/* $OpenBSD: if_ral.c,v 1.54 2006/01/04 06:04:41 canacar Exp $ */ /*- * Copyright (c) 2005 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2500USB chipset driver * http://www.ralinktech.com/ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USB_DEBUG #define URAL_DEBUG #endif #ifdef URAL_DEBUG #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0) #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0) int ural_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* various supported device vendors/products */ static const struct usb_devno ural_devs[] = { { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2570 }, { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2570_2 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS }, { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RT2570 }, { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570 }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2 }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R }, { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2570 }, { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570 } }; Static int ural_alloc_tx_list(struct ural_softc *); Static void ural_free_tx_list(struct ural_softc *); Static int ural_alloc_rx_list(struct ural_softc *); Static void ural_free_rx_list(struct ural_softc *); Static int ural_media_change(struct ifnet *); Static void ural_next_scan(void *); Static void ural_task(void *); Static int ural_newstate(struct ieee80211com *, enum ieee80211_state, int); Static void ural_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static int ural_ack_rate(struct ieee80211com *, int); Static uint16_t ural_txtime(int, int, uint32_t); Static uint8_t ural_plcp_signal(int); Static void ural_setup_tx_desc(struct ural_softc *, struct ural_tx_desc *, uint32_t, int, int); Static int ural_tx_bcn(struct ural_softc *, struct mbuf *, struct ieee80211_node *); Static int ural_tx_mgt(struct ural_softc *, struct mbuf *, struct ieee80211_node *); Static int ural_tx_data(struct ural_softc *, struct mbuf *, struct ieee80211_node *); Static void ural_start(struct ifnet *); Static void ural_watchdog(struct ifnet *); Static int ural_ioctl(struct ifnet *, u_long, caddr_t); Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, int); Static uint16_t ural_read(struct ural_softc *, uint16_t); Static void ural_read_multi(struct ural_softc *, uint16_t, void *, int); Static void ural_write(struct ural_softc *, uint16_t, uint16_t); Static void ural_write_multi(struct ural_softc *, uint16_t, void *, int); Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); Static void ural_set_chan(struct ural_softc *, struct ieee80211_channel *); Static void ural_disable_rf_tune(struct ural_softc *); Static void ural_enable_tsf_sync(struct ural_softc *); Static void ural_set_bssid(struct ural_softc *, uint8_t *); Static void ural_set_macaddr(struct ural_softc *, uint8_t *); Static void ural_update_promisc(struct ural_softc *); Static const char *ural_get_rf(int); Static void ural_read_eeprom(struct ural_softc *); Static int ural_bbp_init(struct ural_softc *); Static void ural_set_txantenna(struct ural_softc *, int); Static void ural_set_rxantenna(struct ural_softc *, int); Static int ural_init(struct ifnet *); Static void ural_stop(struct ifnet *, int); Static void ural_amrr_start(struct ural_softc *, struct ieee80211_node *); Static void ural_amrr_timeout(void *); Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle, usbd_status status); Static void ural_ratectl(struct ural_amrr *, struct ieee80211_node *); /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset ural_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset ural_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset ural_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; /* * Default values for MAC registers; values taken from the reference driver. */ static const struct { uint16_t reg; uint16_t val; } ural_def_mac[] = { { RAL_TXRX_CSR5, 0x8c8d }, { RAL_TXRX_CSR6, 0x8b8a }, { RAL_TXRX_CSR7, 0x8687 }, { RAL_TXRX_CSR8, 0x0085 }, { RAL_MAC_CSR13, 0x1111 }, { RAL_MAC_CSR14, 0x1e11 }, { RAL_TXRX_CSR21, 0xe78f }, { RAL_MAC_CSR9, 0xff1d }, { RAL_MAC_CSR11, 0x0002 }, { RAL_MAC_CSR22, 0x0053 }, { RAL_MAC_CSR15, 0x0000 }, { RAL_MAC_CSR8, 0x0780 }, { RAL_TXRX_CSR19, 0x0000 }, { RAL_TXRX_CSR18, 0x005a }, { RAL_PHY_CSR2, 0x0000 }, { RAL_TXRX_CSR0, 0x1ec0 }, { RAL_PHY_CSR4, 0x000f } }; /* * Default values for BBP registers; values taken from the reference driver. */ static const struct { uint8_t reg; uint8_t val; } ural_def_bbp[] = { { 3, 0x02 }, { 4, 0x19 }, { 14, 0x1c }, { 15, 0x30 }, { 16, 0xac }, { 17, 0x48 }, { 18, 0x18 }, { 19, 0xff }, { 20, 0x1e }, { 21, 0x08 }, { 22, 0x08 }, { 23, 0x08 }, { 24, 0x80 }, { 25, 0x50 }, { 26, 0x08 }, { 27, 0x23 }, { 30, 0x10 }, { 31, 0x2b }, { 32, 0xb9 }, { 34, 0x12 }, { 35, 0x50 }, { 39, 0xc4 }, { 40, 0x02 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 56, 0x08 }, { 57, 0x10 }, { 58, 0x08 }, { 61, 0x60 }, { 62, 0x10 }, { 75, 0xff } }; /* * Default values for RF register R2 indexed by channel numbers. */ static const uint32_t ural_rf2522_r2[] = { 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e }; static const uint32_t ural_rf2523_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ural_rf2524_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ural_rf2525_r2[] = { 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 }; static const uint32_t ural_rf2525_hi_r2[] = { 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e }; static const uint32_t ural_rf2525e_r2[] = { 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b }; static const uint32_t ural_rf2526_hi_r2[] = { 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 }; static const uint32_t ural_rf2526_r2[] = { 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d }; /* * For dual-band RF, RF registers R1 and R4 also depend on channel number; * values taken from the reference driver. */ static const struct { uint8_t chan; uint32_t r1; uint32_t r2; uint32_t r4; } ural_rf5222[] = { /* channels in the 2.4GHz band */ { 1, 0x08808, 0x0044d, 0x00282 }, { 2, 0x08808, 0x0044e, 0x00282 }, { 3, 0x08808, 0x0044f, 0x00282 }, { 4, 0x08808, 0x00460, 0x00282 }, { 5, 0x08808, 0x00461, 0x00282 }, { 6, 0x08808, 0x00462, 0x00282 }, { 7, 0x08808, 0x00463, 0x00282 }, { 8, 0x08808, 0x00464, 0x00282 }, { 9, 0x08808, 0x00465, 0x00282 }, { 10, 0x08808, 0x00466, 0x00282 }, { 11, 0x08808, 0x00467, 0x00282 }, { 12, 0x08808, 0x00468, 0x00282 }, { 13, 0x08808, 0x00469, 0x00282 }, { 14, 0x08808, 0x0046b, 0x00286 }, /* channels in the 5.2GHz band */ { 36, 0x08804, 0x06225, 0x00287 }, { 40, 0x08804, 0x06226, 0x00287 }, { 44, 0x08804, 0x06227, 0x00287 }, { 48, 0x08804, 0x06228, 0x00287 }, { 52, 0x08804, 0x06229, 0x00287 }, { 56, 0x08804, 0x0622a, 0x00287 }, { 60, 0x08804, 0x0622b, 0x00287 }, { 64, 0x08804, 0x0622c, 0x00287 }, { 100, 0x08804, 0x02200, 0x00283 }, { 104, 0x08804, 0x02201, 0x00283 }, { 108, 0x08804, 0x02202, 0x00283 }, { 112, 0x08804, 0x02203, 0x00283 }, { 116, 0x08804, 0x02204, 0x00283 }, { 120, 0x08804, 0x02205, 0x00283 }, { 124, 0x08804, 0x02206, 0x00283 }, { 128, 0x08804, 0x02207, 0x00283 }, { 132, 0x08804, 0x02208, 0x00283 }, { 136, 0x08804, 0x02209, 0x00283 }, { 140, 0x08804, 0x0220a, 0x00283 }, { 149, 0x08808, 0x02429, 0x00281 }, { 153, 0x08808, 0x0242b, 0x00281 }, { 157, 0x08808, 0x0242d, 0x00281 }, { 161, 0x08808, 0x0242f, 0x00281 } }; USB_DECLARE_DRIVER_CLASS(ural, DV_IFNET); USB_MATCH(ural) { USB_MATCH_START(ural, uaa); if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } USB_ATTACH(ural) { USB_ATTACH_START(ural, sc, uaa); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; usbd_status error; char *devinfop; int i; sc->sc_udev = uaa->device; devinfop = usbd_devinfo_alloc(uaa->device, 0); USB_ATTACH_SETUP; printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop); usbd_devinfo_free(devinfop); if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) { printf("%s: could not set configuration no\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } /* get the first interface handle */ error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX, &sc->sc_iface); if (error != 0) { printf("%s: could not get interface handle\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } /* * Find endpoints. */ id = usbd_get_interface_descriptor(sc->sc_iface); sc->sc_rx_no = sc->sc_tx_no = -1; for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL) { printf("%s: no endpoint descriptor for iface %d\n", USBDEVNAME(sc->sc_dev), i); USB_ATTACH_ERROR_RETURN; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_rx_no = ed->bEndpointAddress; else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_tx_no = ed->bEndpointAddress; } if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } usb_init_task(&sc->sc_task, ural_task, sc); timeout_set(&sc->scan_ch, ural_next_scan, sc); timeout_set(&sc->amrr_ch, ural_amrr_timeout, sc); /* retrieve RT2570 rev. no */ sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); /* retrieve MAC address and various other things from EEPROM */ ural_read_eeprom(sc); printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s, address %s\n", USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WEP; if (sc->rf_rev == RAL_RF_5222) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 100; i <= 140; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 161; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ural_init; ifp->if_ioctl = ural_ioctl; ifp->if_start = ural_start; ifp->if_watchdog = ural_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = ural_newstate; ieee80211_media_init(ifp, ural_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); #endif usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, USBDEV(sc->sc_dev)); USB_ATTACH_SUCCESS_RETURN; } USB_DETACH(ural) { USB_DETACH_START(ural, sc); struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_ch); timeout_del(&sc->amrr_ch); if (sc->amrr_xfer != NULL) { usbd_free_xfer(sc->amrr_xfer); sc->amrr_xfer = NULL; } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); } ural_free_rx_list(sc); ural_free_tx_list(sc); ieee80211_ifdetach(ifp); if_detach(ifp); splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, USBDEV(sc->sc_dev)); return 0; } Static int ural_alloc_tx_list(struct ural_softc *sc) { struct ural_tx_data *data; int i, error; sc->tx_queued = 0; for (i = 0; i < RAL_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate tx xfer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, RAL_TX_DESC_SIZE + MCLBYTES); if (data->buf == NULL) { printf("%s: could not allocate tx buffer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } } return 0; fail: ural_free_tx_list(sc); return error; } Static void ural_free_tx_list(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ural_tx_data *data; int i; for (i = 0; i < RAL_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->ni != NULL) { ieee80211_release_node(ic, data->ni); data->ni = NULL; } } } Static int ural_alloc_rx_list(struct ural_softc *sc) { struct ural_rx_data *data; int i, error; for (i = 0; i < RAL_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate rx xfer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { printf("%s: could not allocate rx buffer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } data->buf = mtod(data->m, uint8_t *); } return 0; fail: ural_free_tx_list(sc); return error; } Static void ural_free_rx_list(struct ural_softc *sc) { struct ural_rx_data *data; int i; for (i = 0; i < RAL_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->m != NULL) { m_freem(data->m); data->m = NULL; } } } Static int ural_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ural_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ Static void ural_next_scan(void *arg) { struct ural_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); } Static void ural_task(void *arg) { struct ural_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; struct mbuf *m; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); /* force tx led to stop blinking */ ural_write(sc, RAL_MAC_CSR20, 0); } break; case IEEE80211_S_SCAN: ural_set_chan(sc, ic->ic_bss->ni_chan); timeout_add(&sc->scan_ch, hz / 5); break; case IEEE80211_S_AUTH: ural_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_ASSOC: ural_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: ural_set_chan(sc, ic->ic_bss->ni_chan); /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) { /* 11a basic rates: 6, 12, 24Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x150); } else { /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x15f); } if (ic->ic_opmode != IEEE80211_M_MONITOR) ural_set_bssid(sc, ic->ic_bss->ni_bssid); if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) { m = ieee80211_beacon_alloc(ic, ic->ic_bss); if (m == NULL) { printf("%s: could not allocate beacon\n", USBDEVNAME(sc->sc_dev)); return; } if (ural_tx_bcn(sc, m, ic->ic_bss) != 0) { m_freem(m); printf("%s: could not transmit beacon\n", USBDEVNAME(sc->sc_dev)); return; } /* beacon is no longer needed */ m_freem(m); } /* make tx led blink on tx (controlled by ASIC) */ ural_write(sc, RAL_MAC_CSR20, 1); if (ic->ic_opmode != IEEE80211_M_MONITOR) ural_enable_tsf_sync(sc); /* enable automatic rate adaptation in STA mode */ if (ic->ic_opmode == IEEE80211_M_STA && ic->ic_fixed_rate == -1) ural_amrr_start(sc, ic->ic_bss); break; } sc->sc_newstate(ic, sc->sc_state, -1); } Static int ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ural_softc *sc = ic->ic_if.if_softc; usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_ch); timeout_del(&sc->amrr_ch); /* do it in a process context */ sc->sc_state = nstate; usb_add_task(sc->sc_udev, &sc->sc_task); return 0; } /* quickly determine if a given rate is CCK or OFDM */ #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ #define RAL_SIFS 10 Static void ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ural_tx_data *data = priv; struct ural_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("%s: could not transmit buffer: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->sc_tx_pipeh); ifp->if_oerrors++; return; } s = splnet(); m_freem(data->m); data->m = NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; sc->tx_queued--; ifp->if_opackets++; DPRINTFN(10, ("tx done\n")); sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; ural_start(ifp); splx(s); } Static void ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ural_rx_data *data = priv; struct ural_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ural_rx_desc *desc; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int s, len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->sc_rx_pipeh); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { printf("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len); ifp->if_ierrors++; goto skip; } /* rx descriptor is located at the end */ desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); if (letoh32(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { /* * This should not happen since we did not request to receive * those frames when we filled RAL_TXRX_CSR2. */ DPRINTFN(5, ("PHY or CRC error\n")); ifp->if_ierrors++; goto skip; } MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { printf("%s: could not allocate rx mbuf\n", USBDEVNAME(sc->sc_dev)); ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", USBDEVNAME(sc->sc_dev)); m_freem(mnew); ifp->if_ierrors++; goto skip; } m = data->m; data->m = mnew; data->buf = mtod(data->m, uint8_t *); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; m->m_flags |= M_HASFCS; /* hardware appends FCS */ s = splnet(); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = desc->rssi; M_DUP_PKTHDR(&mb, m); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ ieee80211_input(ifp, m, ni, desc->rssi, 0); /* node is no longer needed */ ieee80211_release_node(ic, ni); /* * In HostAP mode, ieee80211_input() will enqueue packets in if_snd * without calling if_start(). */ if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE)) ural_start(ifp); splx(s); DPRINTFN(15, ("rx done\n")); skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); usbd_transfer(xfer); } /* * Return the expected ack rate for a frame transmitted at rate `rate'. * XXX: this should depend on the destination node basic rate set. */ Static int ural_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return 2; case 4: case 11: case 22: return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; /* OFDM rates */ case 12: case 18: return 12; case 24: case 36: return 24; case 48: case 72: case 96: case 108: return 48; } /* default to 1Mbps */ return 2; } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ Static uint16_t ural_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RAL_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11a-1999, pp. 37 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return txtime; } Static uint8_t ural_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } Static void ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, uint32_t flags, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(RAL_TX_NEWSEQ); desc->flags |= htole32(len << 16); if (RAL_RATE_IS_OFDM(rate)) desc->flags |= htole32(RAL_TX_OFDM); desc->wme = htole16(RAL_AIFSN(3) | RAL_LOGCWMIN(4) | RAL_LOGCWMAX(6)); /* * Fill PLCP fields. */ desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RAL_RATE_IS_OFDM(rate)) { /* * PLCP length field (LENGTH). * From IEEE Std 802.11a-1999, pp. 14. */ plcp_length = len & 0xfff; desc->plcp_length = htole16((plcp_length >> 6) << 8 | (plcp_length & 0x3f)); } else { /* * Long PLCP LENGTH field. * From IEEE Std 802.11b-1999, pp. 16. */ plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RAL_PLCP_LENGEXT; } desc->plcp_length = htole16(plcp_length); } desc->plcp_signal = ural_plcp_signal(rate); if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; desc->iv = 0; desc->eiv = 0; } #define RAL_TX_TIMEOUT 5000 Static int ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ural_tx_desc *desc; usbd_xfer_handle xfer; usbd_status error; uint8_t cmd = 0; uint8_t *buf; int xferlen, rate; rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4; xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == NULL) return ENOMEM; /* xfer length needs to be a multiple of two! */ xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; buf = usbd_alloc_buffer(xfer, xferlen); if (buf == NULL) { usbd_free_xfer(xfer); return ENOMEM; } usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd, USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL); error = usbd_sync_transfer(xfer); if (error != 0) { usbd_free_xfer(xfer); return error; } desc = (struct ural_tx_desc *)buf; m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, rate); DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL); error = usbd_sync_transfer(xfer); usbd_free_xfer(xfer); return error; } Static int ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ural_tx_desc *desc; struct ural_tx_data *data; struct ieee80211_frame *wh; uint32_t flags = 0; uint16_t dur; usbd_status error; int xferlen, rate; data = &sc->tx_data[0]; desc = (struct ural_tx_desc *)data->buf; rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4; data->m = m0; data->ni = ni; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RAL_TX_TIMESTAMP; } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct ural_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; M_DUP_PKTHDR(&mb, m0); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb); } #endif m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); /* align end on a 2-bytes boundary */ xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; /* * No space left in the last URB to store the extra 2 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 2; DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n", m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof); error = usbd_transfer(data->xfer); if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { m_freem(m0); return error; } sc->tx_queued++; return 0; } Static int ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_rateset *rs; struct ural_tx_desc *desc; struct ural_tx_data *data; struct ieee80211_frame *wh; uint32_t flags = 0; uint16_t dur; usbd_status error; int xferlen, rate; if (ic->ic_fixed_rate != -1) { if (ic->ic_curmode != IEEE80211_MODE_AUTO) rs = &ic->ic_sup_rates[ic->ic_curmode]; else rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; rate = rs->rs_rates[ic->ic_fixed_rate]; } else { rs = &ni->ni_rates; rate = rs->rs_rates[ni->ni_txrate]; } rate &= IEEE80211_RATE_VAL; if (ic->ic_flags & IEEE80211_F_WEPON) { m0 = ieee80211_wep_crypt(ifp, m0, 1); if (m0 == NULL) return ENOBUFS; } data = &sc->tx_data[0]; desc = (struct ural_tx_desc *)data->buf; data->m = m0; data->ni = ni; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; flags |= RAL_TX_RETRY(7); dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate), ic->ic_flags) + RAL_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct ural_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; M_DUP_PKTHDR(&mb, m0); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb); } #endif m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); /* align end on a 2-bytes boundary */ xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; /* * No space left in the last URB to store the extra 2 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 2; DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n", m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof); error = usbd_transfer(data->xfer); if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { m_freem(m0); return error; } sc->tx_queued++; return 0; } Static void ural_start(struct ifnet *ifp) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m0; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->tx_queued >= RAL_TX_LIST_COUNT) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); #endif if (ural_tx_mgt(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= RAL_TX_LIST_COUNT) { IF_PREPEND(&ifp->if_snd, m0); ifp->if_flags |= IFF_OACTIVE; break; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); #endif if (ural_tx_data(sc, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } Static void ural_watchdog(struct ifnet *ifp) { struct ural_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); /*ural_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } Static int ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) ural_update_promisc(sc); else ural_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) ural_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { ural_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ural_init(ifp); error = 0; } splx(s); return error; } Static void ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not read EEPROM: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } Static uint16_t ural_read(struct ural_softc *sc, uint16_t reg) { usb_device_request_t req; usbd_status error; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, sizeof (uint16_t)); error = usbd_do_request(sc->sc_udev, &req, &val); if (error != 0) { printf("%s: could not read MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); return 0; } return le16toh(val); } Static void ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not read MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } Static void ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MAC; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); error = usbd_do_request(sc->sc_udev, &req, NULL); if (error != 0) { printf("%s: could not write MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } Static void ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not write MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } Static void ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) { uint16_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); return; } tmp = reg << 8 | val; ural_write(sc, RAL_PHY_CSR7, tmp); } Static uint8_t ural_bbp_read(struct ural_softc *sc, uint8_t reg) { uint16_t val; int ntries; val = RAL_BBP_WRITE | reg << 8; ural_write(sc, RAL_PHY_CSR7, val); for (ntries = 0; ntries < 5; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); return 0; } return ural_read(sc, RAL_PHY_CSR7) & 0xff; } Static void ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) break; } if (ntries == 5) { printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); return; } tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); ural_write(sc, RAL_PHY_CSR10, tmp >> 16); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); } Static void ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; if (IEEE80211_IS_CHAN_2GHZ(c)) power = min(sc->txpow[chan - 1], 31); else power = 31; DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); switch (sc->rf_rev) { case RAL_RF_2522: ural_rf_write(sc, RAL_RF1, 0x00814); ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RAL_RF_2523: ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2524: ural_rf_write(sc, RAL_RF1, 0x0c808); ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525E: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RAL_RF_2526: ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; /* dual-band RF */ case RAL_RF_5222: for (i = 0; i < N(ural_rf5222); i++) if (ural_rf5222[i].chan == chan) break; if (i < N(ural_rf5222)) { ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); } break; } if (ic->ic_opmode != IEEE80211_M_MONITOR && ic->ic_state != IEEE80211_S_SCAN) { /* set Japan filter bit for channel 14 */ tmp = ural_bbp_read(sc, 70); tmp &= ~RAL_JAPAN_FILTER; if (chan == 14) tmp |= RAL_JAPAN_FILTER; ural_bbp_write(sc, 70, tmp); /* clear CRC errors */ ural_read(sc, RAL_STA_CSR0); DELAY(1000); /* RF needs a 1ms delay here */ ural_disable_rf_tune(sc); } #undef N } /* * Disable RF auto-tuning. */ Static void ural_disable_rf_tune(struct ural_softc *sc) { uint32_t tmp; if (sc->rf_rev != RAL_RF_2523) { tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; ural_rf_write(sc, RAL_RF1, tmp); } tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; ural_rf_write(sc, RAL_RF3, tmp); DPRINTFN(2, ("disabling RF autotune\n")); } /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ Static void ural_enable_tsf_sync(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t logcwmin, preload, tmp; /* first, disable TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); tmp = (16 * ic->ic_bss->ni_intval) << 4; ural_write(sc, RAL_TXRX_CSR18, tmp); logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; tmp = logcwmin << 12 | preload; ural_write(sc, RAL_TXRX_CSR20, tmp); /* finally, enable TSF synchronization */ tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RAL_ENABLE_TSF_SYNC(1); else tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; ural_write(sc, RAL_TXRX_CSR19, tmp); DPRINTF(("enabling TSF synchronization\n")); } Static void ural_set_bssid(struct ural_softc *sc, uint8_t *bssid) { uint16_t tmp; tmp = bssid[0] | bssid[1] << 8; ural_write(sc, RAL_MAC_CSR5, tmp); tmp = bssid[2] | bssid[3] << 8; ural_write(sc, RAL_MAC_CSR6, tmp); tmp = bssid[4] | bssid[5] << 8; ural_write(sc, RAL_MAC_CSR7, tmp); DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); } Static void ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) { uint16_t tmp; tmp = addr[0] | addr[1] << 8; ural_write(sc, RAL_MAC_CSR2, tmp); tmp = addr[2] | addr[3] << 8; ural_write(sc, RAL_MAC_CSR3, tmp); tmp = addr[4] | addr[5] << 8; ural_write(sc, RAL_MAC_CSR4, tmp); DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); } Static void ural_update_promisc(struct ural_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint16_t tmp; tmp = ural_read(sc, RAL_TXRX_CSR2); tmp &= ~RAL_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; ural_write(sc, RAL_TXRX_CSR2, tmp); DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } Static const char * ural_get_rf(int rev) { switch (rev) { case RAL_RF_2522: return "RT2522"; case RAL_RF_2523: return "RT2523"; case RAL_RF_2524: return "RT2524"; case RAL_RF_2525: return "RT2525"; case RAL_RF_2525E: return "RT2525e"; case RAL_RF_2526: return "RT2526"; case RAL_RF_5222: return "RT5222"; default: return "unknown"; } } Static void ural_read_eeprom(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); val = letoh16(val); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read MAC address */ ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); /* read default values for BBP registers */ ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); /* read Tx power for all b/g channels */ ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); } Static int ural_bbp_init(struct ural_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev)); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(ural_def_bbp); i++) ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); #if 0 /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0xff) continue; ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif return 0; #undef N } Static void ural_set_txantenna(struct ural_softc *sc, int antenna) { uint16_t tmp; uint8_t tx; tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; if (antenna == 1) tx |= RAL_BBP_ANTA; else if (antenna == 2) tx |= RAL_BBP_ANTB; else tx |= RAL_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || sc->rf_rev == RAL_RF_5222) tx |= RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_TX, tx); /* update flags in PHY_CSR5 and PHY_CSR6 too */ tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); } Static void ural_set_rxantenna(struct ural_softc *sc, int antenna) { uint8_t rx; rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; if (antenna == 1) rx |= RAL_BBP_ANTA; else if (antenna == 2) rx |= RAL_BBP_ANTB; else rx |= RAL_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) rx &= ~RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_RX, rx); } Static int ural_init(struct ifnet *ifp) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_wepkey *wk; struct ural_rx_data *data; uint16_t tmp; usbd_status error; int i, ntries; ural_stop(ifp, 0); /* initialize MAC registers to default values */ for (i = 0; i < N(ural_def_mac); i++) ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); /* wait for BBP and RF to wake up (this can take a long time!) */ for (ntries = 0; ntries < 100; ntries++) { tmp = ural_read(sc, RAL_MAC_CSR17); if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == (RAL_BBP_AWAKE | RAL_RF_AWAKE)) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for BBP/RF to wakeup\n", USBDEVNAME(sc->sc_dev)); error = EIO; goto fail; } /* we're ready! */ ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); /* set basic rate set (will be updated later) */ ural_write(sc, RAL_TXRX_CSR11, 0x153); error = ural_bbp_init(sc); if (error != 0) goto fail; /* set default BSS channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; ural_set_chan(sc, ic->ic_bss->ni_chan); /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); /* set default sensitivity */ ural_bbp_write(sc, 17, 0x48); ural_set_txantenna(sc, 1); ural_set_rxantenna(sc, 1); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); ural_set_macaddr(sc, ic->ic_myaddr); /* * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &ic->ic_nw_keys[i]; ural_write_multi(sc, RAL_SEC_CSR0 + i * IEEE80211_KEYBUF_SIZE, wk->wk_key, IEEE80211_KEYBUF_SIZE); } /* * Allocate xfer for AMRR statistics requests. */ sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); if (sc->amrr_xfer == NULL) { printf("%s: could not allocate AMRR xfer\n", USBDEVNAME(sc->sc_dev)); goto fail; } /* * Open Tx and Rx USB bulk pipes. */ error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, &sc->sc_tx_pipeh); if (error != 0) { printf("%s: could not open Tx pipe: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); goto fail; } error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, &sc->sc_rx_pipeh); if (error != 0) { printf("%s: could not open Rx pipe: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); goto fail; } /* * Allocate Tx and Rx xfer queues. */ error = ural_alloc_tx_list(sc); if (error != 0) { printf("%s: could not allocate Tx list\n", USBDEVNAME(sc->sc_dev)); goto fail; } error = ural_alloc_rx_list(sc); if (error != 0) { printf("%s: could not allocate Rx list\n", USBDEVNAME(sc->sc_dev)); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < RAL_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); usbd_transfer(data->xfer); } /* kick Rx */ tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RAL_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; } ural_write(sc, RAL_TXRX_CSR2, tmp); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return 0; fail: ural_stop(ifp, 1); return error; #undef N } Static void ural_stop(struct ifnet *ifp, int disable) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* disable Rx */ ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); /* reset ASIC and BBP (but won't reset MAC registers!) */ ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); ural_write(sc, RAL_MAC_CSR1, 0); sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); if (sc->amrr_xfer != NULL) { usbd_free_xfer(sc->amrr_xfer); sc->amrr_xfer = NULL; } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); sc->sc_rx_pipeh = NULL; } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); sc->sc_tx_pipeh = NULL; } ural_free_rx_list(sc); ural_free_tx_list(sc); } Static void ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni) { struct ural_amrr *amrr = &sc->amrr; int i; /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); amrr->success = 0; amrr->recovery = 0; amrr->success_threshold = 0; amrr->txcnt = amrr->retrycnt = 0; /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; timeout_add(&sc->amrr_ch, hz); } Static void ural_amrr_timeout(void *arg) { struct ural_softc *sc = (struct ural_softc *)arg; usb_device_request_t req; int s; s = splusb(); /* * Asynchronously read statistic registers (cleared by read). */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, RAL_STA_CSR0); USETW(req.wLength, sizeof sc->sta); usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, ural_amrr_update); (void)usbd_transfer(sc->amrr_xfer); splx(s); } Static void ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ural_softc *sc = (struct ural_softc *)priv; struct ural_amrr *amrr = &sc->amrr; if (status != USBD_NORMAL_COMPLETION) return; amrr->retrycnt = sc->sta[7] + /* TX one-retry ok count */ sc->sta[8] + /* TX more-retry ok count */ sc->sta[8]; /* TX retry-fail count */ amrr->txcnt = amrr->retrycnt + sc->sta[6]; /* TX no-retry ok count */ ural_ratectl(amrr, sc->sc_ic.ic_bss); timeout_add(&sc->amrr_ch, hz); } /*- * Naive implementation of the Adaptive Multi Rate Retry algorithm: * "IEEE 802.11 Rate Adaptation: A Practical Approach" * Mathieu Lacage, Hossein Manshaei, Thierry Turletti * INRIA Sophia - Projet Planete * http://www-sop.inria.fr/rapports/sophia/RR-5208.html * * This algorithm is particularly well suited for ural since it does not * require per-frame retry statistics. Note however that since h/w does * not provide per-frame stats, we can't do per-node rate adaptation and * thus automatic rate adaptation is only enabled in STA operating mode. */ #define URAL_AMRR_MIN_SUCCESS_THRESHOLD 1 #define URAL_AMRR_MAX_SUCCESS_THRESHOLD 10 #define is_success(amrr) \ ((amrr)->retrycnt < (amrr)->txcnt / 10) #define is_failure(amrr) \ ((amrr)->retrycnt > (amrr)->txcnt / 3) #define is_enough(amrr) \ ((amrr)->txcnt > 10) #define is_min_rate(ni) \ ((ni)->ni_txrate == 0) #define is_max_rate(ni) \ ((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1) #define increase_rate(ni) \ ((ni)->ni_txrate++) #define decrease_rate(ni) \ ((ni)->ni_txrate--) #define reset_cnt(amrr) \ do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0) Static void ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni) { int need_change = 0; if (is_success(amrr) && is_enough(amrr)) { amrr->success++; if (amrr->success >= amrr->success_threshold && !is_max_rate(ni)) { amrr->recovery = 1; amrr->success = 0; increase_rate(ni); need_change = 1; } else { amrr->recovery = 0; } } else if (is_failure(amrr)) { amrr->success = 0; if (!is_min_rate(ni)) { if (amrr->recovery) { amrr->success_threshold *= 2; if (amrr->success_threshold > URAL_AMRR_MAX_SUCCESS_THRESHOLD) amrr->success_threshold = URAL_AMRR_MAX_SUCCESS_THRESHOLD; } else { amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD; } decrease_rate(ni); need_change = 1; } amrr->recovery = 0; /* original paper was incorrect */ } if (is_enough(amrr) || need_change) reset_cnt(amrr); } Static int ural_activate(device_ptr_t self, enum devact act) { switch (act) { case DVACT_ACTIVATE: return EOPNOTSUPP; case DVACT_DEACTIVATE: /*if_deactivate(&sc->sc_ic.ic_if);*/ break; } return 0; }