/* $OpenBSD: if_rum.c,v 1.106 2014/07/13 15:52:49 mpi Exp $ */ /*- * Copyright (c) 2005-2007 Damien Bergamini * Copyright (c) 2006 Niall O'Higgins * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2501USB/RT2601USB chipset driver * http://www.ralinktech.com.tw/ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RUM_DEBUG #define DPRINTF(x) do { if (rum_debug) printf x; } while (0) #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0) int rum_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* various supported device vendors/products */ static const struct usb_devno rum_devs[] = { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 }, { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO }, { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 }, { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC }, { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR }, { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 }, { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX }, { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F }, { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 }, { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 }, { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 }, { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 }, { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS }, { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS }, { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 }, { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 }, { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB }, { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP }, { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP }, { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 }, { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 }, { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 }, { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP }, { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 }, { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM }, { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 }, { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 }, { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 }, { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 }, { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 }, { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 }, { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 }, { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 }, { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 } }; void rum_attachhook(void *); int rum_alloc_tx_list(struct rum_softc *); void rum_free_tx_list(struct rum_softc *); int rum_alloc_rx_list(struct rum_softc *); void rum_free_rx_list(struct rum_softc *); int rum_media_change(struct ifnet *); void rum_next_scan(void *); void rum_task(void *); int rum_newstate(struct ieee80211com *, enum ieee80211_state, int); void rum_txeof(struct usbd_xfer *, void *, usbd_status); void rum_rxeof(struct usbd_xfer *, void *, usbd_status); #if NBPFILTER > 0 uint8_t rum_rxrate(const struct rum_rx_desc *); #endif int rum_ack_rate(struct ieee80211com *, int); uint16_t rum_txtime(int, int, uint32_t); uint8_t rum_plcp_signal(int); void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, uint32_t, uint16_t, int, int); int rum_tx_data(struct rum_softc *, struct mbuf *, struct ieee80211_node *); void rum_start(struct ifnet *); void rum_watchdog(struct ifnet *); int rum_ioctl(struct ifnet *, u_long, caddr_t); void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); uint32_t rum_read(struct rum_softc *, uint16_t); void rum_read_multi(struct rum_softc *, uint16_t, void *, int); void rum_write(struct rum_softc *, uint16_t, uint32_t); void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); uint8_t rum_bbp_read(struct rum_softc *, uint8_t); void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); void rum_select_antenna(struct rum_softc *); void rum_enable_mrr(struct rum_softc *); void rum_set_txpreamble(struct rum_softc *); void rum_set_basicrates(struct rum_softc *); void rum_select_band(struct rum_softc *, struct ieee80211_channel *); void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); void rum_enable_tsf_sync(struct rum_softc *); void rum_update_slot(struct rum_softc *); void rum_set_bssid(struct rum_softc *, const uint8_t *); void rum_set_macaddr(struct rum_softc *, const uint8_t *); void rum_update_promisc(struct rum_softc *); const char *rum_get_rf(int); void rum_read_eeprom(struct rum_softc *); int rum_bbp_init(struct rum_softc *); int rum_init(struct ifnet *); void rum_stop(struct ifnet *, int); int rum_load_microcode(struct rum_softc *, const u_char *, size_t); #ifndef IEEE80211_STA_ONLY int rum_prepare_beacon(struct rum_softc *); #endif void rum_newassoc(struct ieee80211com *, struct ieee80211_node *, int); void rum_amrr_start(struct rum_softc *, struct ieee80211_node *); void rum_amrr_timeout(void *); void rum_amrr_update(struct usbd_xfer *, void *, usbd_status status); static const struct { uint32_t reg; uint32_t val; } rum_def_mac[] = { RT2573_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rum_def_bbp[] = { RT2573_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rum_rf5226[] = { RT2573_RF5226 }, rum_rf5225[] = { RT2573_RF5225 }; int rum_match(struct device *, void *, void *); void rum_attach(struct device *, struct device *, void *); int rum_detach(struct device *, int); struct cfdriver rum_cd = { NULL, "rum", DV_IFNET }; const struct cfattach rum_ca = { sizeof(struct rum_softc), rum_match, rum_attach, rum_detach }; int rum_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } void rum_attachhook(void *xsc) { struct rum_softc *sc = xsc; const char *name = "rum-rt2573"; u_char *ucode; size_t size; int error; if ((error = loadfirmware(name, &ucode, &size)) != 0) { printf("%s: failed loadfirmware of file %s (error %d)\n", sc->sc_dev.dv_xname, name, error); return; } if (rum_load_microcode(sc, ucode, size) != 0) { printf("%s: could not load 8051 microcode\n", sc->sc_dev.dv_xname); } free(ucode, M_DEVBUF, 0); } void rum_attach(struct device *parent, struct device *self, void *aux) { struct rum_softc *sc = (struct rum_softc *)self; struct usb_attach_arg *uaa = aux; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; usbd_status error; int i, ntries; uint32_t tmp; sc->sc_udev = uaa->device; if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { printf("%s: could not set configuration no\n", sc->sc_dev.dv_xname); return; } /* get the first interface handle */ error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, &sc->sc_iface); if (error != 0) { printf("%s: could not get interface handle\n", sc->sc_dev.dv_xname); return; } /* * Find endpoints. */ id = usbd_get_interface_descriptor(sc->sc_iface); sc->sc_rx_no = sc->sc_tx_no = -1; for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL) { printf("%s: no endpoint descriptor for iface %d\n", sc->sc_dev.dv_xname, i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_rx_no = ed->bEndpointAddress; else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_tx_no = ed->bEndpointAddress; } if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); return; } usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC); timeout_set(&sc->scan_to, rum_next_scan, sc); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; timeout_set(&sc->amrr_to, rum_amrr_timeout, sc); /* retrieve RT2573 rev. no */ for (ntries = 0; ntries < 1000; ntries++) { if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) break; DELAY(1000); } if (ntries == 1000) { printf("%s: timeout waiting for chip to settle\n", sc->sc_dev.dv_xname); return; } /* retrieve MAC address and various other things from EEPROM */ rum_read_eeprom(sc); printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n", sc->sc_dev.dv_xname, sc->macbbp_rev, tmp, rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr)); if (rootvp == NULL) mountroothook_establish(rum_attachhook, sc); else rum_attachhook(sc); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ #ifndef IEEE80211_STA_ONLY IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_HOSTAP | /* HostAp mode supported */ #endif IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* s/w WEP */ IEEE80211_C_RSN; /* WPA/RSN */ if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; /* set supported .11a channels */ for (i = 34; i <= 46; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 100; i <= 140; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = rum_ioctl; ifp->if_start = rum_start; ifp->if_watchdog = rum_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_newassoc = rum_newassoc; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rum_newstate; ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); #endif } int rum_detach(struct device *self, int flags) { struct rum_softc *sc = (struct rum_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); if (timeout_initialized(&sc->scan_to)) timeout_del(&sc->scan_to); if (timeout_initialized(&sc->amrr_to)) timeout_del(&sc->amrr_to); usb_rem_wait_task(sc->sc_udev, &sc->sc_task); usbd_ref_wait(sc->sc_udev); if (ifp->if_softc != NULL) { ieee80211_ifdetach(ifp); /* free all nodes */ if_detach(ifp); } if (sc->amrr_xfer != NULL) { usbd_free_xfer(sc->amrr_xfer); sc->amrr_xfer = NULL; } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); } rum_free_rx_list(sc); rum_free_tx_list(sc); splx(s); return 0; } int rum_alloc_tx_list(struct rum_softc *sc) { int i, error; sc->tx_cur = sc->tx_queued = 0; for (i = 0; i < RUM_TX_LIST_COUNT; i++) { struct rum_tx_data *data = &sc->tx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate tx xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); if (data->buf == NULL) { printf("%s: could not allocate tx buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } /* clean Tx descriptor */ bzero(data->buf, RT2573_TX_DESC_SIZE); } return 0; fail: rum_free_tx_list(sc); return error; } void rum_free_tx_list(struct rum_softc *sc) { int i; for (i = 0; i < RUM_TX_LIST_COUNT; i++) { struct rum_tx_data *data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } /* * The node has already been freed at that point so don't call * ieee80211_release_node() here. */ data->ni = NULL; } } int rum_alloc_rx_list(struct rum_softc *sc) { int i, error; for (i = 0; i < RUM_RX_LIST_COUNT; i++) { struct rum_rx_data *data = &sc->rx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate rx xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { printf("%s: could not allocate rx buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = mtod(data->m, uint8_t *); } return 0; fail: rum_free_rx_list(sc); return error; } void rum_free_rx_list(struct rum_softc *sc) { int i; for (i = 0; i < RUM_RX_LIST_COUNT; i++) { struct rum_rx_data *data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->m != NULL) { m_freem(data->m); data->m = NULL; } } } int rum_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rum_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ void rum_next_scan(void *arg) { struct rum_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); usbd_ref_decr(sc->sc_udev); } void rum_task(void *arg) { struct rum_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; struct ieee80211_node *ni; uint32_t tmp; if (usbd_is_dying(sc->sc_udev)) return; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ tmp = rum_read(sc, RT2573_TXRX_CSR9); rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); } break; case IEEE80211_S_SCAN: rum_set_chan(sc, ic->ic_bss->ni_chan); if (!usbd_is_dying(sc->sc_udev)) timeout_add_msec(&sc->scan_to, 200); break; case IEEE80211_S_AUTH: rum_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_ASSOC: rum_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: rum_set_chan(sc, ic->ic_bss->ni_chan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rum_update_slot(sc); rum_enable_mrr(sc); rum_set_txpreamble(sc); rum_set_basicrates(sc); rum_set_bssid(sc, ni->ni_bssid); } #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) rum_prepare_beacon(sc); #endif if (ic->ic_opmode != IEEE80211_M_MONITOR) rum_enable_tsf_sync(sc); if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ rum_newassoc(ic, ic->ic_bss, 1); /* enable automatic rate control in STA mode */ if (ic->ic_fixed_rate == -1) rum_amrr_start(sc, ni); } break; } sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); } int rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rum_softc *sc = ic->ic_if.if_softc; usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_to); timeout_del(&sc->amrr_to); /* do it in a process context */ sc->sc_state = nstate; sc->sc_arg = arg; usb_add_task(sc->sc_udev, &sc->sc_task); return 0; } /* quickly determine if a given rate is CCK or OFDM */ #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ void rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct rum_tx_data *data = priv; struct rum_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("%s: could not transmit buffer: %s\n", sc->sc_dev.dv_xname, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); ifp->if_oerrors++; return; } s = splnet(); ieee80211_release_node(ic, data->ni); data->ni = NULL; sc->tx_queued--; ifp->if_opackets++; DPRINTFN(10, ("tx done\n")); sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; rum_start(ifp); splx(s); } void rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct rum_rx_data *data = priv; struct rum_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; const struct rum_rx_desc *desc; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mbuf *mnew, *m; int s, len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname, len)); ifp->if_ierrors++; goto skip; } desc = (const struct rum_rx_desc *)data->buf; if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) { /* * This should not happen since we did not request to receive * those frames when we filled RT2573_TXRX_CSR0. */ DPRINTFN(5, ("CRC error\n")); ifp->if_ierrors++; goto skip; } MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); m_freem(mnew); ifp->if_ierrors++; goto skip; } m = data->m; data->m = mnew; data->buf = mtod(data->m, uint8_t *); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_data = (caddr_t)(desc + 1); m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; s = splnet(); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = rum_rxrate(desc); tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = desc->rssi; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ rxi.rxi_flags = 0; rxi.rxi_rssi = desc->rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* node is no longer needed */ ieee80211_release_node(ic, ni); splx(s); DPRINTFN(15, ("rx done\n")); skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); (void)usbd_transfer(xfer); } /* * This function is only used by the Rx radiotap code. It returns the rate at * which a given frame was received. */ #if NBPFILTER > 0 uint8_t rum_rxrate(const struct rum_rx_desc *desc) { if (letoh32(desc->flags) & RT2573_RX_OFDM) { /* reverse function of rum_plcp_signal */ switch (desc->rate) { case 0xb: return 12; case 0xf: return 18; case 0xa: return 24; case 0xe: return 36; case 0x9: return 48; case 0xd: return 72; case 0x8: return 96; case 0xc: return 108; } } else { if (desc->rate == 10) return 2; if (desc->rate == 20) return 4; if (desc->rate == 55) return 11; if (desc->rate == 110) return 22; } return 2; /* should not get there */ } #endif /* * Return the expected ack rate for a frame transmitted at rate `rate'. */ int rum_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return 2; case 4: case 11: case 22: return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; /* OFDM rates */ case 12: case 18: return 12; case 24: case 36: return 24; case 48: case 72: case 96: case 108: return 48; } /* default to 1Mbps */ return 2; } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ uint16_t rum_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RUM_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11a-1999, pp. 37 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return txtime; } uint8_t rum_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } void rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, uint32_t flags, uint16_t xflags, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(RT2573_TX_VALID); desc->flags |= htole32(len << 16); desc->xflags = htole16(xflags); desc->wme = htole16( RT2573_QID(0) | RT2573_AIFSN(2) | RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); /* setup PLCP fields */ desc->plcp_signal = rum_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RUM_RATE_IS_OFDM(rate)) { desc->flags |= htole32(RT2573_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2573_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } } #define RUM_TX_TIMEOUT 5000 int rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_desc *desc; struct rum_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; uint32_t flags = 0; uint16_t dur; usbd_status error; int rate, xferlen, pktlen, needrts = 0, needcts = 0; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) return ENOBUFS; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } /* compute actual packet length (including CRC and crypto overhead) */ pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* pickup a rate */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT)) { /* mgmt/multicast frames are sent at the lowest avail. rate */ rate = ni->ni_rates.rs_rates[0]; } else if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate]; } else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; if (rate == 0) rate = 2; /* XXX should not happen */ rate &= IEEE80211_RATE_VAL; /* check if RTS/CTS or CTS-to-self protection must be used */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (pktlen > ic->ic_rtsthreshold) { needrts = 1; /* RTS/CTS based on frame length */ } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && RUM_RATE_IS_OFDM(rate)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) needcts = 1; /* CTS-to-self */ else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) needrts = 1; /* RTS/CTS */ } } if (needrts || needcts) { struct mbuf *mprot; int protrate, ackrate; uint16_t dur; protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; ackrate = rum_ack_rate(ic, rate); dur = rum_txtime(pktlen, rate, ic->ic_flags) + rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) + 2 * sc->sifs; if (needrts) { dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic, protrate), ic->ic_flags) + sc->sifs; mprot = ieee80211_get_rts(ic, wh, dur); } else { mprot = ieee80211_get_cts_to_self(ic, dur); } if (mprot == NULL) { printf("%s: could not allocate protection frame\n", sc->sc_dev.dv_xname); m_freem(m0); return ENOBUFS; } data = &sc->tx_data[sc->tx_cur]; desc = (struct rum_tx_desc *)data->buf; /* avoid multiple free() of the same node for each fragment */ data->ni = ieee80211_ref_node(ni); m_copydata(mprot, 0, mprot->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); rum_setup_tx_desc(sc, desc, (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG, 0, mprot->m_pkthdr.len, protrate); /* no roundup necessary here */ xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len; /* XXX may want to pass the protection frame to BPF */ /* mbuf is no longer needed */ m_freem(mprot); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) { m_freem(m0); return error; } sc->tx_queued++; sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; } data = &sc->tx_data[sc->tx_cur]; desc = (struct rum_tx_desc *)data->buf; data->ni = ni; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_NEED_ACK; dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), ic->ic_flags) + sc->sifs; *(uint16_t *)wh->i_dur = htole16(dur); #ifndef IEEE80211_STA_ONLY /* tell hardware to set timestamp in probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2573_TX_TIMESTAMP; #endif } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rum_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wt_antenna = sc->tx_ant; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); /* align end on a 4-bytes boundary */ xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3; /* * No space left in the last URB to store the extra 4 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 4; DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen)); /* mbuf is no longer needed */ m_freem(m0); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) return error; sc->tx_queued++; sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT; return 0; } void rum_start(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m0; /* * net80211 may still try to send management frames even if the * IFF_RUNNING flag is not set... */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = m0->m_pkthdr.ph_cookie; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (rum_tx_data(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (rum_tx_data(sc, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void rum_watchdog(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); /*rum_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; if (usbd_is_dying(sc->sc_udev)) return ENXIO; usbd_ref_incr(sc->sc_udev); s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) rum_update_promisc(sc); else rum_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) rum_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rum_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rum_init(ifp); error = 0; } splx(s); usbd_ref_decr(sc->sc_udev); return error; } void rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not read EEPROM: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } } uint32_t rum_read(struct rum_softc *sc, uint16_t reg) { uint32_t val; rum_read_multi(sc, reg, &val, sizeof val); return letoh32(val); } void rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { printf("%s: could not multi read MAC register: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } } void rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) { uint32_t tmp = htole32(val); rum_write_multi(sc, reg, &tmp, sizeof tmp); } void rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) { usb_device_request_t req; usbd_status error; int offset; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_MULTI_MAC; USETW(req.wValue, 0); /* write at most 64 bytes at a time */ for (offset = 0; offset < len; offset += 64) { USETW(req.wIndex, reg + offset); USETW(req.wLength, MIN(len - offset, 64)); error = usbd_do_request(sc->sc_udev, &req, buf + offset); if (error != 0) { printf("%s: could not multi write MAC register: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } } } void rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); return; } tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; rum_write(sc, RT2573_PHY_CSR3, tmp); } uint8_t rum_bbp_read(struct rum_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); return 0; } val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; rum_write(sc, RT2573_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = rum_read(sc, RT2573_PHY_CSR3); if (!(val & RT2573_BBP_BUSY)) return val & 0xff; DELAY(1); } printf("%s: could not read BBP\n", sc->sc_dev.dv_xname); return 0; } void rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) break; } if (ntries == 5) { printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); return; } tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | (reg & 3); rum_write(sc, RT2573_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); } void rum_select_antenna(struct rum_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rum_bbp_read(sc, 4); bbp77 = rum_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); rum_bbp_write(sc, 4, bbp4); rum_bbp_write(sc, 77, bbp77); rum_write(sc, RT2573_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ void rum_enable_mrr(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_MRR_CCK_FALLBACK; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) tmp |= RT2573_MRR_CCK_FALLBACK; tmp |= RT2573_MRR_ENABLED; rum_write(sc, RT2573_TXRX_CSR4, tmp); } void rum_set_txpreamble(struct rum_softc *sc) { uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_SHORT_PREAMBLE; if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2573_SHORT_PREAMBLE; rum_write(sc, RT2573_TXRX_CSR4, tmp); } void rum_set_basicrates(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x3); } else if (ic->ic_curmode == IEEE80211_MODE_11A) { /* 11a basic rates: 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x150); } else { /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0xf); } } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ void rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; uint32_t tmp; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } sc->bbp17 = bbp17; rum_bbp_write(sc, 17, bbp17); rum_bbp_write(sc, 96, bbp96); rum_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rum_bbp_write(sc, 75, 0x80); rum_bbp_write(sc, 86, 0x80); rum_bbp_write(sc, 88, 0x80); } rum_bbp_write(sc, 35, bbp35); rum_bbp_write(sc, 97, bbp97); rum_bbp_write(sc, 98, bbp98); tmp = rum_read(sc, RT2573_PHY_CSR0); tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); if (IEEE80211_IS_CHAN_2GHZ(c)) tmp |= RT2573_PA_PE_2GHZ; else tmp |= RT2573_PA_PE_5GHZ; rum_write(sc, RT2573_PHY_CSR0, tmp); /* 802.11a uses a 16 microseconds short interframe space */ sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; } void rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; int8_t power; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ic_flags != sc->sc_curchan->ic_flags) { rum_select_band(sc, c); rum_select_antenna(sc); } sc->sc_curchan = c; rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(10); /* enable smart mode for MIMO-capable RFs */ bbp3 = rum_bbp_read(sc, 3); bbp3 &= ~RT2573_SMART_MODE; if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) bbp3 |= RT2573_SMART_MODE; rum_bbp_write(sc, 3, bbp3); if (bbp94 != RT2573_BBPR94_DEFAULT) rum_bbp_write(sc, 94, bbp94); } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ void rum_enable_tsf_sync(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); } #endif tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= ic->ic_bss->ni_intval * 16; tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2573_TSF_MODE(1); #ifndef IEEE80211_STA_ONLY else tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; #endif rum_write(sc, RT2573_TXRX_CSR9, tmp); } void rum_update_slot(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; tmp = rum_read(sc, RT2573_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; rum_write(sc, RT2573_MAC_CSR9, tmp); DPRINTF(("setting slot time to %uus\n", slottime)); } void rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; rum_write(sc, RT2573_MAC_CSR4, tmp); tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; rum_write(sc, RT2573_MAC_CSR5, tmp); } void rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; rum_write(sc, RT2573_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8 | 0xff << 16; rum_write(sc, RT2573_MAC_CSR3, tmp); } void rum_update_promisc(struct rum_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR0); tmp &= ~RT2573_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; rum_write(sc, RT2573_TXRX_CSR0, tmp); DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } const char * rum_get_rf(int rev) { switch (rev) { case RT2573_RF_2527: return "RT2527 (MIMO XR)"; case RT2573_RF_2528: return "RT2528"; case RT2573_RF_5225: return "RT5225 (MIMO XR)"; case RT2573_RF_5226: return "RT5226"; default: return "unknown"; } } void rum_read_eeprom(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; #ifdef RUM_DEBUG int i; #endif /* read MAC/BBP type */ rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); sc->macbbp_rev = letoh16(val); /* read MAC address */ rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); val = letoh16(val); sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF(("RF revision=%d\n", sc->rf_rev)); rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); val = letoh16(val); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna)); rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); val = letoh16(val); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); val = letoh16(val); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); val = letoh16(val); if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF(("RF freq=%d\n", sc->rffreq)); /* read Tx power for all a/b/g channels */ rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); /* XXX default Tx power for 802.11a channels */ memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); #endif /* read default values for BBP registers */ rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val)); } #endif } int rum_bbp_init(struct rum_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { const uint8_t val = rum_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rum_def_bbp); i++) rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; } int rum_init(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; usbd_status error; int i, ntries; rum_stop(ifp, 0); /* initialize MAC registers to default values */ for (i = 0; i < nitems(rum_def_mac); i++) rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ for (ntries = 0; ntries < 1000; ntries++) { if (rum_read(sc, RT2573_MAC_CSR12) & 8) break; rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ DELAY(1000); } if (ntries == 1000) { printf("%s: timeout waiting for BBP/RF to wakeup\n", sc->sc_dev.dv_xname); error = ENODEV; goto fail; } if ((error = rum_bbp_init(sc)) != 0) goto fail; /* select default channel */ sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan; rum_select_band(sc, sc->sc_curchan); rum_select_antenna(sc); rum_set_chan(sc, sc->sc_curchan); /* clear STA registers */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); rum_set_macaddr(sc, ic->ic_myaddr); /* initialize ASIC */ rum_write(sc, RT2573_MAC_CSR1, 4); /* * Allocate xfer for AMRR statistics requests. */ sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev); if (sc->amrr_xfer == NULL) { printf("%s: could not allocate AMRR xfer\n", sc->sc_dev.dv_xname); goto fail; } /* * Open Tx and Rx USB bulk pipes. */ error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, &sc->sc_tx_pipeh); if (error != 0) { printf("%s: could not open Tx pipe: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, &sc->sc_rx_pipeh); if (error != 0) { printf("%s: could not open Rx pipe: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } /* * Allocate Tx and Rx xfer queues. */ error = rum_alloc_tx_list(sc); if (error != 0) { printf("%s: could not allocate Tx list\n", sc->sc_dev.dv_xname); goto fail; } error = rum_alloc_rx_list(sc); if (error != 0) { printf("%s: could not allocate Rx list\n", sc->sc_dev.dv_xname); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < RUM_RX_LIST_COUNT; i++) { struct rum_rx_data *data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) { printf("%s: could not queue Rx transfer\n", sc->sc_dev.dv_xname); goto fail; } } /* update Rx filter */ tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | RT2573_DROP_ACKCTS; #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode != IEEE80211_M_HOSTAP) #endif tmp |= RT2573_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; } rum_write(sc, RT2573_TXRX_CSR0, tmp); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return 0; fail: rum_stop(ifp, 1); return error; } void rum_stop(struct ifnet *ifp, int disable) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ /* disable Rx */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); /* reset ASIC */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); if (sc->amrr_xfer != NULL) { usbd_free_xfer(sc->amrr_xfer); sc->amrr_xfer = NULL; } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); sc->sc_rx_pipeh = NULL; } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); sc->sc_tx_pipeh = NULL; } rum_free_rx_list(sc); rum_free_tx_list(sc); } int rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size) { usb_device_request_t req; uint16_t reg = RT2573_MCU_CODE_BASE; usbd_status error; /* copy firmware image into NIC */ for (; size >= 4; reg += 4, ucode += 4, size -= 4) rum_write(sc, reg, UGETDW(ucode)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_MCU_CNTL; USETW(req.wValue, RT2573_MCU_RUN); USETW(req.wIndex, 0); USETW(req.wLength, 0); error = usbd_do_request(sc->sc_udev, &req, NULL); if (error != 0) { printf("%s: could not run firmware: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); } return error; } #ifndef IEEE80211_STA_ONLY int rum_prepare_beacon(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_desc desc; struct mbuf *m0; int rate; m0 = ieee80211_beacon_alloc(ic, ic->ic_bss); if (m0 == NULL) { printf("%s: could not allocate beacon frame\n", sc->sc_dev.dv_xname); return ENOBUFS; } /* send beacons at the lowest available rate */ rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, m0->m_pkthdr.len, rate); /* copy the first 24 bytes of Tx descriptor into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); /* copy beacon header and payload into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), m0->m_pkthdr.len); m_freem(m0); return 0; } #endif void rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { /* start with lowest Tx rate */ ni->ni_txrate = 0; } void rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) { int i; /* clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); ieee80211_amrr_node_init(&sc->amrr, &sc->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->amrr_to, 1); } void rum_amrr_timeout(void *arg) { struct rum_softc *sc = arg; usb_device_request_t req; if (usbd_is_dying(sc->sc_udev)) return; /* * Asynchronously read statistic registers (cleared by read). */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, RT2573_STA_CSR0); USETW(req.wLength, sizeof sc->sta); usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc, USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0, rum_amrr_update); (void)usbd_transfer(sc->amrr_xfer); } void rum_amrr_update(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct rum_softc *sc = (struct rum_softc *)priv; struct ifnet *ifp = &sc->sc_ic.ic_if; if (status != USBD_NORMAL_COMPLETION) { printf("%s: could not retrieve Tx statistics - cancelling " "automatic rate control\n", sc->sc_dev.dv_xname); return; } /* count TX retry-fail as Tx errors */ ifp->if_oerrors += letoh32(sc->sta[5]) >> 16; sc->amn.amn_retrycnt = (letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */ (letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ (letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */ sc->amn.amn_txcnt = sc->amn.amn_retrycnt + (letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->amrr_to, 1); }