/* $OpenBSD: if_run.c,v 1.8 2009/02/10 17:10:50 damien Exp $ */ /*- * Copyright (c) 2008,2009 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver. * http://www.ralinktech.com/ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* shared with ral(4) */ #include #ifdef USB_DEBUG #define RUN_DEBUG #endif #ifdef RUN_DEBUG #define DPRINTF(x) do { if (run_debug) printf x; } while (0) #define DPRINTFN(n, x) do { if (run_debug >= (n)) printf x; } while (0) int run_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* * PLEASE keep this list sorted as is; this is to ease the sync with the * Ralink Linux driver. If you want to add new entries, add them at the * end of the list. */ #define USB_ID(v, p) { USB_VENDOR_##v, USB_PRODUCT_##v##_##p } static const struct usb_devno run_devs[] = { /* Entries from the Ralink Linux driver. */ /* AUTOMATICALLY GENERATED, DO NOT EDIT BY HAND. */ USB_ID(RALINK, RT2770), USB_ID(RALINK, RT2870), USB_ID(RALINK, RT3070), USB_ID(RALINK, RT3071), USB_ID(RALINK, RT3072), USB_ID(ASUS, RT2870_1), USB_ID(ASUS, RT2870_2), USB_ID(ASUS, RT2870_3), USB_ID(SITECOMEU, RT2870_1), USB_ID(SITECOMEU, RT2870_2), USB_ID(SITECOMEU, RT2870_3), USB_ID(SITECOMEU, RT3070), USB_ID(SITECOMEU, RT2870_4), USB_ID(SITECOMEU, RT2770), USB_ID(CONCEPTRONIC2, RT2870_1), USB_ID(CONCEPTRONIC2, RT2870_6), USB_ID(PLANEX2, RT2870), USB_ID(PLANEX2, RT3070), USB_ID(DLINK2, RT2870_1), USB_ID(DLINK2, RT2870_2), USB_ID(DLINK, RT2870), USB_ID(DLINK, RT3072), USB_ID(CONCEPTRONIC2, RT2870_2), USB_ID(CONCEPTRONIC2, RT2870_8), USB_ID(BELKIN, RT2870_1), USB_ID(CONCEPTRONIC2, RT2870_3), USB_ID(CONCEPTRONIC2, RT2870_5), USB_ID(COREGA, RT2870_1), USB_ID(COREGA, RT2870_2), USB_ID(COREGA, RT2870_3), USB_ID(AMIT, RT2870_1), USB_ID(GIGABYTE, RT2870_1), USB_ID(GIGABYTE, GNWB32L), USB_ID(SPARKLAN, RT2870_1), USB_ID(ACCTON, RT2870_1), USB_ID(ACCTON, RT2870_4), USB_ID(ACCTON, RT2870_5), USB_ID(ACCTON, RT2770), USB_ID(ACCTON, RT2870_3), USB_ID(ACCTON, RT3070), USB_ID(ZCOM, RT2870_1), USB_ID(ZYXEL, RT2870_1), USB_ID(ZCOM, RT2870_2), USB_ID(SENAO, RT2870_1), USB_ID(SENAO, RT2870_2), USB_ID(SENAO, RT3070), USB_ID(PHILIPS, RT2870), USB_ID(CONCEPTRONIC2, RT2870_4), USB_ID(AZUREWAVE, RT2870_1), USB_ID(AZUREWAVE, RT3070), USB_ID(ACCTON, RT2870_2), USB_ID(AMIT2, RT2870), USB_ID(HAWKING, RT2870_1), USB_ID(HAWKING, RT2870_2), USB_ID(CYBERTAN, RT2870), USB_ID(UMEDIA, RT2870_1), USB_ID(BELKIN, RT2870_2), USB_ID(ABOCOM2, RT2870_1), USB_ID(CONCEPTRONIC2, RT2870_7), USB_ID(SAMSUNG2, RT2870_1), USB_ID(ABOCOM, RT3070), USB_ID(ABOCOM, RT3071), USB_ID(ABOCOM, RT3072), USB_ID(EDIMAX, RT2870_1), USB_ID(ZINWELL, RT2870_1), USB_ID(ZINWELL, RT2870_2), USB_ID(QUANTA, RT3070), USB_ID(LOGITEC, RT2870_1), USB_ID(LOGITEC, RT2870_2), USB_ID(LOGITEC, RT2870_3), USB_ID(AIRTIES, RT3070), /* Entries not in the Ralink Linux driver. */ USB_ID(LINKSYS4, WUSB600N) }; int run_match(struct device *, void *, void *); void run_attach(struct device *, struct device *, void *); int run_detach(struct device *, int); int run_alloc_rx_ring(struct run_softc *); void run_free_rx_ring(struct run_softc *); int run_alloc_tx_ring(struct run_softc *, int); void run_free_tx_ring(struct run_softc *, int); int run_load_microcode(struct run_softc *); int run_reset(struct run_softc *); int run_read(struct run_softc *, uint16_t, uint32_t *); int run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int); int run_write_2(struct run_softc *, uint16_t, uint16_t); int run_write(struct run_softc *, uint16_t, uint32_t); int run_write_region_1(struct run_softc *, uint16_t, const uint8_t *, int); int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int); int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *); int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *); int run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t); int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *); int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t); int run_bbp_read(struct run_softc *, uint8_t, uint8_t *); int run_bbp_write(struct run_softc *, uint8_t, uint8_t); int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t); const char * run_get_rf(int); int run_read_eeprom(struct run_softc *); struct ieee80211_node *run_node_alloc(struct ieee80211com *); int run_media_change(struct ifnet *); void run_next_scan(void *); void run_task(void *); void run_do_async(struct run_softc *, void (*)(struct run_softc *, void *), void *, int); int run_newstate(struct ieee80211com *, enum ieee80211_state, int); void run_newstate_cb(struct run_softc *, void *); void run_updateedca(struct ieee80211com *); void run_updateedca_cb(struct run_softc *, void *); int run_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void run_set_key_cb(struct run_softc *, void *); void run_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void run_delete_key_cb(struct run_softc *, void *); void run_calibrate_to(void *); void run_calibrate_cb(struct run_softc *, void *); void run_newassoc(struct ieee80211com *, struct ieee80211_node *, int); void run_rx_frame(struct run_softc *, uint8_t *, int); void run_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void run_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); int run_tx(struct run_softc *, struct mbuf *, struct ieee80211_node *); void run_start(struct ifnet *); void run_watchdog(struct ifnet *); int run_ioctl(struct ifnet *, u_long, caddr_t); void run_select_chan_group(struct run_softc *, int); void run_set_rx_antenna(struct run_softc *, int); void run_rt2870_set_chan(struct run_softc *, u_int); void run_rt3070_set_chan(struct run_softc *, u_int); int run_set_chan(struct run_softc *, struct ieee80211_channel *); void run_enable_tsf_sync(struct run_softc *); void run_enable_mrr(struct run_softc *); void run_set_txpreamble(struct run_softc *); void run_set_basicrates(struct run_softc *); void run_set_leds(struct run_softc *, uint16_t); void run_set_bssid(struct run_softc *, const uint8_t *); void run_set_macaddr(struct run_softc *, const uint8_t *); void run_updateslot(struct ieee80211com *); void run_updateslot_cb(struct run_softc *, void *); #if NBPFILTER > 0 int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t); #endif int run_bbp_init(struct run_softc *); int run_rt3070_rf_init(struct run_softc *); int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t, uint8_t *); int run_txrx_enable(struct run_softc *); int run_init(struct ifnet *); void run_stop(struct ifnet *, int); struct cfdriver run_cd = { NULL, "run", DV_IFNET }; const struct cfattach run_ca = { sizeof (struct run_softc), run_match, run_attach, run_detach }; static const struct { uint32_t reg; uint32_t val; } rt2870_def_mac[] = { RT2870_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2860_def_bbp[] = { RT2860_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2860_rf2850[] = { RT2860_RF2850 }; struct { uint8_t n, r, k; } run_rf3020_freqs[] = { RT3070_RF3020 }; static const struct { uint8_t reg; uint8_t val; } rt3070_def_rf[] = { RT3070_DEF_RF }; int run_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(run_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } void run_attach(struct device *parent, struct device *self, void *aux) { struct run_softc *sc = (struct run_softc *)self; struct usb_attach_arg *uaa = aux; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i, nrx, ntx, ntries, error; sc->sc_udev = uaa->device; if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) { printf("%s: could not set configuration no\n", sc->sc_dev.dv_xname); return; } /* get the first interface handle */ error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface); if (error != 0) { printf("%s: could not get interface handle\n", sc->sc_dev.dv_xname); return; } /* * Find all bulk endpoints. There are 7 bulk endpoints: 1 for RX * and 6 for TX (4 EDCAs + HCCA + Prio). */ nrx = ntx = 0; id = usbd_get_interface_descriptor(sc->sc_iface); for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK) continue; if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) { sc->rxq.pipe_no = ed->bEndpointAddress; nrx++; } else if (ntx < 6) { sc->txq[ntx].pipe_no = ed->bEndpointAddress; sc->txq[ntx].pktsize = UE_GET_SIZE(UGETW(ed->wMaxPacketSize)); ntx++; } } /* make sure we've got them all */ if (nrx < 1 || ntx < 6) { printf("%s: missing endpoint\n", sc->sc_dev.dv_xname); return; } usb_init_task(&sc->sc_task, run_task, sc); timeout_set(&sc->scan_to, run_next_scan, sc); timeout_set(&sc->calib_to, run_calibrate_to, sc); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; /* wait for the chip to settle */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_ASIC_VER_ID, &sc->mac_rev) != 0) return; if (sc->mac_rev != 0 && sc->mac_rev != 0xffffffff) break; DELAY(10); } if (ntries == 100) { printf("%s: timeout waiting for NIC to initialize\n", sc->sc_dev.dv_xname); return; } /* retrieve RF rev. no and various other things from EEPROM */ run_read_eeprom(sc); printf("%s: MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), " "address %s\n", sc->sc_dev.dv_xname, sc->mac_rev >> 16, sc->mac_rev & 0xffff, run_get_rf(sc->rf_rev), sc->ntxchains, sc->nrxchains, ether_sprintf(ic->ic_myaddr)); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* WEP */ IEEE80211_C_RSN; /* WPA/RSN */ if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; /* set supported .11a channels */ for (i = 14; i < nitems(rt2860_rf2850); i++) { uint8_t chan = rt2860_rf2850[i].chan; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = run_init; ifp->if_ioctl = run_ioctl; ifp->if_start = run_start; ifp->if_watchdog = run_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = run_node_alloc; ic->ic_newassoc = run_newassoc; ic->ic_updateslot = run_updateslot; ic->ic_updateedca = run_updateedca; ic->ic_set_key = run_set_key; ic->ic_delete_key = run_delete_key; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = run_newstate; ieee80211_media_init(ifp, run_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RUN_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RUN_TX_RADIOTAP_PRESENT); #endif usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev); } int run_detach(struct device *self, int flags) { struct run_softc *sc = (struct run_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int qid, s; s = splnet(); /* wait for all queued asynchronous commands to complete */ while (sc->cmdq.queued > 0) tsleep(&sc->cmdq, 0, "cmdq", 0); timeout_del(&sc->scan_to); timeout_del(&sc->calib_to); if (ifp->if_flags != 0) { /* if_attach() has been called */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_ifdetach(ifp); if_detach(ifp); } for (qid = 0; qid < 6; qid++) run_free_tx_ring(sc, qid); run_free_rx_ring(sc); splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev); return 0; } int run_alloc_rx_ring(struct run_softc *sc) { struct run_rx_ring *rxq = &sc->rxq; int i, error; error = usbd_open_pipe(sc->sc_iface, rxq->pipe_no, 0, &rxq->pipeh); if (error != 0) goto fail; for (i = 0; i < RUN_RX_RING_COUNT; i++) { struct run_rx_data *data = &rxq->data[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, RUN_MAX_RXSZ); if (data->buf == NULL) { error = ENOMEM; goto fail; } } if (error != 0) fail: run_free_rx_ring(sc); return error; } void run_free_rx_ring(struct run_softc *sc) { struct run_rx_ring *rxq = &sc->rxq; int i; if (rxq->pipeh != NULL) { usbd_abort_pipe(rxq->pipeh); usbd_close_pipe(rxq->pipeh); rxq->pipeh = NULL; } for (i = 0; i < RUN_RX_RING_COUNT; i++) { if (rxq->data[i].xfer != NULL) usbd_free_xfer(rxq->data[i].xfer); rxq->data[i].xfer = NULL; } } int run_alloc_tx_ring(struct run_softc *sc, int qid) { struct run_tx_ring *txq = &sc->txq[qid]; int i, error; txq->cur = txq->queued = 0; error = usbd_open_pipe(sc->sc_iface, txq->pipe_no, 0, &txq->pipeh); if (error != 0) goto fail; for (i = 0; i < RUN_TX_RING_COUNT; i++) { struct run_tx_data *data = &txq->data[i]; data->sc = sc; /* backpointer for callbacks */ data->qid = qid; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, RUN_MAX_TXSZ); if (data->buf == NULL) { error = ENOMEM; goto fail; } /* zeroize the TXD + TXWI part */ memset(data->buf, 0, sizeof (struct rt2870_txd) + sizeof (struct rt2860_txwi)); } if (error != 0) fail: run_free_tx_ring(sc, qid); return error; } void run_free_tx_ring(struct run_softc *sc, int qid) { struct run_tx_ring *txq = &sc->txq[qid]; int i; if (txq->pipeh != NULL) { usbd_abort_pipe(txq->pipeh); usbd_close_pipe(txq->pipeh); txq->pipeh = NULL; } for (i = 0; i < RUN_TX_RING_COUNT; i++) { if (txq->data[i].xfer != NULL) usbd_free_xfer(txq->data[i].xfer); txq->data[i].xfer = NULL; } } int run_load_microcode(struct run_softc *sc) { usb_device_request_t req; u_char *ucode, *base; size_t size; uint32_t tmp; int ntries, error; if ((error = loadfirmware("run-rt2870", &ucode, &size)) != 0) { printf("%s: failed loadfirmware of file %s (error %d)\n", sc->sc_dev.dv_xname, "run-rt2870", error); return error; } if (size != 8192) { printf("%s: invalid firmware size (should be 8KB)\n", sc->sc_dev.dv_xname); free(ucode, M_DEVBUF); return EINVAL; } base = ucode; /* RT3071/RT3072 use a different firmware */ if ((sc->mac_rev >> 16) != 0x2860 && (sc->mac_rev >> 16) != 0x2872 && (sc->mac_rev >> 16) != 0x3070) base += 4096; run_read(sc, RT2860_ASIC_VER_ID, &tmp); /* write microcode image */ run_write_region_1(sc, RT2870_FW_BASE, base, 4096); free(ucode, M_DEVBUF); run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff); run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_RESET; USETW(req.wValue, 8); USETW(req.wIndex, 0); USETW(req.wLength, 0); if ((error = usbd_do_request(sc->sc_udev, &req, NULL)) != 0) return error; usbd_delay_ms(sc->sc_udev, 10); run_write(sc, RT2860_H2M_MAILBOX, 0); if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_BOOT, 0)) != 0) return error; /* wait until microcontroller is ready */ for (ntries = 0; ntries < 1000; ntries++) { if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) return error; if (tmp & RT2860_MCU_READY) break; DELAY(1000); } if (ntries == 1000) { printf("%s: timeout waiting for MCU to initialize\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } DPRINTF(("microcode successfully loaded after %d tries\n", ntries)); return 0; } int run_reset(struct run_softc *sc) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_RESET; USETW(req.wValue, 1); USETW(req.wIndex, 0); USETW(req.wLength, 0); return usbd_do_request(sc->sc_udev, &req, NULL); } int run_read(struct run_softc *sc, uint16_t reg, uint32_t *val) { uint32_t tmp; int error; error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp); if (error == 0) *val = letoh32(tmp); else *val = 0xffffffff; return error; } int run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2870_READ_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); return usbd_do_request(sc->sc_udev, &req, buf); } int run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_WRITE_2; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); return usbd_do_request(sc->sc_udev, &req, NULL); } int run_write(struct run_softc *sc, uint16_t reg, uint32_t val) { int error; if ((error = run_write_2(sc, reg, val & 0xffff)) == 0) error = run_write_2(sc, reg + 2, val >> 16); return error; } int run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf, int len) { #if 1 int i, error = 0; /* * NB: the WRITE_REGION_1 command is not stable on RT2860. * We thus issue multiple WRITE_2 commands instead. */ KASSERT((len & 1) == 0); for (i = 0; i < len && error == 0; i += 2) error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8); return error; #else usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_WRITE_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); return usbd_do_request(sc->sc_udev, &req, buf); #endif } int run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len) { int i, error = 0; KASSERT((len & 3) == 0); for (i = 0; i < len && error == 0; i += 4) error = run_write(sc, reg + i, val); return error; } /* Read 16-bit from eFUSE ROM (RT3070 only.) */ int run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) { uint32_t tmp; uint16_t reg; int error, ntries; if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) return error; addr *= 2; /*- * Read one 16-byte block into registers EFUSE_DATA[0-3]: * DATA0: F E D C * DATA1: B A 9 8 * DATA2: 7 6 5 4 * DATA3: 3 2 1 0 */ tmp &= ~RT3070_EFSROM_MODE_MASK; tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK; run_write(sc, RT3070_EFUSE_CTRL, tmp); for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) return error; if (!(tmp & RT3070_EFSROM_KICK)) break; DELAY(2); } if (ntries == 100) return ETIMEDOUT; if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) { *val = 0xffff; /* address not found */ return 0; } /* determine to which 32-bit register our 16-bit word belongs */ reg = RT3070_EFUSE_DATA3 - (addr & 0xc); if ((error = run_read(sc, reg, &tmp)) != 0) return error; *val = (addr & 2) ? tmp >> 16 : tmp & 0xffff; return 0; } int run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) { usb_device_request_t req; uint16_t tmp; int error; addr *= 2; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2870_EEPROM_READ; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, sizeof tmp); error = usbd_do_request(sc->sc_udev, &req, &tmp); if (error == 0) *val = letoh16(tmp); else *val = 0xffff; return error; } static __inline int run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val) { /* either eFUSE ROM or EEPROM */ return sc->sc_srom_read(sc, addr, val); } int run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0) return error; if (!(tmp & RT2860_RF_REG_CTRL)) break; } if (ntries == 10) return ETIMEDOUT; /* RF registers are 24-bit on the RT2860 */ tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT | (val & 0x3fffff) << 2 | (reg & 3); return run_write(sc, RT2860_RF_CSR_CFG0, tmp); } int run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 100) return ETIMEDOUT; tmp = RT3070_RF_KICK | reg << 8; if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0) return error; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 100) return ETIMEDOUT; *val = tmp & 0xff; return 0; } int run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val; return run_write(sc, RT3070_RF_CSR_CFG, tmp); } int run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8; if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0) return error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; *val = tmp & 0xff; return 0; } int run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return error; if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return ETIMEDOUT; tmp = RT2860_BBP_CSR_KICK | reg << 8 | val; return run_write(sc, RT2860_BBP_CSR_CFG, tmp); } /* * Send a command to the 8051 microcontroller unit. */ int run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0) return error; if (!(tmp & RT2860_H2M_BUSY)) break; } if (ntries == 100) return ETIMEDOUT; tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg; if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0) error = run_write(sc, RT2860_HOST_CMD, cmd); return error; } /* * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. * Used to adjust per-rate Tx power registers. */ static __inline uint32_t b4inc(uint32_t b32, int8_t delta) { int8_t i, b4; for (i = 0; i < 8; i++) { b4 = b32 & 0xf; b4 += delta; if (b4 < 0) b4 = 0; else if (b4 > 0xf) b4 = 0xf; b32 = b32 >> 4 | b4 << 28; } return b32; } const char * run_get_rf(int rev) { switch (rev) { case RT2860_RF_2820: return "RT2820"; case RT2860_RF_2850: return "RT2850"; case RT2860_RF_2720: return "RT2720"; case RT2860_RF_2750: return "RT2750"; case RT3070_RF_3020: return "RT3020"; case RT3070_RF_2020: return "RT2020"; case RT3070_RF_3021: return "RT3021"; case RT3070_RF_3022: return "RT3022"; } return "unknown"; } int run_read_eeprom(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int8_t delta_2ghz, delta_5ghz; uint32_t tmp; uint16_t val; int ridx, ant, i; /* check whether the ROM is eFUSE ROM or EEPROM */ sc->sc_srom_read = run_eeprom_read_2; if ((sc->mac_rev & 0xfff00000) >= 0x30700000) { run_read(sc, RT3070_EFUSE_CTRL, &tmp); if (tmp & RT3070_SEL_EFUSE) sc->sc_srom_read = run_efuse_read_2; } /* read SROM version */ run_srom_read(sc, RT2860_EEPROM_VERSION, &val); DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8)); /* read MAC address */ run_srom_read(sc, RT2860_EEPROM_MAC01, &val); ic->ic_myaddr[0] = val & 0xff; ic->ic_myaddr[1] = val >> 8; run_srom_read(sc, RT2860_EEPROM_MAC23, &val); ic->ic_myaddr[2] = val & 0xff; ic->ic_myaddr[3] = val >> 8; run_srom_read(sc, RT2860_EEPROM_MAC45, &val); ic->ic_myaddr[4] = val & 0xff; ic->ic_myaddr[5] = val >> 8; /* read default BBP settings */ for (i = 0; i < 8; i++) { run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val); sc->bbp[i].val = val & 0xff; sc->bbp[i].reg = val >> 8; DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val)); } /* read RF frequency offset from EEPROM */ run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val); sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0; DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff)); if ((sc->leds = val >> 8) != 0xff) { /* read LEDs operating mode */ run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]); run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]); run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]); } else { /* broken EEPROM, use default settings */ sc->leds = 0x01; sc->led[0] = 0x5555; sc->led[1] = 0x2221; sc->led[2] = 0x5627; /* differs from RT2860 */ } DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n", sc->leds, sc->led[0], sc->led[1], sc->led[2])); /* read RF information */ run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val); if (val == 0xffff) { DPRINTF(("invalid EEPROM antenna info, using default\n")); if ((sc->mac_rev >> 16) >= 0x3070) { /* default to RF3020 1T1R */ sc->rf_rev = RT3070_RF_3020; sc->ntxchains = 1; sc->nrxchains = 1; } else { /* default to RF2820 1T2R */ sc->rf_rev = RT2860_RF_2820; sc->ntxchains = 1; sc->nrxchains = 2; } } else { sc->rf_rev = (val >> 8) & 0xf; sc->ntxchains = (val >> 4) & 0xf; sc->nrxchains = val & 0xf; } DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n", sc->rf_rev, sc->ntxchains, sc->nrxchains)); /* check if RF supports automatic Tx access gain control */ run_srom_read(sc, RT2860_EEPROM_CONFIG, &val); DPRINTF(("EEPROM CFG 0x%04x\n", val)); if ((val & 0xff) != 0xff) { sc->ext_5ghz_lna = (val >> 3) & 1; sc->ext_2ghz_lna = (val >> 2) & 1; sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1; } /* read power settings for 2GHz channels */ for (i = 0; i < 14; i += 2) { run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 0] = (int8_t)(val & 0xff); sc->txpow1[i + 1] = (int8_t)(val >> 8); run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 0] = (int8_t)(val & 0xff); sc->txpow2[i + 1] = (int8_t)(val >> 8); } /* fix broken Tx power entries */ for (i = 0; i < 14; i++) { if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31) sc->txpow1[i] = 5; if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31) sc->txpow2[i] = 5; DPRINTF(("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i])); } /* read power settings for 5GHz channels */ for (i = 0; i < 36; i += 2) { run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 14] = (int8_t)(val & 0xff); sc->txpow1[i + 15] = (int8_t)(val >> 8); run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 14] = (int8_t)(val & 0xff); sc->txpow2[i + 15] = (int8_t)(val >> 8); } /* fix broken Tx power entries */ for (i = 0; i < 36; i++) { if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) sc->txpow1[14 + i] = 5; if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) sc->txpow2[14 + i] = 5; DPRINTF(("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i], sc->txpow2[14 + i])); } /* read Tx power compensation for each Tx rate */ run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val); delta_2ghz = delta_5ghz = 0; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_2ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_2ghz = -delta_2ghz; } val >>= 8; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_5ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_5ghz = -delta_5ghz; } DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n", delta_2ghz, delta_5ghz)); for (ridx = 0; ridx < 5; ridx++) { uint32_t reg; run_srom_read(sc, RT2860_EEPROM_RPWR + ridx, &val); reg = (uint32_t)val << 16; run_srom_read(sc, RT2860_EEPROM_RPWR + ridx + 1, &val); reg |= val; sc->txpow20mhz[ridx] = reg; sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx])); } /* read RSSI offsets and LNA gains from EEPROM */ run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val); sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ sc->rssi_2ghz[1] = val >> 8; /* Ant B */ run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val); sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ sc->lna[2] = val >> 8; /* channel group 2 */ run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val); sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ sc->rssi_5ghz[1] = val >> 8; /* Ant B */ run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val); sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ sc->lna[3] = val >> 8; /* channel group 3 */ run_srom_read(sc, RT2860_EEPROM_LNA, &val); sc->lna[0] = val & 0xff; /* channel group 0 */ sc->lna[1] = val >> 8; /* channel group 1 */ /* fix broken 5GHz LNA entries */ if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 2)); sc->lna[2] = sc->lna[1]; } if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 3)); sc->lna[3] = sc->lna[1]; } /* fix broken RSSI offset entries */ for (ant = 0; ant < 3; ant++) { if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n", ant + 1, sc->rssi_2ghz[ant])); sc->rssi_2ghz[ant] = 0; } if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n", ant + 1, sc->rssi_5ghz[ant])); sc->rssi_5ghz[ant] = 0; } } return 0; } struct ieee80211_node * run_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO); } int run_media_change(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) run_init(ifp); return 0; } void run_next_scan(void *arg) { struct run_softc *sc = arg; if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&sc->sc_ic.ic_if); } void run_task(void *arg) { struct run_softc *sc = arg; struct run_host_cmd_ring *ring = &sc->cmdq; struct run_host_cmd *cmd; int s; /* process host commands */ s = splusb(); while (ring->next != ring->cur) { cmd = &ring->cmd[ring->next]; splx(s); /* callback */ cmd->cb(sc, cmd->data); s = splusb(); ring->queued--; ring->next = (ring->next + 1) % RUN_HOST_CMD_RING_COUNT; } wakeup(ring); splx(s); } void run_do_async(struct run_softc *sc, void (*cb)(struct run_softc *, void *), void *arg, int len) { struct run_host_cmd_ring *ring = &sc->cmdq; struct run_host_cmd *cmd; int s; s = splusb(); cmd = &ring->cmd[ring->cur]; cmd->cb = cb; KASSERT(len <= sizeof (cmd->data)); memcpy(cmd->data, arg, len); ring->cur = (ring->cur + 1) % RUN_HOST_CMD_RING_COUNT; /* if there is no pending command already, schedule a task */ if (++ring->queued == 1) usb_add_task(sc->sc_udev, &sc->sc_task); splx(s); } int run_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct run_softc *sc = ic->ic_softc; struct run_cmd_newstate cmd; /* do it in a process context */ cmd.state = nstate; cmd.arg = arg; run_do_async(sc, run_newstate_cb, &cmd, sizeof cmd); return 0; } void run_newstate_cb(struct run_softc *sc, void *arg) { struct run_cmd_newstate *cmd = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; struct ieee80211_node *ni; uint32_t tmp, sta[3]; uint8_t wcid; int s; s = splnet(); ostate = ic->ic_state; if (ostate == IEEE80211_S_RUN) { /* turn link LED off */ run_set_leds(sc, RT2860_LED_RADIO); } switch (cmd->state) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ run_read(sc, RT2860_BCN_TIME_CFG, &tmp); run_write(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); } break; case IEEE80211_S_SCAN: run_set_chan(sc, ic->ic_bss->ni_chan); timeout_add_msec(&sc->scan_to, 200); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: run_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: run_set_chan(sc, ic->ic_bss->ni_chan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { run_updateslot(ic); run_enable_mrr(sc); run_set_txpreamble(sc); run_set_basicrates(sc); run_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_STA) { /* add BSS entry to the WCID table */ wcid = RUN_AID2WCID(ni->ni_associd); run_write_region_1(sc, RT2860_WCID_ENTRY(wcid), ni->ni_macaddr, IEEE80211_ADDR_LEN); /* fake a join to init the tx rate */ run_newassoc(ic, ni, 1); } if (ic->ic_opmode != IEEE80211_M_MONITOR) { run_enable_tsf_sync(sc); /* clear statistic registers used by AMRR */ run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); /* start calibration timer */ timeout_add_sec(&sc->calib_to, 1); } /* turn link LED on */ run_set_leds(sc, RT2860_LED_RADIO | (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ)); break; } (void)sc->sc_newstate(ic, cmd->state, cmd->arg); splx(s); } void run_updateedca(struct ieee80211com *ic) { /* do it in a process context */ run_do_async(ic->ic_softc, run_updateedca_cb, NULL, 0); } /* ARGSUSED */ void run_updateedca_cb(struct run_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_ic; int s, aci; s = splnet(); /* update MAC TX configuration registers */ for (aci = 0; aci < EDCA_NUM_AC; aci++) { run_write(sc, RT2860_EDCA_AC_CFG(aci), ic->ic_edca_ac[aci].ac_ecwmax << 16 | ic->ic_edca_ac[aci].ac_ecwmin << 12 | ic->ic_edca_ac[aci].ac_aifsn << 8 | ic->ic_edca_ac[aci].ac_txoplimit); } /* update SCH/DMA registers too */ run_write(sc, RT2860_WMM_AIFSN_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_aifsn << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_aifsn << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_aifsn << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_aifsn); run_write(sc, RT2860_WMM_CWMIN_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmin << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmin << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmin << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmin); run_write(sc, RT2860_WMM_CWMAX_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmax << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmax << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmax << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmax); run_write(sc, RT2860_WMM_TXOP0_CFG, ic->ic_edca_ac[EDCA_AC_BK].ac_txoplimit << 16 | ic->ic_edca_ac[EDCA_AC_BE].ac_txoplimit); run_write(sc, RT2860_WMM_TXOP1_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_txoplimit << 16 | ic->ic_edca_ac[EDCA_AC_VI].ac_txoplimit); splx(s); } int run_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct run_softc *sc = ic->ic_softc; struct run_cmd_key cmd; /* do it in a process context */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; run_do_async(sc, run_set_key_cb, &cmd, sizeof cmd); return 0; } void run_set_key_cb(struct run_softc *sc, void *arg) { struct run_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; uint32_t attr; uint16_t base; uint8_t mode, wcid, iv[8]; /* map net80211 cipher to RT2860 security mode */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: mode = RT2860_MODE_WEP40; break; case IEEE80211_CIPHER_WEP104: mode = RT2860_MODE_WEP104; break; case IEEE80211_CIPHER_TKIP: mode = RT2860_MODE_TKIP; break; case IEEE80211_CIPHER_CCMP: mode = RT2860_MODE_AES_CCMP; break; default: return; } if (k->k_flags & IEEE80211_KEY_GROUP) { wcid = 0; /* NB: update WCID0 for group keys */ base = RT2860_SKEY(0, k->k_id); } else { wcid = RUN_AID2WCID(cmd->associd); base = RT2860_PKEY(wcid); } if (k->k_cipher == IEEE80211_CIPHER_TKIP) { run_write_region_1(sc, base, k->k_key, 16); run_write_region_1(sc, base + 16, &k->k_key[24], 8); run_write_region_1(sc, base + 24, &k->k_key[16], 8); } else { /* roundup len to 16-bit: XXX fix write_region_1() instead */ run_write_region_1(sc, base, k->k_key, (k->k_len + 1) & ~1); } if (!(k->k_flags & IEEE80211_KEY_GROUP) || (k->k_flags & IEEE80211_KEY_TX)) { /* set initial packet number in IV+EIV */ if (k->k_cipher == IEEE80211_CIPHER_WEP40 || k->k_cipher == IEEE80211_CIPHER_WEP104) { memset(iv, 0, sizeof iv); iv[3] = sc->sc_ic.ic_def_txkey << 6; } else { if (k->k_cipher == IEEE80211_CIPHER_TKIP) { iv[0] = k->k_tsc >> 8; iv[1] = (iv[0] | 0x20) & 0x7f; iv[2] = k->k_tsc; } else /* CCMP */ { iv[0] = k->k_tsc; iv[1] = k->k_tsc >> 8; iv[2] = 0; } iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; iv[4] = k->k_tsc >> 16; iv[5] = k->k_tsc >> 24; iv[6] = k->k_tsc >> 32; iv[7] = k->k_tsc >> 40; } run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8); } if (k->k_flags & IEEE80211_KEY_GROUP) { /* install group key */ run_read(sc, RT2860_SKEY_MODE_0_7, &attr); attr &= ~(0xf << (k->k_id * 4)); attr |= mode << (k->k_id * 4); run_write(sc, RT2860_SKEY_MODE_0_7, attr); } else { /* install pairwise key */ run_read(sc, RT2860_WCID_ATTR(wcid), &attr); attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN; run_write(sc, RT2860_WCID_ATTR(wcid), attr); } } void run_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct run_softc *sc = ic->ic_softc; struct run_cmd_key cmd; if (!(ic->ic_if.if_flags & IFF_RUNNING) || ic->ic_state != IEEE80211_S_RUN) return; /* nothing to do */ /* do it in a process context */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; run_do_async(sc, run_delete_key_cb, &cmd, sizeof cmd); } void run_delete_key_cb(struct run_softc *sc, void *arg) { struct run_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; uint32_t attr; uint8_t wcid; if (k->k_flags & IEEE80211_KEY_GROUP) { /* remove group key */ run_read(sc, RT2860_SKEY_MODE_0_7, &attr); attr &= ~(0xf << (k->k_id * 4)); run_write(sc, RT2860_SKEY_MODE_0_7, attr); } else { /* remove pairwise key */ wcid = RUN_AID2WCID(cmd->associd); run_read(sc, RT2860_WCID_ATTR(wcid), &attr); attr &= ~0xf; run_write(sc, RT2860_WCID_ATTR(wcid), attr); } } void run_calibrate_to(void *arg) { /* do it in a process context */ run_do_async(arg, run_calibrate_cb, NULL, 0); /* next timeout will be rescheduled in the calibration task */ } /* ARGSUSED */ void run_calibrate_cb(struct run_softc *sc, void *arg) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t sta[3]; int s, error; /* read statistic counters (clear on read) and update AMRR state */ error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); if (error != 0) goto skip; DPRINTF(("retrycnt=%d txcnt=%d failcnt=%d\n", letoh32(sta[1]) >> 16, letoh32(sta[1]) & 0xffff, letoh32(sta[0]) & 0xffff)); s = splnet(); /* count failed TX as errors */ ifp->if_oerrors += letoh32(sta[0]) & 0xffff; sc->amn.amn_retrycnt = (letoh32(sta[0]) & 0xffff) + /* failed TX count */ (letoh32(sta[1]) >> 16); /* TX retransmission count */ sc->amn.amn_txcnt = sc->amn.amn_retrycnt + (letoh32(sta[1]) & 0xffff); /* successful TX count */ ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn); splx(s); skip: timeout_add_sec(&sc->calib_to, 1); } void run_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct run_softc *sc = ic->ic_softc; struct run_node *rn = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; uint8_t rate; int ridx, i, j; DPRINTF(("new assoc isnew=%d addr=%s\n", isnew, ether_sprintf(ni->ni_macaddr))); ieee80211_amrr_node_init(&sc->amrr, &sc->amn); /* start at lowest available bit-rate, AMRR will raise */ ni->ni_txrate = 0; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; /* convert 802.11 rate to hardware rate index */ for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; rn->ridx[i] = ridx; /* determine rate of control response frames */ for (j = i; j >= 0; j--) { if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) && rt2860_rates[rn->ridx[i]].phy == rt2860_rates[rn->ridx[j]].phy) break; } if (j >= 0) { rn->ctl_ridx[i] = rn->ridx[j]; } else { /* no basic rate found, use mandatory one */ rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx; } DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n", rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i])); } } /* * Return the Rx chain with the highest RSSI for a given frame. */ static __inline uint8_t run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi) { uint8_t rxchain = 0; if (sc->nrxchains > 1) { if (rxwi->rssi[1] > rxwi->rssi[rxchain]) rxchain = 1; if (sc->nrxchains > 2) if (rxwi->rssi[2] > rxwi->rssi[rxchain]) rxchain = 2; } return rxchain; } void run_rx_frame(struct run_softc *sc, uint8_t *buf, int dmalen) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct rt2870_rxd *rxd; struct rt2860_rxwi *rxwi; struct mbuf *m; uint32_t flags; uint16_t len, phy; uint8_t ant, rssi; int s; rxwi = (struct rt2860_rxwi *)buf; len = letoh16(rxwi->len) & 0xfff; if (__predict_false(len > dmalen)) { DPRINTF(("bad RXWI length %u > %u\n", len, dmalen)); return; } /* Rx descriptor is located at the end */ rxd = (struct rt2870_rxd *)(buf + dmalen); flags = letoh32(rxd->flags); if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) { ifp->if_ierrors++; return; } if (__predict_false((flags & RT2860_RX_MICERR))) { /* report MIC failures to net80211 for TKIP */ ic->ic_stats.is_rx_locmicfail++; ieee80211_michael_mic_failure(ic, 0/* XXX */); ifp->if_ierrors++; return; } wh = (struct ieee80211_frame *)(rxwi + 1); rxi.rxi_flags = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; rxi.rxi_flags |= IEEE80211_RXI_HWDEC; } if (rxd->flags & RT2860_RX_L2PAD) { u_int hdrlen = ieee80211_get_hdrlen(wh); ovbcopy(wh, (caddr_t)wh + 2, hdrlen); wh = (struct ieee80211_frame *)((caddr_t)wh + 2); } /* could use m_devget buf net80211 wants contig mgmt frames */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (__predict_false(m == NULL)) { ifp->if_ierrors++; return; } if (len > MHLEN) { MCLGET(m, M_DONTWAIT); if (__predict_false(!(m->m_flags & M_EXT))) { ifp->if_ierrors++; m_freem(m); return; } } /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; memcpy(mtod(m, caddr_t), wh, len); m->m_pkthdr.len = m->m_len = len; ant = run_maxrssi_chain(sc, rxwi); rssi = rxwi->rssi[ant]; #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct run_rx_radiotap_header *tap = &sc->sc_rxtap; struct mbuf mb; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antsignal = rssi; tap->wr_antenna = ant; tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant); tap->wr_rate = 2; /* in case it can't be found below */ phy = letoh16(rxwi->phy); switch (phy & RT2860_PHY_MODE) { case RT2860_PHY_CCK: switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) { case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; } if (phy & RT2860_PHY_SHPRE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case RT2860_PHY_OFDM: switch (phy & RT2860_PHY_MCS) { case 0: tap->wr_rate = 12; break; case 1: tap->wr_rate = 18; break; case 2: tap->wr_rate = 24; break; case 3: tap->wr_rate = 36; break; case 4: tap->wr_rate = 48; break; case 5: tap->wr_rate = 72; break; case 6: tap->wr_rate = 96; break; case 7: tap->wr_rate = 108; break; } break; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif s = splnet(); ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_rssi = rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* node is no longer needed */ ieee80211_release_node(ic, ni); splx(s); } void run_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct run_rx_data *data = priv; struct run_softc *sc = data->sc; uint8_t *buf; uint32_t dmalen; int xferlen; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("RX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->rxq.pipeh); if (status != USBD_CANCELLED) goto skip; return; } usbd_get_xfer_status(xfer, NULL, NULL, &xferlen, NULL); if (__predict_false(xferlen < sizeof (uint32_t) + sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd))) { DPRINTF(("xfer too short %d\n", xferlen)); goto skip; } /* HW can aggregate multiple 802.11 frames in a single USB xfer */ /* NB: can't happen yet because we disable USB RX aggregation */ buf = data->buf; while (xferlen > 8) { dmalen = letoh32(*(uint32_t *)buf) & 0xffff; if (__predict_false(dmalen == 0 || (dmalen & 3) != 0)) { DPRINTF(("bad DMA length %u (%x)\n", dmalen)); break; } if (__predict_false(dmalen + 8 > xferlen)) { DPRINTF(("bad DMA length %u > %d\n", dmalen + 8, xferlen)); break; } run_rx_frame(sc, buf + sizeof (uint32_t), dmalen); buf += dmalen + 8; xferlen -= dmalen + 8; } skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->rxq.pipeh, data, data->buf, RUN_MAX_RXSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, run_rxeof); (void)usbd_transfer(data->xfer); } void run_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct run_tx_data *data = priv; struct run_softc *sc = data->sc; struct run_tx_ring *txq = &sc->txq[data->qid]; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("TX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(txq->pipeh); ifp->if_oerrors++; return; } s = splnet(); sc->sc_tx_timer = 0; ifp->if_opackets++; if (--txq->queued < RUN_TX_RING_COUNT) { sc->qfullmsk &= ~(1 << data->qid); ifp->if_flags &= ~IFF_OACTIVE; run_start(ifp); } splx(s); } int run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct run_node *rn = (void *)ni; struct ieee80211_frame *wh; struct run_tx_ring *ring; struct run_tx_data *data; struct rt2870_txd *txd; struct rt2860_txwi *txwi; u_int hdrlen; uint16_t qos, dur; uint8_t type, mcs, tid, qid; int error, hasqos, ridx, ctl_ridx, xferlen; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = ieee80211_up_to_ac(ic, tid); } else { tid = 0; qid = EDCA_AC_BE; } ring = &sc->txq[qid]; data = &ring->data[ring->cur]; /* pickup a rate index */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else if (ic->ic_fixed_rate != -1) { ridx = sc->fixed_ridx; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else { ridx = rn->ridx[ni->ni_txrate]; ctl_ridx = rn->ctl_ridx[ni->ni_txrate]; } /* get MCS code from rate index */ mcs = rt2860_rates[ridx].mcs; xferlen = sizeof (*txwi) + m->m_pkthdr.len; /* roundup to 32-bit alignment */ xferlen = (xferlen + 3) & ~3; txd = (struct rt2870_txd *)data->buf; txd->flags = RT2860_TX_QSEL_EDCA; txd->len = htole16(xferlen); /* setup TX Wireless Information */ txwi = (struct rt2860_txwi *)(txd + 1); txwi->flags = 0; txwi->xflags = 0; txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ? RUN_AID2WCID(ni->ni_associd) : 0xff; txwi->len = htole16(m->m_pkthdr.len); if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { txwi->phy = htole16(RT2860_PHY_CCK); if (ridx != RT2860_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) mcs |= RT2860_PHY_SHPRE; } else txwi->phy = htole16(RT2860_PHY_OFDM); txwi->phy |= htole16(mcs); txwi->txop = RT2860_TX_TXOP_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) != IEEE80211_QOS_ACK_POLICY_NOACK)) { txwi->xflags |= RT2860_TX_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) dur = rt2860_rates[ctl_ridx].sp_ack_dur; else dur = rt2860_rates[ctl_ridx].lp_ack_dur; *(uint16_t *)wh->i_dur = htole16(dur + sc->sifs); } #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct run_tx_radiotap_header *tap = &sc->sc_txtap; struct mbuf mb; tap->wt_flags = 0; tap->wt_rate = rt2860_rates[ridx].rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wt_hwqueue = qid; if (mcs & RT2860_PHY_SHPRE) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)(txwi + 1)); m_freem(m); ieee80211_release_node(ic, ni); xferlen += sizeof (*txd) + 4; if ((xferlen % ring->pktsize) == 0) xferlen += 4; usbd_setup_xfer(data->xfer, ring->pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUN_TX_TIMEOUT, run_txeof); error = usbd_transfer(data->xfer); if (__predict_false(error != USBD_IN_PROGRESS && error != 0)) return error; ring->cur = (ring->cur + 1) % RUN_TX_RING_COUNT; if (++ring->queued >= RUN_TX_RING_COUNT) sc->qfullmsk |= 1 << qid; return 0; } void run_start(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { if (sc->qfullmsk != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* send pending management frames first */ IF_DEQUEUE(&ic->ic_mgtq, m); if (m != NULL) { ni = (void *)m->m_pkthdr.rcvif; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; /* encapsulate and send data frames */ IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) continue; sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (run_tx(sc, m, ni) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void run_watchdog(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); /* run_init(ifp); XXX needs a process context! */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) run_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) run_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) run_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) run_init(ifp); error = 0; } splx(s); return error; } void run_select_chan_group(struct run_softc *sc, int group) { uint32_t tmp; run_bbp_write(sc, 62, 0x37 - sc->lna[group]); run_bbp_write(sc, 63, 0x37 - sc->lna[group]); run_bbp_write(sc, 64, 0x37 - sc->lna[group]); run_bbp_write(sc, 86, 0x00); if (group == 0) { if (sc->ext_2ghz_lna) { run_bbp_write(sc, 82, 0x62); run_bbp_write(sc, 75, 0x46); } else { run_bbp_write(sc, 82, 0x84); run_bbp_write(sc, 75, 0x50); } } else { if (sc->ext_5ghz_lna) { run_bbp_write(sc, 82, 0xf2); run_bbp_write(sc, 75, 0x46); } else { run_bbp_write(sc, 82, 0xf2); run_bbp_write(sc, 75, 0x50); } } run_read(sc, RT2860_TX_BAND_CFG, &tmp); tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P); tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P; run_write(sc, RT2860_TX_BAND_CFG, tmp); /* enable appropriate Power Amplifiers and Low Noise Amplifiers */ tmp = RT2860_RFTR_EN | RT2860_TRSW_EN; if (group == 0) { /* 2GHz */ tmp |= RT2860_PA_PE_G0_EN | RT2860_LNA_PE_G0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_G1_EN; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE_G1_EN; } else { /* 5GHz */ tmp |= RT2860_PA_PE_A0_EN | RT2860_LNA_PE_A0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_A1_EN; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE_A1_EN; } run_write(sc, RT2860_TX_PIN_CFG, tmp); /* set initial AGC value */ if (group == 0) run_bbp_write(sc, 66, 0x2e + sc->lna[0]); else run_bbp_write(sc, 66, 0x32 + (sc->lna[group] * 5) / 3); } void run_rt2870_set_chan(struct run_softc *sc, u_int chan) { const struct rfprog *rfprog = rt2860_rf2850; uint32_t r2, r3, r4; int8_t txpow1, txpow2; int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); r2 = rfprog[i].r2; if (sc->ntxchains == 1) r2 |= 1 << 12; /* 1T: disable Tx chain 2 */ if (sc->nrxchains == 1) r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) r2 |= 1 << 4; /* 2R: disable Rx chain 3 */ /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; if (chan > 14) { if (txpow1 >= 0) txpow1 = txpow1 << 1; else txpow1 = (7 + txpow1) << 1 | 1; if (txpow2 >= 0) txpow2 = txpow2 << 1; else txpow2 = (7 + txpow2) << 1 | 1; } r3 = rfprog[i].r3 | txpow1 << 7; r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4; run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); run_rt2870_rf_write(sc, RT2860_RF2, r2); run_rt2870_rf_write(sc, RT2860_RF3, r3); run_rt2870_rf_write(sc, RT2860_RF4, r4); DELAY(200); run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); run_rt2870_rf_write(sc, RT2860_RF2, r2); run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1); run_rt2870_rf_write(sc, RT2860_RF4, r4); DELAY(200); run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); run_rt2870_rf_write(sc, RT2860_RF2, r2); run_rt2870_rf_write(sc, RT2860_RF3, r3); run_rt2870_rf_write(sc, RT2860_RF4, r4); } void run_rt3070_set_chan(struct run_softc *sc, u_int chan) { int8_t txpow1, txpow2; uint8_t rf; KASSERT(chan >= 1 && chan <= 14); /* RT3070 is 2GHz only */ /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[chan - 1]; txpow2 = sc->txpow2[chan - 1]; run_rt3070_rf_write(sc, 2, run_rf3020_freqs[chan - 1].n); run_rt3070_rf_write(sc, 3, run_rf3020_freqs[chan - 1].k); run_rt3070_rf_read(sc, 6, &rf); rf = (rf & ~0x03) | run_rf3020_freqs[chan - 1].r; run_rt3070_rf_write(sc, 6, rf); /* set Tx0 power */ run_rt3070_rf_read(sc, 12, &rf); rf = (rf & ~0x1f) | txpow1; run_rt3070_rf_write(sc, 12, rf); /* set Tx1 power */ run_rt3070_rf_read(sc, 13, &rf); rf = (rf & ~0x1f) | txpow2; run_rt3070_rf_write(sc, 13, rf); run_rt3070_rf_read(sc, 1, &rf); rf &= ~0xfc; if (sc->ntxchains == 1) rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ else if (sc->ntxchains == 2) rf |= 1 << 7; /* 2T: disable Tx chain 3 */ if (sc->nrxchains == 1) rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) rf |= 1 << 6; /* 2R: disable Rx chain 3 */ run_rt3070_rf_write(sc, 1, rf); /* set RF offset */ run_rt3070_rf_read(sc, 23, &rf); rf = (rf & ~0x7f) | sc->freq; run_rt3070_rf_write(sc, 23, rf); /* program RF filter */ run_rt3070_rf_write(sc, 24, sc->rf24_20mhz); run_rt3070_rf_write(sc, 31, sc->rf24_20mhz); /* enable RF tuning */ run_rt3070_rf_read(sc, 7, &rf); run_rt3070_rf_write(sc, 7, rf | 0x01); } void run_set_rx_antenna(struct run_softc *sc, int aux) { uint32_t tmp; if (aux) { run_read(sc, RT2860_PCI_EECTRL, &tmp); run_write(sc, RT2860_PCI_EECTRL, tmp & ~RT2860_C); run_read(sc, RT2860_GPIO_CTRL, &tmp); run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08); } else { run_read(sc, RT2860_PCI_EECTRL, &tmp); run_write(sc, RT2860_PCI_EECTRL, tmp | RT2860_C); run_read(sc, RT2860_GPIO_CTRL, &tmp); run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808); } } int run_set_chan(struct run_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; u_int chan, group; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return EINVAL; if ((sc->mac_rev >> 16) >= 0x3070) run_rt3070_set_chan(sc, chan); else run_rt2870_set_chan(sc, chan); /* 802.11a uses a 16 microseconds short interframe space */ sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; /* determine channel group */ if (chan <= 14) group = 0; else if (chan <= 64) group = 1; else if (chan <= 128) group = 2; else group = 3; /* XXX necessary only when group has changed! */ run_select_chan_group(sc, group); DELAY(1000); return 0; } void run_enable_tsf_sync(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; run_read(sc, RT2860_BCN_TIME_CFG, &tmp); tmp &= ~0x1fffff; tmp |= ic->ic_bss->ni_intval * 16; tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN; /* local TSF is always updated with remote TSF on beacon reception */ tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT; run_write(sc, RT2860_BCN_TIME_CFG, tmp); } void run_enable_mrr(struct run_softc *sc) { #define CCK(mcs) (mcs) #define OFDM(mcs) (1 << 3 | (mcs)) run_write(sc, RT2860_LG_FBK_CFG0, OFDM(6) << 28 | /* 54->48 */ OFDM(5) << 24 | /* 48->36 */ OFDM(4) << 20 | /* 36->24 */ OFDM(3) << 16 | /* 24->18 */ OFDM(2) << 12 | /* 18->12 */ OFDM(1) << 8 | /* 12-> 9 */ OFDM(0) << 4 | /* 9-> 6 */ OFDM(0)); /* 6-> 6 */ run_write(sc, RT2860_LG_FBK_CFG1, CCK(2) << 12 | /* 11->5.5 */ CCK(1) << 8 | /* 5.5-> 2 */ CCK(0) << 4 | /* 2-> 1 */ CCK(0)); /* 1-> 1 */ #undef OFDM #undef CCK } void run_set_txpreamble(struct run_softc *sc) { uint32_t tmp; run_read(sc, RT2860_AUTO_RSP_CFG, &tmp); if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2860_CCK_SHORT_EN; else tmp &= ~RT2860_CCK_SHORT_EN; run_write(sc, RT2860_AUTO_RSP_CFG, tmp); } void run_set_basicrates(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* set basic rates mask */ if (ic->ic_curmode == IEEE80211_MODE_11B) run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003); else if (ic->ic_curmode == IEEE80211_MODE_11A) run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150); else /* 11g */ run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f); } void run_set_leds(struct run_softc *sc, uint16_t which) { (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS, which | (sc->leds & 0x7f)); } void run_set_bssid(struct run_softc *sc, const uint8_t *bssid) { run_write(sc, RT2860_MAC_BSSID_DW0, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); run_write(sc, RT2860_MAC_BSSID_DW1, bssid[4] | bssid[5] << 8); } void run_set_macaddr(struct run_softc *sc, const uint8_t *addr) { run_write(sc, RT2860_MAC_ADDR_DW0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); run_write(sc, RT2860_MAC_ADDR_DW1, addr[4] | addr[5] << 8); } void run_updateslot(struct ieee80211com *ic) { /* do it in a process context */ run_do_async(ic->ic_softc, run_updateslot_cb, NULL, 0); } /* ARGSUSED */ void run_updateslot_cb(struct run_softc *sc, void *arg) { uint32_t tmp; run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp); tmp &= ~0xff; tmp |= (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp); } #if NBPFILTER > 0 int8_t run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c = ic->ic_ibss_chan; int delta; if (IEEE80211_IS_CHAN_5GHZ(c)) { u_int chan = ieee80211_chan2ieee(ic, c); delta = sc->rssi_5ghz[rxchain]; /* determine channel group */ if (chan <= 64) delta -= sc->lna[1]; else if (chan <= 128) delta -= sc->lna[2]; else delta -= sc->lna[3]; } else delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; return -12 - delta - rssi; } #endif int run_bbp_init(struct run_softc *sc) { int i, error, ntries; uint8_t bbp0; /* wait for BBP to wake up */ for (ntries = 0; ntries < 20; ntries++) { if ((error = run_bbp_read(sc, 0, &bbp0)) != 0) return error; if (bbp0 != 0 && bbp0 != 0xff) break; } if (ntries == 20) return ETIMEDOUT; /* initialize BBP registers to default values */ for (i = 0; i < nitems(rt2860_def_bbp); i++) { run_bbp_write(sc, rt2860_def_bbp[i].reg, rt2860_def_bbp[i].val); } /* fix BBP84 for RT2860E */ if ((sc->mac_rev >> 16) == 0x2860 && (sc->mac_rev & 0xffff) != 0x0101) run_bbp_write(sc, 84, 0x19); if ((sc->mac_rev >> 16) >= 0x3070) { run_bbp_write(sc, 79, 0x13); run_bbp_write(sc, 80, 0x05); run_bbp_write(sc, 81, 0x33); /* XXX RT3090 needs more */ } else if (sc->mac_rev == 0x28600100) { run_bbp_write(sc, 69, 0x16); run_bbp_write(sc, 73, 0x12); } return 0; } int run_rt3070_rf_init(struct run_softc *sc) { uint32_t tmp; uint8_t rf, bbp4; int i; run_rt3070_rf_read(sc, 30, &rf); /* toggle RF R30 bit 7 */ run_rt3070_rf_write(sc, 30, rf | 0x80); DELAY(1000); run_rt3070_rf_write(sc, 30, rf & ~0x80); /* initialize RF registers to default value */ for (i = 0; i < nitems(rt3070_def_rf); i++) { run_rt3070_rf_write(sc, rt3070_def_rf[i].reg, rt3070_def_rf[i].val); } if ((sc->mac_rev >> 16) == 0x3070) { /* change voltage from 1.2V to 1.35V for RT3070 */ run_read(sc, RT3070_LDO_CFG0, &tmp); tmp = (tmp & ~0x0f000000) | 0x0d000000; run_write(sc, RT3070_LDO_CFG0, tmp); } else if ((sc->mac_rev >> 16) == 0x3071) { run_rt3070_rf_read(sc, 6, &rf); run_rt3070_rf_write(sc, 6, rf | 0x40); run_rt3070_rf_write(sc, 31, 0x14); run_read(sc, RT3070_LDO_CFG0, &tmp); tmp &= ~0x1f000000; if ((sc->mac_rev & 0xffff) < 0x0211) tmp |= 0x0d000000; else tmp |= 0x01000000; run_write(sc, RT3070_LDO_CFG0, tmp); /* patch LNA_PE_G1 */ run_read(sc, RT3070_GPIO_SWITCH, &tmp); run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20); } /* select 20MHz bandwidth */ run_rt3070_rf_read(sc, 31, &rf); run_rt3070_rf_write(sc, 31, rf & ~0x20); /* calibrate filter for 20MHz bandwidth */ sc->rf24_20mhz = 0x1f; /* default value */ run_rt3070_filter_calib(sc, 0x07, 0x16, &sc->rf24_20mhz); /* select 40MHz bandwidth */ run_bbp_read(sc, 4, &bbp4); run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10); /* calibrate filter for 40MHz bandwidth */ sc->rf24_40mhz = 0x2f; /* default value */ run_rt3070_filter_calib(sc, 0x27, 0x19, &sc->rf24_40mhz); /* go back to 20MHz bandwidth */ run_bbp_read(sc, 4, &bbp4); run_bbp_write(sc, 4, bbp4 & ~0x18); if ((sc->mac_rev & 0xffff) < 0x0211) run_rt3070_rf_write(sc, 27, 0x03); run_read(sc, RT3070_OPT_14, &tmp); run_write(sc, RT3070_OPT_14, tmp | 1); if ((sc->mac_rev >> 16) == 0x3071) { run_rt3070_rf_read(sc, 1, &rf); rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD); rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD; run_rt3070_rf_write(sc, 1, rf); run_rt3070_rf_read(sc, 15, &rf); run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2); run_rt3070_rf_read(sc, 17, &rf); rf &= ~RT3070_TX_LO1; if ((sc->mac_rev & 0xffff) >= 0x0211 && !sc->ext_2ghz_lna) rf |= 0x20; /* fix for long range Rx issue */ run_rt3070_rf_write(sc, 17, rf); run_rt3070_rf_read(sc, 20, &rf); run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1); run_rt3070_rf_read(sc, 21, &rf); run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2); run_rt3070_rf_read(sc, 27, &rf); rf &= ~0x77; if ((sc->mac_rev & 0xffff) < 0x0211) rf |= 0x03; run_rt3070_rf_write(sc, 27, rf); } return 0; } int run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target, uint8_t *val) { uint8_t rf22, rf24; uint8_t bbp55_pb, bbp55_sb, delta; int ntries; /* program filter */ rf24 = init; /* initial filter value */ run_rt3070_rf_write(sc, 24, rf24); /* enable baseband loopback mode */ run_rt3070_rf_read(sc, 22, &rf22); run_rt3070_rf_write(sc, 22, rf22 | 0x01); /* set power and frequency of passband test tone */ run_bbp_write(sc, 24, 0x00); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ run_bbp_write(sc, 25, 0x90); DELAY(1000); /* read received power */ run_bbp_read(sc, 55, &bbp55_pb); if (bbp55_pb != 0) break; } if (ntries == 100) return ETIMEDOUT; /* set power and frequency of stopband test tone */ run_bbp_write(sc, 24, 0x06); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ run_bbp_write(sc, 25, 0x90); DELAY(1000); /* read received power */ run_bbp_read(sc, 55, &bbp55_sb); delta = bbp55_pb - bbp55_sb; if (delta > target) break; /* reprogram filter */ rf24++; run_rt3070_rf_write(sc, 24, rf24); } if (ntries < 100) { if (rf24 != init) rf24--; /* backtrack */ *val = rf24; run_rt3070_rf_write(sc, 24, rf24); } /* restore initial state */ run_bbp_write(sc, 24, 0x00); /* disable baseband loopback mode */ run_rt3070_rf_read(sc, 22, &rf22); run_rt3070_rf_write(sc, 22, rf22 & ~0x01); return 0; } int run_txrx_enable(struct run_softc *sc) { uint32_t tmp; int error, ntries; run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN); for (ntries = 0; ntries < 200; ntries++) { if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0) return error; if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 200) return ETIMEDOUT; DELAY(50); tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE; run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN; #ifdef notyet /* enable bulk aggregation */ tmp |= RT2860_USB_RX_AGG_EN | 0x80 << RT2860_USB_RX_AGG_TO_SHIFT | ((RUN_MAX_RXSZ / 1024) - 3) << RT2860_USB_RX_AGG_LMT_SHIFT; #endif run_write(sc, RT2860_USB_DMA_CFG, tmp); /* set Rx filter */ tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR; if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL | RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK | RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV | RT2860_DROP_CFACK | RT2860_DROP_CFEND; if (sc->sc_ic.ic_opmode == IEEE80211_M_STA) tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL; } run_write(sc, RT2860_RX_FILTR_CFG, tmp); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); return 0; } int run_init(struct ifnet *ifp) { struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; uint8_t bbp1, bbp3; int i, error, qid, ridx, ntries; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT2860_ASIC_VER_ID, &tmp)) != 0) goto fail; if (tmp != 0 && tmp != 0xffffffff) break; DELAY(10); } if (ntries == 100) { error = ETIMEDOUT; goto fail; } if ((error = run_load_microcode(sc)) != 0) { printf("%s: could not load 8051 microcode\n", sc->sc_dev.dv_xname); goto fail; } /* init host command ring */ sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0; /* init Tx rings (4 EDCAs + HCCA + Prio) */ for (qid = 0; qid < 6; qid++) { if ((error = run_alloc_tx_ring(sc, qid)) != 0) goto fail; } /* init Rx ring */ if ((error = run_alloc_rx_ring(sc)) != 0) goto fail; IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); run_set_macaddr(sc, ic->ic_myaddr); for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0) goto fail; if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for DMA engine\n", sc->sc_dev.dv_xname); error = ETIMEDOUT; goto fail; } tmp &= 0xff0; tmp |= RT2860_TX_WB_DDONE; run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); /* turn off PME_OEN to solve high-current issue */ run_read(sc, RT2860_SYS_CTRL, &tmp); run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); run_write(sc, RT2860_USB_DMA_CFG, 0); if ((error = run_reset(sc)) != 0) { printf("%s: could not reset chipset\n", sc->sc_dev.dv_xname); goto fail; } run_write(sc, RT2860_MAC_SYS_CTRL, 0); /* init Tx power for all Tx rates (from EEPROM) */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); } for (i = 0; i < nitems(rt2870_def_mac); i++) run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val); run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273); run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344); run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa); if ((sc->mac_rev >> 16) >= 0x3070) { /* set delay of PA_PE assertion to 1us (unit of 0.25us) */ run_write(sc, RT2860_TX_SW_CFG0, 4 << RT2860_DLY_PAPE_EN_SHIFT); run_write(sc, RT2860_TX_SW_CFG1, 0); run_write(sc, RT2860_TX_SW_CFG2, 0x1f); } /* wait while MAC is busy */ for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT2860_MAC_STATUS_REG, &tmp)) != 0) goto fail; if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY))) break; DELAY(1000); } if (ntries == 100) { error = ETIMEDOUT; goto fail; } /* clear Host to MCU mailbox */ run_write(sc, RT2860_H2M_BBPAGENT, 0); run_write(sc, RT2860_H2M_MAILBOX, 0); DELAY(1000); if ((error = run_bbp_init(sc)) != 0) { printf("%s: could not initialize BBP\n", sc->sc_dev.dv_xname); goto fail; } run_read(sc, RT2860_BCN_TIME_CFG, &tmp); tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN); run_write(sc, RT2860_BCN_TIME_CFG, tmp); /* clear RX WCID search table */ run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512); /* clear WCID attribute table */ run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32); /* clear shared key table */ run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32); /* clear shared key mode */ run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4); run_read(sc, RT2860_US_CYC_CNT, &tmp); tmp = (tmp & ~0xff) | 0x1e; run_write(sc, RT2860_US_CYC_CNT, tmp); if ((sc->mac_rev >> 16) == 0x2860 && (sc->mac_rev & 0xffff) != 0x0101) run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f); run_write(sc, RT2860_WMM_TXOP0_CFG, 0); run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 8; i++) { if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff) continue; run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val); } /* select Main antenna for 1T1R devices */ if (sc->rf_rev == RT3070_RF_3020) run_set_rx_antenna(sc, 0); /* send LEDs operating mode to microcontroller */ (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]); (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]); (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]); /* disable non-existing Rx chains */ run_bbp_read(sc, 3, &bbp3); bbp3 &= ~(1 << 3 | 1 << 4); if (sc->nrxchains == 2) bbp3 |= 1 << 3; else if (sc->nrxchains == 3) bbp3 |= 1 << 4; run_bbp_write(sc, 3, bbp3); /* disable non-existing Tx chains */ run_bbp_read(sc, 1, &bbp1); if (sc->ntxchains == 1) bbp1 &= ~(1 << 3 | 1 << 4); run_bbp_write(sc, 1, bbp1); if ((sc->mac_rev >> 16) >= 0x3070) run_rt3070_rf_init(sc); /* select default channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; run_set_chan(sc, ic->ic_ibss_chan); /* turn radio LED on */ run_set_leds(sc, RT2860_LED_RADIO); if (ic->ic_flags & IEEE80211_F_WEPON) { /* install WEP keys */ for (i = 0; i < IEEE80211_WEP_NKID; i++) (void)run_set_key(ic, NULL, &ic->ic_nw_keys[i]); } for (i = 0; i < RUN_RX_RING_COUNT; i++) { struct run_rx_data *data = &sc->rxq.data[i]; usbd_setup_xfer(data->xfer, sc->rxq.pipeh, data, data->buf, RUN_MAX_RXSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, run_rxeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) goto fail; } if ((error = run_txrx_enable(sc)) != 0) goto fail; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); if (error != 0) fail: run_stop(ifp, 1); return error; } void run_stop(struct ifnet *ifp, int disable) { struct run_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int s, ntries, qid; if (ifp->if_flags & IFF_RUNNING) run_set_leds(sc, 0); /* turn all LEDs off */ sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); timeout_del(&sc->scan_to); timeout_del(&sc->calib_to); s = splusb(); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* wait for all queued asynchronous commands to complete */ while (sc->cmdq.queued > 0) tsleep(&sc->cmdq, 0, "cmdq", 0); splx(s); /* disable Tx/Rx */ run_read(sc, RT2860_MAC_SYS_CTRL, &tmp); tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); run_write(sc, RT2860_MAC_SYS_CTRL, tmp); /* wait for pending Tx to complete */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) break; if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) break; } DELAY(1000); run_write(sc, RT2860_USB_DMA_CFG, 0); /* reset adapter */ run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); run_write(sc, RT2860_MAC_SYS_CTRL, 0); /* reset Tx and Rx rings */ sc->qfullmsk = 0; for (qid = 0; qid < 6; qid++) run_free_tx_ring(sc, qid); run_free_rx_ring(sc); }