/* $OpenBSD: if_upgt.c,v 1.21 2008/01/20 00:14:41 mglocker Exp $ */ /* * Copyright (c) 2007 Marcus Glocker * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Driver for the USB PrismGT devices. * * For now just USB 2.0 devices with the GW3887 chipset are supported. * * Parts of this driver has been influenced by reading the p54u driver * written by Jean-Baptiste Note and * Sebastien Bourdeauducq . */ #ifdef UPGT_DEBUG int upgt_debug = 2; #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0) #else #define DPRINTF(l, x...) #endif /* * Prototypes. */ int upgt_match(struct device *, void *, void *); void upgt_attach(struct device *, struct device *, void *); void upgt_attachhook(void *); int upgt_detach(struct device *, int); int upgt_activate(struct device *, enum devact); int upgt_device_init(struct upgt_softc *); int upgt_mem_init(struct upgt_softc *); uint32_t upgt_mem_alloc(struct upgt_softc *); void upgt_mem_free(struct upgt_softc *, uint32_t); int upgt_fw_alloc(struct upgt_softc *); void upgt_fw_free(struct upgt_softc *); int upgt_fw_verify(struct upgt_softc *); int upgt_fw_load(struct upgt_softc *); int upgt_fw_copy(char *, char *, int); int upgt_eeprom_read(struct upgt_softc *); int upgt_eeprom_parse(struct upgt_softc *); void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); int upgt_ioctl(struct ifnet *, u_long, caddr_t); int upgt_init(struct ifnet *); void upgt_stop(struct upgt_softc *); int upgt_media_change(struct ifnet *); void upgt_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int upgt_newstate(struct ieee80211com *, enum ieee80211_state, int); void upgt_newstate_task(void *); void upgt_next_scan(void *); void upgt_start(struct ifnet *); void upgt_watchdog(struct ifnet *); void upgt_tx_task(void *); void upgt_tx_done(struct upgt_softc *, uint8_t *); void upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status); void upgt_rx(struct upgt_softc *, uint8_t *, int); int upgt_set_macfilter(struct upgt_softc *, uint8_t state); int upgt_set_channel(struct upgt_softc *, unsigned); void upgt_set_led(struct upgt_softc *, int); void upgt_set_led_blink(void *); int upgt_get_stats(struct upgt_softc *); int upgt_alloc_tx(struct upgt_softc *); int upgt_alloc_rx(struct upgt_softc *); int upgt_alloc_cmd(struct upgt_softc *); void upgt_free_tx(struct upgt_softc *); void upgt_free_rx(struct upgt_softc *); void upgt_free_cmd(struct upgt_softc *); int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *, usbd_pipe_handle, uint32_t *, int); void upgt_hexdump(void *, int); uint32_t upgt_crc32_le(const void *, size_t); uint32_t upgt_chksum_le(const uint32_t *, size_t); struct cfdriver upgt_cd = { NULL, "upgt", DV_IFNET }; const struct cfattach upgt_ca = { sizeof(struct upgt_softc), upgt_match, upgt_attach, upgt_detach, upgt_activate, }; static const struct usb_devno upgt_devs[] = { { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT }, { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 }, { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_PRISM_GT }, { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 }, { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 }, { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 }, { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 }, { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 }, { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WG111V2_2 }, { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG }, { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G }, { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_1 }, { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_2 }, { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A } }; /* * XXX For now just keep the device ratesets here. * It seems the device does hardware rate control based on those available * ratesets. */ uint8_t rates_11g[] = { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; uint8_t rates_11b[] = { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; int upgt_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface != NULL) return (UMATCH_NONE); return ((usb_lookup(upgt_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE); } void upgt_attach(struct device *parent, struct device *self, void *aux) { struct upgt_softc *sc = (struct upgt_softc *)self; struct usb_attach_arg *uaa = aux; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; usbd_status error; int i; /* * Attach USB device. */ sc->sc_udev = uaa->device; /* set configuration number */ if (usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0) != 0) { printf("%s: could not set configuration no!\n", sc->sc_dev.dv_xname); return; } /* get the first interface handle */ error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX, &sc->sc_iface); if (error != 0) { printf("%s: could not get interface handle!\n", sc->sc_dev.dv_xname); return; } /* find endpoints */ id = usbd_get_interface_descriptor(sc->sc_iface); sc->sc_rx_no = sc->sc_tx_no = -1; for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL) { printf("%s: no endpoint descriptor for iface %d!\n", sc->sc_dev.dv_xname, i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_tx_no = ed->bEndpointAddress; if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_rx_no = ed->bEndpointAddress; /* * XXX Just get the version 2 bulk pipes for now. * 0x01 TX pipe * 0x81 RX pipe * 0x02 TX MGMT pipe (not used with fw version >2.5.x) * 0x82 TX MGMT pipe (not used with fw version >2.5.x) */ if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1) break; } if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname); return; } /* setup tasks and timeouts */ usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc); usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc); timeout_set(&sc->scan_to, upgt_next_scan, sc); timeout_set(&sc->led_to, upgt_set_led_blink, sc); /* * Open TX and RX USB bulk pipes. */ error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, &sc->sc_tx_pipeh); if (error != 0) { printf("%s: could not open TX pipe: %s!\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, &sc->sc_rx_pipeh); if (error != 0) { printf("%s: could not open RX pipe: %s!\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } /* * Allocate TX, RX, and CMD xfers. */ if (upgt_alloc_tx(sc) != 0) goto fail; if (upgt_alloc_rx(sc) != 0) goto fail; if (upgt_alloc_cmd(sc) != 0) goto fail; /* * We need the firmware loaded to complete the attach. */ if (rootvp == NULL) mountroothook_establish(upgt_attachhook, sc); else upgt_attachhook(sc); return; fail: printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); } void upgt_attachhook(void *arg) { struct upgt_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usbd_status error; int i; /* * Load firmware file into memory. */ if (upgt_fw_alloc(sc) != 0) goto fail; /* * Initialize the device. */ if (upgt_device_init(sc) != 0) goto fail; /* * Verify the firmware. */ if (upgt_fw_verify(sc) != 0) goto fail; /* * Calculate device memory space. */ if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { printf("%s: could not find memory space addresses on FW!\n", sc->sc_dev.dv_xname); goto fail; } sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; DPRINTF(1, "%s: memory address frame start=0x%08x\n", sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); DPRINTF(1, "%s: memory address frame end=0x%08x\n", sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); DPRINTF(1, "%s: memory address rx start=0x%08x\n", sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start); upgt_mem_init(sc); /* * Load the firmware. */ if (upgt_fw_load(sc) != 0) goto fail; /* * Startup the RX pipe. */ struct upgt_data *data_rx = &sc->rx_data; usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); error = usbd_transfer(data_rx->xfer); if (error != 0 && error != USBD_IN_PROGRESS) { printf("%s: could not queue RX transfer!\n", sc->sc_dev.dv_xname); goto fail; } usbd_delay_ms(sc->sc_udev, 100); /* * Read the whole EEPROM content and parse it. */ if (upgt_eeprom_read(sc) != 0) goto fail; if (upgt_eeprom_parse(sc) != 0) goto fail; /* * Setup the 802.11 device. */ ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_state = IEEE80211_S_INIT; ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT | IEEE80211_C_WEP; ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = upgt_init; ifp->if_ioctl = upgt_ioctl; ifp->if_start = upgt_start; ifp->if_watchdog = upgt_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_newassoc = upgt_newassoc; sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = upgt_newstate; ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtapu); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT); #endif usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev); printf("%s: address %s\n", sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr)); /* device attached */ sc->sc_flags |= UPGT_DEVICE_ATTACHED; return; fail: printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__); } int upgt_detach(struct device *self, int flags) { struct upgt_softc *sc = (struct upgt_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); /* abort and close TX / RX pipes */ if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); } /* remove tasks and timeouts */ usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); usb_rem_task(sc->sc_udev, &sc->sc_task_tx); timeout_del(&sc->scan_to); timeout_del(&sc->led_to); /* free xfers */ upgt_free_tx(sc); upgt_free_rx(sc); upgt_free_cmd(sc); /* free firmware */ upgt_fw_free(sc); if (sc->sc_flags & UPGT_DEVICE_ATTACHED) { /* detach interface */ ieee80211_ifdetach(ifp); if_detach(ifp); } splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev); return (0); } int upgt_activate(struct device *self, enum devact act) { switch (act) { case DVACT_ACTIVATE: return (EOPNOTSUPP); case (DVACT_DEACTIVATE): break; } return (0); } int upgt_device_init(struct upgt_softc *sc) { struct upgt_data *data_cmd = &sc->cmd_data; char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; int len; len = sizeof(init_cmd); bcopy(init_cmd, data_cmd->buf, len); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not send device init string!\n", sc->sc_dev.dv_xname); return (EIO); } usbd_delay_ms(sc->sc_udev, 100); DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname); return (0); } int upgt_mem_init(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { sc->sc_memory.page[i].used = 0; if (i == 0) { /* * The first memory page is always reserved for * command data. */ sc->sc_memory.page[i].addr = sc->sc_memaddr_frame_start + MCLBYTES; } else { sc->sc_memory.page[i].addr = sc->sc_memory.page[i - 1].addr + MCLBYTES; } if (sc->sc_memory.page[i].addr + MCLBYTES >= sc->sc_memaddr_frame_end) break; DPRINTF(2, "%s: memory address page %d=0x%08x\n", sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr); } sc->sc_memory.pages = i; DPRINTF(2, "%s: memory pages=%d\n", sc->sc_dev.dv_xname, sc->sc_memory.pages); return (0); } uint32_t upgt_mem_alloc(struct upgt_softc *sc) { int i; for (i = 0; i < sc->sc_memory.pages; i++) { if (sc->sc_memory.page[i].used == 0) { sc->sc_memory.page[i].used = 1; return (sc->sc_memory.page[i].addr); } } return (0); } void upgt_mem_free(struct upgt_softc *sc, uint32_t addr) { int i; for (i = 0; i < sc->sc_memory.pages; i++) { if (sc->sc_memory.page[i].addr == addr) { sc->sc_memory.page[i].used = 0; return; } } printf("%s: could not free memory address 0x%08x!\n", sc->sc_dev.dv_xname, addr); } int upgt_fw_alloc(struct upgt_softc *sc) { const char *name = "upgt-gw3887"; int error; if (sc->sc_fw == NULL) { error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size); if (error != 0) { printf("%s: error %d, could not read firmware %s!\n", sc->sc_dev.dv_xname, error, name); return (EIO); } } DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name); return (0); } void upgt_fw_free(struct upgt_softc *sc) { if (sc->sc_fw != NULL) { free(sc->sc_fw, M_DEVBUF); sc->sc_fw = NULL; DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname); } } int upgt_fw_verify(struct upgt_softc *sc) { struct upgt_fw_bra_option *bra_option; uint32_t bra_option_type, bra_option_len; uint32_t *uc; int offset, bra_end = 0; /* * Seek to beginning of Boot Record Area (BRA). */ for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) { uc = (uint32_t *)(sc->sc_fw + offset); if (*uc == 0) break; } for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) { uc = (uint32_t *)(sc->sc_fw + offset); if (*uc != 0) break; } if (offset == sc->sc_fw_size) { printf("%s: firmware Boot Record Area not found!\n", sc->sc_dev.dv_xname); return (EIO); } DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n", sc->sc_dev.dv_xname, offset); /* * Parse Boot Record Area (BRA) options. */ while (offset < sc->sc_fw_size && bra_end == 0) { /* get current BRA option */ bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset); bra_option_type = letoh32(bra_option->type); bra_option_len = letoh32(bra_option->len) * sizeof(*uc); switch (bra_option_type) { case UPGT_BRA_TYPE_FW: DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n", sc->sc_dev.dv_xname, bra_option_len); if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { printf("%s: wrong UPGT_BRA_TYPE_FW len!\n", sc->sc_dev.dv_xname); return (EIO); } if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data, bra_option_len) == 0) { sc->sc_fw_type = UPGT_FWTYPE_LM86; break; } if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data, bra_option_len) == 0) { sc->sc_fw_type = UPGT_FWTYPE_LM87; break; } if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data, bra_option_len) == 0) { sc->sc_fw_type = UPGT_FWTYPE_FMAC; break; } printf("%s: unsupported firmware type!\n", sc->sc_dev.dv_xname); return (EIO); case UPGT_BRA_TYPE_VERSION: DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n", sc->sc_dev.dv_xname, bra_option_len); break; case UPGT_BRA_TYPE_DEPIF: DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n", sc->sc_dev.dv_xname, bra_option_len); break; case UPGT_BRA_TYPE_EXPIF: DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n", sc->sc_dev.dv_xname, bra_option_len); break; case UPGT_BRA_TYPE_DESCR: DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n", sc->sc_dev.dv_xname, bra_option_len); struct upgt_fw_bra_descr *descr = (struct upgt_fw_bra_descr *)bra_option->data; sc->sc_memaddr_frame_start = letoh32(descr->memaddr_space_start); sc->sc_memaddr_frame_end = letoh32(descr->memaddr_space_end); DPRINTF(2, "%s: memory address space start=0x%08x\n", sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start); DPRINTF(2, "%s: memory address space end=0x%08x\n", sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end); break; case UPGT_BRA_TYPE_END: DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n", sc->sc_dev.dv_xname, bra_option_len); bra_end = 1; break; default: DPRINTF(1, "%s: unknown BRA option len=%d\n", sc->sc_dev.dv_xname, bra_option_len); return (EIO); } /* jump to next BRA option */ offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; } DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname); return (0); } int upgt_fw_load(struct upgt_softc *sc) { struct upgt_data *data_cmd = &sc->cmd_data; struct upgt_data *data_rx = &sc->rx_data; char start_fwload_cmd[] = { 0x3c, 0x0d }; int offset, bsize, n, i, len; uint32_t crc32; /* send firmware start load command */ len = sizeof(start_fwload_cmd); bcopy(start_fwload_cmd, data_cmd->buf, len); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not send start_firmware_load command!\n", sc->sc_dev.dv_xname); return (EIO); } /* send X2 header */ len = sizeof(struct upgt_fw_x2_header); struct upgt_fw_x2_header *x2 = data_cmd->buf; bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE); x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); x2->len = htole32(sc->sc_fw_size); x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - sizeof(uint32_t)); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not send firmware X2 header!\n", sc->sc_dev.dv_xname); return (EIO); } /* download firmware */ for (offset = 0; offset < sc->sc_fw_size; offset += bsize) { if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE) bsize = UPGT_FW_BLOCK_SIZE; else bsize = sc->sc_fw_size - offset; n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize); DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n", sc->sc_dev.dv_xname, offset, n, bsize); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0) != 0) { printf("%s: error while downloading firmware block!\n", sc->sc_dev.dv_xname); return (EIO); } bsize = n; } DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname); /* load firmware */ crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size); *((uint32_t *)(data_cmd->buf) ) = crc32; *((uint8_t *)(data_cmd->buf) + 4) = 'g'; *((uint8_t *)(data_cmd->buf) + 5) = '\r'; len = 6; if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not send load_firmware command!\n", sc->sc_dev.dv_xname); return (EIO); } for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) { len = UPGT_FW_BLOCK_SIZE; bzero(data_rx->buf, MCLBYTES); if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len, USBD_SHORT_XFER_OK) != 0) { printf("%s: could not read firmware response!\n", sc->sc_dev.dv_xname); return (EIO); } if (memcmp(data_rx->buf, "OK", 2) == 0) break; /* firmware load was successful */ } if (i == UPGT_FIRMWARE_TIMEOUT) { printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname); return (EIO); } DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname); return (0); } /* * While copying the version 2 firmware, we need to replace two characters: * * 0x7e -> 0x7d 0x5e * 0x7d -> 0x7d 0x5d */ int upgt_fw_copy(char *src, char *dst, int size) { int i, j; for (i = 0, j = 0; i < size && j < size; i++) { switch (src[i]) { case 0x7e: dst[j] = 0x7d; j++; dst[j] = 0x5e; j++; break; case 0x7d: dst[j] = 0x7d; j++; dst[j] = 0x5d; j++; break; default: dst[j] = src[i]; j++; break; } } return (i); } int upgt_eeprom_read(struct upgt_softc *sc) { struct upgt_data *data_cmd = &sc->cmd_data; struct upgt_lmac_mem *mem; struct upgt_lmac_eeprom *eeprom; int offset, block, len; block = UPGT_EEPROM_BLOCK_SIZE; offset = UPGT_EEPROM_SIZE; while (offset > 0) { offset = offset - block; DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n", sc->sc_dev.dv_xname, offset, block); /* * Transmit the URB containing the CMD data. */ bzero(data_cmd->buf, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); eeprom = (struct upgt_lmac_eeprom *)(mem + 1); eeprom->header1.flags = 0; eeprom->header1.type = UPGT_H1_TYPE_CTRL; eeprom->header1.len = htole16(( sizeof(struct upgt_lmac_eeprom) - sizeof(struct upgt_lmac_header)) + block); eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); eeprom->header2.flags = 0; eeprom->offset = htole16(offset); eeprom->len = htole16(block); len = sizeof(*mem) + sizeof(*eeprom) + block; mem->chksum = upgt_chksum_le((uint32_t *)eeprom, len - sizeof(*mem)); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, USBD_FORCE_SHORT_XFER) != 0) { printf("%s: could not transmit EEPROM data URB!\n", sc->sc_dev.dv_xname); return (EIO); } if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) { printf("%s: timeout while waiting for EEPROM data!\n", sc->sc_dev.dv_xname); return (EIO); } if (offset < block) block = offset; } return (0); } int upgt_eeprom_parse(struct upgt_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct upgt_eeprom_header *eeprom_header; struct upgt_eeprom_option *eeprom_option; uint16_t option_len; uint16_t option_type; uint16_t preamble_len; int option_end = 0; /* calculate eeprom options start offset */ eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; preamble_len = letoh16(eeprom_header->preamble_len); eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + (sizeof(struct upgt_eeprom_header) + preamble_len)); while (!option_end) { /* the eeprom option length is stored in words */ option_len = (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t); option_type = letoh16(eeprom_option->type); switch (option_type) { case UPGT_EEPROM_TYPE_NAME: DPRINTF(1, "%s: EEPROM name len=%d\n", sc->sc_dev.dv_xname, option_len); break; case UPGT_EEPROM_TYPE_SERIAL: DPRINTF(1, "%s: EEPROM serial len=%d\n", sc->sc_dev.dv_xname, option_len); break; case UPGT_EEPROM_TYPE_MAC: DPRINTF(1, "%s: EEPROM mac len=%d\n", sc->sc_dev.dv_xname, option_len); IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data); break; case UPGT_EEPROM_TYPE_HWRX: DPRINTF(1, "%s: EEPROM hwrx len=%d\n", sc->sc_dev.dv_xname, option_len); upgt_eeprom_parse_hwrx(sc, eeprom_option->data); break; case UPGT_EEPROM_TYPE_CHIP: DPRINTF(1, "%s: EEPROM chip len=%d\n", sc->sc_dev.dv_xname, option_len); break; case UPGT_EEPROM_TYPE_FREQ3: DPRINTF(1, "%s: EEPROM freq3 len=%d\n", sc->sc_dev.dv_xname, option_len); upgt_eeprom_parse_freq3(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_FREQ4: DPRINTF(1, "%s: EEPROM freq4 len=%d\n", sc->sc_dev.dv_xname, option_len); upgt_eeprom_parse_freq4(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_FREQ5: DPRINTF(1, "%s: EEPROM freq5 len=%d\n", sc->sc_dev.dv_xname, option_len); break; case UPGT_EEPROM_TYPE_FREQ6: DPRINTF(1, "%s: EEPROM freq6 len=%d\n", sc->sc_dev.dv_xname, option_len); upgt_eeprom_parse_freq6(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_END: DPRINTF(1, "%s: EEPROM end len=%d\n", sc->sc_dev.dv_xname, option_len); option_end = 1; break; case UPGT_EEPROM_TYPE_OFF: DPRINTF(1, "%s: EEPROM off without end option!\n", sc->sc_dev.dv_xname); return (EIO); default: DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n", sc->sc_dev.dv_xname, option_type, option_len); break; } /* jump to next EEPROM option */ eeprom_option = (struct upgt_eeprom_option *) (eeprom_option->data + option_len); } return (0); } void upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) { struct upgt_eeprom_option_hwrx *option_hwrx; option_hwrx = (struct upgt_eeprom_option_hwrx *)data; sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; DPRINTF(2, "%s: hwrx option value=0x%04x\n", sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx); } void upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_eeprom_freq3_header *freq3_header; struct upgt_lmac_freq3 *freq3; int i, elements, flags; unsigned channel; freq3_header = (struct upgt_eeprom_freq3_header *)data; freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); flags = freq3_header->flags; elements = freq3_header->elements; DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0); sc->sc_eeprom_freq3[channel] = freq3[i]; DPRINTF(2, "%s: frequence=%d, channel=%d\n", sc->sc_dev.dv_xname, letoh16(sc->sc_eeprom_freq3[channel].freq), channel); } } void upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_eeprom_freq4_header *freq4_header; struct upgt_eeprom_freq4_1 *freq4_1; struct upgt_eeprom_freq4_2 *freq4_2; int i, j, elements, settings, flags; unsigned channel; freq4_header = (struct upgt_eeprom_freq4_header *)data; freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); flags = freq4_header->flags; elements = freq4_header->elements; settings = freq4_header->settings; /* we need this value later */ sc->sc_eeprom_freq6_settings = freq4_header->settings; DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags); DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings); for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0); freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; for (j = 0; j < settings; j++) { sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; sc->sc_eeprom_freq4[channel][j].pad = 0; } DPRINTF(2, "%s: frequence=%d, channel=%d\n", sc->sc_dev.dv_xname, letoh16(freq4_1[i].freq), channel); } } void upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_lmac_freq6 *freq6; int i, elements; unsigned channel; freq6 = (struct upgt_lmac_freq6 *)data; elements = len / sizeof(struct upgt_lmac_freq6); DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements); for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0); sc->sc_eeprom_freq6[channel] = freq6[i]; DPRINTF(2, "%s: frequence=%d, channel=%d\n", sc->sc_dev.dv_xname, letoh16(sc->sc_eeprom_freq6[channel].freq), channel); } } int upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct upgt_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if ((ifp->if_flags & IFF_RUNNING) == 0) upgt_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) upgt_stop(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; default: error = ieee80211_ioctl(ifp, cmd, data); break; } if (error == ENETRESET) { if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) upgt_init(ifp); error = 0; } splx(s); return (error); } int upgt_init(struct ifnet *ifp) { struct upgt_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); /* select default channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; sc->sc_curchan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else { upgt_set_macfilter(sc, IEEE80211_S_SCAN); ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } return (0); } void upgt_stop(struct upgt_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; /* device down */ ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* change device back to initial state */ ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } int upgt_media_change(struct ifnet *ifp) { int error; if ((error = ieee80211_media_change(ifp) != ENETRESET)) return (error); if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) upgt_init(ifp); return (0); } void upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { ni->ni_txrate = 0; } int upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct upgt_softc *sc = ic->ic_if.if_softc; usb_rem_task(sc->sc_udev, &sc->sc_task_newstate); timeout_del(&sc->scan_to); /* do it in a process context */ sc->sc_state = nstate; sc->sc_arg = arg; usb_add_task(sc->sc_udev, &sc->sc_task_newstate); return (0); } void upgt_newstate_task(void *arg) { struct upgt_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; enum ieee80211_state ostate; unsigned channel; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_INIT: DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n", sc->sc_dev.dv_xname); /* do not accept any frames if the device is down */ upgt_set_macfilter(sc, IEEE80211_S_INIT); upgt_set_led(sc, UPGT_LED_OFF); break; case IEEE80211_S_SCAN: DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n", sc->sc_dev.dv_xname); channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); upgt_set_channel(sc, channel); timeout_add(&sc->scan_to, hz / 5); break; case IEEE80211_S_AUTH: DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n", sc->sc_dev.dv_xname); channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); upgt_set_channel(sc, channel); break; case IEEE80211_S_ASSOC: DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n", sc->sc_dev.dv_xname); break; case IEEE80211_S_RUN: DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n", sc->sc_dev.dv_xname); ni = ic->ic_bss; upgt_set_macfilter(sc, IEEE80211_S_RUN); upgt_set_led(sc, UPGT_LED_ON); break; } sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); } void upgt_next_scan(void *arg) { struct upgt_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); } void upgt_start(struct ifnet *ifp) { struct upgt_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; int i; /* don't transmit packets if interface is busy or down */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__); for (i = 0; i < UPGT_TX_COUNT; i++) { struct upgt_data *data_tx = &sc->tx_data[i]; IF_POLL(&ic->ic_mgtq, m); if (m != NULL) { /* management frame */ IF_DEQUEUE(&ic->ic_mgtq, m); ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { printf("%s: no free prism memory!\n", sc->sc_dev.dv_xname); return; } data_tx->ni = ni; data_tx->m = m; sc->tx_queued++; } else { /* data frame */ if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; IFQ_DEQUEUE(&ifp->if_snd, m); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif m = ieee80211_encap(ifp, m, &ni); if (m == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) { printf("%s: no free prism memory!\n", sc->sc_dev.dv_xname); return; } data_tx->ni = ni; data_tx->m = m; sc->tx_queued++; } } if (sc->tx_queued > 0) { DPRINTF(2, "%s: tx_queued=%d\n", sc->sc_dev.dv_xname, sc->tx_queued); /* process the TX queue in process context */ ifp->if_timer = 5; ifp->if_flags |= IFF_OACTIVE; usb_rem_task(sc->sc_udev, &sc->sc_task_tx); usb_add_task(sc->sc_udev, &sc->sc_task_tx); } } void upgt_watchdog(struct ifnet *ifp) { struct upgt_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_state == IEEE80211_S_INIT) return; printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname); /* TODO: what shall we do on TX timeout? */ ieee80211_watchdog(ifp); } void upgt_tx_task(void *arg) { struct upgt_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_frame *wh; struct upgt_lmac_mem *mem; struct upgt_lmac_tx_desc *txdesc; struct mbuf *m; uint32_t addr; int len, i, s; usbd_status error; s = splusb(); upgt_set_led(sc, UPGT_LED_BLINK); for (i = 0; i < UPGT_TX_COUNT; i++) { struct upgt_data *data_tx = &sc->tx_data[i]; if (data_tx->m == NULL) { DPRINTF(2, "%s: %d: m is NULL\n", sc->sc_dev.dv_xname, i); continue; } m = data_tx->m; addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD; /* * Software WEP. */ wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { m = ieee80211_wep_crypt(ifp, m, 1); if (m == NULL) return; } /* * Transmit the URB containing the TX data. */ bzero(data_tx->buf, MCLBYTES); mem = (struct upgt_lmac_mem *)data_tx->buf; mem->addr = htole32(addr); txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); /* XXX differ between data and mgmt frames? */ txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; txdesc->header1.len = htole16(m->m_pkthdr.len); txdesc->header2.reqid = htole32(data_tx->addr); txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); /* * XXX As soon we have found out why the device crashes on * higher rates, we need to switch dynamically between 11b * and 11g here. For now we set 11b fix. */ bcopy(rates_11g, txdesc->rates, sizeof(txdesc->rates)); txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = 0; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wt_antenna = 0; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif /* copy frame below our TX descriptor header */ m_copydata(m, 0, m->m_pkthdr.len, data_tx->buf + (sizeof(*mem) + sizeof(*txdesc))); /* calculate frame size */ len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; /* we need to align the frame to a 4 byte boundary */ len = (len + 3) & ~3; /* calculate frame checksum */ mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); /* we do not need the mbuf anymore */ m_freem(m); data_tx->m = NULL; DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname); usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx, data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, UPGT_USB_TIMEOUT, NULL); error = usbd_transfer(data_tx->xfer); if (error != 0 && error != USBD_IN_PROGRESS) { printf("%s: could not transmit TX data URB!\n", sc->sc_dev.dv_xname); return; } DPRINTF(2, "%s: TX sent (%d bytes)\n", sc->sc_dev.dv_xname, len); } /* * If we don't regulary read the device statistics, the RX queue * will stall. It's strange, but it works, so we keep reading * the statistics here. *shrug* */ upgt_get_stats(sc); splx(s); } void upgt_tx_done(struct upgt_softc *sc, uint8_t *data) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct upgt_lmac_tx_done_desc *desc; int i, s; s = splnet(); desc = (struct upgt_lmac_tx_done_desc *)data; for (i = 0; i < UPGT_TX_COUNT; i++) { struct upgt_data *data_tx = &sc->tx_data[i]; if (data_tx->addr == letoh32(desc->header2.reqid)) { upgt_mem_free(sc, data_tx->addr); ieee80211_release_node(ic, data_tx->ni); data_tx->ni = NULL; data_tx->addr = 0; sc->tx_queued--; ifp->if_opackets++; DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname); DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ", letoh32(desc->header2.reqid), letoh16(desc->status), letoh16(desc->rssi)); DPRINTF(2, "seq=%d\n", letoh16(desc->seq)); break; } } if (sc->tx_queued == 0) { /* TX queued was processed, continue */ ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; upgt_start(ifp); } splx(s); } void upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct upgt_data *data_rx = priv; struct upgt_softc *sc = data_rx->sc; int len; struct upgt_lmac_header *header; struct upgt_lmac_eeprom *eeprom; uint8_t h1_type; uint16_t h2_type; DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__); if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); /* * Check what type of frame came in. */ header = (struct upgt_lmac_header *)(data_rx->buf + 4); h1_type = header->header1.type; h2_type = letoh16(header->header2.type); if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4); uint16_t eeprom_offset = letoh16(eeprom->offset); uint16_t eeprom_len = letoh16(eeprom->len); DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n", sc->sc_dev.dv_xname, eeprom_offset, eeprom_len); bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4, sc->sc_eeprom + eeprom_offset, eeprom_len); /* EEPROM data has arrived in time, wakeup tsleep() */ wakeup(sc); } else if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_TX_DONE) { DPRINTF(2, "%s: received 802.11 TX done\n", sc->sc_dev.dv_xname); upgt_tx_done(sc, data_rx->buf + 4); } else if (h1_type == UPGT_H1_TYPE_RX_DATA || h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { DPRINTF(3, "%s: received 802.11 RX data\n", sc->sc_dev.dv_xname); upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len)); } else if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_STATS) { DPRINTF(2, "%s: received statistic data\n", sc->sc_dev.dv_xname); /* TODO: what could we do with the statistic data? */ } else { /* ignore unknown frame types */ DPRINTF(1, "%s: received unknown frame type 0x%02x\n", sc->sc_dev.dv_xname, header->header1.type); } skip: /* setup new transfer */ usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb); (void)usbd_transfer(xfer); } void upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct upgt_lmac_rx_desc *rxdesc; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m; int s; /* access RX packet descriptor */ rxdesc = (struct upgt_lmac_rx_desc *)data; /* create mbuf which is suitable for strict alignment archs */ m = m_devget(rxdesc->data - ETHER_ALIGN, pkglen + ETHER_ALIGN, 0, ifp, NULL); if (m == NULL) { printf("%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname); return; } m_adj(m, ETHER_ALIGN); /* trim FCS */ m_adj(m, -IEEE80211_CRC_LEN); s = splnet(); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = 0; tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wr_antenna = 0; tap->wr_antsignal = rxdesc->rssi; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* push the frame up to the 802.11 stack */ ieee80211_input(ifp, m, ni, rxdesc->rssi, 0); /* node is no longer needed */ ieee80211_release_node(ic, ni); /* increment success incoming packet counter */ ifp->if_ipackets++; splx(s); DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname); } int upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct upgt_data *data_cmd = &sc->cmd_data; struct upgt_lmac_mem *mem; struct upgt_lmac_filter *filter; int len; uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* * Transmit the URB containing the CMD data. */ bzero(data_cmd->buf, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); filter = (struct upgt_lmac_filter *)(mem + 1); filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; filter->header1.type = UPGT_H1_TYPE_CTRL; filter->header1.len = htole16( sizeof(struct upgt_lmac_filter) - sizeof(struct upgt_lmac_header)); filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); filter->header2.flags = 0; switch (state) { case IEEE80211_S_INIT: DPRINTF(1, "%s: set MAC filter to INIT\n", sc->sc_dev.dv_xname); filter->type = htole16(UPGT_FILTER_TYPE_RESET); break; case IEEE80211_S_SCAN: DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n", sc->sc_dev.dv_xname, ether_sprintf(broadcast)); filter->type = htole16(UPGT_FILTER_TYPE_NONE); IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); IEEE80211_ADDR_COPY(filter->src, broadcast); filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); break; case IEEE80211_S_RUN: DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n", sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid)); filter->type = htole16(UPGT_FILTER_TYPE_STA); IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr); IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); break; default: printf("%s: MAC filter does not know that state!\n", sc->sc_dev.dv_xname); break; } len = sizeof(*mem) + sizeof(*filter); mem->chksum = upgt_chksum_le((uint32_t *)filter, len - sizeof(*mem)); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not transmit macfilter CMD data URB!\n", sc->sc_dev.dv_xname); return (EIO); } return (0); } int upgt_set_channel(struct upgt_softc *sc, unsigned channel) { struct upgt_data *data_cmd = &sc->cmd_data; struct upgt_lmac_mem *mem; struct upgt_lmac_channel *chan; int len; DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel); /* * Transmit the URB containing the CMD data. */ bzero(data_cmd->buf, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); chan = (struct upgt_lmac_channel *)(mem + 1); chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; chan->header1.type = UPGT_H1_TYPE_CTRL; chan->header1.len = htole16( sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); chan->header2.flags = 0; chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); chan->freq6 = sc->sc_eeprom_freq6[channel]; chan->settings = sc->sc_eeprom_freq6_settings; chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1, sizeof(chan->freq3_1)); bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4, sizeof(sc->sc_eeprom_freq4[channel])); bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2, sizeof(chan->freq3_2)); len = sizeof(*mem) + sizeof(*chan); mem->chksum = upgt_chksum_le((uint32_t *)chan, len - sizeof(*mem)); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not transmit channel CMD data URB!\n", sc->sc_dev.dv_xname); return (EIO); } return (0); } void upgt_set_led(struct upgt_softc *sc, int action) { struct ieee80211com *ic = &sc->sc_ic; struct upgt_data *data_cmd = &sc->cmd_data; struct upgt_lmac_mem *mem; struct upgt_lmac_led *led; struct timeval t; int len; /* * Transmit the URB containing the CMD data. */ bzero(data_cmd->buf, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); led = (struct upgt_lmac_led *)(mem + 1); led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; led->header1.type = UPGT_H1_TYPE_CTRL; led->header1.len = htole16( sizeof(struct upgt_lmac_led) - sizeof(struct upgt_lmac_header)); led->header2.reqid = htole32(sc->sc_memaddr_frame_start); led->header2.type = htole16(UPGT_H2_TYPE_LED); led->header2.flags = 0; switch (action) { case UPGT_LED_OFF: led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = 0; led->action_tmp = htole16(UPGT_LED_ACTION_OFF); led->action_tmp_dur = 0; break; case UPGT_LED_ON: led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = 0; led->action_tmp = htole16(UPGT_LED_ACTION_ON); led->action_tmp_dur = 0; break; case UPGT_LED_BLINK: if (ic->ic_state != IEEE80211_S_RUN) return; if (sc->sc_led_blink) /* previous blink was not finished */ return; led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = htole16(UPGT_LED_ACTION_OFF); led->action_tmp = htole16(UPGT_LED_ACTION_ON); led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); /* lock blink */ sc->sc_led_blink = 1; t.tv_sec = 0; t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L; timeout_add(&sc->led_to, tvtohz(&t)); break; default: return; } len = sizeof(*mem) + sizeof(*led); mem->chksum = upgt_chksum_le((uint32_t *)led, len - sizeof(*mem)); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not transmit led CMD URB!\n", sc->sc_dev.dv_xname); } } void upgt_set_led_blink(void *arg) { struct upgt_softc *sc = arg; /* blink finished, we are ready for a next one */ sc->sc_led_blink = 0; timeout_del(&sc->led_to); } int upgt_get_stats(struct upgt_softc *sc) { struct upgt_data *data_cmd = &sc->cmd_data; struct upgt_lmac_mem *mem; struct upgt_lmac_stats *stats; int len; DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__); /* * Transmit the URB containing the CMD data. */ bzero(data_cmd->buf, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); stats = (struct upgt_lmac_stats *)(mem + 1); stats->header1.flags = 0; stats->header1.type = UPGT_H1_TYPE_CTRL; stats->header1.len = htole16( sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); stats->header2.type = htole16(UPGT_H2_TYPE_STATS); stats->header2.flags = 0; len = sizeof(*mem) + sizeof(*stats); mem->chksum = upgt_chksum_le((uint32_t *)stats, len - sizeof(*mem)); if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) { printf("%s: could not transmit statistics CMD data URB!\n", sc->sc_dev.dv_xname); return (EIO); } return (0); } int upgt_alloc_tx(struct upgt_softc *sc) { int i; sc->tx_queued = 0; for (i = 0; i < UPGT_TX_COUNT; i++) { struct upgt_data *data_tx = &sc->tx_data[i]; data_tx->sc = sc; data_tx->xfer = usbd_alloc_xfer(sc->sc_udev); if (data_tx->xfer == NULL) { printf("%s: could not allocate TX xfer!\n", sc->sc_dev.dv_xname); return (ENOMEM); } data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES); if (data_tx->buf == NULL) { printf("%s: could not allocate TX buffer!\n", sc->sc_dev.dv_xname); return (ENOMEM); } bzero(data_tx->buf, MCLBYTES); } return (0); } int upgt_alloc_rx(struct upgt_softc *sc) { struct upgt_data *data_rx = &sc->rx_data; data_rx->sc = sc; data_rx->xfer = usbd_alloc_xfer(sc->sc_udev); if (data_rx->xfer == NULL) { printf("%s: could not allocate RX xfer!\n", sc->sc_dev.dv_xname); return (ENOMEM); } data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES); if (data_rx->buf == NULL) { printf("%s: could not allocate RX buffer!\n", sc->sc_dev.dv_xname); return (ENOMEM); } bzero(data_rx->buf, MCLBYTES); return (0); } int upgt_alloc_cmd(struct upgt_softc *sc) { struct upgt_data *data_cmd = &sc->cmd_data; data_cmd->sc = sc; data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev); if (data_cmd->xfer == NULL) { printf("%s: could not allocate RX xfer!\n", sc->sc_dev.dv_xname); return (ENOMEM); } data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES); if (data_cmd->buf == NULL) { printf("%s: could not allocate RX buffer!\n", sc->sc_dev.dv_xname); return (ENOMEM); } bzero(data_cmd->buf, MCLBYTES); return (0); } void upgt_free_tx(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_TX_COUNT; i++) { struct upgt_data *data_tx = &sc->tx_data[i]; if (data_tx->xfer != NULL) { usbd_free_xfer(data_tx->xfer); data_tx->xfer = NULL; } data_tx->ni = NULL; } } void upgt_free_rx(struct upgt_softc *sc) { struct upgt_data *data_rx = &sc->rx_data; if (data_rx->xfer != NULL) { usbd_free_xfer(data_rx->xfer); data_rx->xfer = NULL; } data_rx->ni = NULL; } void upgt_free_cmd(struct upgt_softc *sc) { struct upgt_data *data_cmd = &sc->cmd_data; if (data_cmd->xfer != NULL) { usbd_free_xfer(data_cmd->xfer); data_cmd->xfer = NULL; } } int upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data, usbd_pipe_handle pipeh, uint32_t *size, int flags) { usbd_status status; status = usbd_bulk_transfer(data->xfer, pipeh, USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size, "upgt_bulk_xmit"); if (status != USBD_NORMAL_COMPLETION) { printf("%s: %s: error %s!\n", sc->sc_dev.dv_xname, __func__, usbd_errstr(status)); return (EIO); } return (0); } void upgt_hexdump(void *buf, int len) { int i; for (i = 0; i < len; i++) { if (i % 16 == 0) printf("%s%5i:", i ? "\n" : "", i); if (i % 4 == 0) printf(" "); printf("%02x", (int)*((u_char *)buf + i)); } printf("\n"); } uint32_t upgt_crc32_le(const void *buf, size_t size) { uint32_t crc; crc = ether_crc32_le(buf, size); /* apply final XOR value as common for CRC-32 */ crc = htole32(crc ^ 0xffffffffU); return (crc); } /* * The firmware awaits a checksum for each frame we send to it. * The algorithm used therefor is uncommon but somehow similar to CRC32. */ uint32_t upgt_chksum_le(const uint32_t *buf, size_t size) { int i; uint32_t crc = 0; for (i = 0; i < size; i += sizeof(uint32_t)) { crc = htole32(crc ^ *buf++); crc = htole32((crc >> 5) ^ (crc << 3)); } return (crc); }