xfer(sc->tx_data[i].xfer); } int otus_alloc_rx_data_list(struct otus_softc *sc) { struct otus_rx_data *data; int i, error; for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) { data = &sc->rx_data[i]; data->sc = sc; /* Backpointer for callbacks. */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate xfer buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } } return 0; fail: otus_free_rx_data_list(sc); return error; } void otus_free_rx_data_list(struct otus_softc *sc) { int i; /* Make sure no transfers are pending. */ usbd_abort_pipe(sc->data_rx_pipe); for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) if (sc->rx_data[i].xfer != NULL) usbd_free_xfer(sc->rx_data[i].xfer); } void otus_next_scan(void *arg) { struct otus_softc *sc = arg; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&sc->sc_ic.ic_if); usbd_ref_decr(sc->sc_udev); } void otus_task(void *arg) { struct otus_softc *sc = arg; struct otus_host_cmd_ring *ring = &sc->cmdq; struct otus_host_cmd *cmd; int s; /* Process host commands. */ s = splusb(); while (ring->next != ring->cur) { cmd = &ring->cmd[ring->next]; splx(s); /* Callback. */ cmd->cb(sc, cmd->data); s = splusb(); ring->queued--; ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT; } splx(s); } void otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *), void *arg, int len) { struct otus_host_cmd_ring *ring = &sc->cmdq; struct otus_host_cmd *cmd; int s; s = splusb(); cmd = &ring->cmd[ring->cur]; cmd->cb = cb; KASSERT(len <= sizeof (cmd->data)); memcpy(cmd->data, arg, len); ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT; /* If there is no pending command already, schedule a task. */ if (++ring->queued == 1) usb_add_task(sc->sc_udev, &sc->sc_task); splx(s); } int otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct otus_softc *sc = ic->ic_softc; struct otus_cmd_newstate cmd; /* Do it in a process context. */ cmd.state = nstate; cmd.arg = arg; otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd); return 0; } void otus_newstate_cb(struct otus_softc *sc, void *arg) { struct otus_cmd_newstate *cmd = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; int s; s = splnet(); switch (cmd->state) { case IEEE80211_S_INIT: break; case IEEE80211_S_SCAN: (void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0); if (!usbd_is_dying(sc->sc_udev)) timeout_add_msec(&sc->scan_to, 200); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: (void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0); break; case IEEE80211_S_RUN: (void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1); ni = ic->ic_bss; if (ic->ic_opmode == IEEE80211_M_STA) { otus_updateslot(ic); otus_set_bssid(sc, ni->ni_bssid); /* Fake a join to init the Tx rate. */ otus_newassoc(ic, ni, 1); /* Start calibration timer. */ if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 1); } break; } sc->sc_led_newstate(sc); (void)sc->sc_newstate(ic, cmd->state, cmd->arg); splx(s); } int otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen, void *odata) { struct otus_tx_cmd *cmd = &sc->tx_cmd; struct ar_cmd_hdr *hdr; int s, xferlen, error; /* Always bulk-out a multiple of 4 bytes. */ xferlen = (sizeof (*hdr) + ilen + 3) & ~3; hdr = (struct ar_cmd_hdr *)cmd->buf; hdr->code = code; hdr->len = ilen; hdr->token = ++cmd->token; /* Don't care about endianness. */ memcpy((uint8_t *)&hdr[1], idata, ilen); DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n", code, ilen, hdr->token)); s = splusb(); cmd->odata = odata; cmd->done = 0; usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_CMD_TIMEOUT, NULL); error = usbd_sync_transfer(cmd->xfer); if (error != 0) { splx(s); printf("%s: could not send command 0x%x (error=%s)\n", sc->sc_dev.dv_xname, code, usbd_errstr(error)); return EIO; } if (!cmd->done) error = tsleep(cmd, PCATCH, "otuscmd", hz); cmd->odata = NULL; /* In case answer is received too late. */ splx(s); if (error != 0) { printf("%s: timeout waiting for command 0x%02x reply\n", sc->sc_dev.dv_xname, code); } return error; } void otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val) { sc->write_buf[sc->write_idx].reg = htole32(reg); sc->write_buf[sc->write_idx].val = htole32(val); if (++sc->write_idx > AR_MAX_WRITE_IDX) (void)otus_write_barrier(sc); } int otus_write_barrier(struct otus_softc *sc) { int error; if (sc->write_idx == 0) return 0; /* Nothing to flush. */ error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf, sizeof (sc->write_buf[0]) * sc->write_idx, NULL); sc->write_idx = 0; return error; } struct ieee80211_node * otus_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO); } int otus_media_change(struct ifnet *ifp) { struct otus_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++) if (otus_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) error = otus_init(ifp); return error; } int otus_read_eeprom(struct otus_softc *sc) { uint32_t regs[8], reg; uint8_t *eep; int i, j, error; /* Read EEPROM by blocks of 32 bytes. */ eep = (uint8_t *)&sc->eeprom; reg = AR_EEPROM_OFFSET; for (i = 0; i < sizeof (sc->eeprom) / 32; i++) { for (j = 0; j < 8; j++, reg += 4) regs[j] = htole32(reg); error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep); if (error != 0) break; eep += 32; } return error; } void otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct otus_softc *sc = ic->ic_softc; struct otus_node *on = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; uint8_t rate; int ridx, i; DPRINTF(("new assoc isnew=%d addr=%s\n", isnew, ether_sprintf(ni->ni_macaddr))); ieee80211_amrr_node_init(&sc->amrr, &on->amn); /* Start at lowest available bit-rate, AMRR will raise. */ ni->ni_txrate = 0; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; /* Convert 802.11 rate to hardware rate index. */ for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++) if (otus_rates[ridx].rate == rate) break; on->ridx[i] = ridx; DPRINTF(("rate=0x%02x ridx=%d\n", rs->rs_rates[i], on->ridx[i])); } } /* ARGSUSED */ void otus_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { #if 0 struct otus_softc *sc = priv; int len; /* * The Rx intr pipe is unused with current firmware. Notifications * and replies to commands are sent through the Rx bulk pipe instead * (with a magic PLCP header.) */ if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("intr status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe); return; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); otus_cmd_rxeof(sc, sc->ibuf, len); #endif } void otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct otus_tx_cmd *cmd; struct ar_cmd_hdr *hdr; int s; if (__predict_false(len < sizeof (*hdr))) { DPRINTF(("cmd too small %d\n", len)); return; } hdr = (struct ar_cmd_hdr *)buf; if (__predict_false(sizeof (*hdr) + hdr->len > len || sizeof (*hdr) + hdr->len > 64)) { DPRINTF(("cmd too large %d\n", hdr->len)); return; } if ((hdr->code & 0xc0) != 0xc0) { DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n", hdr->code, hdr->len, hdr->token)); cmd = &sc->tx_cmd; if (__predict_false(hdr->token != cmd->token)) return; /* Copy answer into caller's supplied buffer. */ if (cmd->odata != NULL) memcpy(cmd->odata, &hdr[1], hdr->len); cmd->done = 1; wakeup(cmd); return; } /* Received unsolicited notification. */ DPRINTF(("received notification code=0x%02x len=%d\n", hdr->code, hdr->len)); switch (hdr->code & 0x3f) { case AR_EVT_BEACON: break; case AR_EVT_TX_COMP: { struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1]; struct ieee80211_node *ni; struct otus_node *on; DPRINTF(("tx completed %s status=%d phy=0x%x\n", ether_sprintf(tx->macaddr), letoh16(tx->status), letoh32(tx->phy))); s = splnet(); #ifdef notyet #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode != IEEE80211_M_STA) { ni = ieee80211_find_node(ic, tx->macaddr); if (__predict_false(ni == NULL)) { splx(s); break; } } else #endif #endif ni = ic->ic_bss; /* Update rate control statistics. */ on = (void *)ni; /* NB: we do not set the TX_MAC_RATE_PROBING flag. */ if (__predict_true(tx->status != 0)) on->amn.amn_retrycnt++; splx(s); break; } case AR_EVT_TBTT: break; } } void otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct ar_rx_tail *tail; struct ieee80211_frame *wh; struct mbuf *m; uint8_t *plcp; int s, mlen, align; if (__predict_false(len < AR_PLCP_HDR_LEN)) { DPRINTF(("sub-xfer too short %d\n", len)); return; } plcp = buf; /* All bits in the PLCP header are set to 1 for non-MPDU. */ if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) { otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN, len - AR_PLCP_HDR_LEN); return; } /* Received MPDU. */ if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) { DPRINTF(("MPDU too short %d\n", len)); ifp->if_ierrors++; return; } tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail)); /* Discard error frames. */ if (__predict_false(tail->error != 0)) { DPRINTF(("error frame 0x%02x\n", tail->error)); if (tail->error & AR_RX_ERROR_FCS) { DPRINTFN(3, ("bad FCS\n")); } else if (tail->error & AR_RX_ERROR_MMIC) { /* Report Michael MIC failures to net80211. */ ic->ic_stats.is_rx_locmicfail++; ieee80211_michael_mic_failure(ic, 0); } ifp->if_ierrors++; return; } /* Compute MPDU's length. */ mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail); /* Make sure there's room for an 802.11 header + FCS. */ if (__predict_false(mlen < IEEE80211_MIN_LEN)) { ifp->if_ierrors++; return; } mlen -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */ wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN); /* Provide a 32-bit aligned protocol header to the stack. */ align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0; MGETHDR(m, M_DONTWAIT, MT_DATA); if (__predict_false(m == NULL)) { ifp->if_ierrors++; return; } if (align + mlen > MHLEN) { MCLGET(m, M_DONTWAIT); if (__predict_false(!(m->m_flags & M_EXT))) { ifp->if_ierrors++; m_freem(m); return; } } /* Finalize mbuf. */ m->m_pkthdr.rcvif = ifp; m->m_data += align; memcpy(mtod(m, caddr_t), wh, mlen); m->m_pkthdr.len = m->m_len = mlen; #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct otus_rx_radiotap_header *tap = &sc->sc_rxtap; struct mbuf mb; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antsignal = tail->rssi; tap->wr_rate = 2; /* In case it can't be found below. */ switch (tail->status & AR_RX_STATUS_MT_MASK) { case AR_RX_STATUS_MT_CCK: switch (plcp[0]) { case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; } if (tail->status & AR_RX_STATUS_SHPREAMBLE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case AR_RX_STATUS_MT_OFDM: switch (plcp[0] & 0xf) { case 0xb: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0xa: tap->wr_rate = 24; break; case 0xe: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xd: tap->wr_rate = 72; break; case 0x8: tap->wr_rate = 96; break; case 0xc: tap->wr_rate = 108; break; } break; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif s = splnet(); ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_flags = 0; rxi.rxi_rssi = tail->rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); splx(s); } void otus_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct otus_rx_data *data = priv; struct otus_softc *sc = data->sc; caddr_t buf = data->buf; struct ar_rx_head *head; uint16_t hlen; int len; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("RX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->data_rx_pipe); if (status != USBD_CANCELLED) goto resubmit; return; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); while (len >= sizeof (*head)) { head = (struct ar_rx_head *)buf; if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) { DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag))); break; } hlen = letoh16(head->len); if (__predict_false(sizeof (*head) + hlen > len)) { DPRINTF(("xfer too short %d/%d\n", len, hlen)); break; } /* Process sub-xfer. */ otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen); /* Next sub-xfer is aligned on a 32-bit boundary. */ hlen = (sizeof (*head) + hlen + 3) & ~3; buf += hlen; len -= hlen; } resubmit: usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof); (void)usbd_transfer(data->xfer); } void otus_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct otus_tx_data *data = priv; struct otus_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; s = splnet(); sc->tx_queued--; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("TX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->data_tx_pipe); ifp->if_oerrors++; splx(s); return; } sc->sc_tx_timer = 0; ifp->if_opackets++; ifp->if_flags &= ~IFF_OACTIVE; otus_start(ifp); splx(s); } int otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct otus_node *on = (void *)ni; struct otus_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; struct ar_tx_head *head; uint32_t phyctl; uint16_t macctl, qos; uint8_t tid, qid; int error, ridx, hasqos, xferlen; wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return ENOBUFS; wh = mtod(m, struct ieee80211_frame *); } if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = ieee80211_up_to_ac(ic, tid); } else { qos = 0; qid = EDCA_AC_BE; } /* Pickup a rate index. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1; else if (ic->ic_fixed_rate != -1) ridx = sc->fixed_ridx; else ridx = on->ridx[ni->ni_txrate]; phyctl = 0; macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid); if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) == IEEE80211_QOS_ACK_POLICY_NOACK))) macctl |= AR_TX_MAC_NOACK; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold) macctl |= AR_TX_MAC_RTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ridx >= OTUS_RIDX_OFDM6) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) macctl |= AR_TX_MAC_CTS; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) macctl |= AR_TX_MAC_RTS; } } phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs); if (ridx >= OTUS_RIDX_OFDM6) { phyctl |= AR_TX_PHY_MT_OFDM; if (ridx <= OTUS_RIDX_OFDM24) phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); else phyctl |= AR_TX_PHY_ANTMSK(1); } else { /* CCK */ phyctl |= AR_TX_PHY_MT_CCK; phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); } /* Update rate control stats for frames that are ACK'ed. */ if (!(macctl & AR_TX_MAC_NOACK)) ((struct otus_node *)ni)->amn.amn_txcnt++; data = &sc->tx_data[sc->tx_cur]; /* Fill Tx descriptor. */ head = (struct ar_tx_head *)data->buf; head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN); head->macctl = htole16(macctl); head->phyctl = htole32(phyctl); #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct otus_tx_radiotap_header *tap = &sc->sc_txtap; struct mbuf mb; tap->wt_flags = 0; tap->wt_rate = otus_rates[ridx].rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif xferlen = sizeof (*head) + m->m_pkthdr.len; m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]); m_freem(m); DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n", sc->tx_queued, head->len, head->macctl, head->phyctl, otus_rates[ridx].rate)); usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof); error = usbd_transfer(data->xfer); if (__predict_false(error != USBD_IN_PROGRESS && error != 0)) return error; ieee80211_release_node(ic, ni); sc->tx_queued++; sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT; return 0; } void otus_start(struct ifnet *ifp) { struct otus_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) { ifp->if_flags |= IFF_OACTIVE; break; } /* Send pending management frames first. */ IF_DEQUEUE(&ic->ic_mgtq, m); if (m != NULL) { ni = (void *)m->m_pkthdr.rcvif; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; /* Encapsulate and send data frames. */ IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) continue; sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (otus_tx(sc, m, ni) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void otus_watchdog(struct ifnet *ifp) { struct otus_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); /* otus_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct otus_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; if (usbd_is_dying(sc->sc_udev)) return ENXIO; usbd_ref_incr(sc->sc_udev); s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if ((ifp->if_flags & IFF_RUNNING) && ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { otus_set_multi(sc); } else if (!(ifp->if_flags & IFF_RUNNING)) otus_init(ifp); } else if (ifp->if_flags & IFF_RUNNING) otus_stop(ifp); sc->sc_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) otus_set_chan(sc, ic->ic_ibss_chan, 0); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) otus_init(ifp); error = 0; } splx(s); usbd_ref_decr(sc->sc_udev); return error; } int otus_set_multi(struct otus_softc *sc) { struct arpcom *ac = &sc->sc_ic.ic_ac; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; uint32_t lo, hi; uint8_t bit; if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { lo = hi = 0xffffffff; goto done; } lo = hi = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; lo = hi = 0xffffffff; goto done; } bit = enm->enm_addrlo[5] >> 2; if (bit < 32) lo |= 1 << bit; else hi |= 1 << (bit - 32); ETHER_NEXT_MULTI(step, enm); } done: hi |= 1 << 31; /* Make sure the broadcast bit is set. */ otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo); otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi); return otus_write_barrier(sc); } void otus_updateedca(struct ieee80211com *ic) { /* Do it in a process context. */ otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0); } /* ARGSUSED */ void otus_updateedca_cb(struct otus_softc *sc, void *arg) { #define EXP2(val) ((1 << (val)) - 1) #define AIFS(val) ((val) * 9 + 10) struct ieee80211com *ic = &sc->sc_ic; const struct ieee80211_edca_ac_params *edca; int s; s = splnet(); edca = (ic->ic_flags & IEEE80211_F_QOS) ? ic->ic_edca_ac : otus_edca_def; /* Set CWmin/CWmax values. */ otus_write(sc, AR_MAC_REG_AC0_CW, EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 | EXP2(edca[EDCA_AC_BE].ac_ecwmin)); otus_write(sc, AR_MAC_REG_AC1_CW, EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 | EXP2(edca[EDCA_AC_BK].ac_ecwmin)); otus_write(sc, AR_MAC_REG_AC2_CW, EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 | EXP2(edca[EDCA_AC_VI].ac_ecwmin)); otus_write(sc, AR_MAC_REG_AC3_CW, EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 | EXP2(edca[EDCA_AC_VO].ac_ecwmin)); otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */ EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 | EXP2(edca[EDCA_AC_VO].ac_ecwmin)); /* Set AIFSN values. */ otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS, AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 | AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 | AIFS(edca[EDCA_AC_BE].ac_aifsn)); otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS, AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 | /* Special TXQ. */ AIFS(edca[EDCA_AC_VO].ac_aifsn) << 4 | AIFS(edca[EDCA_AC_VI].ac_aifsn) >> 8); /* Set TXOP limit. */ otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP, edca[EDCA_AC_BK].ac_txoplimit << 16 | edca[EDCA_AC_BE].ac_txoplimit); otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP, edca[EDCA_AC_VO].ac_txoplimit << 16 | edca[EDCA_AC_VI].ac_txoplimit); splx(s); (void)otus_write_barrier(sc); #undef AIFS #undef EXP2 } void otus_updateslot(struct ieee80211com *ic) { /* Do it in a process context. */ otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0); } /* ARGSUSED */ void otus_updateslot_cb(struct otus_softc *sc, void *arg) { uint32_t slottime; slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10); (void)otus_write_barrier(sc); } int otus_init_mac(struct otus_softc *sc) { int error; otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40); otus_write(sc, AR_MAC_REG_RETRY_MAX, 0); otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000); otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80); otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70); otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000); otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10); otus_write(sc, 0x1c3b2c, 0x19000000); /* NAV protects ACK only (in TXOP). */ otus_write(sc, 0x1c3b38, 0x201); /* Set beacon Tx power to 0x7. */ otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170); otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105); otus_write(sc, 0x1c3b9c, 0x10000a); /* Filter any control frames, BAR is bit 24. */ otus_write(sc, 0x1c368c, 0x0500ffff); otus_write(sc, 0x1c3c40, 0x1); otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f); otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f); otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb); otus_write(sc, 0x1c3694, 0x4003c1e); /* Enable LED0 and LED1. */ otus_write(sc, 0x1d0100, 0x3); otus_write(sc, 0x1d0104, 0x3); /* Switch MAC to OTUS interface. */ otus_write(sc, 0x1c3600, 0x3); otus_write(sc, 0x1c3c50, 0xffff); otus_write(sc, 0x1c3680, 0xf00008); /* Disable Rx timeout (workaround). */ otus_write(sc, 0x1c362c, 0); /* Set USB Rx stream mode maximum frame number to 2. */ otus_write(sc, 0x1e1110, 0x4); /* Set USB Rx stream mode timeout to 10us. */ otus_write(sc, 0x1e1114, 0x80); /* Set clock frequency to 88/80MHz. */ otus_write(sc, 0x1d4008, 0x73); /* Set WLAN DMA interrupt mode: generate intr per packet. */ otus_write(sc, 0x1c3d7c, 0x110011); otus_write(sc, 0x1c3bb0, 0x4); otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48); /* Disable HW decryption for now. */ otus_write(sc, 0x1c3678, 0x78); if ((error = otus_write_barrier(sc)) != 0) return error; /* Set default EDCA parameters. */ otus_updateedca_cb(sc, NULL); return 0; } /* * Return default value for PHY register based on current operating mode. */ uint32_t otus_phy_get_def(struct otus_softc *sc, uint32_t reg) { int i; for (i = 0; i < nitems(ar5416_phy_regs); i++) if (AR_PHY(ar5416_phy_regs[i]) == reg) return sc->phy_vals[i]; return 0; /* Register not found. */ } /* * Update PHY's programming based on vendor-specific data stored in EEPROM. * This is for FEM-type devices only. */ int otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c) { const struct ModalEepHeader *eep; uint32_t tmp, offset; if (IEEE80211_IS_CHAN_5GHZ(c)) eep = &sc->eeprom.modalHeader[0]; else eep = &sc->eeprom.modalHeader[1]; /* Offset of chain 2. */ offset = 2 * 0x1000; tmp = letoh32(eep->antCtrlCommon); otus_write(sc, AR_PHY_SWITCH_COM, tmp); tmp = letoh32(eep->antCtrlChain[0]); otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp); tmp = letoh32(eep->antCtrlChain[1]); otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp); if (1 /* sc->sc_sco == AR_SCO_SCN */) { tmp = otus_phy_get_def(sc, AR_PHY_SETTLING); tmp &= ~(0x7f << 7); tmp |= (eep->switchSettling & 0x7f) << 7; otus_write(sc, AR_PHY_SETTLING, tmp); } tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ); tmp &= ~0xffff; tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize; otus_write(sc, AR_PHY_DESIRED_SZ, tmp); tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 | eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn; otus_write(sc, AR_PHY_RF_CTL4, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3); tmp &= ~(0xff << 16); tmp |= eep->txEndToRxOn << 16; otus_write(sc, AR_PHY_RF_CTL3, tmp); tmp = otus_phy_get_def(sc, AR_PHY_CCA); tmp &= ~(0x7f << 12); tmp |= (eep->thresh62 & 0x7f) << 12; otus_write(sc, AR_PHY_CCA, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN); tmp &= ~(0x3f << 12); tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12; otus_write(sc, AR_PHY_RXGAIN, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset); tmp &= ~(0x3f << 12); tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12; otus_write(sc, AR_PHY_RXGAIN + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ); tmp &= ~(0x3f << 18); tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18; if (IEEE80211_IS_CHAN_5GHZ(c)) { tmp &= ~(0xf << 10); tmp |= (eep->bswMargin[0] & 0xf) << 10; } otus_write(sc, AR_PHY_GAIN_2GHZ, tmp); tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset); tmp &= ~(0x3f << 18); tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18; otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4); tmp &= ~(0x3f << 5 | 0x1f); tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f); otus_write(sc, AR_PHY_TIMING_CTRL4, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset); tmp &= ~(0x3f << 5 | 0x1f); tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f); otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1); tmp &= ~(0xf << 16); tmp |= (eep->xpd & 0xf) << 16; otus_write(sc, AR_PHY_TPCRG1, tmp); return otus_write_barrier(sc); } int otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c) { const uint32_t *vals; int error, i; /* Select PHY programming based on band and bandwidth. */ if (IEEE80211_IS_CHAN_2GHZ(c)) vals = ar5416_phy_vals_2ghz_20mhz; else vals = ar5416_phy_vals_5ghz_20mhz; for (i = 0; i < nitems(ar5416_phy_regs); i++) otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]); sc->phy_vals = vals; if (sc->eeprom.baseEepHeader.deviceType == 0x80) /* FEM */ if ((error = otus_set_board_values(sc, c)) != 0) return error; /* Initial Tx power settings. */ otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f); otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f); if (IEEE80211_IS_CHAN_2GHZ(c)) otus_write(sc, 0x1d4014, 0x5163); else otus_write(sc, 0x1d4014, 0x5143); return otus_write_barrier(sc); } static __inline uint8_t otus_reverse_bits(uint8_t v) { v = ((v >> 1) & 0x55) | ((v & 0x55) << 1); v = ((v >> 2) & 0x33) | ((v & 0x33) << 2); v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4); return v; } int otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c) { uint8_t chansel, d0, d1; uint16_t data; int error; d0 = 0; if (IEEE80211_IS_CHAN_5GHZ(c)) { chansel = (c->ic_freq - 4800) / 5; if (chansel & 1) d0 |= AR_BANK4_AMODE_REFSEL(2); else d0 |= AR_BANK4_AMODE_REFSEL(1); } else { d0 |= AR_BANK4_AMODE_REFSEL(2); if (c->ic_freq == 2484) { /* CH 14 */ d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ; chansel = 10 + (c->ic_freq - 2274) / 5; } else chansel = 16 + (c->ic_freq - 2272) / 5; chansel <<= 2; } d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP; d1 = otus_reverse_bits(chansel); /* Write bits 0-4 of d0 and d1. */ data = (d1 & 0x1f) << 5 | (d0 & 0x1f); otus_write(sc, AR_PHY(44), data); /* Write bits 5-7 of d0 and d1. */ data = (d1 >> 5) << 5 | (d0 >> 5); otus_write(sc, AR_PHY(58), data); if ((error = otus_write_barrier(sc)) == 0) usbd_delay_ms(sc->sc_udev, 10); return error; } void otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa) { #define COEFF_SCALE_SHIFT 24 uint32_t exp, man; /* exponent = 14 - floor(log2(coeff)) */ for (exp = 31; exp > 0; exp--) if (coeff & (1 << exp)) break; KASSERT(exp != 0); exp = 14 - (exp - COEFF_SCALE_SHIFT); /* mantissa = floor(coeff * 2^exponent + 0.5) */ man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1)); *mantissa = man >> (COEFF_SCALE_SHIFT - exp); *exponent = exp - 16; #undef COEFF_SCALE_SHIFT } int otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc) { struct ieee80211com *ic = &sc->sc_ic; struct ar_cmd_frequency cmd; struct ar_rsp_frequency rsp; const uint32_t *vals; uint32_t coeff, exp, man, tmp; uint8_t code; int error, chan, i; chan = ieee80211_chan2ieee(ic, c); DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq)); tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104; otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp); if ((error = otus_write_barrier(sc)) != 0) return error; /* Disable BB Heavy Clip. */ otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200); if ((error = otus_write_barrier(sc)) != 0) return error; /* XXX Is that FREQ_START ? */ error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL); if (error != 0) return error; /* Reprogram PHY and RF on channel band or bandwidth changes. */ if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) { DPRINTF(("band switch\n")); /* Cold/Warm reset BB/ADDA. */ otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400); if ((error = otus_write_barrier(sc)) != 0) return error; otus_write(sc, 0x1d4004, 0); if ((error = otus_write_barrier(sc)) != 0) return error; sc->bb_reset = 0; if ((error = otus_program_phy(sc, c)) != 0) { printf("%s: could not program PHY\n", sc->sc_dev.dv_xname); return error; } /* Select RF programming based on band. */ if (IEEE80211_IS_CHAN_5GHZ(c)) vals = ar5416_banks_vals_5ghz; else vals = ar5416_banks_vals_2ghz; for (i = 0; i < nitems(ar5416_banks_regs); i++) otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]); if ((error = otus_write_barrier(sc)) != 0) { printf("%s: could not program RF\n", sc->sc_dev.dv_xname); return error; } code = AR_CMD_RF_INIT; } else { code = AR_CMD_FREQUENCY; } if ((error = otus_set_rf_bank4(sc, c)) != 0) return error; tmp = (sc->txmask == 0x5) ? 0x340 : 0x240; otus_write(sc, AR_PHY_TURBO, tmp); if ((error = otus_write_barrier(sc)) != 0) return error; /* Send firmware command to set channel. */ cmd.freq = htole32((uint32_t)c->ic_freq * 1000); cmd.dynht2040 = htole32(0); cmd.htena = htole32(1); /* Set Delta Slope (exponent and mantissa). */ coeff = (100 << 24) / c->ic_freq; otus_get_delta_slope(coeff, &exp, &man); cmd.dsc_exp = htole32(exp); cmd.dsc_man = htole32(man); DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man)); /* For Short GI, coeff is 9/10 that of normal coeff. */ coeff = (9 * coeff) / 10; otus_get_delta_slope(coeff, &exp, &man); cmd.dsc_shgi_exp = htole32(exp); cmd.dsc_shgi_man = htole32(man); DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man)); /* Set wait time for AGC and noise calibration (100 or 200ms). */ cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000); DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY")); error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp); if (error != 0) return error; if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) { DPRINTF(("status=0x%x\n", letoh32(rsp.status))); /* Force cold reset on next channel. */ sc->bb_reset = 1; } #ifdef OTUS_DEBUG if (otus_debug) { printf("calibration status=0x%x\n", letoh32(rsp.status)); for (i = 0; i < 2; i++) { /* 2 Rx chains */ /* Sign-extend 9-bit NF values. */ printf("noisefloor chain %d=%d\n", i, (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23); printf("noisefloor ext chain %d=%d\n", i, ((int32_t)letoh32(rsp.nf_ext[i])) >> 23); } } #endif sc->sc_curchan = c; return 0; } #ifdef notyet int otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct otus_softc *sc = ic->ic_softc; struct otus_cmd_key cmd; /* Defer setting of WEP keys until interface is brought up. */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return 0; /* Do it in a process context. */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd); return 0; } void otus_set_key_cb(struct otus_softc *sc, void *arg) { struct otus_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; struct ar_cmd_ekey key; uint16_t cipher; int error; memset(&key, 0, sizeof key); if (k->k_flags & IEEE80211_KEY_GROUP) { key.uid = htole16(k->k_id); IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr); key.macaddr[0] |= 0x80; } else { key.uid = htole16(OTUS_UID(cmd->associd)); IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr); } key.kix = htole16(0); /* Map net80211 cipher to hardware. */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: cipher = AR_CIPHER_WEP64; break; case IEEE80211_CIPHER_WEP104: cipher = AR_CIPHER_WEP128; break; case IEEE80211_CIPHER_TKIP: cipher = AR_CIPHER_TKIP; break; case IEEE80211_CIPHER_CCMP: cipher = AR_CIPHER_AES; break; default: return; } key.cipher = htole16(cipher); memcpy(key.key, k->k_key, MIN(k->k_len, 16)); error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL); if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP) return; /* TKIP: set Tx/Rx MIC Key. */ key.kix = htole16(1); memcpy(key.key, k->k_key + 16, 16); (void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL); } void otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct otus_softc *sc = ic->ic_softc; struct otus_cmd_key cmd; if (!(ic->ic_if.if_flags & IFF_RUNNING) || ic->ic_state != IEEE80211_S_RUN) return; /* Nothing to do. */ /* Do it in a process context. */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd); } void otus_delete_key_cb(struct otus_softc *sc, void *arg) { struct otus_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; uint32_t uid; if (k->k_flags & IEEE80211_KEY_GROUP) uid = htole32(k->k_id); else uid = htole32(OTUS_UID(cmd->associd)); (void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL); } #endif void otus_calibrate_to(void *arg) { struct otus_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; int s; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); s = splnet(); ni = ic->ic_bss; ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn); splx(s); if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 1); usbd_ref_decr(sc->sc_udev); } int otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid) { otus_write(sc, AR_MAC_REG_BSSID_L, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); otus_write(sc, AR_MAC_REG_BSSID_H, bssid[4] | bssid[5] << 8); return otus_write_barrier(sc); } int otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr) { otus_write(sc, AR_MAC_REG_MAC_ADDR_L, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); otus_write(sc, AR_MAC_REG_MAC_ADDR_H, addr[4] | addr[5] << 8); return otus_write_barrier(sc); } /* Default single-LED. */ void otus_led_newstate_type1(struct otus_softc *sc) { /* TBD */ } /* NETGEAR, dual-LED. */ void otus_led_newstate_type2(struct otus_softc *sc) { /* TBD */ } /* NETGEAR, single-LED/3 colors (blue, red, purple.) */ void otus_led_newstate_type3(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t state = sc->led_state; if (ic->ic_state == IEEE80211_S_INIT) { state = 0; /* LED off. */ } else if (ic->ic_state == IEEE80211_S_RUN) { /* Associated, LED always on. */ if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) state = AR_LED0_ON; /* 2GHz=>Red. */ else state = AR_LED1_ON; /* 5GHz=>Blue. */ } else { /* Scanning, blink LED. */ state ^= AR_LED0_ON | AR_LED1_ON; if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) state &= ~AR_LED1_ON; else state &= ~AR_LED0_ON; } if (state != sc->led_state) { otus_write(sc, 0x1d0104, state); if (otus_write_barrier(sc) == 0) sc->led_state = state; } } int otus_init(struct ifnet *ifp) { struct otus_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error; /* Init host command ring. */ sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0; if ((error = otus_init_mac(sc)) != 0) { printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname); return error; } IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); (void)otus_set_macaddr(sc, ic->ic_myaddr); switch (ic->ic_opmode) { #ifdef notyet #ifndef IEEE80211_STA_ONLY case IEEE80211_M_HOSTAP: otus_write(sc, 0x1c3700, 0x0f0000a1); otus_write(sc, 0x1c3c40, 0x1); break; case IEEE80211_M_IBSS: otus_write(sc, 0x1c3700, 0x0f000000); otus_write(sc, 0x1c3c40, 0x1); break; #endif #endif case IEEE80211_M_STA: otus_write(sc, 0x1c3700, 0x0f000002); otus_write(sc, 0x1c3c40, 0x1); break; default: break; } otus_write(sc, AR_MAC_REG_SNIFFER, (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000); (void)otus_write_barrier(sc); sc->bb_reset = 1; /* Force cold reset. */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) { printf("%s: could not set channel\n", sc->sc_dev.dv_xname); return error; } /* Start Rx. */ otus_write(sc, 0x1c3d30, 0x100); (void)otus_write_barrier(sc); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return 0; } void otus_stop(struct ifnet *ifp) { struct otus_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int s; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); timeout_del(&sc->scan_to); timeout_del(&sc->calib_to); s = splusb(); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* Wait for all queued asynchronous commands to complete. */ usb_wait_task(sc->sc_udev, &sc->sc_task); splx(s); /* Stop Rx. */ otus_write(sc, 0x1c3d30, 0); (void)otus_write_barrier(sc); sc->tx_queued = 0; }