/* $OpenBSD: if_zyd.c,v 1.62 2007/10/14 08:31:55 fkr Exp $ */ /*- * Copyright (c) 2006 by Damien Bergamini * Copyright (c) 2006 by Florian Stoehr * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * ZyDAS ZD1211/ZD1211B USB WLAN driver. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #ifdef USB_DEBUG #define ZYD_DEBUG #endif #ifdef ZYD_DEBUG #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) int zyddebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; /* various supported device vendors/products */ #define ZYD_ZD1211_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } #define ZYD_ZD1211B_DEV(v, p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } static const struct zyd_type { struct usb_devno dev; uint8_t rev; #define ZYD_ZD1211 0 #define ZYD_ZD1211B 1 } zyd_devs[] = { ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), ZYD_ZD1211_DEV(ABOCOM, WL54), ZYD_ZD1211_DEV(ASUS, WL159G), ZYD_ZD1211_DEV(CYBERTAN, TG54USB), ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), ZYD_ZD1211_DEV(SAGEM, XG760A), ZYD_ZD1211_DEV(SENAO, NUB8301), ZYD_ZD1211_DEV(SITECOMEU, WL113), ZYD_ZD1211_DEV(SWEEX, ZD1211), ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), ZYD_ZD1211_DEV(TWINMOS, G240), ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), ZYD_ZD1211_DEV(UMEDIA, TEW429UB), ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), ZYD_ZD1211_DEV(ZCOM, ZD1211), ZYD_ZD1211_DEV(ZYDAS, ZD1211), ZYD_ZD1211_DEV(ZYXEL, AG225H), ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), ZYD_ZD1211B_DEV(ACCTON, ZD1211B), ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), ZYD_ZD1211B_DEV(BELKIN, F5D7050C), ZYD_ZD1211B_DEV(BELKIN, ZD1211B), ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), ZYD_ZD1211B_DEV(FIBERLINE, WL430U), ZYD_ZD1211B_DEV(MELCO, KG54L), ZYD_ZD1211B_DEV(PHILIPS, SNU5600), ZYD_ZD1211B_DEV(SAGEM, XG76NA), ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1), ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2), ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), ZYD_ZD1211B_DEV(USR, USR5423), ZYD_ZD1211B_DEV(VTECH, ZD1211B), ZYD_ZD1211B_DEV(ZCOM, ZD1211B), ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), ZYD_ZD1211B_DEV(ZYXEL, M202), ZYD_ZD1211B_DEV(ZYXEL, G220V2), }; #define zyd_lookup(v, p) \ ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) int zyd_match(struct device *, void *, void *); void zyd_attach(struct device *, struct device *, void *); int zyd_detach(struct device *, int); int zyd_activate(struct device *, enum devact); struct cfdriver zyd_cd = { NULL, "zyd", DV_IFNET }; const struct cfattach zyd_ca = { sizeof(struct zyd_softc), zyd_match, zyd_attach, zyd_detach, zyd_activate, }; void zyd_attachhook(void *); int zyd_complete_attach(struct zyd_softc *); int zyd_open_pipes(struct zyd_softc *); void zyd_close_pipes(struct zyd_softc *); int zyd_alloc_tx_list(struct zyd_softc *); void zyd_free_tx_list(struct zyd_softc *); int zyd_alloc_rx_list(struct zyd_softc *); void zyd_free_rx_list(struct zyd_softc *); struct ieee80211_node *zyd_node_alloc(struct ieee80211com *); int zyd_media_change(struct ifnet *); void zyd_next_scan(void *); void zyd_task(void *); int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, void *, int, u_int); int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); int zyd_rfwrite(struct zyd_softc *, uint32_t); void zyd_lock_phy(struct zyd_softc *); void zyd_unlock_phy(struct zyd_softc *); int zyd_rfmd_init(struct zyd_rf *); int zyd_rfmd_switch_radio(struct zyd_rf *, int); int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); int zyd_al2230_init(struct zyd_rf *); int zyd_al2230_switch_radio(struct zyd_rf *, int); int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); int zyd_al2230_init_b(struct zyd_rf *); int zyd_al7230B_init(struct zyd_rf *); int zyd_al7230B_switch_radio(struct zyd_rf *, int); int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); int zyd_al2210_init(struct zyd_rf *); int zyd_al2210_switch_radio(struct zyd_rf *, int); int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); int zyd_gct_init(struct zyd_rf *); int zyd_gct_switch_radio(struct zyd_rf *, int); int zyd_gct_set_channel(struct zyd_rf *, uint8_t); int zyd_maxim_init(struct zyd_rf *); int zyd_maxim_switch_radio(struct zyd_rf *, int); int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); int zyd_maxim2_init(struct zyd_rf *); int zyd_maxim2_switch_radio(struct zyd_rf *, int); int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); int zyd_rf_attach(struct zyd_softc *, uint8_t); const char *zyd_rf_name(uint8_t); int zyd_hw_init(struct zyd_softc *); int zyd_read_eeprom(struct zyd_softc *); int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); int zyd_set_bssid(struct zyd_softc *, const uint8_t *); int zyd_switch_radio(struct zyd_softc *, int); void zyd_set_led(struct zyd_softc *, int, int); int zyd_set_rxfilter(struct zyd_softc *); void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); int zyd_set_beacon_interval(struct zyd_softc *, int); uint8_t zyd_plcp_signal(int); void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status); void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); int zyd_tx_data(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); void zyd_start(struct ifnet *); void zyd_watchdog(struct ifnet *); int zyd_ioctl(struct ifnet *, u_long, caddr_t); int zyd_init(struct ifnet *); void zyd_stop(struct ifnet *, int); int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); void zyd_iter_func(void *, struct ieee80211_node *); void zyd_amrr_timeout(void *); void zyd_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int zyd_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (!uaa->iface) return UMATCH_NONE; return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } void zyd_attachhook(void *xsc) { struct zyd_softc *sc = xsc; const char *fwname; u_char *fw; size_t size; int error; fwname = (sc->mac_rev == ZYD_ZD1211) ? "zd1211" : "zd1211b"; if ((error = loadfirmware(fwname, &fw, &size)) != 0) { printf("%s: error %d, could not read firmware file %s\n", sc->sc_dev.dv_xname, error, fwname); return; } error = zyd_loadfirmware(sc, fw, size); free(fw, M_DEVBUF); if (error != 0) { printf("%s: could not load firmware (error=%d)\n", sc->sc_dev.dv_xname, error); return; } /* complete the attach process */ if (zyd_complete_attach(sc) == 0) sc->attached = 1; } void zyd_attach(struct device *parent, struct device *self, void *aux) { struct zyd_softc *sc = (struct zyd_softc *)self; struct usb_attach_arg *uaa = aux; usb_device_descriptor_t* ddesc; sc->sc_udev = uaa->device; sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; ddesc = usbd_get_device_descriptor(sc->sc_udev); if (UGETW(ddesc->bcdDevice) < 0x4330) { printf("%s: device version mismatch: 0x%x " "(only >= 43.30 supported)\n", sc->sc_dev.dv_xname, UGETW(ddesc->bcdDevice)); return; } if (rootvp == NULL) mountroothook_establish(zyd_attachhook, sc); else zyd_attachhook(sc); } int zyd_complete_attach(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usbd_status error; int i; usb_init_task(&sc->sc_task, zyd_task, sc); timeout_set(&sc->scan_to, zyd_next_scan, sc); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 10; timeout_set(&sc->amrr_to, zyd_amrr_timeout, sc); error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); if (error != 0) { printf("%s: setting config no failed\n", sc->sc_dev.dv_xname); goto fail; } error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, &sc->sc_iface); if (error != 0) { printf("%s: getting interface handle failed\n", sc->sc_dev.dv_xname); goto fail; } if ((error = zyd_open_pipes(sc)) != 0) { printf("%s: could not open pipes\n", sc->sc_dev.dv_xname); goto fail; } if ((error = zyd_read_eeprom(sc)) != 0) { printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); goto fail; } if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { printf("%s: could not attach RF\n", sc->sc_dev.dv_xname); goto fail; } if ((error = zyd_hw_init(sc)) != 0) { printf("%s: hardware initialization failed\n", sc->sc_dev.dv_xname); goto fail; } printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", sc->sc_dev.dv_xname, (sc->mac_rev == ZYD_ZD1211) ? "": "B", sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), sc->pa_rev, ether_sprintf(ic->ic_myaddr)); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_WEP; /* s/w WEP */ /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = zyd_init; ifp->if_ioctl = zyd_ioctl; ifp->if_start = zyd_start; ifp->if_watchdog = zyd_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = zyd_node_alloc; ic->ic_newassoc = zyd_newassoc; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = zyd_newstate; ieee80211_media_init(ifp, zyd_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); #endif usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev); fail: return error; } int zyd_detach(struct device *self, int flags) { struct zyd_softc *sc = (struct zyd_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splusb(); usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_to); timeout_del(&sc->amrr_to); zyd_close_pipes(sc); if (!sc->attached) { splx(s); return 0; } ieee80211_ifdetach(ifp); if_detach(ifp); zyd_free_rx_list(sc); zyd_free_tx_list(sc); sc->attached = 0; splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev); return 0; } int zyd_open_pipes(struct zyd_softc *sc) { usb_endpoint_descriptor_t *edesc; int isize; usbd_status error; /* interrupt in */ edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); if (edesc == NULL) return EINVAL; isize = UGETW(edesc->wMaxPacketSize); if (isize == 0) /* should not happen */ return EINVAL; sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); if (sc->ibuf == NULL) return ENOMEM; error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, USBD_DEFAULT_INTERVAL); if (error != 0) { printf("%s: open rx intr pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } /* interrupt out (not necessarily an interrupt pipe) */ error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_IOUT]); if (error != 0) { printf("%s: open tx intr pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } /* bulk in */ error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_BIN]); if (error != 0) { printf("%s: open rx pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } /* bulk out */ error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, &sc->zyd_ep[ZYD_ENDPT_BOUT]); if (error != 0) { printf("%s: open tx pipe failed: %s\n", sc->sc_dev.dv_xname, usbd_errstr(error)); goto fail; } return 0; fail: zyd_close_pipes(sc); return error; } void zyd_close_pipes(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_ENDPT_CNT; i++) { if (sc->zyd_ep[i] != NULL) { usbd_abort_pipe(sc->zyd_ep[i]); usbd_close_pipe(sc->zyd_ep[i]); sc->zyd_ep[i] = NULL; } } if (sc->ibuf != NULL) { free(sc->ibuf, M_USBDEV); sc->ibuf = NULL; } } int zyd_alloc_tx_list(struct zyd_softc *sc) { int i, error; sc->tx_queued = 0; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->tx_data[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate tx xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate tx buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } /* clear Tx descriptor */ bzero(data->buf, sizeof (struct zyd_tx_desc)); } return 0; fail: zyd_free_tx_list(sc); return error; } void zyd_free_tx_list(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int i; for (i = 0; i < ZYD_TX_LIST_CNT; i++) { struct zyd_tx_data *data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->ni != NULL) { ieee80211_release_node(ic, data->ni); data->ni = NULL; } } } int zyd_alloc_rx_list(struct zyd_softc *sc) { int i, error; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; data->sc = sc; /* backpointer for callbacks */ data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { printf("%s: could not allocate rx xfer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); if (data->buf == NULL) { printf("%s: could not allocate rx buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } } return 0; fail: zyd_free_rx_list(sc); return error; } void zyd_free_rx_list(struct zyd_softc *sc) { int i; for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } } } struct ieee80211_node * zyd_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT | M_ZERO); } int zyd_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) zyd_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ void zyd_next_scan(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); } void zyd_task(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state ostate; ostate = ic->ic_state; switch (sc->sc_state) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* turn link LED off */ zyd_set_led(sc, ZYD_LED1, 0); /* stop data LED from blinking */ zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); } break; case IEEE80211_S_SCAN: zyd_set_chan(sc, ic->ic_bss->ni_chan); timeout_add(&sc->scan_to, hz / 5); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: zyd_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: { struct ieee80211_node *ni = ic->ic_bss; zyd_set_chan(sc, ni->ni_chan); if (ic->ic_opmode != IEEE80211_M_MONITOR) { /* turn link LED on */ zyd_set_led(sc, ZYD_LED1, 1); /* make data LED blink upon Tx */ zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); zyd_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ zyd_newassoc(ic, ni, 1); } /* start automatic rate control timer */ if (ic->ic_fixed_rate == -1) timeout_add(&sc->amrr_to, hz); break; } } sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); } int zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct zyd_softc *sc = ic->ic_softc; usb_rem_task(sc->sc_udev, &sc->sc_task); timeout_del(&sc->scan_to); timeout_del(&sc->amrr_to); /* do it in a process context */ sc->sc_state = nstate; sc->sc_arg = arg; usb_add_task(sc->sc_udev, &sc->sc_task); return 0; } int zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, void *odata, int olen, u_int flags) { usbd_xfer_handle xfer; struct zyd_cmd cmd; uint16_t xferflags; usbd_status error; int s; if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) return ENOMEM; cmd.code = htole16(code); bcopy(idata, cmd.data, ilen); xferflags = USBD_FORCE_SHORT_XFER; if (!(flags & ZYD_CMD_FLAG_READ)) xferflags |= USBD_SYNCHRONOUS; else s = splusb(); sc->odata = odata; sc->olen = olen; usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd, sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL); error = usbd_transfer(xfer); if (error != USBD_IN_PROGRESS && error != 0) { if (flags & ZYD_CMD_FLAG_READ) splx(s); printf("%s: could not send command (error=%s)\n", sc->sc_dev.dv_xname, usbd_errstr(error)); (void)usbd_free_xfer(xfer); return EIO; } if (!(flags & ZYD_CMD_FLAG_READ)) { (void)usbd_free_xfer(xfer); return 0; /* write: don't wait for reply */ } /* wait at most one second for command reply */ error = tsleep(sc, PCATCH, "zydcmd", hz); sc->odata = NULL; /* in case answer is received too late */ splx(s); (void)usbd_free_xfer(xfer); return error; } int zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) { struct zyd_pair tmp; int error; reg = htole16(reg); error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp, ZYD_CMD_FLAG_READ); if (error == 0) *val = letoh16(tmp.val); return error; } int zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) { struct zyd_pair tmp[2]; uint16_t regs[2]; int error; regs[0] = htole16(ZYD_REG32_HI(reg)); regs[1] = htole16(ZYD_REG32_LO(reg)); error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp, ZYD_CMD_FLAG_READ); if (error == 0) *val = letoh16(tmp[0].val) << 16 | letoh16(tmp[1].val); return error; } int zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) { struct zyd_pair pair; pair.reg = htole16(reg); pair.val = htole16(val); return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0); } int zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) { struct zyd_pair pair[2]; pair[0].reg = htole16(ZYD_REG32_HI(reg)); pair[0].val = htole16(val >> 16); pair[1].reg = htole16(ZYD_REG32_LO(reg)); pair[1].val = htole16(val & 0xffff); return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0); } int zyd_rfwrite(struct zyd_softc *sc, uint32_t val) { struct zyd_rf *rf = &sc->sc_rf; struct zyd_rfwrite req; uint16_t cr203; int i; (void)zyd_read16(sc, ZYD_CR203, &cr203); cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); req.code = htole16(2); req.width = htole16(rf->width); for (i = 0; i < rf->width; i++) { req.bit[i] = htole16(cr203); if (val & (1 << (rf->width - 1 - i))) req.bit[i] |= htole16(ZYD_RF_DATA); } return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); } void zyd_lock_phy(struct zyd_softc *sc) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); tmp &= ~ZYD_UNLOCK_PHY_REGS; (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); } void zyd_unlock_phy(struct zyd_softc *sc) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); tmp |= ZYD_UNLOCK_PHY_REGS; (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); } /* * RFMD RF methods. */ int zyd_rfmd_init(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; static const uint32_t rfini[] = ZYD_RFMD_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init RFMD radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } int zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); return 0; } int zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_RFMD_CHANTABLE; (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); return 0; } /* * AL2230 RF methods. */ int zyd_al2230_init(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; static const uint32_t rfini[] = ZYD_AL2230_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2230 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } int zyd_al2230_init_b(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; static const uint32_t rfini[] = ZYD_AL2230_RF_B; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2230 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } int zyd_al2230_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); return 0; } int zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2, r3; } rfprog[] = ZYD_AL2230_CHANTABLE; (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); (void)zyd_write16(sc, ZYD_CR138, 0x28); (void)zyd_write16(sc, ZYD_CR203, 0x06); return 0; } /* * AL7230B RF methods. */ int zyd_al7230B_init(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; int i, error; /* for AL7230B, PHY and RF need to be initialized in "phases" */ /* init RF-dependent PHY registers, part one */ for (i = 0; i < N(phyini_1); i++) { error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); if (error != 0) return error; } /* init AL7230B radio, part one */ for (i = 0; i < N(rfini_1); i++) { if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) return error; } /* init RF-dependent PHY registers, part two */ for (i = 0; i < N(phyini_2); i++) { error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); if (error != 0) return error; } /* init AL7230B radio, part two */ for (i = 0; i < N(rfini_2); i++) { if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) return error; } /* init RF-dependent PHY registers, part three */ for (i = 0; i < N(phyini_3); i++) { error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); if (error != 0) return error; } return 0; #undef N } int zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); return 0; } int zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_AL7230B_CHANTABLE; static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; int i, error; (void)zyd_write16(sc, ZYD_CR240, 0x57); (void)zyd_write16(sc, ZYD_CR251, 0x2f); for (i = 0; i < N(rfsc); i++) { if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) return error; } (void)zyd_write16(sc, ZYD_CR128, 0x14); (void)zyd_write16(sc, ZYD_CR129, 0x12); (void)zyd_write16(sc, ZYD_CR130, 0x10); (void)zyd_write16(sc, ZYD_CR38, 0x38); (void)zyd_write16(sc, ZYD_CR136, 0xdf); (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); (void)zyd_rfwrite(sc, 0x3c9000); (void)zyd_write16(sc, ZYD_CR251, 0x3f); (void)zyd_write16(sc, ZYD_CR203, 0x06); (void)zyd_write16(sc, ZYD_CR240, 0x08); return 0; #undef N } /* * AL2210 RF methods. */ int zyd_al2210_init(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; static const uint32_t rfini[] = ZYD_AL2210_RF; uint32_t tmp; int i, error; (void)zyd_write32(sc, ZYD_CR18, 2); /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init AL2210 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_write32(sc, ZYD_CR18, 3); return 0; #undef N } int zyd_al2210_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } int zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; uint32_t tmp; (void)zyd_write32(sc, ZYD_CR18, 2); (void)zyd_write16(sc, ZYD_CR47, 0x1e); (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); (void)zyd_write16(sc, ZYD_CR47, 0x1e); /* actually set the channel */ (void)zyd_rfwrite(sc, rfprog[chan - 1]); (void)zyd_write32(sc, ZYD_CR18, 3); return 0; } /* * GCT RF methods. */ int zyd_gct_init(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; static const uint32_t rfini[] = ZYD_GCT_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } /* init cgt radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } return 0; #undef N } int zyd_gct_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } int zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; (void)zyd_rfwrite(sc, 0x1c0000); (void)zyd_rfwrite(sc, rfprog[chan - 1]); (void)zyd_rfwrite(sc, 0x1c0008); return 0; } /* * Maxim RF methods. */ int zyd_maxim_init(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; uint16_t tmp; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } int zyd_maxim_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } int zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; static const uint32_t rfini[] = ZYD_MAXIM_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM_CHANTABLE; uint16_t tmp; int i, error; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); /* init maxim radio - skipping the two first values */ for (i = 2; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } /* * Maxim2 RF methods. */ int zyd_maxim2_init(struct zyd_rf *rf) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; uint16_t tmp; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim2 radio */ for (i = 0; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } int zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return 0; } int zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM2_CHANTABLE; uint16_t tmp; int i, error; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < N(phyini); i++) { error = zyd_write16(sc, phyini[i].reg, phyini[i].val); if (error != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); /* init maxim2 radio - skipping the two first values */ for (i = 2; i < N(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return error; } (void)zyd_read16(sc, ZYD_CR203, &tmp); (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); return 0; #undef N } int zyd_rf_attach(struct zyd_softc *sc, uint8_t type) { struct zyd_rf *rf = &sc->sc_rf; rf->rf_sc = sc; switch (type) { case ZYD_RF_RFMD: rf->init = zyd_rfmd_init; rf->switch_radio = zyd_rfmd_switch_radio; rf->set_channel = zyd_rfmd_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2230: if (sc->mac_rev == ZYD_ZD1211B) rf->init = zyd_al2230_init_b; else rf->init = zyd_al2230_init; rf->switch_radio = zyd_al2230_switch_radio; rf->set_channel = zyd_al2230_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL7230B: rf->init = zyd_al7230B_init; rf->switch_radio = zyd_al7230B_switch_radio; rf->set_channel = zyd_al7230B_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2210: rf->init = zyd_al2210_init; rf->switch_radio = zyd_al2210_switch_radio; rf->set_channel = zyd_al2210_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_GCT: rf->init = zyd_gct_init; rf->switch_radio = zyd_gct_switch_radio; rf->set_channel = zyd_gct_set_channel; rf->width = 21; /* 21-bit RF values */ break; case ZYD_RF_MAXIM_NEW: rf->init = zyd_maxim_init; rf->switch_radio = zyd_maxim_switch_radio; rf->set_channel = zyd_maxim_set_channel; rf->width = 18; /* 18-bit RF values */ break; case ZYD_RF_MAXIM_NEW2: rf->init = zyd_maxim2_init; rf->switch_radio = zyd_maxim2_switch_radio; rf->set_channel = zyd_maxim2_set_channel; rf->width = 18; /* 18-bit RF values */ break; default: printf("%s: sorry, radio \"%s\" is not supported yet\n", sc->sc_dev.dv_xname, zyd_rf_name(type)); return EINVAL; } return 0; } const char * zyd_rf_name(uint8_t type) { static const char * const zyd_rfs[] = { "unknown", "unknown", "UW2451", "UCHIP", "AL2230", "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", "PHILIPS" }; return zyd_rfs[(type > 15) ? 0 : type]; } int zyd_hw_init(struct zyd_softc *sc) { struct zyd_rf *rf = &sc->sc_rf; const struct zyd_phy_pair *phyp; int error; /* specify that the plug and play is finished */ (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); /* retrieve firmware revision number */ (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); /* disable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); /* PHY init */ zyd_lock_phy(sc); phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; for (; phyp->reg != 0; phyp++) { if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) goto fail; } zyd_unlock_phy(sc); /* HMAC init */ zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); if (sc->mac_rev == ZYD_ZD1211) { zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); } else { zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202); zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); } zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); /* RF chip init */ zyd_lock_phy(sc); error = (*rf->init)(rf); zyd_unlock_phy(sc); if (error != 0) { printf("%s: radio initialization failed\n", sc->sc_dev.dv_xname); goto fail; } /* init beacon interval to 100ms */ if ((error = zyd_set_beacon_interval(sc, 100)) != 0) goto fail; fail: return error; } int zyd_read_eeprom(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; uint16_t val; int i; /* read MAC address */ (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); ic->ic_myaddr[0] = tmp & 0xff; ic->ic_myaddr[1] = tmp >> 8; ic->ic_myaddr[2] = tmp >> 16; ic->ic_myaddr[3] = tmp >> 24; (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); ic->ic_myaddr[4] = tmp & 0xff; ic->ic_myaddr[5] = tmp >> 8; (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); sc->rf_rev = tmp & 0x0f; sc->pa_rev = (tmp >> 16) & 0x0f; /* read regulatory domain (currently unused) */ (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); sc->regdomain = tmp >> 16; DPRINTF(("regulatory domain %x\n", sc->regdomain)); /* read Tx power calibration tables */ for (i = 0; i < 7; i++) { (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); sc->pwr_cal[i * 2] = val >> 8; sc->pwr_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); sc->pwr_int[i * 2] = val >> 8; sc->pwr_int[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); sc->ofdm36_cal[i * 2] = val >> 8; sc->ofdm36_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); sc->ofdm48_cal[i * 2] = val >> 8; sc->ofdm48_cal[i * 2 + 1] = val & 0xff; (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); sc->ofdm54_cal[i * 2] = val >> 8; sc->ofdm54_cal[i * 2 + 1] = val & 0xff; } return 0; } int zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); tmp = addr[5] << 8 | addr[4]; (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); return 0; } int zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); tmp = addr[5] << 8 | addr[4]; (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); return 0; } int zyd_switch_radio(struct zyd_softc *sc, int on) { struct zyd_rf *rf = &sc->sc_rf; int error; zyd_lock_phy(sc); error = (*rf->switch_radio)(rf, on); zyd_unlock_phy(sc); return error; } void zyd_set_led(struct zyd_softc *sc, int which, int on) { uint32_t tmp; (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); tmp &= ~which; if (on) tmp |= which; (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); } int zyd_set_rxfilter(struct zyd_softc *sc) { uint32_t rxfilter; switch (sc->sc_ic.ic_opmode) { case IEEE80211_M_STA: rxfilter = ZYD_FILTER_BSS; break; case IEEE80211_M_IBSS: case IEEE80211_M_HOSTAP: rxfilter = ZYD_FILTER_HOSTAP; break; case IEEE80211_M_MONITOR: rxfilter = ZYD_FILTER_MONITOR; break; default: /* should not get there */ return EINVAL; } return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); } void zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; struct zyd_rf *rf = &sc->sc_rf; u_int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; zyd_lock_phy(sc); (*rf->set_channel)(rf, chan); /* update Tx power */ (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]); (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); if (sc->mac_rev == ZYD_ZD1211B) { (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); (void)zyd_write32(sc, ZYD_CR69, 0x28); (void)zyd_write32(sc, ZYD_CR69, 0x2a); } zyd_unlock_phy(sc); } int zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) { /* XXX this is probably broken.. */ (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); return 0; } uint8_t zyd_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } void zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_softc *sc = (struct zyd_softc *)priv; const struct zyd_cmd *cmd; uint32_t len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->zyd_ep[ZYD_ENDPT_IIN]); } return; } cmd = (const struct zyd_cmd *)sc->ibuf; if (letoh16(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { struct zyd_notif_retry *retry = (struct zyd_notif_retry *)cmd->data; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_node *ni; DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", letoh16(retry->rate), ether_sprintf(retry->macaddr), letoh16(retry->count) & 0xff, letoh16(retry->count))); /* * Find the node to which the packet was sent and update its * retry statistics. In BSS mode, this node is the AP we're * associated to so no lookup is actually needed. */ if (ic->ic_opmode != IEEE80211_M_STA) { ni = ieee80211_find_node(ic, retry->macaddr); if (ni == NULL) return; /* just ignore */ } else ni = ic->ic_bss; ((struct zyd_node *)ni)->amn.amn_retrycnt++; if (letoh16(retry->count) & 0x100) ifp->if_oerrors++; /* too many retries */ } else if (letoh16(cmd->code) == ZYD_NOTIF_IORD) { if (letoh16(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) return; /* HMAC interrupt */ if (sc->odata == NULL) return; /* unexpected IORD notification */ /* copy answer into caller-supplied buffer */ usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); bcopy(cmd->data, sc->odata, sc->olen); wakeup(sc); /* wakeup caller */ } else { printf("%s: unknown notification %x\n", sc->sc_dev.dv_xname, letoh16(cmd->code)); } } void zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_node *ni; struct ieee80211_frame *wh; const struct zyd_plcphdr *plcp; const struct zyd_rx_stat *stat; struct mbuf *m; int rlen, s; if (len < ZYD_MIN_FRAGSZ) { printf("%s: frame too short (length=%d)\n", sc->sc_dev.dv_xname, len); ifp->if_ierrors++; return; } plcp = (const struct zyd_plcphdr *)buf; stat = (const struct zyd_rx_stat *) (buf + len - sizeof (struct zyd_rx_stat)); if (stat->flags & ZYD_RX_ERROR) { DPRINTF(("%s: RX status indicated error (%x)\n", sc->sc_dev.dv_xname, stat->flags)); ifp->if_ierrors++; return; } /* compute actual frame length */ rlen = len - sizeof (struct zyd_plcphdr) - sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN; /* allocate a mbuf to store the frame */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); ifp->if_ierrors++; return; } if (rlen > MHLEN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); m_freem(m); ifp->if_ierrors++; return; } } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = rlen; bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; static const uint8_t rates[] = { /* reverse function of zyd_plcp_signal() */ 2, 4, 11, 22, 0, 0, 0, 0, 96, 48, 24, 12, 108, 72, 36, 18 }; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wr_rssi = stat->rssi; tap->wr_rate = rates[plcp->signal & 0xf]; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif s = splnet(); wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); ieee80211_input(ifp, m, ni, stat->rssi, 0); /* node is no longer needed */ ieee80211_release_node(ic, ni); splx(s); } void zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_rx_data *data = priv; struct zyd_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; const struct zyd_rx_desc *desc; int len; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < ZYD_MIN_RXBUFSZ) { printf("%s: xfer too short (length=%d)\n", sc->sc_dev.dv_xname, len); ifp->if_ierrors++; goto skip; } desc = (const struct zyd_rx_desc *) (data->buf + len - sizeof (struct zyd_rx_desc)); if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { const uint8_t *p = data->buf, *end = p + len; int i; DPRINTFN(3, ("received multi-frame transfer\n")); for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { const uint16_t len = UGETW(desc->len[i]); if (len == 0 || p + len > end) break; zyd_rx_data(sc, p, len); /* next frame is aligned on a 32-bit boundary */ p += (len + 3) & ~3; } } else { DPRINTFN(3, ("received single-frame transfer\n")); zyd_rx_data(sc, data->buf, len); } skip: /* setup a new transfer */ usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); (void)usbd_transfer(xfer); } void zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct zyd_tx_data *data = priv; struct zyd_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; printf("%s: could not transmit buffer: %s\n", sc->sc_dev.dv_xname, usbd_errstr(status)); if (status == USBD_STALLED) { usbd_clear_endpoint_stall_async( sc->zyd_ep[ZYD_ENDPT_BOUT]); } ifp->if_oerrors++; return; } s = splnet(); /* update rate control statistics */ ((struct zyd_node *)data->ni)->amn.amn_txcnt++; ieee80211_release_node(ic, data->ni); data->ni = NULL; sc->tx_queued--; ifp->if_opackets++; sc->tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; zyd_start(ifp); splx(s); } int zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; int xferlen, totlen, rate; uint16_t pktlen; usbd_status error; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { m0 = ieee80211_wep_crypt(ifp, m0, 1); if (m0 == NULL) return ENOBUFS; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } /* pickup a rate */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT)) { /* mgmt/multicast frames are sent at the lowest avail. rate */ rate = ni->ni_rates.rs_rates[0]; } else if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate]; } else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; rate &= IEEE80211_RATE_VAL; if (rate == 0) /* XXX should not happen */ rate = 2; data = &sc->tx_data[0]; desc = (struct zyd_tx_desc *)data->buf; data->ni = ni; xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* fill Tx descriptor */ desc->len = htole16(totlen); desc->flags = ZYD_TX_FLAG_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > ic->ic_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } else desc->flags |= ZYD_TX_FLAG_MULTICAST; if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); desc->phy = zyd_plcp_signal(rate); if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (ic->ic_curmode == IEEE80211_MODE_11A) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; /* actual transmit length (XXX why +10?) */ pktlen = sizeof (struct zyd_tx_desc) + 10; if (sc->mac_rev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); desc->plcp_length = (16 * totlen + rate - 1) / rate; desc->plcp_service = 0; if (rate == 22) { const int remainder = (16 * totlen) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= ZYD_PLCP_LENGEXT; } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + sizeof (struct zyd_tx_desc)); DPRINTFN(10, ("%s: sending data frame len=%u rate=%u xferlen=%u\n", sc->sc_dev.dv_xname, m0->m_pkthdr.len, rate, xferlen)); m_freem(m0); /* mbuf no longer needed */ usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, ZYD_TX_TIMEOUT, zyd_txeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { ifp->if_oerrors++; return EIO; } sc->tx_queued++; return 0; } void zyd_start(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m0; /* * net80211 may still try to send management frames even if the * IFF_RUNNING flag is not set... */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->tx_queued >= ZYD_TX_LIST_CNT) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (zyd_tx_data(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= ZYD_TX_LIST_CNT) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) { ifp->if_oerrors++; continue; } #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (zyd_tx_data(sc, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } sc->tx_timer = 5; ifp->if_timer = 1; } } void zyd_watchdog(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->tx_timer > 0) { if (--sc->tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); /* zyd_init(ifp); XXX needs a process context ? */ ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) zyd_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) zyd_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { zyd_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == (IFF_RUNNING | IFF_UP)) zyd_init(ifp); error = 0; } splx(s); return error; } int zyd_init(struct ifnet *ifp) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int i, error; zyd_stop(ifp, 0); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = zyd_set_macaddr(sc, ic->ic_myaddr); if (error != 0) return error; /* we'll do software WEP decryption for now */ DPRINTF(("setting encryption type\n")); error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); if (error != 0) return error; /* promiscuous mode */ (void)zyd_write32(sc, ZYD_MAC_SNIFFER, (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); (void)zyd_set_rxfilter(sc); /* switch radio transmitter ON */ (void)zyd_switch_radio(sc, 1); /* set basic rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); else if (ic->ic_curmode == IEEE80211_MODE_11A) (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); else /* assumes 802.11b/g */ (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); /* set mandatory rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); else if (ic->ic_curmode == IEEE80211_MODE_11A) (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); else /* assumes 802.11b/g */ (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); /* set default BSS channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; zyd_set_chan(sc, ic->ic_bss->ni_chan); /* enable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); /* * Allocate Tx and Rx xfer queues. */ if ((error = zyd_alloc_tx_list(sc)) != 0) { printf("%s: could not allocate Tx list\n", sc->sc_dev.dv_xname); goto fail; } if ((error = zyd_alloc_rx_list(sc)) != 0) { printf("%s: could not allocate Rx list\n", sc->sc_dev.dv_xname); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < ZYD_RX_LIST_CNT; i++) { struct zyd_rx_data *data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof); error = usbd_transfer(data->xfer); if (error != USBD_IN_PROGRESS && error != 0) { printf("%s: could not queue Rx transfer\n", sc->sc_dev.dv_xname); goto fail; } } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return 0; fail: zyd_stop(ifp, 1); return error; } void zyd_stop(struct ifnet *ifp, int disable) { struct zyd_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; sc->tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ /* switch radio transmitter OFF */ (void)zyd_switch_radio(sc, 0); /* disable Rx */ (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); /* disable interrupts */ (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); zyd_free_rx_list(sc); zyd_free_tx_list(sc); } int zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) { usb_device_request_t req; uint16_t addr; uint8_t stat; DPRINTF(("firmware size=%d\n", size)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADREQ; USETW(req.wIndex, 0); addr = ZYD_FIRMWARE_START_ADDR; while (size > 0) { const int mlen = min(size, 4096); DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, addr)); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (usbd_do_request(sc->sc_udev, &req, fw) != 0) return EIO; addr += mlen / 2; fw += mlen; size -= mlen; } /* check whether the upload succeeded */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADSTS; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, sizeof stat); if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) return EIO; return (stat & 0x80) ? EIO : 0; } void zyd_iter_func(void *arg, struct ieee80211_node *ni) { struct zyd_softc *sc = arg; struct zyd_node *zn = (struct zyd_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); } void zyd_amrr_timeout(void *arg) { struct zyd_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); if (ic->ic_opmode == IEEE80211_M_STA) zyd_iter_func(sc, ic->ic_bss); else ieee80211_iterate_nodes(ic, zyd_iter_func, sc); splx(s); timeout_add(&sc->amrr_to, hz); } void zyd_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct zyd_softc *sc = ic->ic_softc; int i; ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; } int zyd_activate(struct device *self, enum devact act) { switch (act) { case DVACT_ACTIVATE: break; case DVACT_DEACTIVATE: break; } return 0; }