/* $OpenBSD: if_urtwn.c,v 1.77 2017/12/14 09:26:11 benno Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * Copyright (c) 2014 Kevin Lo * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Maximum number of output pipes is 3. */ #define R92C_MAX_EPOUT 3 #define R92C_HQ_NPAGES 12 #define R92C_LQ_NPAGES 2 #define R92C_NQ_NPAGES 2 #define R92C_TXPKTBUF_COUNT 256 #define R92C_TX_PAGE_COUNT 248 #define R92C_TX_PAGE_BOUNDARY (R92C_TX_PAGE_COUNT + 1) #define R92C_MAX_RX_DMA_SIZE 0x2800 #define R88E_HQ_NPAGES 0 #define R88E_LQ_NPAGES 9 #define R88E_NQ_NPAGES 0 #define R88E_TXPKTBUF_COUNT 177 #define R88E_TX_PAGE_COUNT 168 #define R88E_TX_PAGE_BOUNDARY (R88E_TX_PAGE_COUNT + 1) #define R88E_MAX_RX_DMA_SIZE 0x2400 /* USB Requests. */ #define R92C_REQ_REGS 0x05 /* * Driver definitions. */ #define URTWN_RX_LIST_COUNT 1 #define URTWN_TX_LIST_COUNT 8 #define URTWN_HOST_CMD_RING_COUNT 32 #define URTWN_RXBUFSZ (16 * 1024) #define URTWN_TXBUFSZ (sizeof(struct r92c_tx_desc_usb) + IEEE80211_MAX_LEN) #define URTWN_RIDX_COUNT 28 #define URTWN_TX_TIMEOUT 5000 /* ms */ #define URTWN_LED_LINK 0 #define URTWN_LED_DATA 1 struct urtwn_rx_radiotap_header { struct ieee80211_radiotap_header wr_ihdr; uint8_t wr_flags; uint8_t wr_rate; uint16_t wr_chan_freq; uint16_t wr_chan_flags; uint8_t wr_dbm_antsignal; } __packed; #define URTWN_RX_RADIOTAP_PRESENT \ (1 << IEEE80211_RADIOTAP_FLAGS | \ 1 << IEEE80211_RADIOTAP_RATE | \ 1 << IEEE80211_RADIOTAP_CHANNEL | \ 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) struct urtwn_tx_radiotap_header { struct ieee80211_radiotap_header wt_ihdr; uint8_t wt_flags; uint16_t wt_chan_freq; uint16_t wt_chan_flags; } __packed; #define URTWN_TX_RADIOTAP_PRESENT \ (1 << IEEE80211_RADIOTAP_FLAGS | \ 1 << IEEE80211_RADIOTAP_CHANNEL) struct urtwn_softc; struct urtwn_rx_data { struct urtwn_softc *sc; struct usbd_xfer *xfer; uint8_t *buf; }; struct urtwn_tx_data { struct urtwn_softc *sc; struct usbd_pipe *pipe; struct usbd_xfer *xfer; uint8_t *buf; TAILQ_ENTRY(urtwn_tx_data) next; }; struct urtwn_host_cmd { void (*cb)(struct urtwn_softc *, void *); uint8_t data[256]; }; struct urtwn_cmd_newstate { enum ieee80211_state state; int arg; }; struct urtwn_cmd_key { struct ieee80211_key key; struct ieee80211_node *ni; }; struct urtwn_host_cmd_ring { struct urtwn_host_cmd cmd[URTWN_HOST_CMD_RING_COUNT]; int cur; int next; int queued; }; struct urtwn_softc { struct device sc_dev; struct rtwn_softc sc_sc; struct usbd_device *sc_udev; struct usbd_interface *sc_iface; struct usb_task sc_task; struct timeout scan_to; struct timeout calib_to; int ntx; struct usbd_pipe *rx_pipe; struct usbd_pipe *tx_pipe[R92C_MAX_EPOUT]; int ac2idx[EDCA_NUM_AC]; struct urtwn_host_cmd_ring cmdq; struct urtwn_rx_data rx_data[URTWN_RX_LIST_COUNT]; struct urtwn_tx_data tx_data[URTWN_TX_LIST_COUNT]; TAILQ_HEAD(, urtwn_tx_data) tx_free_list; struct ieee80211_amrr amrr; struct ieee80211_amrr_node amn; #if NBPFILTER > 0 caddr_t sc_drvbpf; union { struct urtwn_rx_radiotap_header th; uint8_t pad[64]; } sc_rxtapu; #define sc_rxtap sc_rxtapu.th int sc_rxtap_len; union { struct urtwn_tx_radiotap_header th; uint8_t pad[64]; } sc_txtapu; #define sc_txtap sc_txtapu.th int sc_txtap_len; #endif }; #ifdef URTWN_DEBUG #define DPRINTF(x) do { if (urtwn_debug) printf x; } while (0) #define DPRINTFN(n, x) do { if (urtwn_debug >= (n)) printf x; } while (0) int urtwn_debug = 4; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* * Various supported device vendors/products. */ #define URTWN_DEV(v, p, f) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) | RTWN_CHIP_USB } #define URTWN_DEV_8192CU(v, p) URTWN_DEV(v, p, RTWN_CHIP_92C | RTWN_CHIP_88C) #define URTWN_DEV_8188EU(v, p) URTWN_DEV(v, p, RTWN_CHIP_88E) static const struct urtwn_type { struct usb_devno dev; uint32_t chip; } urtwn_devs[] = { URTWN_DEV_8192CU(ABOCOM, RTL8188CU_1), URTWN_DEV_8192CU(ABOCOM, RTL8188CU_1), URTWN_DEV_8192CU(ABOCOM, RTL8188CU_2), URTWN_DEV_8192CU(ABOCOM, RTL8192CU), URTWN_DEV_8192CU(ASUS, RTL8192CU), URTWN_DEV_8192CU(ASUS, RTL8192CU_2), URTWN_DEV_8192CU(ASUS, RTL8192CU_3), URTWN_DEV_8192CU(AZUREWAVE, RTL8188CE_1), URTWN_DEV_8192CU(AZUREWAVE, RTL8188CE_2), URTWN_DEV_8192CU(AZUREWAVE, RTL8188CU), URTWN_DEV_8192CU(BELKIN, F7D2102), URTWN_DEV_8192CU(BELKIN, F9L1004V1), URTWN_DEV_8192CU(BELKIN, RTL8188CU), URTWN_DEV_8192CU(BELKIN, RTL8188CUS), URTWN_DEV_8192CU(BELKIN, RTL8192CU), URTWN_DEV_8192CU(BELKIN, RTL8192CU_1), URTWN_DEV_8192CU(BELKIN, RTL8192CU_2), URTWN_DEV_8192CU(CHICONY, RTL8188CUS_1), URTWN_DEV_8192CU(CHICONY, RTL8188CUS_2), URTWN_DEV_8192CU(CHICONY, RTL8188CUS_3), URTWN_DEV_8192CU(CHICONY, RTL8188CUS_4), URTWN_DEV_8192CU(CHICONY, RTL8188CUS_5), URTWN_DEV_8192CU(CHICONY, RTL8188CUS_6), URTWN_DEV_8192CU(COMPARE, RTL8192CU), URTWN_DEV_8192CU(COREGA, RTL8192CU), URTWN_DEV_8192CU(DLINK, DWA131B), URTWN_DEV_8192CU(DLINK, RTL8188CU), URTWN_DEV_8192CU(DLINK, RTL8192CU_1), URTWN_DEV_8192CU(DLINK, RTL8192CU_2), URTWN_DEV_8192CU(DLINK, RTL8192CU_3), URTWN_DEV_8192CU(DLINK, RTL8192CU_4), URTWN_DEV_8192CU(EDIMAX, EW7811UN), URTWN_DEV_8192CU(EDIMAX, RTL8192CU), URTWN_DEV_8192CU(FEIXUN, RTL8188CU), URTWN_DEV_8192CU(FEIXUN, RTL8192CU), URTWN_DEV_8192CU(GUILLEMOT, HWNUP150), URTWN_DEV_8192CU(GUILLEMOT, RTL8192CU), URTWN_DEV_8192CU(HAWKING, RTL8192CU), URTWN_DEV_8192CU(HAWKING, RTL8192CU_2), URTWN_DEV_8192CU(HP3, RTL8188CU), URTWN_DEV_8192CU(IODATA, WNG150UM), URTWN_DEV_8192CU(IODATA, RTL8192CU), URTWN_DEV_8192CU(NETGEAR, N300MA), URTWN_DEV_8192CU(NETGEAR, WNA1000M), URTWN_DEV_8192CU(NETGEAR, WNA1000Mv2), URTWN_DEV_8192CU(NETGEAR, RTL8192CU), URTWN_DEV_8192CU(NETGEAR4, RTL8188CU), URTWN_DEV_8192CU(NETWEEN, RTL8192CU), URTWN_DEV_8192CU(NOVATECH, RTL8188CU), URTWN_DEV_8192CU(PLANEX2, RTL8188CU_1), URTWN_DEV_8192CU(PLANEX2, RTL8188CU_2), URTWN_DEV_8192CU(PLANEX2, RTL8188CU_3), URTWN_DEV_8192CU(PLANEX2, RTL8188CU_4), URTWN_DEV_8192CU(PLANEX2, RTL8188CUS), URTWN_DEV_8192CU(PLANEX2, RTL8192CU), URTWN_DEV_8192CU(REALTEK, RTL8188CE_0), URTWN_DEV_8192CU(REALTEK, RTL8188CE_1), URTWN_DEV_8192CU(REALTEK, RTL8188CTV), URTWN_DEV_8192CU(REALTEK, RTL8188CU_0), URTWN_DEV_8192CU(REALTEK, RTL8188CU_1), URTWN_DEV_8192CU(REALTEK, RTL8188CU_2), URTWN_DEV_8192CU(REALTEK, RTL8188CU_3), URTWN_DEV_8192CU(REALTEK, RTL8188CU_4), URTWN_DEV_8192CU(REALTEK, RTL8188CU_5), URTWN_DEV_8192CU(REALTEK, RTL8188CU_COMBO), URTWN_DEV_8192CU(REALTEK, RTL8188CUS), URTWN_DEV_8192CU(REALTEK, RTL8188RU), URTWN_DEV_8192CU(REALTEK, RTL8188RU_2), URTWN_DEV_8192CU(REALTEK, RTL8188RU_3), URTWN_DEV_8192CU(REALTEK, RTL8191CU), URTWN_DEV_8192CU(REALTEK, RTL8192CE), URTWN_DEV_8192CU(REALTEK, RTL8192CE_VAU), URTWN_DEV_8192CU(REALTEK, RTL8192CU), URTWN_DEV_8192CU(SITECOMEU, RTL8188CU), URTWN_DEV_8192CU(SITECOMEU, RTL8188CU_2), URTWN_DEV_8192CU(SITECOMEU, RTL8192CU), URTWN_DEV_8192CU(SITECOMEU, RTL8192CU_2), URTWN_DEV_8192CU(SITECOMEU, WLA2100V2), URTWN_DEV_8192CU(TPLINK, RTL8192CU), URTWN_DEV_8192CU(TRENDNET, RTL8188CU), URTWN_DEV_8192CU(TRENDNET, RTL8192CU), URTWN_DEV_8192CU(ZYXEL, RTL8192CU), /* URTWN_RTL8188E */ URTWN_DEV_8188EU(DLINK, DWA123D1), URTWN_DEV_8188EU(DLINK, DWA125D1), URTWN_DEV_8188EU(ELECOM, WDC150SU2M), URTWN_DEV_8188EU(REALTEK, RTL8188ETV), URTWN_DEV_8188EU(REALTEK, RTL8188EU), URTWN_DEV_8188EU(TPLINK, RTL8188EUS) }; #define urtwn_lookup(v, p) \ ((const struct urtwn_type *)usb_lookup(urtwn_devs, v, p)) int urtwn_match(struct device *, void *, void *); void urtwn_attach(struct device *, struct device *, void *); int urtwn_detach(struct device *, int); int urtwn_open_pipes(struct urtwn_softc *); void urtwn_close_pipes(struct urtwn_softc *); int urtwn_alloc_rx_list(struct urtwn_softc *); void urtwn_free_rx_list(struct urtwn_softc *); int urtwn_alloc_tx_list(struct urtwn_softc *); void urtwn_free_tx_list(struct urtwn_softc *); void urtwn_task(void *); void urtwn_do_async(struct urtwn_softc *, void (*)(struct urtwn_softc *, void *), void *, int); void urtwn_wait_async(void *); int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); void urtwn_write_1(void *, uint16_t, uint8_t); void urtwn_write_2(void *, uint16_t, uint16_t); void urtwn_write_4(void *, uint16_t, uint32_t); int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); uint8_t urtwn_read_1(void *, uint16_t); uint16_t urtwn_read_2(void *, uint16_t); uint32_t urtwn_read_4(void *, uint16_t); int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t); void urtwn_calib_to(void *); void urtwn_calib_cb(struct urtwn_softc *, void *); void urtwn_scan_to(void *); void urtwn_next_scan(void *); void urtwn_cancel_scan(void *); int urtwn_newstate(struct ieee80211com *, enum ieee80211_state, int); void urtwn_newstate_cb(struct urtwn_softc *, void *); void urtwn_updateslot(struct ieee80211com *); void urtwn_updateslot_cb(struct urtwn_softc *, void *); void urtwn_updateedca(struct ieee80211com *); void urtwn_updateedca_cb(struct urtwn_softc *, void *); int urtwn_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void urtwn_set_key_cb(struct urtwn_softc *, void *); void urtwn_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void urtwn_delete_key_cb(struct urtwn_softc *, void *); void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int); void urtwn_rxeof(struct usbd_xfer *, void *, usbd_status); void urtwn_txeof(struct usbd_xfer *, void *, usbd_status); int urtwn_tx(void *, struct mbuf *, struct ieee80211_node *); int urtwn_ioctl(struct ifnet *, u_long, caddr_t); int urtwn_power_on(void *); int urtwn_alloc_buffers(void *); int urtwn_r92c_power_on(struct urtwn_softc *); int urtwn_r88e_power_on(struct urtwn_softc *); int urtwn_llt_init(struct urtwn_softc *, int); int urtwn_fw_loadpage(void *, int, uint8_t *, int); int urtwn_load_firmware(void *, u_char **, size_t *); int urtwn_dma_init(void *); void urtwn_mac_init(void *); void urtwn_bb_init(void *); int urtwn_init(void *); void urtwn_stop(void *); int urtwn_is_oactive(void *); void urtwn_next_calib(void *); void urtwn_cancel_calib(void *); /* Aliases. */ #define urtwn_bb_write urtwn_write_4 #define urtwn_bb_read urtwn_read_4 struct cfdriver urtwn_cd = { NULL, "urtwn", DV_IFNET }; const struct cfattach urtwn_ca = { sizeof(struct urtwn_softc), urtwn_match, urtwn_attach, urtwn_detach }; int urtwn_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface == NULL || uaa->configno != 1) return (UMATCH_NONE); return ((urtwn_lookup(uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE); } void urtwn_attach(struct device *parent, struct device *self, void *aux) { struct urtwn_softc *sc = (struct urtwn_softc *)self; struct usb_attach_arg *uaa = aux; struct ifnet *ifp; struct ieee80211com *ic = &sc->sc_sc.sc_ic; sc->sc_udev = uaa->device; sc->sc_iface = uaa->iface; sc->sc_sc.chip = urtwn_lookup(uaa->vendor, uaa->product)->chip; usb_init_task(&sc->sc_task, urtwn_task, sc, USB_TASK_TYPE_GENERIC); timeout_set(&sc->scan_to, urtwn_scan_to, sc); timeout_set(&sc->calib_to, urtwn_calib_to, sc); if (urtwn_open_pipes(sc) != 0) return; sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; /* Attach the bus-agnostic driver. */ sc->sc_sc.sc_ops.cookie = sc; sc->sc_sc.sc_ops.write_1 = urtwn_write_1; sc->sc_sc.sc_ops.write_2 = urtwn_write_2; sc->sc_sc.sc_ops.write_4 = urtwn_write_4; sc->sc_sc.sc_ops.read_1 = urtwn_read_1; sc->sc_sc.sc_ops.read_2 = urtwn_read_2; sc->sc_sc.sc_ops.read_4 = urtwn_read_4; sc->sc_sc.sc_ops.tx = urtwn_tx; sc->sc_sc.sc_ops.power_on = urtwn_power_on; sc->sc_sc.sc_ops.dma_init = urtwn_dma_init; sc->sc_sc.sc_ops.fw_loadpage = urtwn_fw_loadpage; sc->sc_sc.sc_ops.load_firmware = urtwn_load_firmware; sc->sc_sc.sc_ops.mac_init = urtwn_mac_init; sc->sc_sc.sc_ops.bb_init = urtwn_bb_init; sc->sc_sc.sc_ops.alloc_buffers = urtwn_alloc_buffers; sc->sc_sc.sc_ops.init = urtwn_init; sc->sc_sc.sc_ops.stop = urtwn_stop; sc->sc_sc.sc_ops.is_oactive = urtwn_is_oactive; sc->sc_sc.sc_ops.next_calib = urtwn_next_calib; sc->sc_sc.sc_ops.cancel_calib = urtwn_cancel_calib; sc->sc_sc.sc_ops.next_scan = urtwn_next_scan; sc->sc_sc.sc_ops.cancel_scan = urtwn_cancel_scan; sc->sc_sc.sc_ops.wait_async = urtwn_wait_async; if (rtwn_attach(&sc->sc_dev, &sc->sc_sc) != 0) { urtwn_close_pipes(sc); return; } /* ifp is now valid */ ifp = &sc->sc_sc.sc_ic.ic_if; ifp->if_ioctl = urtwn_ioctl; ic->ic_updateslot = urtwn_updateslot; ic->ic_updateedca = urtwn_updateedca; #ifdef notyet ic->ic_set_key = urtwn_set_key; ic->ic_delete_key = urtwn_delete_key; #endif /* Override state transition machine. */ ic->ic_newstate = urtwn_newstate; #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtapu); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT); #endif } int urtwn_detach(struct device *self, int flags) { struct urtwn_softc *sc = (struct urtwn_softc *)self; int s; s = splusb(); if (timeout_initialized(&sc->scan_to)) timeout_del(&sc->scan_to); if (timeout_initialized(&sc->calib_to)) timeout_del(&sc->calib_to); /* Wait for all async commands to complete. */ usb_rem_wait_task(sc->sc_udev, &sc->sc_task); usbd_ref_wait(sc->sc_udev); rtwn_detach(&sc->sc_sc, flags); /* Abort and close Tx/Rx pipes. */ urtwn_close_pipes(sc); /* Free Tx/Rx buffers. */ urtwn_free_tx_list(sc); urtwn_free_rx_list(sc); splx(s); return (0); } int urtwn_open_pipes(struct urtwn_softc *sc) { /* Bulk-out endpoints addresses (from highest to lowest prio). */ uint8_t epaddr[R92C_MAX_EPOUT] = { 0, 0, 0 }; uint8_t rx_no; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i, error, nrx = 0; /* Find all bulk endpoints. */ id = usbd_get_interface_descriptor(sc->sc_iface); for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK) continue; if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) { rx_no = ed->bEndpointAddress; nrx++; } else { if (sc->ntx < R92C_MAX_EPOUT) epaddr[sc->ntx] = ed->bEndpointAddress; sc->ntx++; } } if (nrx == 0) { printf("%s: %d: invalid number of Rx bulk pipes\n", sc->sc_dev.dv_xname, nrx); return (EIO); } DPRINTF(("found %d bulk-out pipes\n", sc->ntx)); if (sc->ntx == 0 || sc->ntx > R92C_MAX_EPOUT) { printf("%s: %d: invalid number of Tx bulk pipes\n", sc->sc_dev.dv_xname, sc->ntx); return (EIO); } /* Open bulk-in pipe. */ error = usbd_open_pipe(sc->sc_iface, rx_no, 0, &sc->rx_pipe); if (error != 0) { printf("%s: could not open Rx bulk pipe\n", sc->sc_dev.dv_xname); goto fail; } /* Open bulk-out pipes (up to 3). */ for (i = 0; i < sc->ntx; i++) { error = usbd_open_pipe(sc->sc_iface, epaddr[i], 0, &sc->tx_pipe[i]); if (error != 0) { printf("%s: could not open Tx bulk pipe 0x%02x\n", sc->sc_dev.dv_xname, epaddr[i]); goto fail; } } /* Map 802.11 access categories to USB pipes. */ sc->ac2idx[EDCA_AC_BK] = sc->ac2idx[EDCA_AC_BE] = (sc->ntx == 3) ? 2 : ((sc->ntx == 2) ? 1 : 0); sc->ac2idx[EDCA_AC_VI] = (sc->ntx == 3) ? 1 : 0; sc->ac2idx[EDCA_AC_VO] = 0; /* Always use highest prio. */ if (error != 0) fail: urtwn_close_pipes(sc); return (error); } void urtwn_close_pipes(struct urtwn_softc *sc) { int i; /* Close Rx pipe. */ if (sc->rx_pipe != NULL) { usbd_abort_pipe(sc->rx_pipe); usbd_close_pipe(sc->rx_pipe); } /* Close Tx pipes. */ for (i = 0; i < R92C_MAX_EPOUT; i++) { if (sc->tx_pipe[i] == NULL) continue; usbd_abort_pipe(sc->tx_pipe[i]); usbd_close_pipe(sc->tx_pipe[i]); } } int urtwn_alloc_rx_list(struct urtwn_softc *sc) { struct urtwn_rx_data *data; int i, error = 0; for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; data->sc = sc; /* Backpointer for callbacks. */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate xfer buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } } if (error != 0) urtwn_free_rx_list(sc); return (error); } void urtwn_free_rx_list(struct urtwn_softc *sc) { int i; /* NB: Caller must abort pipe first. */ for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { if (sc->rx_data[i].xfer != NULL) usbd_free_xfer(sc->rx_data[i].xfer); sc->rx_data[i].xfer = NULL; } } int urtwn_alloc_tx_list(struct urtwn_softc *sc) { struct urtwn_tx_data *data; int i, error = 0; TAILQ_INIT(&sc->tx_free_list); for (i = 0; i < URTWN_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; /* Backpointer for callbacks. */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate xfer buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; break; } /* Append this Tx buffer to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); } if (error != 0) urtwn_free_tx_list(sc); return (error); } void urtwn_free_tx_list(struct urtwn_softc *sc) { int i; /* NB: Caller must abort pipe first. */ for (i = 0; i < URTWN_TX_LIST_COUNT; i++) { if (sc->tx_data[i].xfer != NULL) usbd_free_xfer(sc->tx_data[i].xfer); sc->tx_data[i].xfer = NULL; } } void urtwn_task(void *arg) { struct urtwn_softc *sc = arg; struct urtwn_host_cmd_ring *ring = &sc->cmdq; struct urtwn_host_cmd *cmd; int s; /* Process host commands. */ s = splusb(); while (ring->next != ring->cur) { cmd = &ring->cmd[ring->next]; splx(s); /* Invoke callback. */ cmd->cb(sc, cmd->data); s = splusb(); ring->queued--; ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT; } splx(s); } void urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *), void *arg, int len) { struct urtwn_host_cmd_ring *ring = &sc->cmdq; struct urtwn_host_cmd *cmd; int s; s = splusb(); cmd = &ring->cmd[ring->cur]; cmd->cb = cb; KASSERT(len <= sizeof(cmd->data)); memcpy(cmd->data, arg, len); ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT; /* If there is no pending command already, schedule a task. */ if (++ring->queued == 1) usb_add_task(sc->sc_udev, &sc->sc_task); splx(s); } void urtwn_wait_async(void *cookie) { struct urtwn_softc *sc = cookie; int s; s = splusb(); /* Wait for all queued asynchronous commands to complete. */ usb_wait_task(sc->sc_udev, &sc->sc_task); splx(s); } int urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (usbd_do_request(sc->sc_udev, &req, buf)); } void urtwn_write_1(void *cookie, uint16_t addr, uint8_t val) { struct urtwn_softc *sc = cookie; urtwn_write_region_1(sc, addr, &val, 1); } void urtwn_write_2(void *cookie, uint16_t addr, uint16_t val) { struct urtwn_softc *sc = cookie; val = htole16(val); urtwn_write_region_1(sc, addr, (uint8_t *)&val, 2); } void urtwn_write_4(void *cookie, uint16_t addr, uint32_t val) { struct urtwn_softc *sc = cookie; val = htole32(val); urtwn_write_region_1(sc, addr, (uint8_t *)&val, 4); } int urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (usbd_do_request(sc->sc_udev, &req, buf)); } uint8_t urtwn_read_1(void *cookie, uint16_t addr) { struct urtwn_softc *sc = cookie; uint8_t val; if (urtwn_read_region_1(sc, addr, &val, 1) != 0) return (0xff); return (val); } uint16_t urtwn_read_2(void *cookie, uint16_t addr) { struct urtwn_softc *sc = cookie; uint16_t val; if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0) return (0xffff); return (letoh16(val)); } uint32_t urtwn_read_4(void *cookie, uint16_t addr) { struct urtwn_softc *sc = cookie; uint32_t val; if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0) return (0xffffffff); return (letoh32(val)); } int urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data) { int ntries; urtwn_write_4(sc, R92C_LLT_INIT, SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) | SM(R92C_LLT_INIT_ADDR, addr) | SM(R92C_LLT_INIT_DATA, data)); /* Wait for write operation to complete. */ for (ntries = 0; ntries < 20; ntries++) { if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) == R92C_LLT_INIT_OP_NO_ACTIVE) return (0); DELAY(5); } return (ETIMEDOUT); } void urtwn_calib_to(void *arg) { struct urtwn_softc *sc = arg; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); /* Do it in a process context. */ urtwn_do_async(sc, urtwn_calib_cb, NULL, 0); usbd_ref_decr(sc->sc_udev); } /* ARGSUSED */ void urtwn_calib_cb(struct urtwn_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_sc.sc_ic; int s; s = splnet(); if (ic->ic_opmode == IEEE80211_M_STA) { ieee80211_amrr_choose(&sc->amrr, ic->ic_bss, &sc->amn); } splx(s); rtwn_calib(&sc->sc_sc); } void urtwn_next_calib(void *cookie) { struct urtwn_softc *sc = cookie; if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 2); } void urtwn_cancel_calib(void *cookie) { struct urtwn_softc *sc = cookie; if (timeout_initialized(&sc->calib_to)) timeout_del(&sc->calib_to); } void urtwn_scan_to(void *arg) { struct urtwn_softc *sc = arg; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); rtwn_next_scan(&sc->sc_sc); usbd_ref_decr(sc->sc_udev); } void urtwn_next_scan(void *arg) { struct urtwn_softc *sc = arg; if (!usbd_is_dying(sc->sc_udev)) timeout_add_msec(&sc->scan_to, 200); } void urtwn_cancel_scan(void *cookie) { struct urtwn_softc *sc = cookie; if (timeout_initialized(&sc->scan_to)) timeout_del(&sc->scan_to); } int urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rtwn_softc *sc_sc = ic->ic_softc; struct device *self = sc_sc->sc_pdev; struct urtwn_softc *sc = (struct urtwn_softc *)self; struct urtwn_cmd_newstate cmd; /* Do it in a process context. */ cmd.state = nstate; cmd.arg = arg; urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd)); return (0); } void urtwn_newstate_cb(struct urtwn_softc *sc, void *arg) { struct urtwn_cmd_newstate *cmd = arg; struct ieee80211com *ic = &sc->sc_sc.sc_ic; rtwn_newstate(ic, cmd->state, cmd->arg); } void urtwn_updateslot(struct ieee80211com *ic) { struct rtwn_softc *sc_sc = ic->ic_softc; struct device *self = sc_sc->sc_pdev; struct urtwn_softc *sc = (struct urtwn_softc *)self; /* Do it in a process context. */ urtwn_do_async(sc, urtwn_updateslot_cb, NULL, 0); } /* ARGSUSED */ void urtwn_updateslot_cb(struct urtwn_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_sc.sc_ic; rtwn_updateslot(ic); } void urtwn_updateedca(struct ieee80211com *ic) { struct rtwn_softc *sc_sc = ic->ic_softc; struct device *self = sc_sc->sc_pdev; struct urtwn_softc *sc = (struct urtwn_softc *)self; /* Do it in a process context. */ urtwn_do_async(sc, urtwn_updateedca_cb, NULL, 0); } /* ARGSUSED */ void urtwn_updateedca_cb(struct urtwn_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_sc.sc_ic; rtwn_updateedca(ic); } int urtwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rtwn_softc *sc_sc = ic->ic_softc; struct device *self = sc_sc->sc_pdev; struct urtwn_softc *sc = (struct urtwn_softc *)self; struct urtwn_cmd_key cmd; /* Defer setting of WEP keys until interface is brought up. */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return (0); /* Do it in a process context. */ cmd.key = *k; cmd.ni = ni; urtwn_do_async(sc, urtwn_set_key_cb, &cmd, sizeof(cmd)); return (0); } void urtwn_set_key_cb(struct urtwn_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_sc.sc_ic; struct urtwn_cmd_key *cmd = arg; rtwn_set_key(ic, cmd->ni, &cmd->key); } void urtwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rtwn_softc *sc_sc = ic->ic_softc; struct device *self = sc_sc->sc_pdev; struct urtwn_softc *sc = (struct urtwn_softc *)self; struct urtwn_cmd_key cmd; if (!(ic->ic_if.if_flags & IFF_RUNNING) || ic->ic_state != IEEE80211_S_RUN) return; /* Nothing to do. */ /* Do it in a process context. */ cmd.key = *k; cmd.ni = ni; urtwn_do_async(sc, urtwn_delete_key_cb, &cmd, sizeof(cmd)); } void urtwn_delete_key_cb(struct urtwn_softc *sc, void *arg) { struct ieee80211com *ic = &sc->sc_sc.sc_ic; struct urtwn_cmd_key *cmd = arg; rtwn_delete_key(ic, cmd->ni, &cmd->key); } void urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen) { struct ieee80211com *ic = &sc->sc_sc.sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_rxinfo rxi; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct r92c_rx_desc_usb *rxd; uint32_t rxdw0, rxdw3; struct mbuf *m; uint8_t rate; int8_t rssi = 0; int s, infosz; rxd = (struct r92c_rx_desc_usb *)buf; rxdw0 = letoh32(rxd->rxdw0); rxdw3 = letoh32(rxd->rxdw3); if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) { /* * This should not happen since we setup our Rx filter * to not receive these frames. */ ifp->if_ierrors++; return; } if (__predict_false(pktlen < sizeof(*wh) || pktlen > MCLBYTES)) { ifp->if_ierrors++; return; } rate = MS(rxdw3, R92C_RXDW3_RATE); infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) { rssi = rtwn_get_rssi(&sc->sc_sc, rate, &rxd[1]); /* Update our average RSSI. */ rtwn_update_avgrssi(&sc->sc_sc, rate, rssi); } DPRINTFN(5, ("Rx frame len=%d rate=%d infosz=%d rssi=%d\n", pktlen, rate, infosz, rssi)); MGETHDR(m, M_DONTWAIT, MT_DATA); if (__predict_false(m == NULL)) { ifp->if_ierrors++; return; } if (pktlen > MHLEN) { MCLGET(m, M_DONTWAIT); if (__predict_false(!(m->m_flags & M_EXT))) { ifp->if_ierrors++; m_freem(m); return; } } /* Finalize mbuf. */ wh = (struct ieee80211_frame *)((uint8_t *)&rxd[1] + infosz); memcpy(mtod(m, uint8_t *), wh, pktlen); m->m_pkthdr.len = m->m_len = pktlen; s = splnet(); #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap; struct mbuf mb; tap->wr_flags = 0; /* Map HW rate index to 802.11 rate. */ if (!(rxdw3 & R92C_RXDW3_HT)) { switch (rate) { /* CCK. */ case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; /* OFDM. */ case 4: tap->wr_rate = 12; break; case 5: tap->wr_rate = 18; break; case 6: tap->wr_rate = 24; break; case 7: tap->wr_rate = 36; break; case 8: tap->wr_rate = 48; break; case 9: tap->wr_rate = 72; break; case 10: tap->wr_rate = 96; break; case 11: tap->wr_rate = 108; break; } if (rate <= 3) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; } else if (rate >= 12) { /* MCS0~15. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = 0x80 | (rate - 12); } tap->wr_dbm_antsignal = rssi; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_flags = 0; rxi.rxi_rssi = rssi; rxi.rxi_tstamp = 0; /* Unused. */ ieee80211_input(ifp, m, ni, &rxi); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); splx(s); } void urtwn_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct urtwn_rx_data *data = priv; struct urtwn_softc *sc = data->sc; struct r92c_rx_desc_usb *rxd; uint32_t rxdw0; uint8_t *buf; int len, totlen, pktlen, infosz, npkts, error; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("RX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->rx_pipe); if (status != USBD_CANCELLED) goto resubmit; return; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (__predict_false(len < sizeof(*rxd))) { DPRINTF(("xfer too short %d\n", len)); goto resubmit; } buf = data->buf; /* Get the number of encapsulated frames. */ rxd = (struct r92c_rx_desc_usb *)buf; npkts = MS(letoh32(rxd->rxdw2), R92C_RXDW2_PKTCNT); DPRINTFN(4, ("Rx %d frames in one chunk\n", npkts)); if (sc->sc_sc.chip & RTWN_CHIP_88E) { int ntries, type; struct r88e_tx_rpt_ccx *rxstat; type = MS(letoh32(rxd->rxdw3), R88E_RXDW3_RPT); if (type == R88E_RXDW3_RPT_TX1) { buf += sizeof(struct r92c_rx_desc_usb); rxstat = (struct r88e_tx_rpt_ccx *)buf; ntries = MS(letoh32(rxstat->rptb2), R88E_RPTB2_RETRY_CNT); if (rxstat->rptb1 & R88E_RPTB1_PKT_OK) sc->amn.amn_txcnt++; if (ntries > 0) sc->amn.amn_retrycnt++; goto resubmit; } } /* Process all of them. */ while (npkts-- > 0) { if (__predict_false(len < sizeof(*rxd))) break; rxd = (struct r92c_rx_desc_usb *)buf; rxdw0 = letoh32(rxd->rxdw0); pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN); if (__predict_false(pktlen == 0)) break; infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Make sure everything fits in xfer. */ totlen = sizeof(*rxd) + infosz + pktlen; if (__predict_false(totlen > len)) break; /* Process 802.11 frame. */ urtwn_rx_frame(sc, buf, pktlen); /* Next chunk is 128-byte aligned. */ totlen = (totlen + 127) & ~127; buf += totlen; len -= totlen; } resubmit: /* Setup a new transfer. */ usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) DPRINTF(("could not set up new transfer: %d\n", error)); } void urtwn_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct urtwn_tx_data *data = priv; struct urtwn_softc *sc = data->sc; struct ifnet *ifp = &sc->sc_sc.sc_ic.ic_if; int s; s = splnet(); /* Put this Tx buffer back to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); if (__predict_false(status != USBD_NORMAL_COMPLETION)) { DPRINTF(("TX status=%d\n", status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(data->pipe); ifp->if_oerrors++; splx(s); return; } sc->sc_sc.sc_tx_timer = 0; /* We just released a Tx buffer, notify Tx. */ if (ifq_is_oactive(&ifp->if_snd)) { ifq_clr_oactive(&ifp->if_snd); rtwn_start(ifp); } splx(s); } int urtwn_tx(void *cookie, struct mbuf *m, struct ieee80211_node *ni) { struct urtwn_softc *sc = cookie; struct ieee80211com *ic = &sc->sc_sc.sc_ic; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct urtwn_tx_data *data; struct r92c_tx_desc_usb *txd; struct usbd_pipe *pipe; uint16_t qos, sum; uint8_t raid, type, tid, qid; int i, hasqos, xferlen, error; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return (ENOBUFS); wh = mtod(m, struct ieee80211_frame *); } if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = ieee80211_up_to_ac(ic, tid); } else if (type != IEEE80211_FC0_TYPE_DATA) { /* Use AC VO for management frames. */ qid = EDCA_AC_VO; } else qid = EDCA_AC_BE; /* Get the USB pipe to use for this AC. */ pipe = sc->tx_pipe[sc->ac2idx[qid]]; /* Grab a Tx buffer from our free list. */ data = TAILQ_FIRST(&sc->tx_free_list); TAILQ_REMOVE(&sc->tx_free_list, data, next); /* Fill Tx descriptor. */ txd = (struct r92c_tx_desc_usb *)data->buf; memset(txd, 0, sizeof(*txd)); txd->txdw0 |= htole32( SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) | SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txd->txdw0 |= htole32(R92C_TXDW0_BMCAST); #ifdef notyet if (k != NULL) { switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: case IEEE80211_CIPHER_WEP104: case IEEE80211_CIPHER_TKIP: cipher = R92C_TXDW1_CIPHER_RC4; break; case IEEE80211_CIPHER_CCMP: cipher = R92C_TXDW1_CIPHER_AES; break; default: cipher = R92C_TXDW1_CIPHER_NONE; } txd->txdw1 |= htole32(SM(R92C_TXDW1_CIPHER, cipher)); } #endif if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && type == IEEE80211_FC0_TYPE_DATA) { if (ic->ic_curmode == IEEE80211_MODE_11B || (sc->sc_sc.sc_flags & RTWN_FLAG_FORCE_RAID_11B)) raid = R92C_RAID_11B; else raid = R92C_RAID_11BG; if (sc->sc_sc.chip & RTWN_CHIP_88E) { txd->txdw1 |= htole32( SM(R88E_TXDW1_MACID, R92C_MACID_BSS) | SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) | SM(R92C_TXDW1_RAID, raid)); txd->txdw2 |= htole32(R88E_TXDW2_AGGBK); /* Request TX status report for AMRR */ txd->txdw2 |= htole32(R92C_TXDW2_CCX_RPT); } else { txd->txdw1 |= htole32( SM(R92C_TXDW1_MACID, R92C_MACID_BSS) | SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) | SM(R92C_TXDW1_RAID, raid) | R92C_TXDW1_AGGBK); } if (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { txd->txdw4 |= htole32(R92C_TXDW4_RTSEN | R92C_TXDW4_HWRTSEN); } else if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF | R92C_TXDW4_HWRTSEN); } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { txd->txdw4 |= htole32(R92C_TXDW4_RTSEN | R92C_TXDW4_HWRTSEN); } } txd->txdw5 |= htole32(0x0001ff00); if (sc->sc_sc.chip & RTWN_CHIP_88E) { /* Use AMRR */ txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, ni->ni_txrate)); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, ni->ni_txrate)); } else { /* Send RTS at OFDM24 and data at OFDM54. */ txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8)); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11)); } } else { txd->txdw1 |= htole32( SM(R92C_TXDW1_MACID, 0) | SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) | SM(R92C_TXDW1_RAID, R92C_RAID_11B)); /* Force CCK1. */ txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0)); } /* Set sequence number (already little endian). */ txd->txdseq |= *(uint16_t *)wh->i_seq; if (!hasqos) { /* Use HW sequence numbering for non-QoS frames. */ txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ); txd->txdseq |= htole16(0x8000); /* WTF? */ } else txd->txdw4 |= htole32(R92C_TXDW4_QOS); /* Compute Tx descriptor checksum. */ sum = 0; for (i = 0; i < sizeof(*txd) / 2; i++) sum ^= ((uint16_t *)txd)[i]; txd->txdsum = sum; /* NB: already little endian. */ #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap; struct mbuf mb; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif xferlen = sizeof(*txd) + m->m_pkthdr.len; m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&txd[1]); m_freem(m); data->pipe = pipe; usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT, urtwn_txeof); error = usbd_transfer(data->xfer); if (__predict_false(error != USBD_IN_PROGRESS && error != 0)) { /* Put this Tx buffer back to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next); return (error); } ieee80211_release_node(ic, ni); return (0); } int urtwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rtwn_softc *sc_sc = ifp->if_softc; struct device *self = sc_sc->sc_pdev; struct urtwn_softc *sc = (struct urtwn_softc *)self; int error; if (usbd_is_dying(sc->sc_udev)) return ENXIO; usbd_ref_incr(sc->sc_udev); error = rtwn_ioctl(ifp, cmd, data); usbd_ref_decr(sc->sc_udev); return (error); } int urtwn_r92c_power_on(struct urtwn_softc *sc) { uint32_t reg; int ntries; /* Wait for autoload done bit. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN) break; DELAY(5); } if (ntries == 1000) { printf("%s: timeout waiting for chip autoload\n", sc->sc_dev.dv_xname); return (ETIMEDOUT); } /* Unlock ISO/CLK/Power control register. */ urtwn_write_1(sc, R92C_RSV_CTRL, 0); /* Move SPS into PWM mode. */ urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b); DELAY(100); reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL); if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) { urtwn_write_1(sc, R92C_LDOV12D_CTRL, reg | R92C_LDOV12D_CTRL_LDV12_EN); DELAY(100); urtwn_write_1(sc, R92C_SYS_ISO_CTRL, urtwn_read_1(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_MD2PP); } /* Auto enable WLAN. */ urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); for (ntries = 0; ntries < 1000; ntries++) { if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; DELAY(5); } if (ntries == 1000) { printf("%s: timeout waiting for MAC auto ON\n", sc->sc_dev.dv_xname); return (ETIMEDOUT); } /* Enable radio, GPIO and LED functions. */ urtwn_write_2(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN); /* Release RF digital isolation. */ urtwn_write_2(sc, R92C_SYS_ISO_CTRL, urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR); /* Initialize MAC. */ urtwn_write_1(sc, R92C_APSD_CTRL, urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF); for (ntries = 0; ntries < 200; ntries++) { if (!(urtwn_read_1(sc, R92C_APSD_CTRL) & R92C_APSD_CTRL_OFF_STATUS)) break; DELAY(5); } if (ntries == 200) { printf("%s: timeout waiting for MAC initialization\n", sc->sc_dev.dv_xname); return (ETIMEDOUT); } /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN | R92C_CR_ENSEC; urtwn_write_2(sc, R92C_CR, reg); urtwn_write_1(sc, 0xfe10, 0x19); return (0); } int urtwn_r88e_power_on(struct urtwn_softc *sc) { uint32_t reg; int ntries; /* Wait for power ready bit. */ for (ntries = 0; ntries < 5000; ntries++) { if (urtwn_read_4(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_SUS_HOST) break; DELAY(10); } if (ntries == 5000) { printf("%s: timeout waiting for chip power up\n", sc->sc_dev.dv_xname); return (ETIMEDOUT); } /* Reset BB. */ urtwn_write_1(sc, R92C_SYS_FUNC_EN, urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST)); urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2, urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80); /* Disable HWPDN. */ urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~R92C_APS_FSMCO_APDM_HPDN); /* Disable WL suspend. */ urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~(R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_AFSM_PCIE)); /* Auto enable WLAN. */ urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); for (ntries = 0; ntries < 5000; ntries++) { if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; DELAY(10); } if (ntries == 5000) { printf("%s: timeout waiting for MAC auto ON\n", sc->sc_dev.dv_xname); return (ETIMEDOUT); } /* Enable LDO normal mode. */ urtwn_write_1(sc, R92C_LPLDO_CTRL, urtwn_read_1(sc, R92C_LPLDO_CTRL) & ~0x10); /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ urtwn_write_2(sc, R92C_CR, 0); reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN; urtwn_write_2(sc, R92C_CR, reg); return (0); } int urtwn_llt_init(struct urtwn_softc *sc, int page_count) { int i, error, pktbuf_count; pktbuf_count = (sc->sc_sc.chip & RTWN_CHIP_88E) ? R88E_TXPKTBUF_COUNT : R92C_TXPKTBUF_COUNT; /* Reserve pages [0; page_count]. */ for (i = 0; i < page_count; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* NB: 0xff indicates end-of-list. */ if ((error = urtwn_llt_write(sc, i, 0xff)) != 0) return (error); /* * Use pages [page_count + 1; pktbuf_count - 1] * as ring buffer. */ for (++i; i < pktbuf_count - 1; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* Make the last page point to the beginning of the ring buffer. */ error = urtwn_llt_write(sc, i, page_count + 1); return (error); } int urtwn_fw_loadpage(void *cookie, int page, uint8_t *buf, int len) { struct urtwn_softc *sc = cookie; uint32_t reg; int off, mlen, error = 0; reg = urtwn_read_4(sc, R92C_MCUFWDL); reg = RW(reg, R92C_MCUFWDL_PAGE, page); urtwn_write_4(sc, R92C_MCUFWDL, reg); off = R92C_FW_START_ADDR; while (len > 0) { if (len > 196) mlen = 196; else if (len > 4) mlen = 4; else mlen = 1; error = urtwn_write_region_1(sc, off, buf, mlen); if (error != 0) break; off += mlen; buf += mlen; len -= mlen; } return (error); } int urtwn_load_firmware(void *cookie, u_char **fw, size_t *len) { struct urtwn_softc *sc = cookie; const char *name; int error; if (sc->sc_sc.chip & RTWN_CHIP_88E) name = "urtwn-rtl8188eufw"; else if ((sc->sc_sc.chip & (RTWN_CHIP_UMC_A_CUT | RTWN_CHIP_92C)) == RTWN_CHIP_UMC_A_CUT) name = "urtwn-rtl8192cfwU"; else name = "urtwn-rtl8192cfwT"; error = loadfirmware(name, fw, len); if (error) printf("%s: could not read firmware %s (error %d)\n", sc->sc_dev.dv_xname, name, error); return (error); } int urtwn_dma_init(void *cookie) { struct urtwn_softc *sc = cookie; uint32_t reg; uint16_t dmasize; int hqpages, lqpages, nqpages, pagecnt, boundary; int error, hashq, haslq, hasnq; /* Default initialization of chipset values. */ if (sc->sc_sc.chip & RTWN_CHIP_88E) { hqpages = R88E_HQ_NPAGES; lqpages = R88E_LQ_NPAGES; nqpages = R88E_NQ_NPAGES; pagecnt = R88E_TX_PAGE_COUNT; boundary = R88E_TX_PAGE_BOUNDARY; dmasize = R88E_MAX_RX_DMA_SIZE; } else { hqpages = R92C_HQ_NPAGES; lqpages = R92C_LQ_NPAGES; nqpages = R92C_NQ_NPAGES; pagecnt = R92C_TX_PAGE_COUNT; boundary = R92C_TX_PAGE_BOUNDARY; dmasize = R92C_MAX_RX_DMA_SIZE; } /* Initialize LLT table. */ error = urtwn_llt_init(sc, pagecnt); if (error != 0) return (error); /* Get Tx queues to USB endpoints mapping. */ hashq = hasnq = haslq = 0; switch (sc->ntx) { case 3: haslq = 1; pagecnt -= lqpages; /* FALLTHROUGH */ case 2: hasnq = 1; pagecnt -= nqpages; /* FALLTHROUGH */ case 1: hashq = 1; pagecnt -= hqpages; break; } /* Set number of pages for normal priority queue. */ urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0); urtwn_write_4(sc, R92C_RQPN, /* Set number of pages for public queue. */ SM(R92C_RQPN_PUBQ, pagecnt) | /* Set number of pages for high priority queue. */ SM(R92C_RQPN_HPQ, hashq ? hqpages : 0) | /* Set number of pages for low priority queue. */ SM(R92C_RQPN_LPQ, haslq ? lqpages : 0) | /* Load values. */ R92C_RQPN_LD); urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, boundary); urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, boundary); urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, boundary); urtwn_write_1(sc, R92C_TRXFF_BNDY, boundary); urtwn_write_1(sc, R92C_TDECTRL + 1, boundary); /* Set queue to USB pipe mapping. */ reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL); reg &= ~R92C_TRXDMA_CTRL_QMAP_M; if (haslq) reg |= R92C_TRXDMA_CTRL_QMAP_3EP; else if (hashq) { if (!hasnq) reg |= R92C_TRXDMA_CTRL_QMAP_HQ; else reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ; } urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg); /* Set Tx/Rx transfer page boundary. */ urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, dmasize - 1); /* Set Tx/Rx transfer page size. */ urtwn_write_1(sc, R92C_PBP, SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128)); return (error); } void urtwn_mac_init(void *cookie) { struct urtwn_softc *sc = cookie; int i; /* Write MAC initialization values. */ if (sc->sc_sc.chip & RTWN_CHIP_88E) { for (i = 0; i < nitems(rtl8188eu_mac); i++) { urtwn_write_1(sc, rtl8188eu_mac[i].reg, rtl8188eu_mac[i].val); } urtwn_write_1(sc, R92C_MAX_AGGR_NUM, 0x07); } else { for (i = 0; i < nitems(rtl8192cu_mac); i++) urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val); } } void urtwn_bb_init(void *cookie) { struct urtwn_softc *sc = cookie; const struct r92c_bb_prog *prog; uint32_t reg; uint8_t xtal; int i; /* Enable BB and RF. */ urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_DIO_RF); if (!(sc->sc_sc.chip & RTWN_CHIP_88E)) urtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83); urtwn_write_1(sc, R92C_RF_CTRL, R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB); urtwn_write_1(sc, R92C_SYS_FUNC_EN, R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB); if (!(sc->sc_sc.chip & RTWN_CHIP_88E)) { urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f); urtwn_write_1(sc, 0x15, 0xe9); urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80); } /* Select BB programming based on board type. */ if (sc->sc_sc.chip & RTWN_CHIP_88E) prog = &rtl8188eu_bb_prog; else if (!(sc->sc_sc.chip & RTWN_CHIP_92C)) { if (sc->sc_sc.board_type == R92C_BOARD_TYPE_MINICARD) prog = &rtl8188ce_bb_prog; else if (sc->sc_sc.board_type == R92C_BOARD_TYPE_HIGHPA) prog = &rtl8188ru_bb_prog; else prog = &rtl8188cu_bb_prog; } else { if (sc->sc_sc.board_type == R92C_BOARD_TYPE_MINICARD) prog = &rtl8192ce_bb_prog; else prog = &rtl8192cu_bb_prog; } /* Write BB initialization values. */ for (i = 0; i < prog->count; i++) { urtwn_bb_write(sc, prog->regs[i], prog->vals[i]); DELAY(1); } if (sc->sc_sc.chip & RTWN_CHIP_92C_1T2R) { /* 8192C 1T only configuration. */ reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO); reg = (reg & ~0x00000003) | 0x2; urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO); reg = (reg & ~0x00300033) | 0x00200022; urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING); reg = (reg & ~0xff000000) | 0x45 << 24; urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); reg = (reg & ~0x000000ff) | 0x23; urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1); reg = (reg & ~0x00000030) | 1 << 4; urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg); reg = urtwn_bb_read(sc, 0xe74); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe74, reg); reg = urtwn_bb_read(sc, 0xe78); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe78, reg); reg = urtwn_bb_read(sc, 0xe7c); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe7c, reg); reg = urtwn_bb_read(sc, 0xe80); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe80, reg); reg = urtwn_bb_read(sc, 0xe88); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe88, reg); } /* Write AGC values. */ for (i = 0; i < prog->agccount; i++) { urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]); DELAY(1); } if (sc->sc_sc.chip & RTWN_CHIP_88E) { urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422); DELAY(1); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420); DELAY(1); xtal = sc->sc_sc.crystal_cap & 0x3f; reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL); urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL, RW(reg, R92C_AFE_XTAL_CTRL_ADDR, xtal | xtal << 6)); } if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) & R92C_HSSI_PARAM2_CCK_HIPWR) sc->sc_sc.sc_flags |= RTWN_FLAG_CCK_HIPWR; } int urtwn_power_on(void *cookie) { struct urtwn_softc *sc = cookie; if (sc->sc_sc.chip & RTWN_CHIP_88E) return (urtwn_r88e_power_on(sc)); return (urtwn_r92c_power_on(sc)); } int urtwn_alloc_buffers(void *cookie) { struct urtwn_softc *sc = cookie; int error; /* Init host async commands ring. */ sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0; /* Allocate Tx/Rx buffers. */ error = urtwn_alloc_rx_list(sc); if (error != 0) { printf("%s: could not allocate Rx buffers\n", sc->sc_dev.dv_xname); return (error); } error = urtwn_alloc_tx_list(sc); if (error != 0) { printf("%s: could not allocate Tx buffers\n", sc->sc_dev.dv_xname); return (error); } return (0); } int urtwn_init(void *cookie) { struct urtwn_softc *sc = cookie; int i, error; /* Queue Rx xfers. */ for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { struct urtwn_rx_data *data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof); error = usbd_transfer(data->xfer); if (error != 0 && error != USBD_IN_PROGRESS) return (error); } ieee80211_amrr_node_init(&sc->amrr, &sc->amn); /* * Enable TX reports for AMRR. * In order to get reports we need to explicitly reset the register. */ if (sc->sc_sc.chip & RTWN_CHIP_88E) urtwn_write_1(sc, R88E_TX_RPT_CTRL, (urtwn_read_1(sc, R88E_TX_RPT_CTRL) & ~0) | R88E_TX_RPT_CTRL_EN); return (0); } void urtwn_stop(void *cookie) { struct urtwn_softc *sc = cookie; int i; /* Abort Tx. */ for (i = 0; i < R92C_MAX_EPOUT; i++) { if (sc->tx_pipe[i] != NULL) usbd_abort_pipe(sc->tx_pipe[i]); } /* Stop Rx pipe. */ usbd_abort_pipe(sc->rx_pipe); /* Free Tx/Rx buffers. */ urtwn_free_tx_list(sc); urtwn_free_rx_list(sc); } int urtwn_is_oactive(void *cookie) { struct urtwn_softc *sc = cookie; return (TAILQ_EMPTY(&sc->tx_free_list)); }