/* $OpenBSD: if_ral.c,v 1.112 2010/04/20 22:05:43 tedu Exp $ */ /*- * Copyright (c) 2005, 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2500USB chipset driver * http://www.ralinktech.com.tw/ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USB_DEBUG #define URAL_DEBUG #endif #ifdef URAL_DEBUG #define DPRINTF(x) do { if (ural_debug) printf x; } while (0) #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0) int ural_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* various supported device vendors/products */ static const struct usb_devno ural_devs[] = { { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2570 }, { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2570_2 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS }, { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RT2570 }, { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG }, { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570 }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2 }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3 }, { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 }, { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R }, { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2570 }, { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 }, { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570 } }; int ural_alloc_tx_list(struct ural_softc *); void ural_free_tx_list(struct ural_softc *); int ural_alloc_rx_list(struct ural_softc *); void ural_free_rx_list(struct ural_softc *); int ural_media_change(struct ifnet *); void ural_next_scan(void *); void ural_task(void *); int ural_newstate(struct ieee80211com *, enum ieee80211_state, int); void ural_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void ural_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); #if NBPFILTER > 0 uint8_t ural_rxrate(const struct ural_rx_desc *); #endif int ural_ack_rate(struct ieee80211com *, int); uint16_t ural_txtime(int, int, uint32_t); uint8_t ural_plcp_signal(int); void ural_setup_tx_desc(struct ural_softc *, struct ural_tx_desc *, uint32_t, int, int); #ifndef IEEE80211_STA_ONLY int ural_tx_bcn(struct ural_softc *, struct mbuf *, struct ieee80211_node *); #endif int ural_tx_data(struct ural_softc *, struct mbuf *, struct ieee80211_node *); void ural_start(struct ifnet *); void ural_watchdog(struct ifnet *); int ural_ioctl(struct ifnet *, u_long, caddr_t); void ural_eeprom_read(struct ural_softc *, uint16_t, void *, int); uint16_t ural_read(struct ural_softc *, uint16_t); void ural_read_multi(struct ural_softc *, uint16_t, void *, int); void ural_write(struct ural_softc *, uint16_t, uint16_t); void ural_write_multi(struct ural_softc *, uint16_t, void *, int); void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); uint8_t ural_bbp_read(struct ural_softc *, uint8_t); void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); void ural_set_chan(struct ural_softc *, struct ieee80211_channel *); void ural_disable_rf_tune(struct ural_softc *); void ural_enable_tsf_sync(struct ural_softc *); void ural_update_slot(struct ural_softc *); void ural_set_txpreamble(struct ural_softc *); void ural_set_basicrates(struct ural_softc *); void ural_set_bssid(struct ural_softc *, const uint8_t *); void ural_set_macaddr(struct ural_softc *, const uint8_t *); void ural_update_promisc(struct ural_softc *); const char *ural_get_rf(int); void ural_read_eeprom(struct ural_softc *); int ural_bbp_init(struct ural_softc *); void ural_set_txantenna(struct ural_softc *, int); void ural_set_rxantenna(struct ural_softc *, int); int ural_init(struct ifnet *); void ural_stop(struct ifnet *, int); void ural_newassoc(struct ieee80211com *, struct ieee80211_node *, int); void ural_amrr_start(struct ural_softc *, struct ieee80211_node *); void ural_amrr_timeout(void *); void ural_amrr_update(usbd_xfer_handle, usbd_private_handle, usbd_status status); static const struct { uint16_t reg; uint16_t val; } ural_def_mac[] = { RAL_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } ural_def_bbp[] = { RAL_DEF_BBP }; static const uint32_t ural_rf2522_r2[] = RAL_RF2522_R2; static const uint32_t ural_rf2523_r2[] = RAL_RF2523_R2; static const uint32_t ural_rf2524_r2[] = RAL_RF2524_R2; static const uint32_t ural_rf2525_r2[] = RAL_RF2525_R2; static const uint32_t ural_rf2525_hi_r2[] = RAL_RF2525_HI_R2; static const uint32_t ural_rf2525e_r2[] = RAL_RF2525E_R2; static const uint32_t ural_rf2526_hi_r2[] = RAL_RF2526_HI_R2; static const uint32_t ural_rf2526_r2[] = RAL_RF2526_R2; int ural_match(struct device *, void *, void *); void ural_attach(struct device *, struct device *, void *); int ural_detach(struct device *, int); int ural_activate(struct device *, int); struct cfdriver ural_cd = { NULL, "ural", DV_IFNET }; const struct cfattach ural_ca = { sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate, }; int ural_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } void ural_attach(struct device *parent, struct device *self, void *aux) { struct ural_softc *sc = (struct ural_softc *)self; struct usb_attach_arg *uaa = aux; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; usbd_status error; int i; sc->sc_udev = uaa->device; if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) { printf("%s: could not set configuration no\n", sc->sc_dev.dv_xname); return; } /* get the first interface handle */ error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX, &sc->sc_iface); if (error != 0) { printf("%s: could not get interface handle\n", sc->sc_dev.dv_xname); return; } /* * Find endpoints. */ id = usbd_get_interface_descriptor(sc->sc_iface); sc->sc_rx_no = sc->sc_tx_no = -1; for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL) { printf("%s: no endpoint descriptor for iface %d\n", sc->sc_dev.dv_xname, i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_rx_no = ed->bEndpointAddress; else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_tx_no = ed->bEndpointAddress; } if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); return; } usb_init_task(&sc->sc_task, ural_task, sc); timeout_set(&sc->scan_to, ural_next_scan, sc); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; timeout_set(&sc->amrr_to, ural_amrr_timeout, sc); /* retrieve RT2570 rev. no */ sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); /* retrieve MAC address and various other things from EEPROM */ ural_read_eeprom(sc); printf("%s: MAC/BBP RT%04x (rev 0x%02x), RF %s, address %s\n", sc->sc_dev.dv_xname, sc->macbbp_rev, sc->asic_rev, ural_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ #ifndef IEEE80211_STA_ONLY IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_HOSTAP | /* HostAp mode supported */ #endif IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* s/w WEP */ IEEE80211_C_RSN; /* WPA/RSN */ /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ural_init; ifp->if_ioctl = ural_ioctl; ifp->if_start = ural_start; ifp->if_watchdog = ural_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_newassoc = ural_newassoc; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = ural_newstate; ieee80211_media_init(ifp, ural_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT); #endif usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev); } int ural_detach(struct device *self, int flags) { struct ural_softc *sc = (struct ural_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); ieee80211_ifdetach(ifp); /* free all nodes */ if_detach(ifp); usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_to); timeout_del(&sc->amrr_to); if (sc->amrr_xfer != NULL) { usbd_free_xfer(sc->amrr_xfer); sc->amrr_xfer = NULL; } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); } ural_free_rx_list(sc); ural_free_tx_list(sc); splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev); return 0; } int ural_alloc_tx_list(struct ural_softc *sc) { int i, error; sc->tx_cur = sc->tx_queued = 0; for (i = 0; i < RAL_TX_LIST_COUNT; i++) { struct ural_tx_data *data = &sc->tx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate tx xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, RAL_TX_DESC_SIZE + IEEE80211_MAX_LEN); if (data->buf == NULL) { printf("%s: could not allocate tx buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } } return 0; fail: ural_free_tx_list(sc); return error; } void ural_free_tx_list(struct ural_softc *sc) { int i; for (i = 0; i < RAL_TX_LIST_COUNT; i++) { struct ural_tx_data *data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } /* * The node has already been freed at that point so don't call * ieee80211_release_node() here. */ data->ni = NULL; } } int ural_alloc_rx_list(struct ural_softc *sc) { int i, error; for (i = 0; i < RAL_RX_LIST_COUNT; i++) { struct ural_rx_data *data = &sc->rx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate rx xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { printf("%s: could not allocate rx buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = mtod(data->m, uint8_t *); } return 0; fail: ural_free_rx_list(sc); return error; } void ural_free_rx_list(struct ural_softc *sc) { int i; for (i = 0; i < RAL_RX_LIST_COUNT; i++) { struct ural_rx_data *data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->m != NULL) { m_freem(data->m); data->m = NULL; } } } int ural_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ural_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ void ural_next_scan(void *arg) { struct ural_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); } void ural_task(void *arg) { struct ural_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; struct ieee80211_node *ni; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); /* force tx led to stop blinking */ ural_write(sc, RAL_MAC_CSR20, 0); } break; case IEEE80211_S_SCAN: ural_set_chan(sc, ic->ic_bss->ni_chan); timeout_add_msec(&sc->scan_to, 200); break; case IEEE80211_S_AUTH: ural_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_ASSOC: ural_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: ural_set_chan(sc, ic->ic_bss->ni_chan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { ural_update_slot(sc); ural_set_txpreamble(sc); ural_set_basicrates(sc); ural_set_bssid(sc, ni->ni_bssid); } #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) { struct mbuf *m = ieee80211_beacon_alloc(ic, ni); if (m == NULL) { printf("%s: could not allocate beacon\n", sc->sc_dev.dv_xname); return; } if (ural_tx_bcn(sc, m, ni) != 0) { m_freem(m); printf("%s: could not transmit beacon\n", sc->sc_dev.dv_xname); return; } /* beacon is no longer needed */ m_freem(m); } #endif /* make tx led blink on tx (controlled by ASIC) */ ural_write(sc, RAL_MAC_CSR20, 1); if (ic->ic_opmode != IEEE80211_M_MONITOR) ural_enable_tsf_sync(sc); if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ ural_newassoc(ic, ic->ic_bss, 1); /* enable automatic rate control in STA mode */ if (ic->ic_fixed_rate == -1) ural_amrr_start(sc, ic->ic_bss); } break; } sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); } int ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ural_softc *sc = ic->ic_if.if_softc; usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_to); timeout_del(&sc->amrr_to); /* do it in a process context */ sc->sc_state = nstate; sc->sc_arg = arg; usb_add_task(sc->sc_udev, &sc->sc_task); return 0; } /* quickly determine if a given rate is CCK or OFDM */ #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ #define RAL_SIFS 10 /* us */ #define RAL_RXTX_TURNAROUND 5 /* us */ void ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ural_tx_data *data = priv; struct ural_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("%s: could not transmit buffer: %s\n", sc->sc_dev.dv_xname, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); ifp->if_oerrors++; return; } s = splnet(); ieee80211_release_node(ic, data->ni); data->ni = NULL; sc->tx_queued--; ifp->if_opackets++; DPRINTFN(10, ("tx done\n")); sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; ural_start(ifp); splx(s); } void ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ural_rx_data *data = priv; struct ural_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; const struct ural_rx_desc *desc; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mbuf *mnew, *m; int s, len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname, len)); ifp->if_ierrors++; goto skip; } /* rx descriptor is located at the end */ desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE); if (letoh32(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { /* * This should not happen since we did not request to receive * those frames when we filled RAL_TXRX_CSR2. */ DPRINTFN(5, ("PHY or CRC error\n")); ifp->if_ierrors++; goto skip; } MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); m_freem(mnew); ifp->if_ierrors++; goto skip; } m = data->m; data->m = mnew; data->buf = mtod(data->m, uint8_t *); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; s = splnet(); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; tap->wr_rate = ural_rxrate(desc); tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = desc->rssi; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif m_adj(m, -IEEE80211_CRC_LEN); /* trim FCS */ wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ rxi.rxi_flags = 0; rxi.rxi_rssi = desc->rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* node is no longer needed */ ieee80211_release_node(ic, ni); splx(s); DPRINTFN(15, ("rx done\n")); skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); (void)usbd_transfer(xfer); } /* * This function is only used by the Rx radiotap code. It returns the rate at * which a given frame was received. */ #if NBPFILTER > 0 uint8_t ural_rxrate(const struct ural_rx_desc *desc) { if (letoh32(desc->flags) & RAL_RX_OFDM) { /* reverse function of ural_plcp_signal */ switch (desc->rate) { case 0xb: return 12; case 0xf: return 18; case 0xa: return 24; case 0xe: return 36; case 0x9: return 48; case 0xd: return 72; case 0x8: return 96; case 0xc: return 108; } } else { if (desc->rate == 10) return 2; if (desc->rate == 20) return 4; if (desc->rate == 55) return 11; if (desc->rate == 110) return 22; } return 2; /* should not get there */ } #endif /* * Return the expected ack rate for a frame transmitted at rate `rate'. */ int ural_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return 2; case 4: case 11: case 22: return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; /* OFDM rates */ case 12: case 18: return 12; case 24: case 36: return 24; case 48: case 72: case 96: case 108: return 48; } /* default to 1Mbps */ return 2; } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ uint16_t ural_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RAL_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11g-2003, pp. 44 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return txtime; } uint8_t ural_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } void ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, uint32_t flags, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->wme = htole16( RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); /* setup PLCP fields */ desc->plcp_signal = ural_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RAL_RATE_IS_OFDM(rate)) { desc->flags |= htole32(RAL_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RAL_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } desc->iv = 0; desc->eiv = 0; } #define RAL_TX_TIMEOUT 5000 #ifndef IEEE80211_STA_ONLY int ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ural_tx_desc *desc; usbd_xfer_handle xfer; usbd_status error; uint8_t cmd = 0; uint8_t *buf; int xferlen, rate = 2; xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == NULL) return ENOMEM; /* xfer length needs to be a multiple of two! */ xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; buf = usbd_alloc_buffer(xfer, xferlen); if (buf == NULL) { usbd_free_xfer(xfer); return ENOMEM; } usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd, USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL); error = usbd_sync_transfer(xfer); if (error != 0) { usbd_free_xfer(xfer); return error; } desc = (struct ural_tx_desc *)buf; m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE); ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, rate); DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n", m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL); error = usbd_sync_transfer(xfer); usbd_free_xfer(xfer); return error; } #endif int ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ural_tx_desc *desc; struct ural_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; uint32_t flags = RAL_TX_NEWSEQ; uint16_t dur; usbd_status error; int rate, xferlen, pktlen, needrts = 0, needcts = 0; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) return ENOBUFS; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } /* compute actual packet length (including CRC and crypto overhead) */ pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* pickup a rate */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT)) { /* mgmt/multicast frames are sent at the lowest avail. rate */ rate = ni->ni_rates.rs_rates[0]; } else if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate]; } else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; if (rate == 0) rate = 2; /* XXX should not happen */ rate &= IEEE80211_RATE_VAL; /* check if RTS/CTS or CTS-to-self protection must be used */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (pktlen > ic->ic_rtsthreshold) { needrts = 1; /* RTS/CTS based on frame length */ } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) needcts = 1; /* CTS-to-self */ else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) needrts = 1; /* RTS/CTS */ } } if (needrts || needcts) { struct mbuf *mprot; int protrate, ackrate; uint16_t dur; protrate = 2; ackrate = ural_ack_rate(ic, rate); dur = ural_txtime(pktlen, rate, ic->ic_flags) + ural_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 2 * RAL_SIFS; if (needrts) { dur += ural_txtime(RAL_CTS_SIZE, ural_ack_rate(ic, protrate), ic->ic_flags) + RAL_SIFS; mprot = ieee80211_get_rts(ic, wh, dur); } else { mprot = ieee80211_get_cts_to_self(ic, dur); } if (mprot == NULL) { printf("%s: could not allocate protection frame\n", sc->sc_dev.dv_xname); m_freem(m0); return ENOBUFS; } data = &sc->tx_data[sc->tx_cur]; desc = (struct ural_tx_desc *)data->buf; /* avoid multiple free() of the same node for each fragment */ data->ni = ieee80211_ref_node(ni); m_copydata(mprot, 0, mprot->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); ural_setup_tx_desc(sc, desc, (needrts ? RAL_TX_NEED_ACK : 0) | RAL_TX_RETRY(7), mprot->m_pkthdr.len, protrate); /* no roundup necessary here */ xferlen = RAL_TX_DESC_SIZE + mprot->m_pkthdr.len; /* XXX may want to pass the protection frame to BPF */ /* mbuf is no longer needed */ m_freem(mprot); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) { m_freem(m0); return error; } sc->tx_queued++; sc->tx_cur = (sc->tx_cur + 1) % RAL_TX_LIST_COUNT; flags |= RAL_TX_IFS_SIFS; } data = &sc->tx_data[sc->tx_cur]; desc = (struct ural_tx_desc *)data->buf; data->ni = ni; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_NEED_ACK; flags |= RAL_TX_RETRY(7); dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate), ic->ic_flags) + RAL_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); #ifndef IEEE80211_STA_ONLY /* tell hardware to set timestamp in probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RAL_TX_TIMESTAMP; #endif } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct ural_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wt_antenna = sc->tx_ant; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE); ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); /* align end on a 2-bytes boundary */ xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; /* * No space left in the last URB to store the extra 2 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 2; DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", m0->m_pkthdr.len, rate, xferlen)); /* mbuf is no longer needed */ m_freem(m0); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) return error; sc->tx_queued++; sc->tx_cur = (sc->tx_cur + 1) % RAL_TX_LIST_COUNT; return 0; } void ural_start(struct ifnet *ifp) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m0; /* * net80211 may still try to send management frames even if the * IFF_RUNNING flag is not set... */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->tx_queued >= RAL_TX_LIST_COUNT - 1) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (ural_tx_data(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= RAL_TX_LIST_COUNT - 1) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (ural_tx_data(sc, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void ural_watchdog(struct ifnet *ifp) { struct ural_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); /*ural_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) ural_update_promisc(sc); else ural_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) ural_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ural_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ural_init(ifp); error = 0; } splx(s); return error; } void ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not read EEPROM: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } } uint16_t ural_read(struct ural_softc *sc, uint16_t reg) { usb_device_request_t req; usbd_status error; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, sizeof (uint16_t)); error = usbd_do_request(sc->sc_udev, &req, &val); if (error != 0) { printf("%s: could not read MAC register: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); return 0; } return letoh16(val); } void ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not read MAC register: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } } void ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MAC; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); error = usbd_do_request(sc->sc_udev, &req, NULL); if (error != 0) { printf("%s: could not write MAC register: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } } void ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not write MAC register: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } } void ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) { uint16_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); return; } tmp = reg << 8 | val; ural_write(sc, RAL_PHY_CSR7, tmp); } uint8_t ural_bbp_read(struct ural_softc *sc, uint8_t reg) { uint16_t val; int ntries; val = RAL_BBP_WRITE | reg << 8; ural_write(sc, RAL_PHY_CSR7, val); for (ntries = 0; ntries < 5; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); return 0; } return ural_read(sc, RAL_PHY_CSR7) & 0xff; } void ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) break; } if (ntries == 5) { printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); return; } tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); ural_write(sc, RAL_PHY_CSR10, tmp >> 16); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); } void ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; u_int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; power = min(sc->txpow[chan - 1], 31); DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); switch (sc->rf_rev) { case RAL_RF_2522: ural_rf_write(sc, RAL_RF1, 0x00814); ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RAL_RF_2523: ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2524: ural_rf_write(sc, RAL_RF1, 0x0c808); ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525E: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RAL_RF_2526: ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; } if (ic->ic_opmode != IEEE80211_M_MONITOR && ic->ic_state != IEEE80211_S_SCAN) { /* set Japan filter bit for channel 14 */ tmp = ural_bbp_read(sc, 70); tmp &= ~RAL_JAPAN_FILTER; if (chan == 14) tmp |= RAL_JAPAN_FILTER; ural_bbp_write(sc, 70, tmp); /* clear CRC errors */ ural_read(sc, RAL_STA_CSR0); DELAY(1000); /* RF needs a 1ms delay here */ ural_disable_rf_tune(sc); } } /* * Disable RF auto-tuning. */ void ural_disable_rf_tune(struct ural_softc *sc) { uint32_t tmp; if (sc->rf_rev != RAL_RF_2523) { tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; ural_rf_write(sc, RAL_RF1, tmp); } tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; ural_rf_write(sc, RAL_RF3, tmp); DPRINTFN(2, ("disabling RF autotune\n")); } /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ void ural_enable_tsf_sync(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t logcwmin, preload, tmp; /* first, disable TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); tmp = (16 * ic->ic_bss->ni_intval) << 4; ural_write(sc, RAL_TXRX_CSR18, tmp); #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_IBSS) { logcwmin = 2; preload = 320; } else #endif { logcwmin = 0; preload = 6; } tmp = logcwmin << 12 | preload; ural_write(sc, RAL_TXRX_CSR20, tmp); /* finally, enable TSF synchronization */ tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RAL_ENABLE_TSF_SYNC(1); #ifndef IEEE80211_STA_ONLY else tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; #endif ural_write(sc, RAL_TXRX_CSR19, tmp); DPRINTF(("enabling TSF synchronization\n")); } void ural_update_slot(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t slottime, sifs, eifs; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; /* * These settings may sound a bit inconsistent but this is what the * reference driver does. */ if (ic->ic_curmode == IEEE80211_MODE_11B) { sifs = 16 - RAL_RXTX_TURNAROUND; eifs = 364; } else { sifs = 10 - RAL_RXTX_TURNAROUND; eifs = 64; } ural_write(sc, RAL_MAC_CSR10, slottime); ural_write(sc, RAL_MAC_CSR11, sifs); ural_write(sc, RAL_MAC_CSR12, eifs); } void ural_set_txpreamble(struct ural_softc *sc) { uint16_t tmp; tmp = ural_read(sc, RAL_TXRX_CSR10); tmp &= ~RAL_SHORT_PREAMBLE; if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RAL_SHORT_PREAMBLE; ural_write(sc, RAL_TXRX_CSR10, tmp); } void ural_set_basicrates(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x3); } else { /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0xf); } } void ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) { uint16_t tmp; tmp = bssid[0] | bssid[1] << 8; ural_write(sc, RAL_MAC_CSR5, tmp); tmp = bssid[2] | bssid[3] << 8; ural_write(sc, RAL_MAC_CSR6, tmp); tmp = bssid[4] | bssid[5] << 8; ural_write(sc, RAL_MAC_CSR7, tmp); DPRINTF(("setting BSSID to %s\n", ether_sprintf((uint8_t *)bssid))); } void ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr) { uint16_t tmp; tmp = addr[0] | addr[1] << 8; ural_write(sc, RAL_MAC_CSR2, tmp); tmp = addr[2] | addr[3] << 8; ural_write(sc, RAL_MAC_CSR3, tmp); tmp = addr[4] | addr[5] << 8; ural_write(sc, RAL_MAC_CSR4, tmp); DPRINTF(("setting MAC address to %s\n", ether_sprintf((uint8_t *)addr))); } void ural_update_promisc(struct ural_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint16_t tmp; tmp = ural_read(sc, RAL_TXRX_CSR2); tmp &= ~RAL_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; ural_write(sc, RAL_TXRX_CSR2, tmp); DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } const char * ural_get_rf(int rev) { switch (rev) { case RAL_RF_2522: return "RT2522"; case RAL_RF_2523: return "RT2523"; case RAL_RF_2524: return "RT2524"; case RAL_RF_2525: return "RT2525"; case RAL_RF_2525E: return "RT2525e"; case RAL_RF_2526: return "RT2526"; case RAL_RF_5222: return "RT5222"; default: return "unknown"; } } void ural_read_eeprom(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; /* retrieve MAC/BBP type */ ural_eeprom_read(sc, RAL_EEPROM_MACBBP, &val, 2); sc->macbbp_rev = letoh16(val); ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); val = letoh16(val); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read MAC address */ ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6); /* read default values for BBP registers */ ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); /* read Tx power for all b/g channels */ ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); } int ural_bbp_init(struct ural_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(ural_def_bbp); i++) ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); #if 0 /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0xff) continue; ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif return 0; #undef N } void ural_set_txantenna(struct ural_softc *sc, int antenna) { uint16_t tmp; uint8_t tx; tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; if (antenna == 1) tx |= RAL_BBP_ANTA; else if (antenna == 2) tx |= RAL_BBP_ANTB; else tx |= RAL_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || sc->rf_rev == RAL_RF_5222) tx |= RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_TX, tx); /* update flags in PHY_CSR5 and PHY_CSR6 too */ tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); } void ural_set_rxantenna(struct ural_softc *sc, int antenna) { uint8_t rx; rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; if (antenna == 1) rx |= RAL_BBP_ANTA; else if (antenna == 2) rx |= RAL_BBP_ANTB; else rx |= RAL_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) rx &= ~RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_RX, rx); } int ural_init(struct ifnet *ifp) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint16_t tmp; usbd_status error; int i, ntries; ural_stop(ifp, 0); /* initialize MAC registers to default values */ for (i = 0; i < N(ural_def_mac); i++) ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); /* wait for BBP and RF to wake up (this can take a long time!) */ for (ntries = 0; ntries < 100; ntries++) { tmp = ural_read(sc, RAL_MAC_CSR17); if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == (RAL_BBP_AWAKE | RAL_RF_AWAKE)) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for BBP/RF to wakeup\n", sc->sc_dev.dv_xname); error = EIO; goto fail; } /* we're ready! */ ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); /* set basic rate set (will be updated later) */ ural_write(sc, RAL_TXRX_CSR11, 0x153); error = ural_bbp_init(sc); if (error != 0) goto fail; /* set default BSS channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; ural_set_chan(sc, ic->ic_bss->ni_chan); /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); /* set default sensitivity */ ural_bbp_write(sc, 17, 0x48); ural_set_txantenna(sc, 1); ural_set_rxantenna(sc, 1); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); ural_set_macaddr(sc, ic->ic_myaddr); /* * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { struct ieee80211_key *k = &ic->ic_nw_keys[i]; ural_write_multi(sc, RAL_SEC_CSR0 + i * IEEE80211_KEYBUF_SIZE, k->k_key, IEEE80211_KEYBUF_SIZE); } /* * Allocate xfer for AMRR statistics requests. */ sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); if (sc->amrr_xfer == NULL) { printf("%s: could not allocate AMRR xfer\n", sc->sc_dev.dv_xname); goto fail; } /* * Open Tx and Rx USB bulk pipes. */ error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, &sc->sc_tx_pipeh); if (error != 0) { printf("%s: could not open Tx pipe: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, &sc->sc_rx_pipeh); if (error != 0) { printf("%s: could not open Rx pipe: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } /* * Allocate Tx and Rx xfer queues. */ error = ural_alloc_tx_list(sc); if (error != 0) { printf("%s: could not allocate Tx list\n", sc->sc_dev.dv_xname); goto fail; } error = ural_alloc_rx_list(sc); if (error != 0) { printf("%s: could not allocate Rx list\n", sc->sc_dev.dv_xname); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < RAL_RX_LIST_COUNT; i++) { struct ural_rx_data *data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) { printf("%s: could not queue Rx transfer\n", sc->sc_dev.dv_xname); goto fail; } } /* kick Rx */ tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR; #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode != IEEE80211_M_HOSTAP) #endif tmp |= RAL_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RAL_DROP_NOT_TO_ME; } ural_write(sc, RAL_TXRX_CSR2, tmp); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return 0; fail: ural_stop(ifp, 1); return error; #undef N } void ural_stop(struct ifnet *ifp, int disable) { struct ural_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ /* disable Rx */ ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); /* reset ASIC and BBP (but won't reset MAC registers!) */ ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); ural_write(sc, RAL_MAC_CSR1, 0); if (sc->amrr_xfer != NULL) { usbd_free_xfer(sc->amrr_xfer); sc->amrr_xfer = NULL; } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); sc->sc_rx_pipeh = NULL; } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); sc->sc_tx_pipeh = NULL; } ural_free_rx_list(sc); ural_free_tx_list(sc); } void ural_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { /* start with lowest Tx rate */ ni->ni_txrate = 0; } void ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni) { int i; /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); ieee80211_amrr_node_init(&sc->amrr, &sc->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; timeout_add_sec(&sc->amrr_to, 1); } void ural_amrr_timeout(void *arg) { struct ural_softc *sc = arg; usb_device_request_t req; int s; s = splusb(); /* * Asynchronously read statistic registers (cleared by read). */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, RAL_STA_CSR0); USETW(req.wLength, sizeof sc->sta); usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, ural_amrr_update); (void)usbd_transfer(sc->amrr_xfer); splx(s); } void ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct ural_softc *sc = (struct ural_softc *)priv; struct ifnet *ifp = &sc->sc_ic.ic_if; if (status != USBD_NORMAL_COMPLETION) { printf("%s: could not retrieve Tx statistics - cancelling " "automatic rate control\n", sc->sc_dev.dv_xname); return; } /* count TX retry-fail as Tx errors */ ifp->if_oerrors += letoh16(sc->sta[9]); sc->amn.amn_retrycnt = letoh16(sc->sta[7]) + /* TX one-retry ok count */ letoh16(sc->sta[8]) + /* TX more-retry ok count */ letoh16(sc->sta[9]); /* TX retry-fail count */ sc->amn.amn_txcnt = sc->amn.amn_retrycnt + letoh16(sc->sta[6]); /* TX no-retry ok count */ ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); timeout_add_sec(&sc->amrr_to, 1); } int ural_activate(struct device *self, int act) { switch (act) { case DVACT_ACTIVATE: break; case DVACT_DEACTIVATE: break; } return 0; }