/* $OpenBSD: if_rsu.c,v 1.42 2018/01/31 12:36:13 stsp Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Realtek RTL8188SU/RTL8191SU/RTL8192SU. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RSU_DEBUG #define DPRINTF(x) do { if (rsu_debug) printf x; } while (0) #define DPRINTFN(n, x) do { if (rsu_debug >= (n)) printf x; } while (0) int rsu_debug = 4; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* * NB: When updating this list of devices, beware to also update the list * of devices that have HT support disabled below, if applicable. */ static const struct usb_devno rsu_devs[] = { { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RTL8192SU }, { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_USBN10 }, { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RTL8192SU_1 }, { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_1 }, { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_2 }, { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_3 }, { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_4 }, { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_5 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192SU_1 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192SU_2 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192SU_3 }, { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RTL8192SU_1 }, { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RTL8192SU_2 }, { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RTL8192SU_3 }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192SU }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA131A1 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RTL8192SU_1 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RTL8192SU_2 }, { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192SU_1 }, { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192SU_2 }, { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192SU_3 }, { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUN54 }, { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUM300 }, { USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192SU_1 }, { USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192SU_2 }, { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSNANO }, { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8171 }, { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8172 }, { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8173 }, { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8174 }, { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192SU }, { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8712 }, { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8713 }, { USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RTL8192SU_1 }, { USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RTL8192SU_2 }, { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL349V1 }, { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL353 }, { USB_VENDOR_SWEEX2, USB_PRODUCT_SWEEX2_LW154 } }; /* List of devices that have HT support disabled. */ static const struct usb_devno rsu_devs_noht[] = { { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RTL8192SU_1 }, { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_4 } }; int rsu_match(struct device *, void *, void *); void rsu_attach(struct device *, struct device *, void *); int rsu_detach(struct device *, int); int rsu_open_pipes(struct rsu_softc *); void rsu_close_pipes(struct rsu_softc *); int rsu_alloc_rx_list(struct rsu_softc *); void rsu_free_rx_list(struct rsu_softc *); int rsu_alloc_tx_list(struct rsu_softc *); void rsu_free_tx_list(struct rsu_softc *); void rsu_task(void *); void rsu_do_async(struct rsu_softc *, void (*)(struct rsu_softc *, void *), void *, int); void rsu_wait_async(struct rsu_softc *); int rsu_write_region_1(struct rsu_softc *, uint16_t, uint8_t *, int); void rsu_write_1(struct rsu_softc *, uint16_t, uint8_t); void rsu_write_2(struct rsu_softc *, uint16_t, uint16_t); void rsu_write_4(struct rsu_softc *, uint16_t, uint32_t); int rsu_read_region_1(struct rsu_softc *, uint16_t, uint8_t *, int); uint8_t rsu_read_1(struct rsu_softc *, uint16_t); uint16_t rsu_read_2(struct rsu_softc *, uint16_t); uint32_t rsu_read_4(struct rsu_softc *, uint16_t); int rsu_fw_iocmd(struct rsu_softc *, uint32_t); uint8_t rsu_efuse_read_1(struct rsu_softc *, uint16_t); int rsu_read_rom(struct rsu_softc *); int rsu_fw_cmd(struct rsu_softc *, uint8_t, void *, int); int rsu_media_change(struct ifnet *); void rsu_calib_to(void *); void rsu_calib_cb(struct rsu_softc *, void *); int rsu_newstate(struct ieee80211com *, enum ieee80211_state, int); void rsu_newstate_cb(struct rsu_softc *, void *); int rsu_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void rsu_set_key_cb(struct rsu_softc *, void *); void rsu_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void rsu_delete_key_cb(struct rsu_softc *, void *); int rsu_site_survey(struct rsu_softc *); int rsu_join_bss(struct rsu_softc *, struct ieee80211_node *); int rsu_disconnect(struct rsu_softc *); void rsu_event_survey(struct rsu_softc *, uint8_t *, int); void rsu_event_join_bss(struct rsu_softc *, uint8_t *, int); void rsu_rx_event(struct rsu_softc *, uint8_t, uint8_t *, int); void rsu_rx_multi_event(struct rsu_softc *, uint8_t *, int); int8_t rsu_get_rssi(struct rsu_softc *, int, void *); void rsu_rx_frame(struct rsu_softc *, uint8_t *, int); void rsu_rx_multi_frame(struct rsu_softc *, uint8_t *, int); void rsu_rxeof(struct usbd_xfer *, void *, usbd_status); void rsu_txeof(struct usbd_xfer *, void *, usbd_status); int rsu_tx(struct rsu_softc *, struct mbuf *, struct ieee80211_node *); int rsu_send_mgmt(struct ieee80211com *, struct ieee80211_node *, int, int, int); void rsu_start(struct ifnet *); void rsu_watchdog(struct ifnet *); int rsu_ioctl(struct ifnet *, u_long, caddr_t); void rsu_power_on_acut(struct rsu_softc *); void rsu_power_on_bcut(struct rsu_softc *); void rsu_power_off(struct rsu_softc *); int rsu_fw_loadsection(struct rsu_softc *, uint8_t *, int); int rsu_load_firmware(struct rsu_softc *); int rsu_init(struct ifnet *); void rsu_stop(struct ifnet *); struct cfdriver rsu_cd = { NULL, "rsu", DV_IFNET }; const struct cfattach rsu_ca = { sizeof(struct rsu_softc), rsu_match, rsu_attach, rsu_detach, }; int rsu_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface == NULL || uaa->configno != 1) return (UMATCH_NONE); return ((usb_lookup(rsu_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE); } void rsu_attach(struct device *parent, struct device *self, void *aux) { struct rsu_softc *sc = (struct rsu_softc *)self; struct usb_attach_arg *uaa = aux; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int i, error; sc->sc_udev = uaa->device; sc->sc_iface = uaa->iface; usb_init_task(&sc->sc_task, rsu_task, sc, USB_TASK_TYPE_GENERIC); timeout_set(&sc->calib_to, rsu_calib_to, sc); /* Read chip revision. */ sc->cut = MS(rsu_read_4(sc, R92S_PMC_FSM), R92S_PMC_FSM_CUT); if (sc->cut != 3) sc->cut = (sc->cut >> 1) + 1; error = rsu_read_rom(sc); if (error != 0) { printf("%s: could not read ROM\n", sc->sc_dev.dv_xname); return; } IEEE80211_ADDR_COPY(ic->ic_myaddr, &sc->rom[0x12]); printf("%s: MAC/BB RTL8712 cut %d, address %s\n", sc->sc_dev.dv_xname, sc->cut, ether_sprintf(ic->ic_myaddr)); if (rsu_open_pipes(sc) != 0) return; ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */ ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_SCANALL | /* Hardware scan. */ IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ IEEE80211_C_SHSLOT | /* Short slot time supported. */ IEEE80211_C_WEP | /* WEP. */ IEEE80211_C_RSN; /* WPA/RSN. */ /* Check if HT support is present. */ if (usb_lookup(rsu_devs_noht, uaa->vendor, uaa->product) == NULL) { #ifdef notyet /* Set HT capabilities. */ ic->ic_htcaps = IEEE80211_HTCAP_CBW20_40 | IEEE80211_HTCAP_DSSSCCK40; /* Set supported HT rates. */ for (i = 0; i < 2; i++) ic->ic_sup_mcs[i] = 0xff; #endif } /* Set supported .11b and .11g rates. */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* Set supported .11b and .11g channels (1 through 14). */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = rsu_ioctl; ifp->if_start = rsu_start; ifp->if_watchdog = rsu_watchdog; memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); #ifdef notyet ic->ic_set_key = rsu_set_key; ic->ic_delete_key = rsu_delete_key; #endif /* Override state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rsu_newstate; ic->ic_send_mgmt = rsu_send_mgmt; ieee80211_media_init(ifp, rsu_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RSU_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtapu); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RSU_TX_RADIOTAP_PRESENT); #endif } int rsu_detach(struct device *self, int flags) { struct rsu_softc *sc = (struct rsu_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); if (timeout_initialized(&sc->calib_to)) timeout_del(&sc->calib_to); /* Wait for all async commands to complete. */ usb_rem_wait_task(sc->sc_udev, &sc->sc_task); usbd_ref_wait(sc->sc_udev); if (ifp->if_softc != NULL) { ieee80211_ifdetach(ifp); if_detach(ifp); } /* Abort and close Tx/Rx pipes. */ rsu_close_pipes(sc); /* Free Tx/Rx buffers. */ rsu_free_tx_list(sc); rsu_free_rx_list(sc); splx(s); return (0); } int rsu_open_pipes(struct rsu_softc *sc) { usb_interface_descriptor_t *id; int i, error; /* * Determine the number of Tx/Rx endpoints (there are chips with * 4, 6 or 11 endpoints). */ id = usbd_get_interface_descriptor(sc->sc_iface); sc->npipes = id->bNumEndpoints; if (sc->npipes == 4) sc->qid2idx = rsu_qid2idx_4ep; else if (sc->npipes == 6) sc->qid2idx = rsu_qid2idx_6ep; else /* Assume npipes==11; will fail below otherwise. */ sc->qid2idx = rsu_qid2idx_11ep; DPRINTF(("%d endpoints configuration\n", sc->npipes)); /* Open all pipes. */ for (i = 0; i < MIN(sc->npipes, nitems(r92s_epaddr)); i++) { error = usbd_open_pipe(sc->sc_iface, r92s_epaddr[i], 0, &sc->pipe[i]); if (error != 0) { printf("%s: could not open bulk pipe 0x%02x\n", sc->sc_dev.dv_xname, r92s_epaddr[i]); break; } } if (error != 0) rsu_close_pipes(sc); return (error); } void rsu_close_pipes(struct rsu_softc *sc) { int i; /* Close all pipes. */ for (i = 0; i < sc->npipes; i++) { if (sc->pipe[i] == NULL) continue; usbd_abort_pipe(sc->pipe[i]); usbd_close_pipe(sc->pipe[i]); } } int rsu_alloc_rx_list(struct rsu_softc *sc) { struct rsu_rx_data *data; int i, error = 0; for (i = 0; i < RSU_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; data->sc = sc; /* Backpointer for callbacks. */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } data->buf = usbd_alloc_buffer(data->xfer, RSU_RXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate xfer buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } } if (error != 0) rsu_free_rx_list(sc); return (error); } void rsu_free_rx_list(struct rsu_softc *sc) { int i; /* NB: Caller must abort pipe first. */ for (i = 0; i < RSU_RX_LIST_COUNT; i++) { if (sc->rx_data[i].xfer != NULL) usbd_free_xfer(sc->rx_data[i].xfer); sc->rx_data[i].xfer = NULL; } } int rsu_alloc_tx_list(struct rsu_softc *sc) { struct rsu_tx_data *data; int i, error = 0; TAILQ_INIT(&sc->tx_free_list); for (i = 0; i < RSU_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; /* Backpointer for callbacks. */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } data->buf = usbd_alloc_buffer(data->xfer, RSU_TXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate xfer buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } /* Append this Tx buffer to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); } if (error != 0) rsu_free_tx_list(sc); return (error); } void rsu_free_tx_list(struct rsu_softc *sc) { int i; /* NB: Caller must abort pipe first. */ for (i = 0; i < RSU_TX_LIST_COUNT; i++) { if (sc->tx_data[i].xfer != NULL) usbd_free_xfer(sc->tx_data[i].xfer); sc->tx_data[i].xfer = NULL; } } void rsu_task(void *arg) { struct rsu_softc *sc = arg; struct rsu_host_cmd_ring *ring = &sc->cmdq; struct rsu_host_cmd *cmd; int s; /* Process host commands. */ s = splusb(); while (ring->next != ring->cur) { cmd = &ring->cmd[ring->next]; splx(s); /* Invoke callback. */ cmd->cb(sc, cmd->data); s = splusb(); ring->queued--; ring->next = (ring->next + 1) % RSU_HOST_CMD_RING_COUNT; } splx(s); } void rsu_do_async(struct rsu_softc *sc, void (*cb)(struct rsu_softc *, void *), void *arg, int len) { struct rsu_host_cmd_ring *ring = &sc->cmdq; struct rsu_host_cmd *cmd; int s; s = splusb(); cmd = &ring->cmd[ring->cur]; cmd->cb = cb; KASSERT(len <= sizeof(cmd->data)); memcpy(cmd->data, arg, len); ring->cur = (ring->cur + 1) % RSU_HOST_CMD_RING_COUNT; /* If there is no pending command already, schedule a task. */ if (++ring->queued == 1) usb_add_task(sc->sc_udev, &sc->sc_task); splx(s); } void rsu_wait_async(struct rsu_softc *sc) { /* Wait for all queued asynchronous commands to complete. */ usb_wait_task(sc->sc_udev, &sc->sc_task); } int rsu_write_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = R92S_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (usbd_do_request(sc->sc_udev, &req, buf)); } void rsu_write_1(struct rsu_softc *sc, uint16_t addr, uint8_t val) { rsu_write_region_1(sc, addr, &val, 1); } void rsu_write_2(struct rsu_softc *sc, uint16_t addr, uint16_t val) { val = htole16(val); rsu_write_region_1(sc, addr, (uint8_t *)&val, 2); } void rsu_write_4(struct rsu_softc *sc, uint16_t addr, uint32_t val) { val = htole32(val); rsu_write_region_1(sc, addr, (uint8_t *)&val, 4); } int rsu_read_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = R92S_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (usbd_do_request(sc->sc_udev, &req, buf)); } uint8_t rsu_read_1(struct rsu_softc *sc, uint16_t addr) { uint8_t val; if (rsu_read_region_1(sc, addr, &val, 1) != 0) return (0xff); return (val); } uint16_t rsu_read_2(struct rsu_softc *sc, uint16_t addr) { uint16_t val; if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0) return (0xffff); return (letoh16(val)); } uint32_t rsu_read_4(struct rsu_softc *sc, uint16_t addr) { uint32_t val; if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0) return (0xffffffff); return (letoh32(val)); } int rsu_fw_iocmd(struct rsu_softc *sc, uint32_t iocmd) { int ntries; rsu_write_4(sc, R92S_IOCMD_CTRL, iocmd); DELAY(100); for (ntries = 0; ntries < 50; ntries++) { if (rsu_read_4(sc, R92S_IOCMD_CTRL) == 0) return (0); DELAY(10); } return (ETIMEDOUT); } uint8_t rsu_efuse_read_1(struct rsu_softc *sc, uint16_t addr) { uint32_t reg; int ntries; reg = rsu_read_4(sc, R92S_EFUSE_CTRL); reg = RW(reg, R92S_EFUSE_CTRL_ADDR, addr); reg &= ~R92S_EFUSE_CTRL_VALID; rsu_write_4(sc, R92S_EFUSE_CTRL, reg); /* Wait for read operation to complete. */ for (ntries = 0; ntries < 100; ntries++) { reg = rsu_read_4(sc, R92S_EFUSE_CTRL); if (reg & R92S_EFUSE_CTRL_VALID) return (MS(reg, R92S_EFUSE_CTRL_DATA)); DELAY(5); } printf("%s: could not read efuse byte at address 0x%x\n", sc->sc_dev.dv_xname, addr); return (0xff); } int rsu_read_rom(struct rsu_softc *sc) { uint8_t *rom = sc->rom; uint16_t addr = 0; uint32_t reg; uint8_t off, msk; int i; /* Make sure that ROM type is eFuse and that autoload succeeded. */ reg = rsu_read_1(sc, R92S_EE_9346CR); if ((reg & (R92S_9356SEL | R92S_EEPROM_EN)) != R92S_EEPROM_EN) return (EIO); /* Turn on 2.5V to prevent eFuse leakage. */ reg = rsu_read_1(sc, R92S_EFUSE_TEST + 3); rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg | 0x80); DELAY(1000); rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg & ~0x80); /* Read full ROM image. */ memset(&sc->rom, 0xff, sizeof(sc->rom)); while (addr < 512) { reg = rsu_efuse_read_1(sc, addr); if (reg == 0xff) break; addr++; off = reg >> 4; msk = reg & 0xf; for (i = 0; i < 4; i++) { if (msk & (1 << i)) continue; rom[off * 8 + i * 2 + 0] = rsu_efuse_read_1(sc, addr); addr++; rom[off * 8 + i * 2 + 1] = rsu_efuse_read_1(sc, addr); addr++; } } #ifdef RSU_DEBUG if (rsu_debug >= 5) { /* Dump ROM content. */ printf("\n"); for (i = 0; i < sizeof(sc->rom); i++) printf("%02x:", rom[i]); printf("\n"); } #endif return (0); } int rsu_fw_cmd(struct rsu_softc *sc, uint8_t code, void *buf, int len) { struct rsu_tx_data *data; struct r92s_tx_desc *txd; struct r92s_fw_cmd_hdr *cmd; struct usbd_pipe *pipe; int cmdsz, xferlen; data = sc->fwcmd_data; /* Round-up command length to a multiple of 8 bytes. */ cmdsz = (len + 7) & ~7; xferlen = sizeof(*txd) + sizeof(*cmd) + cmdsz; KASSERT(xferlen <= RSU_TXBUFSZ); memset(data->buf, 0, xferlen); /* Setup Tx descriptor. */ txd = (struct r92s_tx_desc *)data->buf; txd->txdw0 = htole32( SM(R92S_TXDW0_OFFSET, sizeof(*txd)) | SM(R92S_TXDW0_PKTLEN, sizeof(*cmd) + cmdsz) | R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG); txd->txdw1 = htole32(SM(R92S_TXDW1_QSEL, R92S_TXDW1_QSEL_H2C)); /* Setup command header. */ cmd = (struct r92s_fw_cmd_hdr *)&txd[1]; cmd->len = htole16(cmdsz); cmd->code = code; cmd->seq = sc->cmd_seq; sc->cmd_seq = (sc->cmd_seq + 1) & 0x7f; /* Copy command payload. */ memcpy(&cmd[1], buf, len); DPRINTFN(2, ("Tx cmd code=%d len=%d\n", code, cmdsz)); pipe = sc->pipe[sc->qid2idx[RSU_QID_H2C]]; usbd_setup_xfer(data->xfer, pipe, NULL, data->buf, xferlen, USBD_SHORT_XFER_OK | USBD_NO_COPY | USBD_SYNCHRONOUS, RSU_CMD_TIMEOUT, NULL); return (usbd_transfer(data->xfer)); } int rsu_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return (error); if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { rsu_stop(ifp); rsu_init(ifp); } return (0); } void rsu_calib_to(void *arg) { struct rsu_softc *sc = arg; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); /* Do it in a process context. */ rsu_do_async(sc, rsu_calib_cb, NULL, 0); usbd_ref_decr(sc->sc_udev); } /* ARGSUSED */ void rsu_calib_cb(struct rsu_softc *sc, void *arg) { uint32_t reg; #ifdef notyet /* Read WPS PBC status. */ rsu_write_1(sc, R92S_MAC_PINMUX_CTRL, R92S_GPIOMUX_EN | SM(R92S_GPIOSEL_GPIO, R92S_GPIOSEL_GPIO_JTAG)); rsu_write_1(sc, R92S_GPIO_IO_SEL, rsu_read_1(sc, R92S_GPIO_IO_SEL) & ~R92S_GPIO_WPS); reg = rsu_read_1(sc, R92S_GPIO_CTRL); if (reg != 0xff && (reg & R92S_GPIO_WPS)) DPRINTF(("WPS PBC is pushed\n")); #endif /* Read current signal level. */ if (rsu_fw_iocmd(sc, 0xf4000001) == 0) { reg = rsu_read_4(sc, R92S_IOCMD_DATA); DPRINTFN(8, ("RSSI=%d%%\n", reg >> 4)); } if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 2); } int rsu_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rsu_softc *sc = ic->ic_softc; struct rsu_cmd_newstate cmd; /* Do it in a process context. */ cmd.state = nstate; cmd.arg = arg; rsu_do_async(sc, rsu_newstate_cb, &cmd, sizeof(cmd)); return (0); } void rsu_newstate_cb(struct rsu_softc *sc, void *arg) { struct rsu_cmd_newstate *cmd = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; enum ieee80211_state ostate; int error, s; s = splnet(); ostate = ic->ic_state; if (ostate == IEEE80211_S_RUN) { /* Stop calibration. */ timeout_del(&sc->calib_to); /* Disassociate from our current BSS. */ (void)rsu_disconnect(sc); } switch (cmd->state) { case IEEE80211_S_INIT: break; case IEEE80211_S_SCAN: error = rsu_site_survey(sc); if (error != 0) { printf("%s: could not send site survey command\n", sc->sc_dev.dv_xname); } if (ifp->if_flags & IFF_DEBUG) printf("%s: %s -> %s\n", ifp->if_xname, ieee80211_state_name[ic->ic_state], ieee80211_state_name[cmd->state]); ic->ic_state = cmd->state; splx(s); return; case IEEE80211_S_AUTH: ic->ic_bss->ni_rsn_supp_state = RSNA_SUPP_INITIALIZE; error = rsu_join_bss(sc, ic->ic_bss); if (error != 0) { printf("%s: could not send join command\n", sc->sc_dev.dv_xname); ieee80211_begin_scan(&ic->ic_if); splx(s); return; } if (ifp->if_flags & IFF_DEBUG) printf("%s: %s -> %s\n", ifp->if_xname, ieee80211_state_name[ic->ic_state], ieee80211_state_name[cmd->state]); ic->ic_state = cmd->state; if (ic->ic_flags & IEEE80211_F_RSNON) ic->ic_bss->ni_rsn_supp_state = RSNA_SUPP_PTKSTART; splx(s); return; case IEEE80211_S_ASSOC: /* No-op for this driver. See rsu_event_join_bss(). */ if (ifp->if_flags & IFF_DEBUG) printf("%s: %s -> %s\n", ifp->if_xname, ieee80211_state_name[ic->ic_state], ieee80211_state_name[cmd->state]); ic->ic_state = cmd->state; splx(s); return; case IEEE80211_S_RUN: /* Indicate highest supported rate. */ ic->ic_bss->ni_txrate = ic->ic_bss->ni_rates.rs_nrates - 1; /* Start periodic calibration. */ if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 2); break; } (void)sc->sc_newstate(ic, cmd->state, cmd->arg); splx(s); } int rsu_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rsu_softc *sc = ic->ic_softc; struct rsu_cmd_key cmd; /* Defer setting of WEP keys until interface is brought up. */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return (0); /* Do it in a process context. */ cmd.key = *k; rsu_do_async(sc, rsu_set_key_cb, &cmd, sizeof(cmd)); return (0); } void rsu_set_key_cb(struct rsu_softc *sc, void *arg) { struct rsu_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; struct r92s_fw_cmd_set_key key; memset(&key, 0, sizeof(key)); /* Map net80211 cipher to HW crypto algorithm. */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: key.algo = R92S_KEY_ALGO_WEP40; break; case IEEE80211_CIPHER_WEP104: key.algo = R92S_KEY_ALGO_WEP104; break; case IEEE80211_CIPHER_TKIP: key.algo = R92S_KEY_ALGO_TKIP; break; case IEEE80211_CIPHER_CCMP: key.algo = R92S_KEY_ALGO_AES; break; default: return; } key.id = k->k_id; key.grpkey = (k->k_flags & IEEE80211_KEY_GROUP) != 0; memcpy(key.key, k->k_key, MIN(k->k_len, sizeof(key.key))); (void)rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key)); } /* ARGSUSED */ void rsu_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rsu_softc *sc = ic->ic_softc; struct rsu_cmd_key cmd; if (!(ic->ic_if.if_flags & IFF_RUNNING) || ic->ic_state != IEEE80211_S_RUN) return; /* Nothing to do. */ /* Do it in a process context. */ cmd.key = *k; rsu_do_async(sc, rsu_delete_key_cb, &cmd, sizeof(cmd)); } void rsu_delete_key_cb(struct rsu_softc *sc, void *arg) { struct rsu_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; struct r92s_fw_cmd_set_key key; memset(&key, 0, sizeof(key)); key.id = k->k_id; (void)rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key)); } int rsu_site_survey(struct rsu_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct r92s_fw_cmd_sitesurvey cmd; memset(&cmd, 0, sizeof(cmd)); if ((ic->ic_flags & IEEE80211_F_ASCAN) || sc->scan_pass == 1) cmd.active = htole32(1); cmd.limit = htole32(48); if (sc->scan_pass == 1) { /* Do a directed scan for second pass. */ cmd.ssidlen = htole32(ic->ic_des_esslen); memcpy(cmd.ssid, ic->ic_des_essid, ic->ic_des_esslen); } DPRINTF(("sending site survey command, pass=%d\n", sc->scan_pass)); return (rsu_fw_cmd(sc, R92S_CMD_SITE_SURVEY, &cmd, sizeof(cmd))); } int rsu_join_bss(struct rsu_softc *sc, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ndis_wlan_bssid_ex *bss; struct ndis_802_11_fixed_ies *fixed; struct r92s_fw_cmd_auth auth; uint8_t buf[sizeof(*bss) + 128], *frm; uint8_t opmode; int error; /* Let the FW decide the opmode based on the capinfo field. */ opmode = NDIS802_11AUTOUNKNOWN; DPRINTF(("setting operating mode to %d\n", opmode)); error = rsu_fw_cmd(sc, R92S_CMD_SET_OPMODE, &opmode, sizeof(opmode)); if (error != 0) return (error); memset(&auth, 0, sizeof(auth)); if (ic->ic_flags & IEEE80211_F_RSNON) { auth.mode = R92S_AUTHMODE_WPA; auth.dot1x = ieee80211_is_8021x_akm(ni->ni_rsnakms); } else auth.mode = R92S_AUTHMODE_OPEN; DPRINTF(("setting auth mode to %d\n", auth.mode)); error = rsu_fw_cmd(sc, R92S_CMD_SET_AUTH, &auth, sizeof(auth)); if (error != 0) return (error); memset(buf, 0, sizeof(buf)); bss = (struct ndis_wlan_bssid_ex *)buf; IEEE80211_ADDR_COPY(bss->macaddr, ni->ni_bssid); bss->ssid.ssidlen = htole32(ni->ni_esslen); memcpy(bss->ssid.ssid, ni->ni_essid, ni->ni_esslen); if (ic->ic_flags & (IEEE80211_F_WEPON | IEEE80211_F_RSNON)) bss->privacy = htole32(1); bss->rssi = htole32(ni->ni_rssi); if (ic->ic_curmode == IEEE80211_MODE_11B) bss->networktype = htole32(NDIS802_11DS); else bss->networktype = htole32(NDIS802_11OFDM24); bss->config.len = htole32(sizeof(bss->config)); bss->config.bintval = htole32(ni->ni_intval); bss->config.dsconfig = htole32(ieee80211_chan2ieee(ic, ni->ni_chan)); bss->inframode = htole32(NDIS802_11INFRASTRUCTURE); memcpy(bss->supprates, ni->ni_rates.rs_rates, ni->ni_rates.rs_nrates); /* Write the fixed fields of the beacon frame. */ fixed = (struct ndis_802_11_fixed_ies *)&bss[1]; memcpy(&fixed->tstamp, ni->ni_tstamp, 8); fixed->bintval = htole16(ni->ni_intval); fixed->capabilities = htole16(ni->ni_capinfo); /* Write IEs to be included in the association request. */ frm = (uint8_t *)&fixed[1]; if ((ic->ic_flags & IEEE80211_F_RSNON) && (ni->ni_rsnprotos & IEEE80211_PROTO_RSN)) frm = ieee80211_add_rsn(frm, ic, ni); if (ni->ni_flags & IEEE80211_NODE_QOS) frm = ieee80211_add_qos_capability(frm, ic); if (ni->ni_flags & IEEE80211_NODE_HT) frm = ieee80211_add_htcaps(frm, ic); if ((ic->ic_flags & IEEE80211_F_RSNON) && (ni->ni_rsnprotos & IEEE80211_PROTO_WPA)) frm = ieee80211_add_wpa(frm, ic, ni); bss->ieslen = htole32(frm - (uint8_t *)fixed); bss->len = htole32(((frm - buf) + 3) & ~3); DPRINTF(("sending join bss command to %s chan %d\n", ether_sprintf(bss->macaddr), letoh32(bss->config.dsconfig))); return (rsu_fw_cmd(sc, R92S_CMD_JOIN_BSS, buf, sizeof(buf))); } int rsu_disconnect(struct rsu_softc *sc) { uint32_t zero = 0; /* :-) */ /* Disassociate from our current BSS. */ DPRINTF(("sending disconnect command\n")); return (rsu_fw_cmd(sc, R92S_CMD_DISCONNECT, &zero, sizeof(zero))); } void rsu_event_survey(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct ieee80211_frame *wh; struct ndis_wlan_bssid_ex *bss; struct mbuf *m; uint32_t pktlen, ieslen; if (__predict_false(len < sizeof(*bss))) return; bss = (struct ndis_wlan_bssid_ex *)buf; ieslen = letoh32(bss->ieslen); if (ieslen > len - sizeof(*bss)) return; DPRINTFN(2, ("found BSS %s: len=%d chan=%d inframode=%d " "networktype=%d privacy=%d\n", ether_sprintf(bss->macaddr), letoh32(bss->len), letoh32(bss->config.dsconfig), letoh32(bss->inframode), letoh32(bss->networktype), letoh32(bss->privacy))); /* Build a fake beacon frame to let net80211 do all the parsing. */ pktlen = sizeof(*wh) + ieslen; if (__predict_false(pktlen > MCLBYTES)) return; MGETHDR(m, M_DONTWAIT, MT_DATA); if (__predict_false(m == NULL)) return; if (pktlen > MHLEN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_free(m); return; } } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)wh->i_dur = 0; IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, bss->macaddr); IEEE80211_ADDR_COPY(wh->i_addr3, bss->macaddr); *(uint16_t *)wh->i_seq = 0; memcpy(&wh[1], (uint8_t *)&bss[1], ieslen); /* Finalize mbuf. */ m->m_pkthdr.len = m->m_len = pktlen; ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_flags = 0; rxi.rxi_rssi = letoh32(bss->rssi); rxi.rxi_tstamp = 0; ieee80211_input(ifp, m, ni, &rxi); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); } void rsu_event_join_bss(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct r92s_event_join_bss *rsp; int res; if (__predict_false(len < sizeof(*rsp))) return; rsp = (struct r92s_event_join_bss *)buf; res = (int)letoh32(rsp->join_res); DPRINTF(("Rx join BSS event len=%d res=%d\n", len, res)); if (res <= 0) { ic->ic_stats.is_rx_auth_fail++; ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return; } DPRINTF(("associated with %s associd=%d\n", ether_sprintf(rsp->bss.macaddr), letoh32(rsp->associd))); ni->ni_associd = letoh32(rsp->associd) | 0xc000; if (ic->ic_flags & IEEE80211_F_WEPON) ni->ni_flags |= IEEE80211_NODE_TXRXPROT; /* Force an ASSOC->RUN transition. AUTH->RUN is invalid. */ ic->ic_state = IEEE80211_S_ASSOC; ieee80211_new_state(ic, IEEE80211_S_RUN, IEEE80211_FC0_SUBTYPE_ASSOC_RESP); } void rsu_rx_event(struct rsu_softc *sc, uint8_t code, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; DPRINTFN(4, ("Rx event code=%d len=%d\n", code, len)); switch (code) { case R92S_EVT_SURVEY: if (ic->ic_state == IEEE80211_S_SCAN) rsu_event_survey(sc, buf, len); break; case R92S_EVT_SURVEY_DONE: DPRINTF(("site survey pass %d done, found %d BSS\n", sc->scan_pass, letoh32(*(uint32_t *)buf))); if (ic->ic_state != IEEE80211_S_SCAN) break; /* Ignore if not scanning. */ if (sc->scan_pass == 0 && ic->ic_des_esslen != 0) { /* Schedule a directed scan for hidden APs. */ sc->scan_pass = 1; ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); break; } ieee80211_end_scan(ifp); sc->scan_pass = 0; break; case R92S_EVT_JOIN_BSS: if (ic->ic_state == IEEE80211_S_AUTH) rsu_event_join_bss(sc, buf, len); break; case R92S_EVT_DEL_STA: DPRINTF(("disassociated from %s\n", ether_sprintf(buf))); if (ic->ic_state == IEEE80211_S_RUN && IEEE80211_ADDR_EQ(ic->ic_bss->ni_bssid, buf)) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); break; case R92S_EVT_WPS_PBC: DPRINTF(("WPS PBC pushed.\n")); break; case R92S_EVT_FWDBG: if (ifp->if_flags & IFF_DEBUG) { buf[60] = '\0'; printf("FWDBG: %s\n", (char *)buf); } break; } } void rsu_rx_multi_event(struct rsu_softc *sc, uint8_t *buf, int len) { struct r92s_fw_cmd_hdr *cmd; int cmdsz; DPRINTFN(6, ("Rx events len=%d\n", len)); /* Skip Rx status. */ buf += sizeof(struct r92s_rx_stat); len -= sizeof(struct r92s_rx_stat); /* Process all events. */ for (;;) { /* Check that command header fits. */ if (__predict_false(len < sizeof(*cmd))) break; cmd = (struct r92s_fw_cmd_hdr *)buf; /* Check that command payload fits. */ cmdsz = letoh16(cmd->len); if (__predict_false(len < sizeof(*cmd) + cmdsz)) break; if (cmdsz > len) break; /* Process firmware event. */ rsu_rx_event(sc, cmd->code, (uint8_t *)&cmd[1], cmdsz); if (!(cmd->seq & R92S_FW_CMD_MORE)) break; buf += sizeof(*cmd) + cmdsz; len -= sizeof(*cmd) + cmdsz; } } int8_t rsu_get_rssi(struct rsu_softc *sc, int rate, void *physt) { static const int8_t cckoff[] = { 14, -2, -20, -40 }; struct r92s_rx_phystat *phy; struct r92s_rx_cck *cck; uint8_t rpt; int8_t rssi; if (rate <= 3) { cck = (struct r92s_rx_cck *)physt; rpt = (cck->agc_rpt >> 6) & 0x3; rssi = cck->agc_rpt & 0x3e; rssi = cckoff[rpt] - rssi; } else { /* OFDM/HT. */ phy = (struct r92s_rx_phystat *)physt; rssi = ((letoh32(phy->phydw1) >> 1) & 0x7f) - 106; } return (rssi); } void rsu_rx_frame(struct rsu_softc *sc, uint8_t *buf, int pktlen) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_rxinfo rxi; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct r92s_rx_stat *stat; uint32_t rxdw0, rxdw3; struct mbuf *m; uint8_t rate; int8_t rssi = 0; int s, infosz; stat = (struct r92s_rx_stat *)buf; rxdw0 = letoh32(stat->rxdw0); rxdw3 = letoh32(stat->rxdw3); if (__predict_false(rxdw0 & R92S_RXDW0_CRCERR)) { ifp->if_ierrors++; return; } if (__predict_false(pktlen < sizeof(*wh) || pktlen > MCLBYTES)) { ifp->if_ierrors++; return; } rate = MS(rxdw3, R92S_RXDW3_RATE); infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8; /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0) rssi = rsu_get_rssi(sc, rate, &stat[1]); DPRINTFN(5, ("Rx frame len=%d rate=%d infosz=%d rssi=%d\n", pktlen, rate, infosz, rssi)); MGETHDR(m, M_DONTWAIT, MT_DATA); if (__predict_false(m == NULL)) { ifp->if_ierrors++; return; } if (pktlen > MHLEN) { MCLGET(m, M_DONTWAIT); if (__predict_false(!(m->m_flags & M_EXT))) { ifp->if_ierrors++; m_freem(m); return; } } /* Finalize mbuf. */ /* Hardware does Rx TCP checksum offload. */ if (rxdw3 & R92S_RXDW3_TCPCHKVALID) { if (__predict_true(rxdw3 & R92S_RXDW3_TCPCHKRPT)) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK; else m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_BAD; } wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz); memcpy(mtod(m, uint8_t *), wh, pktlen); m->m_pkthdr.len = m->m_len = pktlen; s = splnet(); #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct rsu_rx_radiotap_header *tap = &sc->sc_rxtap; struct mbuf mb; tap->wr_flags = 0; /* Map HW rate index to 802.11 rate. */ tap->wr_flags = 2; if (!(rxdw3 & R92S_RXDW3_HTC)) { switch (rate) { /* CCK. */ case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; /* OFDM. */ case 4: tap->wr_rate = 12; break; case 5: tap->wr_rate = 18; break; case 6: tap->wr_rate = 24; break; case 7: tap->wr_rate = 36; break; case 8: tap->wr_rate = 48; break; case 9: tap->wr_rate = 72; break; case 10: tap->wr_rate = 96; break; case 11: tap->wr_rate = 108; break; } } else if (rate >= 12) { /* MCS0~15. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = 0x80 | (rate - 12); } tap->wr_dbm_antsignal = rssi; tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_flags = 0; rxi.rxi_rssi = rssi; rxi.rxi_tstamp = 0; /* Unused. */ ieee80211_input(ifp, m, ni, &rxi); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); splx(s); } void rsu_rx_multi_frame(struct rsu_softc *sc, uint8_t *buf, int len) { struct r92s_rx_stat *stat; uint32_t rxdw0; int totlen, pktlen, infosz, npkts; /* Get the number of encapsulated frames. */ stat = (struct r92s_rx_stat *)buf; npkts = MS(letoh32(stat->rxdw2), R92S_RXDW2_PKTCNT); DPRINTFN(6, ("Rx %d frames in one chunk\n", npkts)); /* Process all of them. */ while (npkts-- > 0) { if (__predict_false(len < sizeof(*stat))) break; stat = (struct r92s_rx_stat *)buf; rxdw0 = letoh32(stat->rxdw0); pktlen = MS(rxdw0, R92S_RXDW0_PKTLEN); if (__predict_false(pktlen == 0)) break; infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8; /* Make sure everything fits in xfer. */ totlen = sizeof(*stat) + infosz + pktlen; if (__predict_false(totlen > len)) break; /* Process 802.11 frame. */ rsu_rx_frame(sc, buf, pktlen); /* Next chunk is 128-byte aligned. */ totlen = (totlen + 127) & ~127; buf += totlen; len -= totlen; } } void rsu_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct rsu_rx_data *data = priv; struct rsu_softc *sc = data->sc; struct r92s_rx_stat *stat; struct ifnet *ifp = &sc->sc_ic.ic_if; int len; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("RX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(data->pipe); if (status != USBD_CANCELLED) goto resubmit; return; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (__predict_false(len < sizeof(*stat))) { DPRINTF(("xfer too short %d\n", len)); ifp->if_ierrors++; goto resubmit; } if (len > RSU_RXBUFSZ) { DPRINTF(("xfer too large %d\n", len)); ifp->if_ierrors++; goto resubmit; } /* Determine if it is a firmware C2H event or an 802.11 frame. */ stat = (struct r92s_rx_stat *)data->buf; if ((letoh32(stat->rxdw1) & 0x1ff) == 0x1ff) rsu_rx_multi_event(sc, data->buf, len); else rsu_rx_multi_frame(sc, data->buf, len); resubmit: /* Setup a new transfer. */ usbd_setup_xfer(xfer, data->pipe, data, data->buf, RSU_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, rsu_rxeof); (void)usbd_transfer(xfer); } void rsu_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct rsu_tx_data *data = priv; struct rsu_softc *sc = data->sc; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splnet(); /* Put this Tx buffer back to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("TX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(data->pipe); ifp->if_oerrors++; splx(s); return; } sc->sc_tx_timer = 0; /* We just released a Tx buffer, notify Tx. */ if (ifq_is_oactive(&ifp->if_snd)) { ifq_clr_oactive(&ifp->if_snd); rsu_start(ifp); } splx(s); } int rsu_tx(struct rsu_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct rsu_tx_data *data; struct r92s_tx_desc *txd; struct usbd_pipe *pipe; uint16_t qos; uint8_t type, qid, tid = 0; int hasqos, xferlen, error; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return (ENOBUFS); wh = mtod(m, struct ieee80211_frame *); } if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = rsu_ac2qid[ieee80211_up_to_ac(ic, tid)]; } else qid = RSU_QID_BE; /* Get the USB pipe to use for this queue id. */ pipe = sc->pipe[sc->qid2idx[qid]]; /* Grab a Tx buffer from our free list. */ data = TAILQ_FIRST(&sc->tx_free_list); TAILQ_REMOVE(&sc->tx_free_list, data, next); /* Fill Tx descriptor. */ txd = (struct r92s_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); txd->txdw0 |= htole32( SM(R92S_TXDW0_PKTLEN, m->m_pkthdr.len) | SM(R92S_TXDW0_OFFSET, sizeof(*txd)) | R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG); txd->txdw1 |= htole32( SM(R92S_TXDW1_MACID, R92S_MACID_BSS) | SM(R92S_TXDW1_QSEL, R92S_TXDW1_QSEL_BE)); if (!hasqos) txd->txdw1 |= htole32(R92S_TXDW1_NONQOS); #ifdef notyet if (k != NULL) { switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: case IEEE80211_CIPHER_WEP104: cipher = R92S_TXDW1_CIPHER_WEP; break; case IEEE80211_CIPHER_TKIP: cipher = R92S_TXDW1_CIPHER_TKIP; break; case IEEE80211_CIPHER_CCMP: cipher = R92S_TXDW1_CIPHER_AES; break; default: cipher = R92S_TXDW1_CIPHER_NONE; } txd->txdw1 |= htole32( SM(R92S_TXDW1_CIPHER, cipher) | SM(R92S_TXDW1_KEYIDX, k->k_id)); } #endif txd->txdw2 |= htole32(R92S_TXDW2_BK); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txd->txdw2 |= htole32(R92S_TXDW2_BMCAST); /* * Firmware will use and increment the sequence number for the * specified TID. */ txd->txdw3 |= htole32(SM(R92S_TXDW3_SEQ, tid)); #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct rsu_tx_radiotap_header *tap = &sc->sc_txtap; struct mbuf mb; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif xferlen = sizeof(*txd) + m->m_pkthdr.len; m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&txd[1]); m_freem(m); data->pipe = pipe; usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RSU_TX_TIMEOUT, rsu_txeof); error = usbd_transfer(data->xfer); if (__predict_false(error != USBD_IN_PROGRESS && error != 0)) { /* Put this Tx buffer back to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); return (error); } ieee80211_release_node(ic, ni); return (0); } /* ARGSUSED */ int rsu_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, int type, int arg1, int arg2) { return (EOPNOTSUPP); } void rsu_start(struct ifnet *ifp) { struct rsu_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; for (;;) { if (TAILQ_EMPTY(&sc->tx_free_list)) { ifq_set_oactive(&ifp->if_snd); break; } if (ic->ic_state != IEEE80211_S_RUN) break; /* Encapsulate and send data frames. */ IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (rsu_tx(sc, m, ni) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void rsu_watchdog(struct ifnet *ifp) { struct rsu_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); /* rsu_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int rsu_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rsu_softc *sc = ifp->if_softc; int s, error = 0; if (usbd_is_dying(sc->sc_udev)) return ENXIO; usbd_ref_incr(sc->sc_udev); s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) rsu_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) rsu_stop(ifp); } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { rsu_stop(ifp); rsu_init(ifp); } error = 0; } splx(s); usbd_ref_decr(sc->sc_udev); return (error); } /* * Power on sequence for A-cut adapters. */ void rsu_power_on_acut(struct rsu_softc *sc) { uint32_t reg; rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53); rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57); /* Enable AFE macro block's bandgap and Mbias. */ rsu_write_1(sc, R92S_AFE_MISC, rsu_read_1(sc, R92S_AFE_MISC) | R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN); /* Enable LDOA15 block. */ rsu_write_1(sc, R92S_LDOA15_CTRL, rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN); rsu_write_1(sc, R92S_SPS1_CTRL, rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_LDEN); usbd_delay_ms(sc->sc_udev, 2); /* Enable switch regulator block. */ rsu_write_1(sc, R92S_SPS1_CTRL, rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_SWEN); rsu_write_4(sc, R92S_SPS1_CTRL, 0x00a7b267); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x90); /* Enable AFE clock. */ rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1, rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04); /* Enable AFE PLL macro block. */ rsu_write_1(sc, R92S_AFE_PLL_CTRL, rsu_read_1(sc, R92S_AFE_PLL_CTRL) | 0x11); /* Attach AFE PLL to MACTOP/BB. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL, rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11); /* Switch to 40MHz clock instead of 80MHz. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) & ~R92S_SYS_CLKSEL); /* Enable MAC clock. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) | R92S_MAC_CLK_EN | R92S_SYS_CLK_EN); rsu_write_1(sc, R92S_PMC_FSM, 0x02); /* Enable digital core and IOREG R/W. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80); /* Switch the control path to firmware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL; rsu_write_2(sc, R92S_SYS_CLKR, reg); rsu_write_2(sc, R92S_CR, 0x37fc); /* Fix USB RX FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); rsu_write_1(sc, 0x00ab, rsu_read_1(sc, 0x00ab) | 0xc0); rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL); } /* * Power on sequence for B-cut and C-cut adapters. */ void rsu_power_on_bcut(struct rsu_softc *sc) { uint32_t reg; int ntries; /* Prevent eFuse leakage. */ rsu_write_1(sc, 0x37, 0xb0); usbd_delay_ms(sc->sc_udev, 10); rsu_write_1(sc, 0x37, 0x30); /* Switch the control path to hardware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); if (reg & R92S_FWHW_SEL) { rsu_write_2(sc, R92S_SYS_CLKR, reg & ~(R92S_SWHW_SEL | R92S_FWHW_SEL)); } rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) & ~0x8c); DELAY(1000); rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53); rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57); reg = rsu_read_1(sc, R92S_AFE_MISC); rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN); rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN | R92S_AFE_MISC_I32_EN); /* Enable PLL. */ rsu_write_1(sc, R92S_LDOA15_CTRL, rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN); rsu_write_1(sc, R92S_LDOV12D_CTRL, rsu_read_1(sc, R92S_LDOV12D_CTRL) | R92S_LDV12_EN); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20); /* Support 64KB IMEM. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x97); /* Enable AFE clock. */ rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1, rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04); /* Enable AFE PLL macro block. */ reg = rsu_read_1(sc, R92S_AFE_PLL_CTRL); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11); DELAY(500); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x51); DELAY(500); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11); DELAY(500); /* Attach AFE PLL to MACTOP/BB. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL, rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11); /* Switch to 40MHz clock. */ rsu_write_1(sc, R92S_SYS_CLKR, 0x00); /* Disable CPU clock and 80MHz SSC. */ rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) | 0xa0); /* Enable MAC clock. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) | R92S_MAC_CLK_EN | R92S_SYS_CLK_EN); rsu_write_1(sc, R92S_PMC_FSM, 0x02); /* Enable digital core and IOREG R/W. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80); /* Switch the control path to firmware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL; rsu_write_2(sc, R92S_SYS_CLKR, reg); rsu_write_2(sc, R92S_CR, 0x37fc); /* Fix USB RX FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL); rsu_write_1(sc, 0xfe1c, 0x80); /* Make sure TxDMA is ready to download firmware. */ for (ntries = 0; ntries < 20; ntries++) { reg = rsu_read_1(sc, R92S_TCR); if ((reg & (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) == (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) break; DELAY(5); } if (ntries == 20) { /* Reset TxDMA. */ reg = rsu_read_1(sc, R92S_CR); rsu_write_1(sc, R92S_CR, reg & ~R92S_CR_TXDMA_EN); DELAY(2); rsu_write_1(sc, R92S_CR, reg | R92S_CR_TXDMA_EN); } } void rsu_power_off(struct rsu_softc *sc) { /* Turn RF off. */ rsu_write_1(sc, R92S_RF_CTRL, 0x00); usbd_delay_ms(sc->sc_udev, 5); /* Turn MAC off. */ /* Switch control path. */ rsu_write_1(sc, R92S_SYS_CLKR + 1, 0x38); /* Reset MACTOP. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x70); rsu_write_1(sc, R92S_PMC_FSM, 0x06); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 0, 0xf9); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, 0xe8); /* Disable AFE PLL. */ rsu_write_1(sc, R92S_AFE_PLL_CTRL, 0x00); /* Disable A15V. */ rsu_write_1(sc, R92S_LDOA15_CTRL, 0x54); /* Disable eFuse 1.2V. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x50); rsu_write_1(sc, R92S_LDOV12D_CTRL, 0x24); /* Enable AFE macro block's bandgap and Mbias. */ rsu_write_1(sc, R92S_AFE_MISC, 0x30); /* Disable 1.6V LDO. */ rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x56); rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x43); } int rsu_fw_loadsection(struct rsu_softc *sc, uint8_t *buf, int len) { struct rsu_tx_data *data; struct r92s_tx_desc *txd; struct usbd_pipe *pipe; int mlen, error; data = sc->fwcmd_data; pipe = sc->pipe[sc->qid2idx[RSU_QID_VO]]; txd = (struct r92s_tx_desc *)data->buf; while (len > 0) { memset(txd, 0, sizeof(*txd)); if (len <= RSU_TXBUFSZ - sizeof(*txd)) { /* Last chunk. */ txd->txdw0 |= htole32(R92S_TXDW0_LINIP); mlen = len; } else mlen = RSU_TXBUFSZ - sizeof(*txd); txd->txdw0 |= htole32(SM(R92S_TXDW0_PKTLEN, mlen)); memcpy(&txd[1], buf, mlen); usbd_setup_xfer(data->xfer, pipe, NULL, data->buf, sizeof(*txd) + mlen, USBD_SHORT_XFER_OK | USBD_NO_COPY | USBD_SYNCHRONOUS, RSU_TX_TIMEOUT, NULL); error = usbd_transfer(data->xfer); if (error != 0) return (error); buf += mlen; len -= mlen; } return (0); } int rsu_load_firmware(struct rsu_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct r92s_fw_hdr *hdr; struct r92s_fw_priv *dmem; uint8_t *imem, *emem; int imemsz, ememsz; u_char *fw; size_t size; uint32_t reg; int ntries, error; /* Read firmware image from the filesystem. */ if ((error = loadfirmware("rsu-rtl8712fw", &fw, &size)) != 0) { printf("%s: failed loadfirmware of file %s (error %d)\n", sc->sc_dev.dv_xname, "rsu-rtl8712fw", error); return (error); } if (size < sizeof(*hdr)) { printf("%s: firmware too short\n", sc->sc_dev.dv_xname); error = EINVAL; goto fail; } hdr = (struct r92s_fw_hdr *)fw; if (hdr->signature != htole16(0x8712) && hdr->signature != htole16(0x8192)) { printf("%s: invalid firmware signature 0x%x\n", sc->sc_dev.dv_xname, letoh16(hdr->signature)); error = EINVAL; goto fail; } DPRINTF(("FW V%d %02x-%02x %02x:%02x\n", letoh16(hdr->version), hdr->month, hdr->day, hdr->hour, hdr->minute)); /* Make sure that driver and firmware are in sync. */ if (hdr->privsz != htole32(sizeof(*dmem))) { printf("%s: unsupported firmware image\n", sc->sc_dev.dv_xname); error = EINVAL; goto fail; } /* Get FW sections sizes. */ imemsz = letoh32(hdr->imemsz); ememsz = letoh32(hdr->sramsz); /* Check that all FW sections fit in image. */ if (size < sizeof(*hdr) + imemsz + ememsz) { printf("%s: firmware too short\n", sc->sc_dev.dv_xname); error = EINVAL; goto fail; } imem = (uint8_t *)&hdr[1]; emem = imem + imemsz; /* Load IMEM section. */ error = rsu_fw_loadsection(sc, imem, imemsz); if (error != 0) { printf("%s: could not load firmware section %s\n", sc->sc_dev.dv_xname, "IMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries < 10; ntries++) { reg = rsu_read_2(sc, R92S_TCR); if (reg & R92S_TCR_IMEM_CODE_DONE) break; DELAY(10); } if (ntries == 10 || !(reg & R92S_TCR_IMEM_CHK_RPT)) { printf("%s: timeout waiting for %s transfer\n", sc->sc_dev.dv_xname, "IMEM"); error = ETIMEDOUT; goto fail; } /* Load EMEM section. */ error = rsu_fw_loadsection(sc, emem, ememsz); if (error != 0) { printf("%s: could not load firmware section %s\n", sc->sc_dev.dv_xname, "EMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries < 10; ntries++) { reg = rsu_read_2(sc, R92S_TCR); if (reg & R92S_TCR_EMEM_CODE_DONE) break; DELAY(10); } if (ntries == 10 || !(reg & R92S_TCR_EMEM_CHK_RPT)) { printf("%s: timeout waiting for %s transfer\n", sc->sc_dev.dv_xname, "EMEM"); error = ETIMEDOUT; goto fail; } /* Enable CPU. */ rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) | R92S_SYS_CPU_CLKSEL); if (!(rsu_read_1(sc, R92S_SYS_CLKR) & R92S_SYS_CPU_CLKSEL)) { printf("%s: could not enable system clock\n", sc->sc_dev.dv_xname); error = EIO; goto fail; } rsu_write_2(sc, R92S_SYS_FUNC_EN, rsu_read_2(sc, R92S_SYS_FUNC_EN) | R92S_FEN_CPUEN); if (!(rsu_read_2(sc, R92S_SYS_FUNC_EN) & R92S_FEN_CPUEN)) { printf("%s: could not enable microcontroller\n", sc->sc_dev.dv_xname); error = EIO; goto fail; } /* Wait for CPU to initialize. */ for (ntries = 0; ntries < 100; ntries++) { if (rsu_read_2(sc, R92S_TCR) & R92S_TCR_IMEM_RDY) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for microcontroller\n", sc->sc_dev.dv_xname); error = ETIMEDOUT; goto fail; } /* Update DMEM section before loading. */ dmem = &hdr->priv; memset(dmem, 0, sizeof(*dmem)); dmem->hci_sel = R92S_HCI_SEL_USB | R92S_HCI_SEL_8172; dmem->nendpoints = sc->npipes; dmem->rf_config = 0x12; /* 1T2R */ dmem->vcs_type = R92S_VCS_TYPE_AUTO; dmem->vcs_mode = R92S_VCS_MODE_RTS_CTS; dmem->bw40_en = (ic->ic_htcaps & IEEE80211_HTCAP_CBW20_40) != 0; dmem->turbo_mode = 1; /* Load DMEM section. */ error = rsu_fw_loadsection(sc, (uint8_t *)dmem, sizeof(*dmem)); if (error != 0) { printf("%s: could not load firmware section %s\n", sc->sc_dev.dv_xname, "DMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries < 100; ntries++) { if (rsu_read_2(sc, R92S_TCR) & R92S_TCR_DMEM_CODE_DONE) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for %s transfer\n", sc->sc_dev.dv_xname, "DMEM"); error = ETIMEDOUT; goto fail; } /* Wait for firmware readiness. */ for (ntries = 0; ntries < 60; ntries++) { if (!(rsu_read_2(sc, R92S_TCR) & R92S_TCR_FWRDY)) break; DELAY(1000); } if (ntries == 60) { printf("%s: timeout waiting for firmware readiness\n", sc->sc_dev.dv_xname); error = ETIMEDOUT; goto fail; } fail: free(fw, M_DEVBUF, size); return (error); } int rsu_init(struct ifnet *ifp) { struct rsu_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct r92s_set_pwr_mode cmd; struct rsu_rx_data *data; int i, error; /* Init host async commands ring. */ sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0; /* Allocate Tx/Rx buffers. */ error = rsu_alloc_rx_list(sc); if (error != 0) { printf("%s: could not allocate Rx buffers\n", sc->sc_dev.dv_xname); goto fail; } error = rsu_alloc_tx_list(sc); if (error != 0) { printf("%s: could not allocate Tx buffers\n", sc->sc_dev.dv_xname); goto fail; } /* Reserve one Tx buffer for firmware commands. */ sc->fwcmd_data = TAILQ_FIRST(&sc->tx_free_list); TAILQ_REMOVE(&sc->tx_free_list, sc->fwcmd_data, next); /* Power on adapter. */ if (sc->cut == 1) rsu_power_on_acut(sc); else rsu_power_on_bcut(sc); /* Load firmware. */ error = rsu_load_firmware(sc); if (error != 0) goto fail; /* Enable Rx TCP checksum offload. */ rsu_write_4(sc, R92S_RCR, rsu_read_4(sc, R92S_RCR) | 0x04000000); /* Append PHY status. */ rsu_write_4(sc, R92S_RCR, rsu_read_4(sc, R92S_RCR) | 0x02000000); rsu_write_4(sc, R92S_CR, rsu_read_4(sc, R92S_CR) & ~0xff000000); /* Use 128 bytes pages. */ rsu_write_1(sc, 0x00b5, rsu_read_1(sc, 0x00b5) | 0x01); /* Enable USB Rx aggregation. */ rsu_write_1(sc, 0x00bd, rsu_read_1(sc, 0x00bd) | 0x80); /* Set USB Rx aggregation threshold. */ rsu_write_1(sc, 0x00d9, 0x01); /* Set USB Rx aggregation timeout (1.7ms/4). */ rsu_write_1(sc, 0xfe5b, 0x04); /* Fix USB Rx FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); /* Set MAC address. */ IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); rsu_write_region_1(sc, R92S_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN); /* Queue Rx xfers (XXX C2H pipe for 11-pipe configurations?) */ for (i = 0; i < RSU_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; data->pipe = sc->pipe[sc->qid2idx[RSU_QID_RXOFF]]; usbd_setup_xfer(data->xfer, data->pipe, data, data->buf, RSU_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, rsu_rxeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) goto fail; } /* NB: it really takes that long for firmware to boot. */ usbd_delay_ms(sc->sc_udev, 1500); DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = rsu_fw_cmd(sc, R92S_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN); if (error != 0) { printf("%s: could not set MAC address\n", sc->sc_dev.dv_xname); goto fail; } rsu_write_1(sc, R92S_USB_HRPWM, R92S_USB_HRPWM_PS_ST_ACTIVE | R92S_USB_HRPWM_PS_ALL_ON); memset(&cmd, 0, sizeof(cmd)); cmd.mode = R92S_PS_MODE_ACTIVE; DPRINTF(("setting ps mode to %d\n", cmd.mode)); error = rsu_fw_cmd(sc, R92S_CMD_SET_PWR_MODE, &cmd, sizeof(cmd)); if (error != 0) { printf("%s: could not set PS mode\n", sc->sc_dev.dv_xname); goto fail; } if (ic->ic_htcaps & IEEE80211_HTCAP_CBW20_40) { /* Enable 40MHz mode. */ error = rsu_fw_iocmd(sc, SM(R92S_IOCMD_CLASS, 0xf4) | SM(R92S_IOCMD_INDEX, 0x00) | SM(R92S_IOCMD_VALUE, 0x0007)); if (error != 0) { printf("%s: could not enable 40MHz mode\n", sc->sc_dev.dv_xname); goto fail; } } /* Set default channel. */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; /* We're ready to go. */ ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); #ifdef notyet if (ic->ic_flags & IEEE80211_F_WEPON) { /* Install WEP keys. */ for (i = 0; i < IEEE80211_WEP_NKID; i++) rsu_set_key(ic, NULL, &ic->ic_nw_keys[i]); rsu_wait_async(sc); } #endif sc->scan_pass = 0; ieee80211_begin_scan(ifp); return (0); fail: rsu_stop(ifp); return (error); } void rsu_stop(struct ifnet *ifp) { struct rsu_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int i, s; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); /* In case we were scanning, release the scan "lock". */ ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; s = splusb(); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* Wait for all async commands to complete. */ rsu_wait_async(sc); splx(s); timeout_del(&sc->calib_to); /* Power off adapter. */ rsu_power_off(sc); /* Abort Tx/Rx. */ for (i = 0; i < sc->npipes; i++) usbd_abort_pipe(sc->pipe[i]); /* Free Tx/Rx buffers. */ rsu_free_tx_list(sc); rsu_free_rx_list(sc); }