/* $OpenBSD: if_rum.c,v 1.2 2006/06/17 20:17:12 jolan Exp $ */ /*- * Copyright (c) 2005, 2006 Damien Bergamini * Copyright (c) 2006 Niall O'Higgins * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Ralink Technology RT2501USB chipset driver * http://www.ralinktech.com/ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USB_DEBUG #define RUM_DEBUG #endif #ifdef RUM_DEBUG #define DPRINTF(x) do { if (rum_debug) logprintf x; } while (0) #define DPRINTFN(n, x) do { if (rum_debug >= (n)) logprintf x; } while (0) int rum_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* various supported device vendors/products */ static const struct usb_devno rum_devs[] = { { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A } }; int rum_alloc_tx_list(struct rum_softc *); void rum_free_tx_list(struct rum_softc *); int rum_alloc_rx_list(struct rum_softc *); void rum_free_rx_list(struct rum_softc *); int rum_media_change(struct ifnet *); void rum_next_scan(void *); void rum_task(void *); int rum_newstate(struct ieee80211com *, enum ieee80211_state, int); void rum_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void rum_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); #if NBPFILTER > 0 uint8_t rum_rxrate(struct rum_rx_desc *); #endif int rum_ack_rate(struct ieee80211com *, int); uint16_t rum_txtime(int, int, uint32_t); uint8_t rum_plcp_signal(int); void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, uint32_t, int, int); int rum_tx_bcn(struct rum_softc *, struct mbuf *, struct ieee80211_node *); int rum_tx_mgt(struct rum_softc *, struct mbuf *, struct ieee80211_node *); int rum_tx_data(struct rum_softc *, struct mbuf *, struct ieee80211_node *); void rum_start(struct ifnet *); void rum_watchdog(struct ifnet *); int rum_ioctl(struct ifnet *, u_long, caddr_t); void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); uint32_t rum_read(struct rum_softc *, uint32_t); void rum_read_multi(struct rum_softc *, uint16_t, void *, int); void rum_write(struct rum_softc *, uint16_t, uint32_t); void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); uint8_t rum_bbp_read(struct rum_softc *, uint8_t); void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); void rum_enable_tsf_sync(struct rum_softc *); void rum_update_slot(struct rum_softc *); void rum_set_txpreamble(struct rum_softc *); void rum_set_basicrates(struct rum_softc *); void rum_set_bssid(struct rum_softc *, uint8_t *); void rum_set_macaddr(struct rum_softc *, uint8_t *); void rum_update_promisc(struct rum_softc *); const char *rum_get_rf(int); void rum_read_eeprom(struct rum_softc *); int rum_bbp_init(struct rum_softc *); void rum_set_txantenna(struct rum_softc *, int); void rum_set_rxantenna(struct rum_softc *, int); int rum_init(struct ifnet *); void rum_stop(struct ifnet *, int); int rum_load_microcode(struct rum_softc *, const u_char *, size_t); int rum_firmware_run(struct rum_softc *sc); int rum_led_write(struct rum_softc *, uint16_t, uint8_t); void rum_attachhook(void *); int rum_prepare_beacon(struct rum_softc *); void rum_select_antenna(struct rum_softc *); /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset rum_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset rum_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset rum_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; /* * Default values for MAC registers; values taken from the reference driver. */ static const struct { uint32_t reg; uint32_t val; } rum_def_mac[] = { { RT2573_TXRX_CSR0, 0x025fb032 }, { RT2573_TXRX_CSR1, 0x9eaa9eaf }, { RT2573_TXRX_CSR2, 0x8a8b8c8d }, { RT2573_TXRX_CSR3, 0x00858687 }, { RT2573_TXRX_CSR7, 0x2E31353B }, { RT2573_TXRX_CSR8, 0x2a2a2a2c }, { RT2573_TXRX_CSR15, 0x0000000f }, { RT2573_MAC_CSR6, 0x00000fff }, { RT2573_MAC_CSR8, 0x016c030a }, { RT2573_MAC_CSR10, 0x00000718 }, { RT2573_MAC_CSR12, 0x00000004 }, { RT2573_MAC_CSR13, 0x00007f00 }, { RT2573_SEC_CSR0, 0x00000000 }, { RT2573_SEC_CSR1, 0x00000000 }, { RT2573_SEC_CSR5, 0x00000000 }, { RT2573_PHY_CSR1, 0x000023b0 }, { RT2573_PHY_CSR5, 0x00040a06 }, { RT2573_PHY_CSR6, 0x00080606 }, { RT2573_PHY_CSR7, 0x00000408 }, { RT2573_AIFSN_CSR, 0x00002273 }, { RT2573_CWMIN_CSR, 0x00002344 }, { RT2573_CWMAX_CSR, 0x000034aa } }; /* * Default values for BBP registers; values taken from the reference driver. */ static const struct { uint8_t reg; uint8_t val; } rum_def_bbp[] = { { 3, 0x80 }, { 15, 0x30 }, { 17, 0x20 }, { 21, 0xc8 }, { 22, 0x38 }, { 23, 0x06 }, { 24, 0xfe }, { 25, 0x0a }, { 26, 0x0d }, { 32, 0x0b }, { 34, 0x12 }, { 37, 0x07 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 60, 0x10 }, { 61, 0x04 }, { 62, 0x04 }, { 75, 0xfe }, { 86, 0xfe }, { 88, 0xfe }, { 90, 0x0f }, { 99, 0x00 }, { 102, 0x16 }, { 107, 0x04 } }; /* * Default values for RF register R2 indexed by channel numbers. */ static const uint32_t rum_rf2528_r2[] = { 0x001e1, 0x001e1, 0x001e2, 0x001e2, 0x001e3, 0x001e3, 0x001e4, 0x001e4, 0x001e5, 0x001e5, 0x001e6, 0x001e6, 0x001e7, 0x001e8 }; static const uint32_t rum_rf2528_r4[] = { 0x30282, 0x30287, 0x30282, 0x30287, 0x30282, 0x30287, 0x30282, 0x30287, 0x30282, 0x30287, 0x39282, 0x30287, 0x30282, 0x30284 }; /* * For dual-band RF, RF registers R1 and R4 also depend on channel number; * values taken from the reference driver. */ static const struct rfprog { uint8_t chan; uint32_t r1; uint32_t r2; uint32_t r3; uint32_t r4; } rum_rf5222[] = { { 1, 0x08808, 0x0044d, 0x00282 }, { 2, 0x08808, 0x0044e, 0x00282 }, { 3, 0x08808, 0x0044f, 0x00282 }, { 4, 0x08808, 0x00460, 0x00282 }, { 5, 0x08808, 0x00461, 0x00282 }, { 6, 0x08808, 0x00462, 0x00282 }, { 7, 0x08808, 0x00463, 0x00282 }, { 8, 0x08808, 0x00464, 0x00282 }, { 9, 0x08808, 0x00465, 0x00282 }, { 10, 0x08808, 0x00466, 0x00282 }, { 11, 0x08808, 0x00467, 0x00282 }, { 12, 0x08808, 0x00468, 0x00282 }, { 13, 0x08808, 0x00469, 0x00282 }, { 14, 0x08808, 0x0046b, 0x00286 }, { 36, 0x08804, 0x06225, 0x00287 }, { 40, 0x08804, 0x06226, 0x00287 }, { 44, 0x08804, 0x06227, 0x00287 }, { 48, 0x08804, 0x06228, 0x00287 }, { 52, 0x08804, 0x06229, 0x00287 }, { 56, 0x08804, 0x0622a, 0x00287 }, { 60, 0x08804, 0x0622b, 0x00287 }, { 64, 0x08804, 0x0622c, 0x00287 }, { 100, 0x08804, 0x02200, 0x00283 }, { 104, 0x08804, 0x02201, 0x00283 }, { 108, 0x08804, 0x02202, 0x00283 }, { 112, 0x08804, 0x02203, 0x00283 }, { 116, 0x08804, 0x02204, 0x00283 }, { 120, 0x08804, 0x02205, 0x00283 }, { 124, 0x08804, 0x02206, 0x00283 }, { 128, 0x08804, 0x02207, 0x00283 }, { 132, 0x08804, 0x02208, 0x00283 }, { 136, 0x08804, 0x02209, 0x00283 }, { 140, 0x08804, 0x0220a, 0x00283 }, { 149, 0x08808, 0x02429, 0x00281 }, { 153, 0x08808, 0x0242b, 0x00281 }, { 157, 0x08808, 0x0242d, 0x00281 }, { 161, 0x08808, 0x0242f, 0x00281 } }; USB_DECLARE_DRIVER_CLASS(rum, DV_IFNET); void rum_attachhook(void *xsc) { struct rum_softc *sc = xsc; u_char *ucode; char *name; size_t size; int err; name = "ral-rt2573"; if ((err = loadfirmware(name, &ucode, &size)) != 0) { printf("%s: failed loadfirmware of file %s: errno %d\n", USBDEVNAME(sc->sc_dev), name, err); USB_ATTACH_ERROR_RETURN; } if (rum_load_microcode(sc, ucode, size) != 0) { printf("%s: could not load 8051 microcode\n", USBDEVNAME(sc->sc_dev)); free(ucode, M_DEVBUF); USB_ATTACH_ERROR_RETURN; } free(ucode, M_DEVBUF); } USB_MATCH(rum) { USB_MATCH_START(rum, uaa); if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } USB_ATTACH(rum) { USB_ATTACH_START(rum, sc, uaa); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; usbd_status error; char *devinfop; int i, ntries; uint32_t tmp; sc->sc_udev = uaa->device; devinfop = usbd_devinfo_alloc(uaa->device, 0); USB_ATTACH_SETUP; printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop); usbd_devinfo_free(devinfop); if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { printf("%s: could not set configuration no\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } /* get the first interface handle */ error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, &sc->sc_iface); if (error != 0) { printf("%s: could not get interface handle\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } /* * Find endpoints. */ id = usbd_get_interface_descriptor(sc->sc_iface); sc->sc_rx_no = sc->sc_tx_no = -1; for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL) { printf("%s: no endpoint descriptor for iface %d\n", USBDEVNAME(sc->sc_dev), i); USB_ATTACH_ERROR_RETURN; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_rx_no = ed->bEndpointAddress; else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_tx_no = ed->bEndpointAddress; } if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } usb_init_task(&sc->sc_task, rum_task, sc); timeout_set(&sc->scan_ch, rum_next_scan, sc); /* retrieve RT2573 rev. no */ sc->asic_rev = rum_read(sc, RT2573_MAC_CSR0); /* retrieve MAC address and various other things from EEPROM */ rum_read_eeprom(sc); printf("%s: MAC/BBP RT%02x (rev 0x%02x), RF %s, address %s\n", USBDEVNAME(sc->sc_dev), sc->macbbp_rev, sc->asic_rev, rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); /* wait for chip to settle */ for (ntries = 0; ntries < 1000; ntries++) { tmp = rum_read(sc, RT2573_MAC_CSR0); if (tmp != 0) break; DELAY(1000); } if (ntries == 1000) { printf("%s: timeout waiting for chip to settle\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } if (rootvp == NULL) mountroothook_establish(rum_attachhook, sc); else rum_attachhook(sc); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_HOSTAP | /* HostAp mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP; /* s/w WEP */ /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = rum_init; ifp->if_ioctl = rum_ioctl; ifp->if_start = rum_start; ifp->if_watchdog = rum_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rum_newstate; ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); #endif usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, USBDEV(sc->sc_dev)); USB_ATTACH_SUCCESS_RETURN; } USB_DETACH(rum) { USB_DETACH_START(rum, sc); struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); ieee80211_ifdetach(ifp); /* free all nodes */ if_detach(ifp); usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_ch); if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); } rum_free_rx_list(sc); rum_free_tx_list(sc); splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, USBDEV(sc->sc_dev)); return 0; } int rum_alloc_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i, error; sc->tx_queued = 0; for (i = 0; i < RT2573_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate tx xfer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, RT2573_TX_DESC_SIZE + MCLBYTES); if (data->buf == NULL) { printf("%s: could not allocate tx buffer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } } return 0; fail: rum_free_tx_list(sc); return error; } void rum_free_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i; for (i = 0; i < RT2573_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } /* * The node has already been freed at that point so don't call * ieee80211_release_node() here. */ data->ni = NULL; } } int rum_alloc_rx_list(struct rum_softc *sc) { struct rum_rx_data *data; int i, error; for (i = 0; i < RT2573_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate rx xfer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { printf("%s: could not allocate rx buffer\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", USBDEVNAME(sc->sc_dev)); error = ENOMEM; goto fail; } data->buf = mtod(data->m, uint8_t *); } return 0; fail: rum_free_tx_list(sc); return error; } void rum_free_rx_list(struct rum_softc *sc) { struct rum_rx_data *data; int i; for (i = 0; i < RT2573_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->m != NULL) { m_freem(data->m); data->m = NULL; } } } int rum_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rum_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ void rum_next_scan(void *arg) { struct rum_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); } void rum_task(void *arg) { struct rum_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; struct ieee80211_node *ni; uint32_t tmp; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_INIT: timeout_del(&sc->rssadapt_ch); if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ tmp = rum_read(sc, RT2573_TXRX_CSR9); rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); } break; case IEEE80211_S_SCAN: rum_set_chan(sc, ic->ic_bss->ni_chan); timeout_add(&sc->scan_ch, hz / 5); break; case IEEE80211_S_AUTH: rum_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_ASSOC: rum_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: rum_set_chan(sc, ic->ic_bss->ni_chan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rum_update_slot(sc); rum_set_txpreamble(sc); rum_set_basicrates(sc); rum_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) rum_prepare_beacon(sc); /* make tx led blink on tx (controlled by ASIC) */ rum_led_write(sc, RT2573_LED_RADIO|RT2573_LED_A|RT2573_LED_G, 1); if (ic->ic_opmode != IEEE80211_M_MONITOR) { timeout_add(&sc->rssadapt_ch, hz / 10); rum_enable_tsf_sync(sc); } break; } sc->sc_newstate(ic, sc->sc_state, -1); } int rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rum_softc *sc = ic->ic_if.if_softc; usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_ch); /* do it in a process context */ sc->sc_state = nstate; usb_add_task(sc->sc_udev, &sc->sc_task); return 0; } /* quickly determine if a given rate is CCK or OFDM */ #define RT2573_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RT2573_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RT2573_CTS_SIZE 14 /* 10 + 4(FCS) */ #define RT2573_SIFS 10 /* us */ #define RT2573_RXTX_TURNAROUND 5 /* us */ void rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct rum_tx_data *data = priv; struct rum_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("%s: could not transmit buffer: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); ifp->if_oerrors++; return; } s = splnet(); m_freem(data->m); data->m = NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; sc->tx_queued--; ifp->if_opackets++; DPRINTFN(10, ("%s: tx done\n", USBDEVNAME(sc->sc_dev))); sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; rum_start(ifp); splx(s); } void rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct rum_rx_data *data = priv; struct rum_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct rum_rx_desc *desc; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int s, len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) { DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len)); ifp->if_ierrors++; goto skip; } /* rx descriptor is located at the end */ desc = (struct rum_rx_desc *)(data->buf + len - RT2573_RX_DESC_SIZE); if (letoh32(desc->flags) & (RT2573_RX_PHY_ERROR | RT2573_RX_CRC_ERROR)) { /* * This should not happen since we did not request to receive * those frames when we filled RT2573_TXRX_CSR2. */ DPRINTFN(5, ("%s: PHY or CRC error\n", USBDEVNAME(sc->sc_dev))); ifp->if_ierrors++; goto skip; } MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { printf("%s: could not allocate rx mbuf\n", USBDEVNAME(sc->sc_dev)); ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", USBDEVNAME(sc->sc_dev)); m_freem(mnew); ifp->if_ierrors++; goto skip; } m = data->m; data->m = mnew; data->buf = mtod(data->m, uint8_t *); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; m_adj(m, -IEEE80211_CRC_LEN); /* trim FCS */ s = splnet(); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = rum_rxrate(desc); tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = desc->rssi; M_DUP_PKTHDR(&mb, m); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ ieee80211_input(ifp, m, ni, desc->rssi, 0); /* node is no longer needed */ ieee80211_release_node(ic, ni); /* * In HostAP mode, ieee80211_input() will enqueue packets in if_snd * without calling if_start(). */ if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE)) rum_start(ifp); splx(s); DPRINTFN(15, ("%s: rx done\n", USBDEVNAME(sc->sc_dev))); skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); usbd_transfer(xfer); } /* * This function is only used by the Rx radiotap code. It returns the rate at * which a given frame was received. */ #if NBPFILTER > 0 uint8_t rum_rxrate(struct rum_rx_desc *desc) { if (letoh32(desc->flags) & RT2573_RX_OFDM) { /* reverse function of rum_plcp_signal */ switch (desc->rate) { case 0xb: return 12; case 0xf: return 18; case 0xa: return 24; case 0xe: return 36; case 0x9: return 48; case 0xd: return 72; case 0x8: return 96; case 0xc: return 108; } } else { if (desc->rate == 10) return 2; if (desc->rate == 20) return 4; if (desc->rate == 55) return 11; if (desc->rate == 110) return 22; } return 2; /* should not get there */ } #endif /* * Return the expected ack rate for a frame transmitted at rate `rate'. * XXX: this should depend on the destination node basic rate set. */ int rum_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return 2; case 4: case 11: case 22: return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; /* OFDM rates */ case 12: case 18: return 12; case 24: case 36: return 24; case 48: case 72: case 96: case 108: return 48; } /* default to 1Mbps */ return 2; } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ uint16_t rum_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RT2573_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11a-1999, pp. 37 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return txtime; } uint8_t rum_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } void rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, uint32_t flags, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(RT2573_TX_NEWSEQ); desc->flags |= htole32(len << 16); desc->wme = htole16(RT2573_AIFSN(2) | RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); /* setup PLCP fields */ desc->plcp_signal = rum_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RT2573_RATE_IS_OFDM(rate)) { desc->flags |= htole32(RT2573_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2573_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } desc->iv = 0; desc->eiv = 0; } #define RT2573_TX_TIMEOUT 5000 int rum_tx_bcn(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct rum_tx_desc *desc; usbd_xfer_handle xfer; usbd_status error; uint8_t cmd = 0; uint8_t *buf; int xferlen, rate; rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == NULL) return ENOMEM; /* xfer length needs to be a multiple of two! */ xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; buf = usbd_alloc_buffer(xfer, xferlen); if (buf == NULL) { usbd_free_xfer(xfer); return ENOMEM; } usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd, USBD_FORCE_SHORT_XFER, RT2573_TX_TIMEOUT, NULL); error = usbd_sync_transfer(xfer); if (error != 0) { usbd_free_xfer(xfer); return error; } desc = (struct rum_tx_desc *)buf; m_copydata(m0, 0, m0->m_pkthdr.len, buf + RT2573_TX_DESC_SIZE); rum_setup_tx_desc(sc, desc, RT2573_TX_IFS_NEWBACKOFF | RT2573_TX_TIMESTAMP, m0->m_pkthdr.len, rate); DPRINTFN(10, ("%s: sending beacon frame len=%u rate=%u xfer len=%u\n", USBDEVNAME(sc->sc_dev), m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RT2573_TX_TIMEOUT, NULL); error = usbd_sync_transfer(xfer); usbd_free_xfer(xfer); return error; } int rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_desc *desc; struct rum_tx_data *data; struct ieee80211_frame *wh; uint32_t flags = 0; uint16_t dur; usbd_status error; int xferlen, rate; data = &sc->tx_data[0]; desc = (struct rum_tx_desc *)data->buf; rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; data->m = m0; data->ni = ni; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_ACK; dur = rum_txtime(RT2573_ACK_SIZE, rate, ic->ic_flags) + RT2573_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2573_TX_TIMESTAMP; } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rum_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; M_DUP_PKTHDR(&mb, m0); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); rum_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); /* align end on a 2-bytes boundary */ xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; /* * No space left in the last URB to store the extra 2 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 2; DPRINTFN(10, ("%s: sending mgt frame len=%u rate=%u xfer len=%u\n", USBDEVNAME(sc->sc_dev), m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RT2573_TX_TIMEOUT, rum_txeof); error = usbd_transfer(data->xfer); if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { DPRINTFN(10, ("%s: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error))); m_freem(m0); return error; } sc->tx_queued++; return 0; } int rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_rateset *rs; struct rum_tx_desc *desc; struct rum_tx_data *data; struct ieee80211_frame *wh; uint32_t flags = 0; uint16_t dur; usbd_status error; int xferlen, rate; if (ic->ic_fixed_rate != -1) { if (ic->ic_curmode != IEEE80211_MODE_AUTO) rs = &ic->ic_sup_rates[ic->ic_curmode]; else rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; rate = rs->rs_rates[ic->ic_fixed_rate]; } else { rs = &ni->ni_rates; rate = rs->rs_rates[ni->ni_txrate]; } rate &= IEEE80211_RATE_VAL; if (ic->ic_flags & IEEE80211_F_WEPON) { m0 = ieee80211_wep_crypt(ifp, m0, 1); if (m0 == NULL) return ENOBUFS; } data = &sc->tx_data[0]; desc = (struct rum_tx_desc *)data->buf; data->m = m0; data->ni = ni; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_ACK; flags |= RT2573_TX_RETRY(7); dur = rum_txtime(RT2573_ACK_SIZE, rum_ack_rate(ic, rate), ic->ic_flags) + RT2573_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rum_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; M_DUP_PKTHDR(&mb, m0); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); rum_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate); /* align end on a 2-bytes boundary */ xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1; /* * No space left in the last URB to store the extra 2 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 2; DPRINTFN(10, ("%s: sending data frame len=%u rate=%u xfer len=%u\n", USBDEVNAME(sc->sc_dev), m0->m_pkthdr.len, rate, xferlen)); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RT2573_TX_TIMEOUT, rum_txeof); error = usbd_transfer(data->xfer); if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { m_freem(m0); return error; } sc->tx_queued++; return 0; } void rum_start(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m0; /* * net80211 may still try to send management frames even if the * IFF_RUNNING flag is not set... */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->tx_queued >= RT2573_TX_LIST_COUNT) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (rum_tx_mgt(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= RT2573_TX_LIST_COUNT) { IF_PREPEND(&ifp->if_snd, m0); ifp->if_flags |= IFF_OACTIVE; break; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (rum_tx_data(sc, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void rum_watchdog(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev)); /*rum_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) rum_update_promisc(sc); else rum_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) rum_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { rum_set_chan(sc, ic->ic_ibss_chan); } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rum_init(ifp); error = 0; } splx(s); return error; } void rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not read EEPROM: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } uint32_t rum_read(struct rum_softc *sc, uint32_t reg) { usb_device_request_t req; usbd_status error; uint32_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, sizeof (uint32_t)); error = usbd_do_request(sc->sc_udev, &req, &val); if (error != 0) { printf("%s: could not read MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); return 0; } return le16toh(val); } void rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = 0x7; USETW(req.wValue, 0); USETW(req.wIndex, 0x0800); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not multi read MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } void rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_MAC; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); error = usbd_do_request(sc->sc_udev, &req, NULL); if (error != 0) { printf("%s: could not write MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } void rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not multi write MAC register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); } } void rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) { uint16_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!((rum_read(sc, RT2573_PHY_CSR3_RT71) >> 16) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev)); return; } tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; rum_write(sc, RT2573_PHY_CSR3, tmp); } uint8_t rum_bbp_read(struct rum_softc *sc, uint8_t reg) { uint16_t val; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!((rum_read(sc, RT2573_PHY_CSR3) >> 16) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); return 0; } val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; rum_write(sc, RT2573_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val - rum_read(sc, RT2573_PHY_CSR3); if (!(val & RT2573_BBP_BUSY)) return (val & 0xff); DELAY(1); } printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev)); return 0; } void rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) break; } if (ntries == 5) { printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev)); return; } tmp = RT2573_RF_BUSY | RT2573_RF_21BIT | (val & 0xfffff) << 2 | (reg & 3); rum_write(sc, RT2573_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; //DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); } void rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; int8_t power; u_int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; power = sc->txpow[chan - 1]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } sc->sc_curchan = c; rum_rf_write(sc, RT2573_RF1, 0x0c808); rum_rf_write(sc, RT2573_RF2, rum_rf2528_r2[chan - 1]); rum_rf_write(sc, RT2573_RF3, power << 7 | 0x18044); rum_rf_write(sc, RT2573_RF4, rum_rf2528_r4[chan - 1]); DELAY(200); bbp3 = rum_bbp_read(sc, 3); if (bbp94 != RT2573_BBPR94_DEFAULT) rum_bbp_write(sc, 94, bbp94); /* 5GHz radio needs a 1ms delay here */ if (IEEE80211_IS_CHAN_5GHZ(c)) DELAY(1000); } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ void rum_enable_tsf_sync(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; if (ic->ic_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); } tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= ic->ic_bss->ni_intval * 16; tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2573_TSF_MODE(1); else tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; rum_write(sc, RT2573_TXRX_CSR9, tmp); DPRINTF(("%s: enabling TSF synchronization\n", USBDEVNAME(sc->sc_dev))); } void rum_update_slot(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; tmp = rum_read(sc, RT2573_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; rum_write(sc, RT2573_MAC_CSR9, tmp); } void rum_set_txpreamble(struct rum_softc *sc) { uint16_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR10); tmp &= ~RT2573_SHORT_PREAMBLE; if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2573_SHORT_PREAMBLE; rum_write(sc, RT2573_TXRX_CSR10, tmp); } void rum_set_basicrates(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) { /* 11a basic rates: 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x150); } else { /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x15f); } } void rum_set_bssid(struct rum_softc *sc, uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; rum_write(sc, RT2573_MAC_CSR4, tmp); /* XXX: magic number! */ tmp = bssid[4] | bssid[5] << 8 | 0x00030000; rum_write(sc, RT2573_MAC_CSR5, tmp); DPRINTF(("%s: setting BSSID to %s\n", USBDEVNAME(sc->sc_dev), ether_sprintf(bssid))); } void rum_set_macaddr(struct rum_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; rum_write(sc, RT2573_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8; rum_write(sc, RT2573_MAC_CSR3, tmp); DPRINTF(("%s: setting MAC address to %s\n", USBDEVNAME(sc->sc_dev), ether_sprintf(addr))); } void rum_update_promisc(struct rum_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint16_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR0); tmp &= ~RT2573_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; rum_write(sc, RT2573_TXRX_CSR0, tmp); DPRINTF(("%s: %s promiscuous mode\n", USBDEVNAME(sc->sc_dev), (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } const char * rum_get_rf(int rev) { switch (rev) { case RT2573_RF_2528: return "RT2528"; default: return "unknown"; } } void rum_read_eeprom(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; /* retrieve MAC/BBP type */ rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); sc->macbbp_rev = letoh16(val); rum_eeprom_read(sc, RT2573_EEPROM_CONFIG0_RT71, &val, 2); val = letoh16(val); sc->rf_rev = ((val << 5) & 0x700); sc->hw_radio = (val >> 10) & 0x1; /* reserved (val >> 7) & 0x3; */ /* frametype (val >> 5) & 0x01; */ sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read MAC address */ rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); /* read default values for BBP registers */ rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE_RT71, sc->bbp_prom, 2 * 16); /* read Tx power for all b/g channels */ rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER_RT71, sc->txpow, 14); } int rum_bbp_init(struct rum_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; uint16_t tmp; /* wait for BBP and RF to wake up (this can take a long time!) */ for (ntries = 0; ntries < 1000; ntries++) { tmp = rum_read(sc, RT2573_MAC_CSR12); if (tmp & 8) break; /* force wakeup */ rum_write(sc, RT2573_MAC_CSR12, 0x4); DELAY(1000); } if (ntries == 1000) { printf("%s: timeout waiting for BBP/RF to wakeup\n", USBDEVNAME(sc->sc_dev)); } /* wait for BBP */ for (ntries = 0; ntries < 100; ntries++) { tmp = rum_read(sc, 0); if ((tmp < 0xff) || (tmp > 0)) break; DELAY(1000); } if (ntries == 100) printf("timeout reading BBP version\n"); /* initialize BBP registers to default values */ for (i = 0; i < N(rum_def_bbp); i++) rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0) continue; rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; #undef N } void rum_set_txantenna(struct rum_softc *sc, int antenna) { uint16_t tmp; uint8_t tx; tx = rum_bbp_read(sc, RT2573_BBP_TX) & ~RT2573_BBP_ANTMASK; if (antenna == 1) tx |= RT2573_BBP_ANTA; else if (antenna == 2) tx |= RT2573_BBP_ANTB; else tx |= RT2573_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RT2573_RF_2525E || sc->rf_rev == RT2573_RF_2526 || sc->rf_rev == RT2573_RF_5222) tx |= RT2573_BBP_FLIPIQ; rum_bbp_write(sc, RT2573_BBP_TX, tx); /* update flags in PHY_CSR5 and PHY_CSR6 too */ tmp = rum_read(sc, RT2573_PHY_CSR5) & ~0x7; rum_write(sc, RT2573_PHY_CSR5, tmp | (tx & 0x7)); tmp = rum_read(sc, RT2573_PHY_CSR6) & ~0x7; rum_write(sc, RT2573_PHY_CSR6, tmp | (tx & 0x7)); } void rum_set_rxantenna(struct rum_softc *sc, int antenna) { uint8_t rx; rx = rum_bbp_read(sc, RT2573_BBP_RX) & ~RT2573_BBP_ANTMASK; if (antenna == 1) rx |= RT2573_BBP_ANTA; else if (antenna == 2) rx |= RT2573_BBP_ANTB; else rx |= RT2573_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RT2573_RF_2525E || sc->rf_rev == RT2573_RF_2526) rx &= ~RT2573_BBP_FLIPIQ; rum_bbp_write(sc, RT2573_BBP_RX, rx); } int rum_init(struct ifnet *ifp) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_wepkey *wk; struct rum_rx_data *data; usbd_status error; int i; uint32_t tmp; rum_stop(ifp, 0); tmp = rum_read(sc, RT2573_MAC_CSR0); /* initialize MAC registers to default values */ for (i = 0; i < N(rum_def_mac); i++) rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, 0x3); rum_write(sc, RT2573_MAC_CSR1, 0x0); error = rum_bbp_init(sc); if (error != 0) goto fail; /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, 0x4); /* set default BSS channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; rum_select_antenna(sc); rum_set_chan(sc, ic->ic_bss->ni_chan); /* clear statistic registers (STA_CSR0 to STA_CSR10) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); rum_set_macaddr(sc, ic->ic_myaddr); /* * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31). */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &ic->ic_nw_keys[i]; rum_write_multi(sc, RT2573_SEC_CSR0 + i * IEEE80211_KEYBUF_SIZE, wk->wk_key, IEEE80211_KEYBUF_SIZE); } /* * Open Tx and Rx USB bulk pipes. */ error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, &sc->sc_tx_pipeh); if (error != 0) { printf("%s: could not open Tx pipe: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); goto fail; } error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, &sc->sc_rx_pipeh); if (error != 0) { printf("%s: could not open Rx pipe: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); goto fail; } /* * Allocate Tx and Rx xfer queues. */ error = rum_alloc_tx_list(sc); if (error != 0) { printf("%s: could not allocate Tx list\n", USBDEVNAME(sc->sc_dev)); goto fail; } error = rum_alloc_rx_list(sc); if (error != 0) { printf("%s: could not allocate Rx list\n", USBDEVNAME(sc->sc_dev)); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < RT2573_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); usbd_transfer(data->xfer); } /* kick Rx */ tmp = RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2573_DROP_CTL | RT2573_DROP_VERSION_ERROR; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2573_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; } rum_write(sc, RT2573_TXRX_CSR2, tmp); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); /* turn on the LED */ rum_led_write(sc, RT2573_LED_A|RT2573_LED_G|RT2573_LED_RADIO, 5); rum_write(sc, RT2573_MAC_CSR14, RT2573_LED_ON); return 0; fail: rum_stop(ifp, 1); return error; #undef N } void rum_stop(struct ifnet *ifp, int disable) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ /* turn off LED */ rum_write(sc, RT2573_MAC_CSR14, RT2573_LED_OFF); /* disable Rx */ rum_write(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); rum_write(sc, RT2573_MAC_CSR10, 0x0018); rum_led_write(sc, 0, 0); /* reset ASIC and BBP (but won't reset MAC registers!) */ /* rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); rum_write(sc, RT2573_MAC_CSR1, 0); */ if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); sc->sc_rx_pipeh = NULL; } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); sc->sc_tx_pipeh = NULL; } rum_free_rx_list(sc); rum_free_tx_list(sc); } int rum_activate(device_ptr_t self, enum devact act) { switch (act) { case DVACT_ACTIVATE: return EOPNOTSUPP; case DVACT_DEACTIVATE: /*if_deactivate(&sc->sc_ic.ic_if);*/ break; } return 0; } int rum_led_write(struct rum_softc *sc, uint16_t reg, uint8_t strength) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_LED; USETW(req.wValue, reg); USETW(req.wIndex, strength); USETW(req.wLength, 0); error = usbd_do_request(sc->sc_udev, &req, NULL); if (error != 0) { printf("%s: could not write LED register: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); return (-1); } return (0); } int rum_firmware_run(struct rum_softc *sc) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_FIRMWARE_RUN; USETW(req.wValue, 0x8); USETW(req.wIndex, 0); USETW(req.wLength, 0); error = usbd_do_request(sc->sc_udev, &req, NULL); if (error != 0) { printf("%s: could not run firmware: %s\n", USBDEVNAME(sc->sc_dev), usbd_errstr(error)); return (-1); } return (0); } int rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) { size_t i; for (i = 0; i < size; i += 2) { rum_write(sc, RT2573_MCU_CODE_BASE + i, (ucode[i+1] << 8) | ucode[i]); } /* run the firmware */ if (rum_firmware_run(sc) < 0) { return (-1); } DELAY(1000); return (0); } int rum_prepare_beacon(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_desc desc; struct mbuf *m0; int rate; m0 = ieee80211_beacon_alloc(ic, ic->ic_bss); if (m0 == NULL) { printf("%s: could not allocate beacon frame\n", sc->sc_dev.dv_xname); return ENOBUFS; } /* send beacons at the lowest available rate */ rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, m0->m_pkthdr.len, rate); /* copy the first 24 bytes of Tx descriptor into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); /* copy beacon header and payload into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), m0->m_pkthdr.len); m_freem(m0); return 0; } void rum_select_antenna(struct rum_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rum_bbp_read(sc, 4); bbp77 = rum_bbp_read(sc, 77); tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); rum_bbp_write(sc, 4, bbp4); rum_bbp_write(sc, 77, bbp77); rum_write(sc, RT2573_TXRX_CSR0, tmp); }