/* $OpenBSD: if_smsc.c,v 1.34 2020/04/08 09:49:32 kettenis Exp $ */ /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */ /*- * Copyright (c) 2012 * Ben Gray . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * SMSC LAN9xxx devices (http://www.smsc.com/) * * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that * support USB 2.0 and 10/100 Mbps Ethernet. * * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter. * The driver only covers the Ethernet part, the standard USB hub driver * supports the hub part. * * This driver is closely modelled on the Linux driver written and copyrighted * by SMSC. * * H/W TCP & UDP Checksum Offloading * --------------------------------- * The chip supports both tx and rx offloading of UDP & TCP checksums, this * feature can be dynamically enabled/disabled. * * RX checksuming is performed across bytes after the IPv4 header to the end of * the Ethernet frame, this means if the frame is padded with non-zero values * the H/W checksum will be incorrect, however the rx code compensates for this. * * TX checksuming is more complicated, the device requires a special header to * be prefixed onto the start of the frame which indicates the start and end * positions of the UDP or TCP frame. This requires the driver to manually * go through the packet data and decode the headers prior to sending. * On Linux they generally provide cues to the location of the csum and the * area to calculate it over, on FreeBSD we seem to have to do it all ourselves, * hence this is not as optimal and therefore h/w tX checksum is currently not * implemented. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include "if_smscreg.h" /* * Various supported device vendors/products. */ static const struct usb_devno smsc_devs[] = { { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_LAN89530 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_LAN9530 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_LAN9730 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9500 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9500A }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9500A_ALT }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9500A_HAL }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9500A_SAL10 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9500_ALT }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9500_SAL10 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9505 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9505A }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9505A_HAL }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9505A_SAL10 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9505_SAL10 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9512_14 }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9512_14_ALT }, { USB_VENDOR_SMC2, USB_PRODUCT_SMC2_SMSC9512_14_SAL10 } }; #ifdef SMSC_DEBUG static int smsc_debug = 0; #define smsc_dbg_printf(sc, fmt, args...) \ do { \ if (smsc_debug > 0) \ printf("debug: " fmt, ##args); \ } while(0) #else #define smsc_dbg_printf(sc, fmt, args...) #endif #define smsc_warn_printf(sc, fmt, args...) \ printf("%s: warning: " fmt, (sc)->sc_dev.dv_xname, ##args) #define smsc_err_printf(sc, fmt, args...) \ printf("%s: error: " fmt, (sc)->sc_dev.dv_xname, ##args) int smsc_chip_init(struct smsc_softc *sc); int smsc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); void smsc_iff(struct smsc_softc *); int smsc_setmacaddress(struct smsc_softc *, const uint8_t *); int smsc_match(struct device *, void *, void *); void smsc_attach(struct device *, struct device *, void *); int smsc_detach(struct device *, int); void smsc_init(void *); void smsc_stop(struct smsc_softc *); void smsc_start(struct ifnet *); void smsc_reset(struct smsc_softc *); void smsc_tick(void *); void smsc_tick_task(void *); void smsc_miibus_statchg(struct device *); int smsc_miibus_readreg(struct device *, int, int); void smsc_miibus_writereg(struct device *, int, int, int); int smsc_ifmedia_upd(struct ifnet *); void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *); void smsc_lock_mii(struct smsc_softc *sc); void smsc_unlock_mii(struct smsc_softc *sc); int smsc_tx_list_init(struct smsc_softc *); int smsc_rx_list_init(struct smsc_softc *); int smsc_encap(struct smsc_softc *, struct mbuf *, int); void smsc_rxeof(struct usbd_xfer *, void *, usbd_status); void smsc_txeof(struct usbd_xfer *, void *, usbd_status); int smsc_read_reg(struct smsc_softc *, uint32_t, uint32_t *); int smsc_write_reg(struct smsc_softc *, uint32_t, uint32_t); int smsc_wait_for_bits(struct smsc_softc *, uint32_t, uint32_t); int smsc_sethwcsum(struct smsc_softc *); struct cfdriver smsc_cd = { NULL, "smsc", DV_IFNET }; const struct cfattach smsc_ca = { sizeof(struct smsc_softc), smsc_match, smsc_attach, smsc_detach, }; #if defined(__arm__) || defined(__arm64__) #include void smsc_enaddr_OF(struct smsc_softc *sc) { char *device = "/axi/usb/hub/ethernet"; char prop[128]; int node; if (sc->sc_dev.dv_unit != 0) return; /* * Get the Raspberry Pi MAC address from FDT. This is all * much more complicated than strictly needed since the * firmware device tree keeps changing as drivers get * upstreamed. Sigh. * * Ultimately this should just use the "ethernet0" alias and * the "local-mac-address" property. */ if ((node = OF_finddevice("/aliases")) == -1) return; if (OF_getprop(node, "ethernet0", prop, sizeof(prop)) > 0 || OF_getprop(node, "ethernet", prop, sizeof(prop)) > 0) device = prop; if ((node = OF_finddevice(device)) == -1) return; if (OF_getprop(node, "local-mac-address", sc->sc_ac.ac_enaddr, sizeof(sc->sc_ac.ac_enaddr)) != sizeof(sc->sc_ac.ac_enaddr)) { OF_getprop(node, "mac-address", sc->sc_ac.ac_enaddr, sizeof(sc->sc_ac.ac_enaddr)); } } #else #define smsc_enaddr_OF(x) do {} while(0) #endif int smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data) { usb_device_request_t req; uint32_t buf; usbd_status err; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = SMSC_UR_READ_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = usbd_do_request(sc->sc_udev, &req, &buf); if (err != 0) smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off); *data = letoh32(buf); return (err); } int smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data) { usb_device_request_t req; uint32_t buf; usbd_status err; buf = htole32(data); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = SMSC_UR_WRITE_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = usbd_do_request(sc->sc_udev, &req, &buf); if (err != 0) smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off); return (err); } int smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits) { uint32_t val; int err, i; for (i = 0; i < 100; i++) { if ((err = smsc_read_reg(sc, reg, &val)) != 0) return (err); if (!(val & bits)) return (0); DELAY(5); } return (1); } int smsc_miibus_readreg(struct device *dev, int phy, int reg) { struct smsc_softc *sc = (struct smsc_softc *)dev; uint32_t addr; uint32_t val = 0; smsc_lock_mii(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(sc, "MII is busy\n"); goto done; } addr = (phy << 11) | (reg << 6) | SMSC_MII_READ; smsc_write_reg(sc, SMSC_MII_ADDR, addr); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) smsc_warn_printf(sc, "MII read timeout\n"); smsc_read_reg(sc, SMSC_MII_DATA, &val); done: smsc_unlock_mii(sc); return (val & 0xFFFF); } void smsc_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct smsc_softc *sc = (struct smsc_softc *)dev; uint32_t addr; if (sc->sc_phyno != phy) return; smsc_lock_mii(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(sc, "MII is busy\n"); smsc_unlock_mii(sc); return; } smsc_write_reg(sc, SMSC_MII_DATA, val); addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE; smsc_write_reg(sc, SMSC_MII_ADDR, addr); smsc_unlock_mii(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) smsc_warn_printf(sc, "MII write timeout\n"); } void smsc_miibus_statchg(struct device *dev) { struct smsc_softc *sc = (struct smsc_softc *)dev; struct mii_data *mii = &sc->sc_mii; struct ifnet *ifp = &sc->sc_ac.ac_if; int err; uint32_t flow; uint32_t afc_cfg; if (mii == NULL || ifp == NULL || (ifp->if_flags & IFF_RUNNING) == 0) return; /* Use the MII status to determine link status */ sc->sc_flags &= ~SMSC_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->sc_flags |= SMSC_FLAG_LINK; break; case IFM_1000_T: /* Gigabit ethernet not supported by chipset */ break; default: break; } } /* Lost link, do nothing. */ if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) { smsc_dbg_printf(sc, "link flag not set\n"); return; } err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg); if (err) { smsc_warn_printf(sc, "failed to read initial AFC_CFG, " "error %d\n", err); return; } /* Enable/disable full duplex operation and TX/RX pause */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { smsc_dbg_printf(sc, "full duplex operation\n"); sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN; sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) flow = 0xffff0002; else flow = 0; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) afc_cfg |= 0xf; else afc_cfg &= ~0xf; } else { smsc_dbg_printf(sc, "half duplex operation\n"); sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX; sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN; flow = 0; afc_cfg |= 0xf; } err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); err += smsc_write_reg(sc, SMSC_FLOW, flow); err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg); if (err) smsc_warn_printf(sc, "media change failed, error %d\n", err); } int smsc_ifmedia_upd(struct ifnet *ifp) { struct smsc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; int err; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } err = mii_mediachg(mii); return (err); } void smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct smsc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static inline uint32_t smsc_hash(uint8_t addr[ETHER_ADDR_LEN]) { return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f; } void smsc_iff(struct smsc_softc *sc) { struct ifnet *ifp = &sc->sc_ac.ac_if; struct arpcom *ac = &sc->sc_ac; struct ether_multi *enm; struct ether_multistep step; uint32_t hashtbl[2] = { 0, 0 }; uint32_t hash; if (usbd_is_dying(sc->sc_udev)) return; sc->sc_mac_csr &= ~(SMSC_MAC_CSR_HPFILT | SMSC_MAC_CSR_MCPAS | SMSC_MAC_CSR_PRMS); ifp->if_flags &= ~IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS; if (ifp->if_flags & IFF_PROMISC) sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS; } else { sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { hash = smsc_hash(enm->enm_addrlo); hashtbl[hash >> 5] |= 1 << (hash & 0x1F); ETHER_NEXT_MULTI(step, enm); } } /* Debug */ if (sc->sc_mac_csr & SMSC_MAC_CSR_MCPAS) smsc_dbg_printf(sc, "receive all multicast enabled\n"); else if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) smsc_dbg_printf(sc, "receive select group of macs\n"); /* Write the hash table and mac control registers */ smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]); smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]); smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); } int smsc_sethwcsum(struct smsc_softc *sc) { struct ifnet *ifp = &sc->sc_ac.ac_if; uint32_t val; int err; if (!ifp) return (-EIO); err = smsc_read_reg(sc, SMSC_COE_CTRL, &val); if (err != 0) { smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n", err); return (err); } /* Enable/disable the Rx checksum */ if (ifp->if_capabilities & IFCAP_CSUM_IPv4) val |= SMSC_COE_CTRL_RX_EN; else val &= ~SMSC_COE_CTRL_RX_EN; /* Enable/disable the Tx checksum (currently not supported) */ if (ifp->if_capabilities & IFCAP_CSUM_IPv4) val |= SMSC_COE_CTRL_TX_EN; else val &= ~SMSC_COE_CTRL_TX_EN; err = smsc_write_reg(sc, SMSC_COE_CTRL, val); if (err != 0) { smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n", err); return (err); } return (0); } int smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr) { int err; uint32_t val; smsc_dbg_printf(sc, "setting mac address to " "%02x:%02x:%02x:%02x:%02x:%02x\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0) goto done; val = (addr[5] << 8) | addr[4]; err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val); done: return (err); } void smsc_reset(struct smsc_softc *sc) { if (usbd_is_dying(sc->sc_udev)) return; /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* Reinitialize controller to achieve full reset. */ smsc_chip_init(sc); } void smsc_init(void *xsc) { struct smsc_softc *sc = xsc; struct ifnet *ifp = &sc->sc_ac.ac_if; struct smsc_chain *c; usbd_status err; int s, i; s = splnet(); /* Cancel pending I/O */ smsc_stop(sc); /* Reset the ethernet interface. */ smsc_reset(sc); /* Init RX ring. */ if (smsc_rx_list_init(sc) == ENOBUFS) { printf("%s: rx list init failed\n", sc->sc_dev.dv_xname); splx(s); return; } /* Init TX ring. */ if (smsc_tx_list_init(sc) == ENOBUFS) { printf("%s: tx list init failed\n", sc->sc_dev.dv_xname); splx(s); return; } /* Program promiscuous mode and multicast filters. */ smsc_iff(sc); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->sc_ep[SMSC_ENDPT_RX]); if (err) { printf("%s: open rx pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(err)); splx(s); return; } err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->sc_ep[SMSC_ENDPT_TX]); if (err) { printf("%s: open tx pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(err)); splx(s); return; } /* Start up the receive pipe. */ for (i = 0; i < SMSC_RX_LIST_CNT; i++) { c = &sc->sc_cdata.rx_chain[i]; usbd_setup_xfer(c->sc_xfer, sc->sc_ep[SMSC_ENDPT_RX], c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, smsc_rxeof); usbd_transfer(c->sc_xfer); } /* TCP/UDP checksum offload engines. */ smsc_sethwcsum(sc); /* Indicate we are up and running. */ ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); timeout_add_sec(&sc->sc_stat_ch, 1); splx(s); } void smsc_start(struct ifnet *ifp) { struct smsc_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; /* Don't send anything if there is no link or controller is busy. */ if ((sc->sc_flags & SMSC_FLAG_LINK) == 0 || ifq_is_oactive(&ifp->if_snd)) { return; } m_head = ifq_deq_begin(&ifp->if_snd); if (m_head == NULL) return; if (smsc_encap(sc, m_head, 0)) { ifq_deq_rollback(&ifp->if_snd, m_head); ifq_set_oactive(&ifp->if_snd); return; } ifq_deq_commit(&ifp->if_snd, m_head); #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif ifq_set_oactive(&ifp->if_snd); } void smsc_tick(void *xsc) { struct smsc_softc *sc = xsc; if (sc == NULL) return; if (usbd_is_dying(sc->sc_udev)) return; usb_add_task(sc->sc_udev, &sc->sc_tick_task); } void smsc_stop(struct smsc_softc *sc) { usbd_status err; struct ifnet *ifp; int i; smsc_reset(sc); ifp = &sc->sc_ac.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); timeout_del(&sc->sc_stat_ch); /* Stop transfers. */ if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) { usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]); err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]); if (err) { printf("%s: close rx pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(err)); } sc->sc_ep[SMSC_ENDPT_RX] = NULL; } if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) { usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]); err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]); if (err) { printf("%s: close tx pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(err)); } sc->sc_ep[SMSC_ENDPT_TX] = NULL; } if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) { usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]); err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_INTR]); if (err) { printf("%s: close intr pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(err)); } sc->sc_ep[SMSC_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < SMSC_RX_LIST_CNT; i++) { if (sc->sc_cdata.rx_chain[i].sc_mbuf != NULL) { m_freem(sc->sc_cdata.rx_chain[i].sc_mbuf); sc->sc_cdata.rx_chain[i].sc_mbuf = NULL; } if (sc->sc_cdata.rx_chain[i].sc_xfer != NULL) { usbd_free_xfer(sc->sc_cdata.rx_chain[i].sc_xfer); sc->sc_cdata.rx_chain[i].sc_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < SMSC_TX_LIST_CNT; i++) { if (sc->sc_cdata.tx_chain[i].sc_mbuf != NULL) { m_freem(sc->sc_cdata.tx_chain[i].sc_mbuf); sc->sc_cdata.tx_chain[i].sc_mbuf = NULL; } if (sc->sc_cdata.tx_chain[i].sc_xfer != NULL) { usbd_free_xfer(sc->sc_cdata.tx_chain[i].sc_xfer); sc->sc_cdata.tx_chain[i].sc_xfer = NULL; } } } int smsc_chip_init(struct smsc_softc *sc) { int err; uint32_t reg_val; int burst_cap; /* Enter H/W config mode */ smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST); if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST)) != 0) { smsc_warn_printf(sc, "timed-out waiting for reset to " "complete\n"); goto init_failed; } /* Reset the PHY */ smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST); if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST)) != 0) { smsc_warn_printf(sc, "timed-out waiting for phy reset to " "complete\n"); goto init_failed; } usbd_delay_ms(sc->sc_udev, 40); /* Set the mac address */ if ((err = smsc_setmacaddress(sc, sc->sc_ac.ac_enaddr)) != 0) { smsc_warn_printf(sc, "failed to set the MAC address\n"); goto init_failed; } /* * Don't know what the HW_CFG_BIR bit is, but following the reset * sequence as used in the Linux driver. */ if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) != 0) { smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err); goto init_failed; } reg_val |= SMSC_HW_CFG_BIR; smsc_write_reg(sc, SMSC_HW_CFG, reg_val); /* * There is a so called 'turbo mode' that the linux driver supports, it * seems to allow you to jam multiple frames per Rx transaction. * By default this driver supports that and therefore allows multiple * frames per URB. * * The xfer buffer size needs to reflect this as well, therefore based * on the calculations in the Linux driver the RX bufsize is set to * 18944, * bufsz = (16 * 1024 + 5 * 512) * * Burst capability is the number of URBs that can be in a burst of * data/ethernet frames. */ #ifdef SMSC_TURBO if (sc->sc_udev->speed == USB_SPEED_HIGH) burst_cap = 37; else burst_cap = 128; #else burst_cap = 0; #endif smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap); /* Set the default bulk in delay (magic value from Linux driver) */ smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000); /* * Initialise the RX interface */ if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) < 0) { smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n", err); goto init_failed; } /* * The following setings are used for 'turbo mode', a.k.a multiple * frames per Rx transaction (again info taken form Linux driver). */ #ifdef SMSC_TURBO reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE); #endif smsc_write_reg(sc, SMSC_HW_CFG, reg_val); /* Clear the status register ? */ smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff); /* Read and display the revision register */ if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) { smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err); goto init_failed; } /* GPIO/LED setup */ reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED | SMSC_LED_GPIO_CFG_FDX_LED; smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val); /* * Initialise the TX interface */ smsc_write_reg(sc, SMSC_FLOW, 0); smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT); /* Read the current MAC configuration */ if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) { smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err); goto init_failed; } /* Vlan */ smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN); /* * Start TX */ sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON); /* * Start RX */ sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); return (0); init_failed: smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err); return (err); } int smsc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct smsc_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch(cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) smsc_init(sc); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else smsc_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) smsc_stop(sc); } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->sc_ac, cmd, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) smsc_iff(sc); error = 0; } splx(s); return(error); } int smsc_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface == NULL || uaa->configno != 1) return UMATCH_NONE; return (usb_lookup(smsc_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE; } void smsc_attach(struct device *parent, struct device *self, void *aux) { struct smsc_softc *sc = (struct smsc_softc *)self; struct usb_attach_arg *uaa = aux; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; struct mii_data *mii; struct ifnet *ifp; uint32_t mac_h, mac_l; int s, i; sc->sc_udev = uaa->device; sc->sc_iface = uaa->iface; /* Setup the endpoints for the SMSC LAN95xx device(s) */ usb_init_task(&sc->sc_tick_task, smsc_tick_task, sc, USB_TASK_TYPE_GENERIC); rw_init(&sc->sc_mii_lock, "smscmii"); usb_init_task(&sc->sc_stop_task, (void (*)(void *))smsc_stop, sc, USB_TASK_TYPE_GENERIC); id = usbd_get_interface_descriptor(sc->sc_iface); if (sc->sc_udev->speed >= USB_SPEED_HIGH) sc->sc_bufsz = SMSC_MAX_BUFSZ; else sc->sc_bufsz = SMSC_MIN_BUFSZ; /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (!ed) { printf("%s: couldn't get ep %d\n", sc->sc_dev.dv_xname, i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->sc_ed[SMSC_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->sc_ed[SMSC_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->sc_ed[SMSC_ENDPT_INTR] = ed->bEndpointAddress; } } s = splnet(); ifp = &sc->sc_ac.ac_if; ifp->if_softc = sc; strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = smsc_ioctl; ifp->if_start = smsc_start; ifp->if_capabilities = IFCAP_VLAN_MTU; /* Setup some of the basics */ sc->sc_phyno = 1; /* * Attempt to get the mac address, if an EEPROM is not attached this * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC * address based on urandom. */ memset(sc->sc_ac.ac_enaddr, 0xff, ETHER_ADDR_LEN); /* Check if there is already a MAC address in the register */ if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) && (smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) { sc->sc_ac.ac_enaddr[5] = (uint8_t)((mac_h >> 8) & 0xff); sc->sc_ac.ac_enaddr[4] = (uint8_t)((mac_h) & 0xff); sc->sc_ac.ac_enaddr[3] = (uint8_t)((mac_l >> 24) & 0xff); sc->sc_ac.ac_enaddr[2] = (uint8_t)((mac_l >> 16) & 0xff); sc->sc_ac.ac_enaddr[1] = (uint8_t)((mac_l >> 8) & 0xff); sc->sc_ac.ac_enaddr[0] = (uint8_t)((mac_l) & 0xff); } smsc_enaddr_OF(sc); printf("%s: address %s\n", sc->sc_dev.dv_xname, ether_sprintf(sc->sc_ac.ac_enaddr)); /* Initialise the chip for the first time */ smsc_chip_init(sc); /* Initialize MII/media info. */ mii = &sc->sc_mii; mii->mii_ifp = ifp; mii->mii_readreg = smsc_miibus_readreg; mii->mii_writereg = smsc_miibus_writereg; mii->mii_statchg = smsc_miibus_statchg; mii->mii_flags = MIIF_AUTOTSLEEP; ifmedia_init(&mii->mii_media, 0, smsc_ifmedia_upd, smsc_ifmedia_sts); mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->sc_stat_ch, smsc_tick, sc); splx(s); } int smsc_detach(struct device *self, int flags) { struct smsc_softc *sc = (struct smsc_softc *)self; struct ifnet *ifp = &sc->sc_ac.ac_if; int s; if (timeout_initialized(&sc->sc_stat_ch)) timeout_del(&sc->sc_stat_ch); if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]); if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]); if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]); /* * Remove any pending tasks. They cannot be executing because they run * in the same thread as detach. */ usb_rem_task(sc->sc_udev, &sc->sc_tick_task); usb_rem_task(sc->sc_udev, &sc->sc_stop_task); s = splusb(); if (--sc->sc_refcnt >= 0) { /* Wait for processes to go away */ usb_detach_wait(&sc->sc_dev); } if (ifp->if_flags & IFF_RUNNING) smsc_stop(sc); mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); if (ifp->if_softc != NULL) { ether_ifdetach(ifp); if_detach(ifp); } #ifdef DIAGNOSTIC if (sc->sc_ep[SMSC_ENDPT_TX] != NULL || sc->sc_ep[SMSC_ENDPT_RX] != NULL || sc->sc_ep[SMSC_ENDPT_INTR] != NULL) printf("%s: detach has active endpoints\n", sc->sc_dev.dv_xname); #endif splx(s); return (0); } void smsc_tick_task(void *xsc) { int s; struct smsc_softc *sc = xsc; struct mii_data *mii; if (sc == NULL) return; if (usbd_is_dying(sc->sc_udev)) return; mii = &sc->sc_mii; if (mii == NULL) return; s = splnet(); mii_tick(mii); if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) smsc_miibus_statchg(&sc->sc_dev); timeout_add_sec(&sc->sc_stat_ch, 1); splx(s); } void smsc_lock_mii(struct smsc_softc *sc) { sc->sc_refcnt++; rw_enter_write(&sc->sc_mii_lock); } void smsc_unlock_mii(struct smsc_softc *sc) { rw_exit_write(&sc->sc_mii_lock); if (--sc->sc_refcnt < 0) usb_detach_wakeup(&sc->sc_dev); } void smsc_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct smsc_chain *c = (struct smsc_chain *)priv; struct smsc_softc *sc = c->sc_sc; struct ifnet *ifp = &sc->sc_ac.ac_if; u_char *buf = c->sc_buf; uint32_t total_len; uint16_t pktlen = 0; struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct mbuf *m; int s; uint32_t rxhdr; if (usbd_is_dying(sc->sc_udev)) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (usbd_ratecheck(&sc->sc_rx_notice)) { printf("%s: usb errors on rx: %s\n", sc->sc_dev.dv_xname, usbd_errstr(status)); } if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); smsc_dbg_printf(sc, "xfer status total_len %d\n", total_len); do { if (total_len < sizeof(rxhdr)) { smsc_dbg_printf(sc, "total_len %d < sizeof(rxhdr) %d\n", total_len, sizeof(rxhdr)); ifp->if_ierrors++; goto done; } buf += pktlen; memcpy(&rxhdr, buf, sizeof(rxhdr)); rxhdr = letoh32(rxhdr); total_len -= sizeof(rxhdr); if (rxhdr & SMSC_RX_STAT_ERROR) { smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr); ifp->if_ierrors++; goto done; } pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr); smsc_dbg_printf(sc, "rxeof total_len %d pktlen %d rxhdr " "0x%08x\n", total_len, pktlen, rxhdr); if (pktlen > total_len) { smsc_dbg_printf(sc, "pktlen %d > total_len %d\n", pktlen, total_len); ifp->if_ierrors++; goto done; } buf += sizeof(rxhdr); if (total_len < pktlen) total_len = 0; else total_len -= pktlen; m = m_devget(buf, pktlen, ETHER_ALIGN); if (m == NULL) { smsc_dbg_printf(sc, "m_devget returned NULL\n"); ifp->if_ierrors++; goto done; } ml_enqueue(&ml, m); } while (total_len > 0); done: s = splnet(); if_input(ifp, &ml); splx(s); memset(c->sc_buf, 0, sc->sc_bufsz); /* Setup new transfer. */ usbd_setup_xfer(xfer, sc->sc_ep[SMSC_ENDPT_RX], c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, smsc_rxeof); usbd_transfer(xfer); return; } void smsc_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct smsc_softc *sc; struct smsc_chain *c; struct ifnet *ifp; int s; c = priv; sc = c->sc_sc; ifp = &sc->sc_ac.ac_if; if (usbd_is_dying(sc->sc_udev)) return; s = splnet(); if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; printf("%s: usb error on tx: %s\n", sc->sc_dev.dv_xname, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_TX]); splx(s); return; } ifp->if_timer = 0; ifq_clr_oactive(&ifp->if_snd); m_freem(c->sc_mbuf); c->sc_mbuf = NULL; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) smsc_start(ifp); splx(s); } int smsc_tx_list_init(struct smsc_softc *sc) { struct smsc_cdata *cd; struct smsc_chain *c; int i; cd = &sc->sc_cdata; for (i = 0; i < SMSC_TX_LIST_CNT; i++) { c = &cd->tx_chain[i]; c->sc_sc = sc; c->sc_idx = i; c->sc_mbuf = NULL; if (c->sc_xfer == NULL) { c->sc_xfer = usbd_alloc_xfer(sc->sc_udev); if (c->sc_xfer == NULL) return (ENOBUFS); c->sc_buf = usbd_alloc_buffer(c->sc_xfer, sc->sc_bufsz); if (c->sc_buf == NULL) { usbd_free_xfer(c->sc_xfer); return (ENOBUFS); } } } return (0); } int smsc_rx_list_init(struct smsc_softc *sc) { struct smsc_cdata *cd; struct smsc_chain *c; int i; cd = &sc->sc_cdata; for (i = 0; i < SMSC_RX_LIST_CNT; i++) { c = &cd->rx_chain[i]; c->sc_sc = sc; c->sc_idx = i; c->sc_mbuf = NULL; if (c->sc_xfer == NULL) { c->sc_xfer = usbd_alloc_xfer(sc->sc_udev); if (c->sc_xfer == NULL) return (ENOBUFS); c->sc_buf = usbd_alloc_buffer(c->sc_xfer, sc->sc_bufsz); if (c->sc_buf == NULL) { usbd_free_xfer(c->sc_xfer); return (ENOBUFS); } } } return (0); } int smsc_encap(struct smsc_softc *sc, struct mbuf *m, int idx) { struct smsc_chain *c; usbd_status err; uint32_t txhdr; uint32_t frm_len = 0; c = &sc->sc_cdata.tx_chain[idx]; /* * Each frame is prefixed with two 32-bit values describing the * length of the packet and buffer. */ txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) | SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG; txhdr = htole32(txhdr); memcpy(c->sc_buf, &txhdr, sizeof(txhdr)); txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len); txhdr = htole32(txhdr); memcpy(c->sc_buf + 4, &txhdr, sizeof(txhdr)); frm_len += 8; /* Next copy in the actual packet */ m_copydata(m, 0, m->m_pkthdr.len, c->sc_buf + frm_len); frm_len += m->m_pkthdr.len; c->sc_mbuf = m; usbd_setup_xfer(c->sc_xfer, sc->sc_ep[SMSC_ENDPT_TX], c, c->sc_buf, frm_len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 10000, smsc_txeof); err = usbd_transfer(c->sc_xfer); if (err != USBD_IN_PROGRESS) { smsc_stop(sc); return (EIO); } sc->sc_cdata.tx_cnt++; return (0); }