/* $OpenBSD: ohci.c,v 1.156 2019/03/11 17:50:08 mpi Exp $ */ /* $NetBSD: ohci.c,v 1.139 2003/02/22 05:24:16 tsutsui Exp $ */ /* $FreeBSD: src/sys/dev/usb/ohci.c,v 1.22 1999/11/17 22:33:40 n_hibma Exp $ */ /* * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cfdriver ohci_cd = { NULL, "ohci", DV_DULL }; #ifdef OHCI_DEBUG #define DPRINTF(x) do { if (ohcidebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (ohcidebug>(n)) printf x; } while (0) int ohcidebug = 0; #define bitmask_snprintf(q,f,b,l) snprintf((b), (l), "%b", (q), (f)) #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif struct pool *ohcixfer; struct ohci_pipe; struct ohci_soft_ed *ohci_alloc_sed(struct ohci_softc *); void ohci_free_sed(struct ohci_softc *, struct ohci_soft_ed *); struct ohci_soft_td *ohci_alloc_std(struct ohci_softc *); void ohci_free_std(struct ohci_softc *, struct ohci_soft_td *); struct ohci_soft_itd *ohci_alloc_sitd(struct ohci_softc *); void ohci_free_sitd(struct ohci_softc *, struct ohci_soft_itd *); #if 0 void ohci_free_std_chain(struct ohci_softc *, struct ohci_soft_td *, struct ohci_soft_td *); #endif usbd_status ohci_alloc_std_chain(struct ohci_softc *, u_int, struct usbd_xfer *, struct ohci_soft_td *, struct ohci_soft_td **); usbd_status ohci_open(struct usbd_pipe *); int ohci_setaddr(struct usbd_device *, int); void ohci_poll(struct usbd_bus *); void ohci_softintr(void *); void ohci_add_done(struct ohci_softc *, ohci_physaddr_t); void ohci_rhsc(struct ohci_softc *, struct usbd_xfer *); usbd_status ohci_device_request(struct usbd_xfer *xfer); void ohci_add_ed(struct ohci_soft_ed *, struct ohci_soft_ed *); void ohci_rem_ed(struct ohci_soft_ed *, struct ohci_soft_ed *); void ohci_hash_add_td(struct ohci_softc *, struct ohci_soft_td *); struct ohci_soft_td *ohci_hash_find_td(struct ohci_softc *, ohci_physaddr_t); void ohci_hash_add_itd(struct ohci_softc *, struct ohci_soft_itd *); void ohci_hash_rem_itd(struct ohci_softc *, struct ohci_soft_itd *); struct ohci_soft_itd *ohci_hash_find_itd(struct ohci_softc *, ohci_physaddr_t); usbd_status ohci_setup_isoc(struct usbd_pipe *pipe); void ohci_device_isoc_enter(struct usbd_xfer *); struct usbd_xfer *ohci_allocx(struct usbd_bus *); void ohci_freex(struct usbd_bus *, struct usbd_xfer *); usbd_status ohci_root_ctrl_transfer(struct usbd_xfer *); usbd_status ohci_root_ctrl_start(struct usbd_xfer *); void ohci_root_ctrl_abort(struct usbd_xfer *); void ohci_root_ctrl_close(struct usbd_pipe *); void ohci_root_ctrl_done(struct usbd_xfer *); usbd_status ohci_root_intr_transfer(struct usbd_xfer *); usbd_status ohci_root_intr_start(struct usbd_xfer *); void ohci_root_intr_abort(struct usbd_xfer *); void ohci_root_intr_close(struct usbd_pipe *); void ohci_root_intr_done(struct usbd_xfer *); usbd_status ohci_device_ctrl_transfer(struct usbd_xfer *); usbd_status ohci_device_ctrl_start(struct usbd_xfer *); void ohci_device_ctrl_abort(struct usbd_xfer *); void ohci_device_ctrl_close(struct usbd_pipe *); void ohci_device_ctrl_done(struct usbd_xfer *); usbd_status ohci_device_bulk_transfer(struct usbd_xfer *); usbd_status ohci_device_bulk_start(struct usbd_xfer *); void ohci_device_bulk_abort(struct usbd_xfer *); void ohci_device_bulk_close(struct usbd_pipe *); void ohci_device_bulk_done(struct usbd_xfer *); usbd_status ohci_device_intr_transfer(struct usbd_xfer *); usbd_status ohci_device_intr_start(struct usbd_xfer *); void ohci_device_intr_abort(struct usbd_xfer *); void ohci_device_intr_close(struct usbd_pipe *); void ohci_device_intr_done(struct usbd_xfer *); usbd_status ohci_device_isoc_transfer(struct usbd_xfer *); usbd_status ohci_device_isoc_start(struct usbd_xfer *); void ohci_device_isoc_abort(struct usbd_xfer *); void ohci_device_isoc_close(struct usbd_pipe *); void ohci_device_isoc_done(struct usbd_xfer *); usbd_status ohci_device_setintr(struct ohci_softc *sc, struct ohci_pipe *pipe, int ival); void ohci_timeout(void *); void ohci_timeout_task(void *); void ohci_rhsc_able(struct ohci_softc *, int); void ohci_rhsc_enable(void *); void ohci_close_pipe(struct usbd_pipe *, struct ohci_soft_ed *); void ohci_abort_xfer(struct usbd_xfer *, usbd_status); void ohci_device_clear_toggle(struct usbd_pipe *pipe); #ifdef OHCI_DEBUG void ohci_dumpregs(struct ohci_softc *); void ohci_dump_tds(struct ohci_soft_td *); void ohci_dump_td(struct ohci_soft_td *); void ohci_dump_ed(struct ohci_soft_ed *); void ohci_dump_itd(struct ohci_soft_itd *); void ohci_dump_itds(struct ohci_soft_itd *); #endif #define OBARR(sc) bus_space_barrier((sc)->iot, (sc)->ioh, 0, (sc)->sc_size, \ BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE) #define OWRITE1(sc, r, x) \ do { OBARR(sc); bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x)); } while (0) #define OWRITE2(sc, r, x) \ do { OBARR(sc); bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)); } while (0) #define OWRITE4(sc, r, x) \ do { OBARR(sc); bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)); } while (0) __unused static __inline u_int8_t OREAD1(struct ohci_softc *sc, bus_size_t r) { OBARR(sc); return bus_space_read_1(sc->iot, sc->ioh, r); } __unused static __inline u_int16_t OREAD2(struct ohci_softc *sc, bus_size_t r) { OBARR(sc); return bus_space_read_2(sc->iot, sc->ioh, r); } __unused static __inline u_int32_t OREAD4(struct ohci_softc *sc, bus_size_t r) { OBARR(sc); return bus_space_read_4(sc->iot, sc->ioh, r); } /* Reverse the bits in a value 0 .. 31 */ u_int8_t revbits[OHCI_NO_INTRS] = { 0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0c, 0x1c, 0x02, 0x12, 0x0a, 0x1a, 0x06, 0x16, 0x0e, 0x1e, 0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0d, 0x1d, 0x03, 0x13, 0x0b, 0x1b, 0x07, 0x17, 0x0f, 0x1f }; struct ohci_pipe { struct usbd_pipe pipe; struct ohci_soft_ed *sed; union { struct ohci_soft_td *td; struct ohci_soft_itd *itd; } tail; union { /* Control pipe */ struct { struct usb_dma reqdma; } ctl; /* Interrupt pipe */ struct { int nslots; int pos; } intr; /* Iso pipe */ struct iso { int next, inuse; } iso; } u; }; #define OHCI_INTR_ENDPT 1 struct usbd_bus_methods ohci_bus_methods = { .open_pipe = ohci_open, .dev_setaddr = ohci_setaddr, .soft_intr = ohci_softintr, .do_poll = ohci_poll, .allocx = ohci_allocx, .freex = ohci_freex, }; struct usbd_pipe_methods ohci_root_ctrl_methods = { .transfer = ohci_root_ctrl_transfer, .start = ohci_root_ctrl_start, .abort = ohci_root_ctrl_abort, .close = ohci_root_ctrl_close, .done = ohci_root_ctrl_done, }; struct usbd_pipe_methods ohci_root_intr_methods = { .transfer = ohci_root_intr_transfer, .start = ohci_root_intr_start, .abort = ohci_root_intr_abort, .close = ohci_root_intr_close, .done = ohci_root_intr_done, }; struct usbd_pipe_methods ohci_device_ctrl_methods = { .transfer = ohci_device_ctrl_transfer, .start = ohci_device_ctrl_start, .abort = ohci_device_ctrl_abort, .close = ohci_device_ctrl_close, .done = ohci_device_ctrl_done, }; struct usbd_pipe_methods ohci_device_intr_methods = { .transfer = ohci_device_intr_transfer, .start = ohci_device_intr_start, .abort = ohci_device_intr_abort, .close = ohci_device_intr_close, .cleartoggle = ohci_device_clear_toggle, .done = ohci_device_intr_done, }; struct usbd_pipe_methods ohci_device_bulk_methods = { .transfer = ohci_device_bulk_transfer, .start = ohci_device_bulk_start, .abort = ohci_device_bulk_abort, .close = ohci_device_bulk_close, .cleartoggle = ohci_device_clear_toggle, .done = ohci_device_bulk_done, }; struct usbd_pipe_methods ohci_device_isoc_methods = { .transfer = ohci_device_isoc_transfer, .start = ohci_device_isoc_start, .abort = ohci_device_isoc_abort, .close = ohci_device_isoc_close, .done = ohci_device_isoc_done, }; int ohci_activate(struct device *self, int act) { struct ohci_softc *sc = (struct ohci_softc *)self; u_int32_t reg; int rv = 0; switch (act) { case DVACT_SUSPEND: rv = config_activate_children(self, act); sc->sc_bus.use_polling++; reg = OREAD4(sc, OHCI_CONTROL) & ~OHCI_HCFS_MASK; if (sc->sc_control == 0) { /* * Preserve register values, in case that APM BIOS * does not recover them. */ sc->sc_control = reg; sc->sc_intre = OREAD4(sc, OHCI_INTERRUPT_ENABLE); sc->sc_ival = OHCI_GET_IVAL(OREAD4(sc, OHCI_FM_INTERVAL)); } reg |= OHCI_HCFS_SUSPEND; OWRITE4(sc, OHCI_CONTROL, reg); usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT); sc->sc_bus.use_polling--; break; case DVACT_RESUME: sc->sc_bus.use_polling++; /* Some broken BIOSes do not recover these values */ OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0)); OWRITE4(sc, OHCI_CONTROL_HEAD_ED, sc->sc_ctrl_head->physaddr); OWRITE4(sc, OHCI_BULK_HEAD_ED, sc->sc_bulk_head->physaddr); if (sc->sc_intre) OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_intre & (OHCI_ALL_INTRS | OHCI_MIE)); if (sc->sc_control) reg = sc->sc_control; else reg = OREAD4(sc, OHCI_CONTROL); reg |= OHCI_HCFS_RESUME; OWRITE4(sc, OHCI_CONTROL, reg); usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY); reg = (reg & ~OHCI_HCFS_MASK) | OHCI_HCFS_OPERATIONAL; OWRITE4(sc, OHCI_CONTROL, reg); reg = (OREAD4(sc, OHCI_FM_REMAINING) & OHCI_FIT) ^ OHCI_FIT; reg |= OHCI_FSMPS(sc->sc_ival) | sc->sc_ival; OWRITE4(sc, OHCI_FM_INTERVAL, reg); OWRITE4(sc, OHCI_PERIODIC_START, OHCI_PERIODIC(sc->sc_ival)); /* Fiddle the No OverCurrent Protection to avoid a chip bug */ reg = OREAD4(sc, OHCI_RH_DESCRIPTOR_A); OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, reg | OHCI_NOCP); OWRITE4(sc, OHCI_RH_STATUS, OHCI_LPSC); /* Enable port power */ usb_delay_ms(&sc->sc_bus, OHCI_ENABLE_POWER_DELAY); OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, reg); usb_delay_ms(&sc->sc_bus, USB_RESUME_RECOVERY); sc->sc_control = sc->sc_intre = sc->sc_ival = 0; sc->sc_bus.use_polling--; rv = config_activate_children(self, act); break; case DVACT_POWERDOWN: rv = config_activate_children(self, act); OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET); break; default: rv = config_activate_children(self, act); break; } return (rv); } int ohci_detach(struct device *self, int flags) { struct ohci_softc *sc = (struct ohci_softc *)self; int rv; rv = config_detach_children(self, flags); if (rv != 0) return (rv); timeout_del(&sc->sc_tmo_rhsc); usb_delay_ms(&sc->sc_bus, 300); /* XXX let stray task complete */ /* free data structures XXX */ return (rv); } struct ohci_soft_ed * ohci_alloc_sed(struct ohci_softc *sc) { struct ohci_soft_ed *sed = NULL; usbd_status err; int i, offs; struct usb_dma dma; int s; s = splusb(); if (sc->sc_freeeds == NULL) { DPRINTFN(2, ("ohci_alloc_sed: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, OHCI_SED_SIZE * OHCI_SED_CHUNK, OHCI_ED_ALIGN, &dma); if (err) goto out; for (i = 0; i < OHCI_SED_CHUNK; i++) { offs = i * OHCI_SED_SIZE; sed = KERNADDR(&dma, offs); sed->physaddr = DMAADDR(&dma, offs); sed->next = sc->sc_freeeds; sc->sc_freeeds = sed; } } sed = sc->sc_freeeds; sc->sc_freeeds = sed->next; memset(&sed->ed, 0, sizeof(struct ohci_ed)); sed->next = NULL; out: splx(s); return (sed); } void ohci_free_sed(struct ohci_softc *sc, struct ohci_soft_ed *sed) { int s; s = splusb(); sed->next = sc->sc_freeeds; sc->sc_freeeds = sed; splx(s); } struct ohci_soft_td * ohci_alloc_std(struct ohci_softc *sc) { struct ohci_soft_td *std = NULL; usbd_status err; int i, offs; struct usb_dma dma; int s; s = splusb(); if (sc->sc_freetds == NULL) { DPRINTFN(2, ("ohci_alloc_std: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, OHCI_STD_SIZE * OHCI_STD_CHUNK, OHCI_TD_ALIGN, &dma); if (err) goto out; for (i = 0; i < OHCI_STD_CHUNK; i++) { offs = i * OHCI_STD_SIZE; std = KERNADDR(&dma, offs); std->physaddr = DMAADDR(&dma, offs); std->nexttd = sc->sc_freetds; sc->sc_freetds = std; } } std = sc->sc_freetds; sc->sc_freetds = std->nexttd; memset(&std->td, 0, sizeof(struct ohci_td)); std->nexttd = NULL; std->xfer = NULL; ohci_hash_add_td(sc, std); out: splx(s); return (std); } void ohci_free_std(struct ohci_softc *sc, struct ohci_soft_td *std) { int s; s = splusb(); LIST_REMOVE(std, hnext); std->nexttd = sc->sc_freetds; sc->sc_freetds = std; splx(s); } usbd_status ohci_alloc_std_chain(struct ohci_softc *sc, u_int alen, struct usbd_xfer *xfer, struct ohci_soft_td *sp, struct ohci_soft_td **ep) { struct ohci_soft_td *next, *cur, *end; ohci_physaddr_t dataphys, dataphysend; u_int32_t tdflags; u_int len, curlen; int mps; int rd = usbd_xfer_isread(xfer); struct usb_dma *dma = &xfer->dmabuf; u_int16_t flags = xfer->flags; DPRINTFN(alen < 4096,("ohci_alloc_std_chain: start len=%u\n", alen)); len = alen; cur = sp; end = NULL; dataphys = DMAADDR(dma, 0); dataphysend = OHCI_PAGE(dataphys + len - 1); tdflags = htole32( (rd ? OHCI_TD_IN : OHCI_TD_OUT) | (flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0) | OHCI_TD_NOCC | OHCI_TD_TOGGLE_CARRY | OHCI_TD_NOINTR); mps = UGETW(xfer->pipe->endpoint->edesc->wMaxPacketSize); while (len > 0) { next = ohci_alloc_std(sc); if (next == NULL) goto nomem; /* The OHCI hardware can handle at most one page crossing. */ if (OHCI_PAGE(dataphys) == dataphysend || OHCI_PAGE(dataphys) + OHCI_PAGE_SIZE == dataphysend) { /* we can handle it in this TD */ curlen = len; } else { /* must use multiple TDs, fill as much as possible. */ curlen = 2 * OHCI_PAGE_SIZE - (dataphys & (OHCI_PAGE_SIZE-1)); /* the length must be a multiple of the max size */ curlen -= curlen % mps; #ifdef DIAGNOSTIC if (curlen == 0) panic("ohci_alloc_std: curlen == 0"); #endif } DPRINTFN(4,("ohci_alloc_std_chain: dataphys=0x%08x " "dataphysend=0x%08x len=%u curlen=%u\n", dataphys, dataphysend, len, curlen)); len -= curlen; cur->td.td_flags = tdflags; cur->td.td_cbp = htole32(dataphys); cur->nexttd = next; cur->td.td_nexttd = htole32(next->physaddr); cur->td.td_be = htole32(dataphys + curlen - 1); cur->len = curlen; cur->flags = OHCI_ADD_LEN; cur->xfer = xfer; DPRINTFN(10,("ohci_alloc_std_chain: cbp=0x%08x be=0x%08x\n", dataphys, dataphys + curlen - 1)); DPRINTFN(10,("ohci_alloc_std_chain: extend chain\n")); dataphys += curlen; end = cur; cur = next; } if (!rd && ((flags & USBD_FORCE_SHORT_XFER) || alen == 0) && alen % mps == 0) { /* Force a 0 length transfer at the end. */ next = ohci_alloc_std(sc); if (next == NULL) goto nomem; cur->td.td_flags = tdflags; cur->td.td_cbp = 0; /* indicate 0 length packet */ cur->nexttd = next; cur->td.td_nexttd = htole32(next->physaddr); cur->td.td_be = ~0; cur->len = 0; cur->flags = 0; cur->xfer = xfer; DPRINTFN(2,("ohci_alloc_std_chain: add 0 xfer\n")); end = cur; } *ep = end; return (USBD_NORMAL_COMPLETION); nomem: /* XXX free chain */ return (USBD_NOMEM); } #if 0 void ohci_free_std_chain(struct ohci_softc *sc, struct ohci_soft_td *std, struct ohci_soft_td *stdend) { struct ohci_soft_td *p; for (; std != stdend; std = p) { p = std->nexttd; ohci_free_std(sc, std); } } #endif struct ohci_soft_itd * ohci_alloc_sitd(struct ohci_softc *sc) { struct ohci_soft_itd *sitd; usbd_status err; int i, s, offs; struct usb_dma dma; if (sc->sc_freeitds == NULL) { DPRINTFN(2, ("ohci_alloc_sitd: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, OHCI_SITD_SIZE * OHCI_SITD_CHUNK, OHCI_ITD_ALIGN, &dma); if (err) return (NULL); s = splusb(); for(i = 0; i < OHCI_SITD_CHUNK; i++) { offs = i * OHCI_SITD_SIZE; sitd = KERNADDR(&dma, offs); sitd->physaddr = DMAADDR(&dma, offs); sitd->nextitd = sc->sc_freeitds; sc->sc_freeitds = sitd; } splx(s); } s = splusb(); sitd = sc->sc_freeitds; sc->sc_freeitds = sitd->nextitd; memset(&sitd->itd, 0, sizeof(struct ohci_itd)); sitd->nextitd = NULL; sitd->xfer = NULL; ohci_hash_add_itd(sc, sitd); splx(s); #ifdef DIAGNOSTIC sitd->isdone = 0; #endif return (sitd); } void ohci_free_sitd(struct ohci_softc *sc, struct ohci_soft_itd *sitd) { int s; DPRINTFN(10,("ohci_free_sitd: sitd=%p\n", sitd)); #ifdef DIAGNOSTIC if (!sitd->isdone) { panic("ohci_free_sitd: sitd=%p not done", sitd); return; } /* Warn double free */ sitd->isdone = 0; #endif s = splusb(); ohci_hash_rem_itd(sc, sitd); sitd->nextitd = sc->sc_freeitds; sc->sc_freeitds = sitd; splx(s); } usbd_status ohci_checkrev(struct ohci_softc *sc) { u_int32_t rev; rev = OREAD4(sc, OHCI_REVISION); printf("version %d.%d%s\n", OHCI_REV_HI(rev), OHCI_REV_LO(rev), OHCI_REV_LEGACY(rev) ? ", legacy support" : ""); if (OHCI_REV_HI(rev) != 1 || OHCI_REV_LO(rev) != 0) { printf("%s: unsupported OHCI revision\n", sc->sc_bus.bdev.dv_xname); sc->sc_bus.usbrev = USBREV_UNKNOWN; return (USBD_INVAL); } sc->sc_bus.usbrev = USBREV_1_0; return (USBD_NORMAL_COMPLETION); } usbd_status ohci_handover(struct ohci_softc *sc) { u_int32_t s, ctl; int i; ctl = OREAD4(sc, OHCI_CONTROL); if (ctl & OHCI_IR) { /* SMM active, request change */ DPRINTF(("ohci_handover: SMM active, request owner change\n")); if ((sc->sc_intre & (OHCI_OC | OHCI_MIE)) == (OHCI_OC | OHCI_MIE)) OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_MIE); s = OREAD4(sc, OHCI_COMMAND_STATUS); OWRITE4(sc, OHCI_COMMAND_STATUS, s | OHCI_OCR); for (i = 0; i < 100 && (ctl & OHCI_IR); i++) { usb_delay_ms(&sc->sc_bus, 1); ctl = OREAD4(sc, OHCI_CONTROL); } OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_MIE); if (ctl & OHCI_IR) { printf("%s: SMM does not respond, will reset\n", sc->sc_bus.bdev.dv_xname); } } return (USBD_NORMAL_COMPLETION); } usbd_status ohci_init(struct ohci_softc *sc) { struct ohci_soft_ed *sed, *psed; usbd_status err; int i; u_int32_t ctl, rwc, ival, hcr, fm, per, desca, descb; DPRINTF(("ohci_init: start\n")); for (i = 0; i < OHCI_HASH_SIZE; i++) LIST_INIT(&sc->sc_hash_tds[i]); for (i = 0; i < OHCI_HASH_SIZE; i++) LIST_INIT(&sc->sc_hash_itds[i]); if (ohcixfer == NULL) { ohcixfer = malloc(sizeof(struct pool), M_DEVBUF, M_NOWAIT); if (ohcixfer == NULL) { printf("%s: unable to allocate pool descriptor\n", sc->sc_bus.bdev.dv_xname); return (ENOMEM); } pool_init(ohcixfer, sizeof(struct ohci_xfer), 0, IPL_SOFTUSB, 0, "ohcixfer", NULL); } /* XXX determine alignment by R/W */ /* Allocate the HCCA area. */ err = usb_allocmem(&sc->sc_bus, OHCI_HCCA_SIZE, OHCI_HCCA_ALIGN, &sc->sc_hccadma); if (err) return (err); sc->sc_hcca = KERNADDR(&sc->sc_hccadma, 0); memset(sc->sc_hcca, 0, OHCI_HCCA_SIZE); sc->sc_eintrs = OHCI_NORMAL_INTRS; /* Allocate dummy ED that starts the control list. */ sc->sc_ctrl_head = ohci_alloc_sed(sc); if (sc->sc_ctrl_head == NULL) { err = USBD_NOMEM; goto bad1; } sc->sc_ctrl_head->ed.ed_flags |= htole32(OHCI_ED_SKIP); /* Allocate dummy ED that starts the bulk list. */ sc->sc_bulk_head = ohci_alloc_sed(sc); if (sc->sc_bulk_head == NULL) { err = USBD_NOMEM; goto bad2; } sc->sc_bulk_head->ed.ed_flags |= htole32(OHCI_ED_SKIP); /* Allocate dummy ED that starts the isochronous list. */ sc->sc_isoc_head = ohci_alloc_sed(sc); if (sc->sc_isoc_head == NULL) { err = USBD_NOMEM; goto bad3; } sc->sc_isoc_head->ed.ed_flags |= htole32(OHCI_ED_SKIP); /* Allocate all the dummy EDs that make up the interrupt tree. */ for (i = 0; i < OHCI_NO_EDS; i++) { sed = ohci_alloc_sed(sc); if (sed == NULL) { while (--i >= 0) ohci_free_sed(sc, sc->sc_eds[i]); err = USBD_NOMEM; goto bad4; } /* All ED fields are set to 0. */ sc->sc_eds[i] = sed; sed->ed.ed_flags |= htole32(OHCI_ED_SKIP); if (i != 0) psed = sc->sc_eds[(i-1) / 2]; else psed= sc->sc_isoc_head; sed->next = psed; sed->ed.ed_nexted = htole32(psed->physaddr); } /* * Fill HCCA interrupt table. The bit reversal is to get * the tree set up properly to spread the interrupts. */ for (i = 0; i < OHCI_NO_INTRS; i++) sc->sc_hcca->hcca_interrupt_table[revbits[i]] = htole32(sc->sc_eds[OHCI_NO_EDS-OHCI_NO_INTRS+i]->physaddr); #ifdef OHCI_DEBUG if (ohcidebug > 15) { for (i = 0; i < OHCI_NO_EDS; i++) { printf("ed#%d ", i); ohci_dump_ed(sc->sc_eds[i]); } printf("iso "); ohci_dump_ed(sc->sc_isoc_head); } #endif /* Preserve values programmed by SMM/BIOS but lost over reset. */ ctl = OREAD4(sc, OHCI_CONTROL); rwc = ctl & OHCI_RWC; fm = OREAD4(sc, OHCI_FM_INTERVAL); desca = OREAD4(sc, OHCI_RH_DESCRIPTOR_A); descb = OREAD4(sc, OHCI_RH_DESCRIPTOR_B); /* Determine in what context we are running. */ if (ctl & OHCI_IR) { OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET | rwc); goto reset; #if 0 /* Don't bother trying to reuse the BIOS init, we'll reset it anyway. */ } else if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_RESET) { /* BIOS started controller. */ DPRINTF(("ohci_init: BIOS active\n")); if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_OPERATIONAL) { OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_OPERATIONAL | rwc); usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY); } #endif } else { DPRINTF(("ohci_init: cold started\n")); reset: /* Controller was cold started. */ usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); } /* * This reset should not be necessary according to the OHCI spec, but * without it some controllers do not start. */ DPRINTF(("%s: resetting\n", sc->sc_bus.bdev.dv_xname)); OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET | rwc); usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* We now own the host controller and the bus has been reset. */ OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_HCR); /* Reset HC */ /* Nominal time for a reset is 10 us. */ for (i = 0; i < 10; i++) { delay(10); hcr = OREAD4(sc, OHCI_COMMAND_STATUS) & OHCI_HCR; if (!hcr) break; } if (hcr) { printf("%s: reset timeout\n", sc->sc_bus.bdev.dv_xname); err = USBD_IOERROR; goto bad5; } #ifdef OHCI_DEBUG if (ohcidebug > 15) ohci_dumpregs(sc); #endif /* The controller is now in SUSPEND state, we have 2ms to finish. */ /* Set up HC registers. */ OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0)); OWRITE4(sc, OHCI_CONTROL_HEAD_ED, sc->sc_ctrl_head->physaddr); OWRITE4(sc, OHCI_BULK_HEAD_ED, sc->sc_bulk_head->physaddr); /* disable all interrupts and then switch on all desired interrupts */ OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); /* switch on desired functional features */ ctl = OREAD4(sc, OHCI_CONTROL); ctl &= ~(OHCI_CBSR_MASK | OHCI_LES | OHCI_HCFS_MASK | OHCI_IR); ctl |= OHCI_PLE | OHCI_IE | OHCI_CLE | OHCI_BLE | OHCI_RATIO_1_4 | OHCI_HCFS_OPERATIONAL | rwc; /* And finally start it! */ OWRITE4(sc, OHCI_CONTROL, ctl); /* * The controller is now OPERATIONAL. Set a some final * registers that should be set earlier, but that the * controller ignores when in the SUSPEND state. */ ival = OHCI_GET_IVAL(fm); fm = (OREAD4(sc, OHCI_FM_REMAINING) & OHCI_FIT) ^ OHCI_FIT; fm |= OHCI_FSMPS(ival) | ival; OWRITE4(sc, OHCI_FM_INTERVAL, fm); per = OHCI_PERIODIC(ival); /* 90% periodic */ OWRITE4(sc, OHCI_PERIODIC_START, per); /* Fiddle the No OverCurrent Protection bit to avoid chip bug. */ OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca | OHCI_NOCP); OWRITE4(sc, OHCI_RH_STATUS, OHCI_LPSC); /* Enable port power */ usb_delay_ms(&sc->sc_bus, OHCI_ENABLE_POWER_DELAY); OWRITE4(sc, OHCI_RH_DESCRIPTOR_A, desca); OWRITE4(sc, OHCI_RH_DESCRIPTOR_B, descb); usb_delay_ms(&sc->sc_bus, OHCI_GET_POTPGT(desca) * UHD_PWRON_FACTOR); /* * The AMD756 requires a delay before re-reading the register, * otherwise it will occasionally report 0 ports. */ sc->sc_noport = 0; for (i = 0; i < 10 && sc->sc_noport == 0; i++) { usb_delay_ms(&sc->sc_bus, OHCI_READ_DESC_DELAY); sc->sc_noport = OHCI_GET_NDP(OREAD4(sc, OHCI_RH_DESCRIPTOR_A)); } #ifdef OHCI_DEBUG if (ohcidebug > 5) ohci_dumpregs(sc); #endif /* Set up the bus struct. */ sc->sc_bus.methods = &ohci_bus_methods; sc->sc_bus.pipe_size = sizeof(struct ohci_pipe); sc->sc_control = sc->sc_intre = 0; timeout_set(&sc->sc_tmo_rhsc, ohci_rhsc_enable, sc); /* Finally, turn on interrupts. */ DPRINTFN(1,("ohci_init: enabling\n")); OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_eintrs | OHCI_MIE); return (USBD_NORMAL_COMPLETION); bad5: for (i = 0; i < OHCI_NO_EDS; i++) ohci_free_sed(sc, sc->sc_eds[i]); bad4: ohci_free_sed(sc, sc->sc_isoc_head); bad3: ohci_free_sed(sc, sc->sc_bulk_head); bad2: ohci_free_sed(sc, sc->sc_ctrl_head); bad1: usb_freemem(&sc->sc_bus, &sc->sc_hccadma); return (err); } struct usbd_xfer * ohci_allocx(struct usbd_bus *bus) { return (pool_get(ohcixfer, PR_NOWAIT | PR_ZERO)); } void ohci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) { pool_put(ohcixfer, xfer); } #ifdef OHCI_DEBUG void ohci_dumpregs(struct ohci_softc *sc) { DPRINTF(("ohci_dumpregs: rev=0x%08x control=0x%08x command=0x%08x\n", OREAD4(sc, OHCI_REVISION), OREAD4(sc, OHCI_CONTROL), OREAD4(sc, OHCI_COMMAND_STATUS))); DPRINTF((" intrstat=0x%08x intre=0x%08x intrd=0x%08x\n", OREAD4(sc, OHCI_INTERRUPT_STATUS), OREAD4(sc, OHCI_INTERRUPT_ENABLE), OREAD4(sc, OHCI_INTERRUPT_DISABLE))); DPRINTF((" hcca=0x%08x percur=0x%08x ctrlhd=0x%08x\n", OREAD4(sc, OHCI_HCCA), OREAD4(sc, OHCI_PERIOD_CURRENT_ED), OREAD4(sc, OHCI_CONTROL_HEAD_ED))); DPRINTF((" ctrlcur=0x%08x bulkhd=0x%08x bulkcur=0x%08x\n", OREAD4(sc, OHCI_CONTROL_CURRENT_ED), OREAD4(sc, OHCI_BULK_HEAD_ED), OREAD4(sc, OHCI_BULK_CURRENT_ED))); DPRINTF((" done=0x%08x fmival=0x%08x fmrem=0x%08x\n", OREAD4(sc, OHCI_DONE_HEAD), OREAD4(sc, OHCI_FM_INTERVAL), OREAD4(sc, OHCI_FM_REMAINING))); DPRINTF((" fmnum=0x%08x perst=0x%08x lsthrs=0x%08x\n", OREAD4(sc, OHCI_FM_NUMBER), OREAD4(sc, OHCI_PERIODIC_START), OREAD4(sc, OHCI_LS_THRESHOLD))); DPRINTF((" desca=0x%08x descb=0x%08x stat=0x%08x\n", OREAD4(sc, OHCI_RH_DESCRIPTOR_A), OREAD4(sc, OHCI_RH_DESCRIPTOR_B), OREAD4(sc, OHCI_RH_STATUS))); DPRINTF((" port1=0x%08x port2=0x%08x\n", OREAD4(sc, OHCI_RH_PORT_STATUS(1)), OREAD4(sc, OHCI_RH_PORT_STATUS(2)))); DPRINTF((" HCCA: frame_number=0x%04x done_head=0x%08x\n", letoh32(sc->sc_hcca->hcca_frame_number), letoh32(sc->sc_hcca->hcca_done_head))); } #endif int ohci_intr1(struct ohci_softc *); int ohci_intr(void *p) { struct ohci_softc *sc = p; if (sc == NULL || sc->sc_bus.dying) return (0); /* If we get an interrupt while polling, then just ignore it. */ if (sc->sc_bus.use_polling) { #ifdef DIAGNOSTIC static struct timeval ohci_intr_tv; if ((OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs) && usbd_ratecheck(&ohci_intr_tv)) DPRINTFN(16, ("ohci_intr: ignored interrupt while polling\n")); #endif return (0); } return (ohci_intr1(sc)); } int ohci_intr1(struct ohci_softc *sc) { u_int32_t intrs, eintrs; ohci_physaddr_t done; DPRINTFN(14,("ohci_intr1: enter\n")); /* In case the interrupt occurs before initialization has completed. */ if (sc == NULL || sc->sc_hcca == NULL) { #ifdef DIAGNOSTIC printf("ohci_intr: sc->sc_hcca == NULL\n"); #endif return (0); } intrs = 0; done = letoh32(sc->sc_hcca->hcca_done_head); if (done != 0) { if (done & ~OHCI_DONE_INTRS) intrs = OHCI_WDH; if (done & OHCI_DONE_INTRS) intrs |= OREAD4(sc, OHCI_INTERRUPT_STATUS); sc->sc_hcca->hcca_done_head = 0; } else { intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS); /* If we've flushed out a WDH then reread */ if (intrs & OHCI_WDH) { done = letoh32(sc->sc_hcca->hcca_done_head); sc->sc_hcca->hcca_done_head = 0; } } if (intrs == 0xffffffff) { sc->sc_bus.dying = 1; return (0); } if (!intrs) return (0); intrs &= ~OHCI_MIE; OWRITE4(sc, OHCI_INTERRUPT_STATUS, intrs); /* Acknowledge */ eintrs = intrs & sc->sc_eintrs; if (!eintrs) return (0); sc->sc_bus.intr_context++; sc->sc_bus.no_intrs++; DPRINTFN(7, ("ohci_intr: sc=%p intrs=0x%x(0x%x) eintrs=0x%x\n", sc, (u_int)intrs, OREAD4(sc, OHCI_INTERRUPT_STATUS), (u_int)eintrs)); if (eintrs & OHCI_SO) { sc->sc_overrun_cnt++; if (usbd_ratecheck(&sc->sc_overrun_ntc)) { printf("%s: %u scheduling overruns\n", sc->sc_bus.bdev.dv_xname, sc->sc_overrun_cnt); sc->sc_overrun_cnt = 0; } /* XXX do what */ eintrs &= ~OHCI_SO; } if (eintrs & OHCI_WDH) { ohci_add_done(sc, done &~ OHCI_DONE_INTRS); usb_schedsoftintr(&sc->sc_bus); eintrs &= ~OHCI_WDH; } if (eintrs & OHCI_RD) { printf("%s: resume detect\n", sc->sc_bus.bdev.dv_xname); /* XXX process resume detect */ } if (eintrs & OHCI_UE) { printf("%s: unrecoverable error, controller halted\n", sc->sc_bus.bdev.dv_xname); OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET); /* XXX what else */ } if (eintrs & OHCI_RHSC) { ohci_rhsc(sc, sc->sc_intrxfer); /* * Disable RHSC interrupt for now, because it will be * on until the port has been reset. */ ohci_rhsc_able(sc, 0); DPRINTFN(2, ("%s: rhsc interrupt disabled\n", sc->sc_bus.bdev.dv_xname)); /* Do not allow RHSC interrupts > 1 per second */ timeout_add_sec(&sc->sc_tmo_rhsc, 1); eintrs &= ~OHCI_RHSC; } sc->sc_bus.intr_context--; if (eintrs != 0) { /* Block unprocessed interrupts. XXX */ OWRITE4(sc, OHCI_INTERRUPT_DISABLE, eintrs); sc->sc_eintrs &= ~eintrs; printf("%s: blocking intrs 0x%x\n", sc->sc_bus.bdev.dv_xname, eintrs); } return (1); } void ohci_rhsc_able(struct ohci_softc *sc, int on) { DPRINTFN(4, ("ohci_rhsc_able: on=%d\n", on)); if (on) { sc->sc_eintrs |= OHCI_RHSC; OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_RHSC); } else { sc->sc_eintrs &= ~OHCI_RHSC; OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_RHSC); } } void ohci_rhsc_enable(void *v_sc) { struct ohci_softc *sc = v_sc; int s; if (sc->sc_bus.dying) return; s = splhardusb(); ohci_rhsc(sc, sc->sc_intrxfer); DPRINTFN(2, ("%s: rhsc interrupt enabled\n", sc->sc_bus.bdev.dv_xname)); ohci_rhsc_able(sc, 1); splx(s); } #ifdef OHCI_DEBUG char *ohci_cc_strs[] = { "NO_ERROR", "CRC", "BIT_STUFFING", "DATA_TOGGLE_MISMATCH", "STALL", "DEVICE_NOT_RESPONDING", "PID_CHECK_FAILURE", "UNEXPECTED_PID", "DATA_OVERRUN", "DATA_UNDERRUN", "BUFFER_OVERRUN", "BUFFER_UNDERRUN", "reserved", "reserved", "NOT_ACCESSED", "NOT_ACCESSED", }; #endif void ohci_add_done(struct ohci_softc *sc, ohci_physaddr_t done) { struct ohci_soft_itd *sitd, *sidone, **ip; struct ohci_soft_td *std, *sdone, **p; /* Reverse the done list. */ for (sdone = NULL, sidone = NULL; done != 0; ) { std = ohci_hash_find_td(sc, done); if (std != NULL) { std->dnext = sdone; done = letoh32(std->td.td_nexttd); sdone = std; DPRINTFN(10,("add TD %p\n", std)); continue; } sitd = ohci_hash_find_itd(sc, done); if (sitd != NULL) { sitd->dnext = sidone; done = letoh32(sitd->itd.itd_nextitd); sidone = sitd; DPRINTFN(5,("add ITD %p\n", sitd)); continue; } panic("ohci_add_done: addr 0x%08lx not found", (u_long)done); } /* sdone & sidone now hold the done lists. */ /* Put them on the already processed lists. */ for (p = &sc->sc_sdone; *p != NULL; p = &(*p)->dnext) ; *p = sdone; for (ip = &sc->sc_sidone; *ip != NULL; ip = &(*ip)->dnext) ; *ip = sidone; } void ohci_softintr(void *v) { struct ohci_softc *sc = v; struct ohci_soft_itd *sitd, *sidone, *sitdnext; struct ohci_soft_td *std, *sdone, *stdnext; struct usbd_xfer *xfer; struct ohci_pipe *opipe; int len, cc, s; int i, j, actlen, iframes, uedir; DPRINTFN(10,("ohci_softintr: enter\n")); if (sc->sc_bus.dying) return; sc->sc_bus.intr_context++; s = splhardusb(); sdone = sc->sc_sdone; sc->sc_sdone = NULL; sidone = sc->sc_sidone; sc->sc_sidone = NULL; splx(s); DPRINTFN(10,("ohci_softintr: sdone=%p sidone=%p\n", sdone, sidone)); #ifdef OHCI_DEBUG if (ohcidebug > 10) { DPRINTF(("ohci_process_done: TD done:\n")); ohci_dump_tds(sdone); } #endif for (std = sdone; std; std = stdnext) { xfer = std->xfer; stdnext = std->dnext; DPRINTFN(10, ("ohci_process_done: std=%p xfer=%p hcpriv=%p\n", std, xfer, xfer ? xfer->hcpriv : 0)); if (xfer == NULL) { /* * xfer == NULL: There seems to be no xfer associated * with this TD. It is tailp that happened to end up on * the done queue. * Shouldn't happen, but some chips are broken(?). */ continue; } if (xfer->status == USBD_CANCELLED || xfer->status == USBD_TIMEOUT) { DPRINTF(("ohci_process_done: cancel/timeout %p\n", xfer)); /* Handled by abort routine. */ continue; } timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); len = std->len; if (std->td.td_cbp != 0) len -= letoh32(std->td.td_be) - letoh32(std->td.td_cbp) + 1; DPRINTFN(10, ("ohci_process_done: len=%d, flags=0x%x\n", len, std->flags)); if (std->flags & OHCI_ADD_LEN) xfer->actlen += len; cc = OHCI_TD_GET_CC(letoh32(std->td.td_flags)); if (cc == OHCI_CC_NO_ERROR) { int done = (std->flags & OHCI_CALL_DONE); ohci_free_std(sc, std); if (done) { xfer->status = USBD_NORMAL_COMPLETION; s = splusb(); usb_transfer_complete(xfer); splx(s); } } else { /* * Endpoint is halted. First unlink all the TDs * belonging to the failed transfer, and then restart * the endpoint. */ struct ohci_soft_td *p, *n; opipe = (struct ohci_pipe *)xfer->pipe; DPRINTFN(15,("ohci_process_done: error cc=%d (%s)\n", OHCI_TD_GET_CC(letoh32(std->td.td_flags)), ohci_cc_strs[OHCI_TD_GET_CC(letoh32(std->td.td_flags))])); /* remove TDs */ for (p = std; p->xfer == xfer; p = n) { n = p->nexttd; ohci_free_std(sc, p); } /* clear halt */ opipe->sed->ed.ed_headp = htole32(p->physaddr); OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF); if (cc == OHCI_CC_STALL) xfer->status = USBD_STALLED; else if (cc == OHCI_CC_DATA_UNDERRUN) xfer->status = USBD_NORMAL_COMPLETION; else xfer->status = USBD_IOERROR; s = splusb(); usb_transfer_complete(xfer); splx(s); } } #ifdef OHCI_DEBUG if (ohcidebug > 10) { DPRINTF(("ohci_softintr: ITD done:\n")); ohci_dump_itds(sidone); } #endif for (sitd = sidone; sitd != NULL; sitd = sitdnext) { xfer = sitd->xfer; sitdnext = sitd->dnext; DPRINTFN(1, ("ohci_process_done: sitd=%p xfer=%p hcpriv=%p\n", sitd, xfer, xfer ? xfer->hcpriv : 0)); if (xfer == NULL) continue; if (xfer->status == USBD_CANCELLED || xfer->status == USBD_TIMEOUT) { DPRINTF(("ohci_process_done: cancel/timeout %p\n", xfer)); /* Handled by abort routine. */ continue; } #ifdef DIAGNOSTIC if (sitd->isdone) printf("ohci_softintr: sitd=%p is done\n", sitd); sitd->isdone = 1; #endif if (sitd->flags & OHCI_CALL_DONE) { struct ohci_soft_itd *next; opipe = (struct ohci_pipe *)xfer->pipe; opipe->u.iso.inuse -= xfer->nframes; uedir = UE_GET_DIR(xfer->pipe->endpoint->edesc-> bEndpointAddress); xfer->status = USBD_NORMAL_COMPLETION; actlen = 0; for (i = 0, sitd = xfer->hcpriv; ; sitd = next) { next = sitd->nextitd; if (OHCI_ITD_GET_CC(letoh32(sitd-> itd.itd_flags)) != OHCI_CC_NO_ERROR) xfer->status = USBD_IOERROR; /* For input, update frlengths with actual */ /* XXX anything necessary for output? */ if (uedir == UE_DIR_IN && xfer->status == USBD_NORMAL_COMPLETION) { iframes = OHCI_ITD_GET_FC(letoh32( sitd->itd.itd_flags)); for (j = 0; j < iframes; i++, j++) { len = letoh16(sitd-> itd.itd_offset[j]); if ((OHCI_ITD_PSW_GET_CC(len) & OHCI_CC_NOT_ACCESSED_MASK) == OHCI_CC_NOT_ACCESSED) len = 0; else len = OHCI_ITD_PSW_LENGTH(len); xfer->frlengths[i] = len; actlen += len; } } if (sitd->flags & OHCI_CALL_DONE) break; ohci_free_sitd(sc, sitd); } ohci_free_sitd(sc, sitd); if (uedir == UE_DIR_IN && xfer->status == USBD_NORMAL_COMPLETION) xfer->actlen = actlen; xfer->hcpriv = NULL; s = splusb(); usb_transfer_complete(xfer); splx(s); } } if (sc->sc_softwake) { sc->sc_softwake = 0; wakeup(&sc->sc_softwake); } sc->sc_bus.intr_context--; DPRINTFN(10,("ohci_softintr: done:\n")); } void ohci_device_ctrl_done(struct usbd_xfer *xfer) { DPRINTFN(10,("ohci_device_ctrl_done: xfer=%p\n", xfer)); #ifdef DIAGNOSTIC if (!(xfer->rqflags & URQ_REQUEST)) { panic("ohci_device_ctrl_done: not a request"); } #endif } void ohci_device_intr_done(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; struct ohci_soft_ed *sed = opipe->sed; struct ohci_soft_td *data, *tail; DPRINTFN(10, ("ohci_device_intr_done: xfer=%p, actlen=%d\n", xfer, xfer->actlen)); if (xfer->pipe->repeat) { data = opipe->tail.td; tail = ohci_alloc_std(sc); if (tail == NULL) { xfer->status = USBD_NOMEM; return; } tail->xfer = NULL; data->td.td_flags = htole32( OHCI_TD_IN | OHCI_TD_NOCC | OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY); if (xfer->flags & USBD_SHORT_XFER_OK) data->td.td_flags |= htole32(OHCI_TD_R); data->td.td_cbp = htole32(DMAADDR(&xfer->dmabuf, 0)); data->nexttd = tail; data->td.td_nexttd = htole32(tail->physaddr); data->td.td_be = htole32(letoh32(data->td.td_cbp) + xfer->length - 1); data->len = xfer->length; data->xfer = xfer; data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN; xfer->hcpriv = data; xfer->actlen = 0; sed->ed.ed_tailp = htole32(tail->physaddr); opipe->tail.td = tail; } } void ohci_device_bulk_done(struct usbd_xfer *xfer) { DPRINTFN(10, ("ohci_device_bulk_done: xfer=%p, actlen=%d\n", xfer, xfer->actlen)); } void ohci_rhsc(struct ohci_softc *sc, struct usbd_xfer *xfer) { u_char *p; int i, m; int hstatus; hstatus = OREAD4(sc, OHCI_RH_STATUS); DPRINTF(("ohci_rhsc: sc=%p xfer=%p hstatus=0x%08x\n", sc, xfer, hstatus)); if (xfer == NULL) { /* Just ignore the change. */ return; } p = KERNADDR(&xfer->dmabuf, 0); m = min(sc->sc_noport, xfer->length * 8 - 1); memset(p, 0, xfer->length); for (i = 1; i <= m; i++) { /* Pick out CHANGE bits from the status reg. */ if (OREAD4(sc, OHCI_RH_PORT_STATUS(i)) >> 16) p[i/8] |= 1 << (i%8); } DPRINTF(("ohci_rhsc: change=0x%02x\n", *p)); xfer->actlen = xfer->length; xfer->status = USBD_NORMAL_COMPLETION; usb_transfer_complete(xfer); } void ohci_root_intr_done(struct usbd_xfer *xfer) { } void ohci_root_ctrl_done(struct usbd_xfer *xfer) { } void ohci_poll(struct usbd_bus *bus) { struct ohci_softc *sc = (struct ohci_softc *)bus; #ifdef OHCI_DEBUG static int last; int new; new = OREAD4(sc, OHCI_INTERRUPT_STATUS); if (new != last) { DPRINTFN(10,("ohci_poll: intrs=0x%04x\n", new)); last = new; } #endif if (OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs) ohci_intr1(sc); } usbd_status ohci_device_request(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; usb_device_request_t *req = &xfer->request; struct ohci_soft_td *setup, *stat, *next, *tail; struct ohci_soft_ed *sed; u_int len; usbd_status err; int s; len = UGETW(req->wLength); DPRINTFN(3,("ohci_device_control type=0x%02x, request=0x%02x, " "wValue=0x%04x, wIndex=0x%04x len=%u, addr=%d, endpt=%d\n", req->bmRequestType, req->bRequest, UGETW(req->wValue), UGETW(req->wIndex), len, xfer->device->address, xfer->pipe->endpoint->edesc->bEndpointAddress)); setup = opipe->tail.td; stat = ohci_alloc_std(sc); if (stat == NULL) { err = USBD_NOMEM; goto bad1; } tail = ohci_alloc_std(sc); if (tail == NULL) { err = USBD_NOMEM; goto bad2; } tail->xfer = NULL; sed = opipe->sed; next = stat; /* Set up data transaction */ if (len != 0) { struct ohci_soft_td *std = stat; err = ohci_alloc_std_chain(sc, len, xfer, std, &stat); stat = stat->nexttd; /* point at free TD */ if (err) goto bad3; /* Start toggle at 1 and then use the carried toggle. */ std->td.td_flags &= htole32(~OHCI_TD_TOGGLE_MASK); std->td.td_flags |= htole32(OHCI_TD_TOGGLE_1); } memcpy(KERNADDR(&opipe->u.ctl.reqdma, 0), req, sizeof *req); setup->td.td_flags = htole32(OHCI_TD_SETUP | OHCI_TD_NOCC | OHCI_TD_TOGGLE_0 | OHCI_TD_NOINTR); setup->td.td_cbp = htole32(DMAADDR(&opipe->u.ctl.reqdma, 0)); setup->nexttd = next; setup->td.td_nexttd = htole32(next->physaddr); setup->td.td_be = htole32(letoh32(setup->td.td_cbp) + sizeof *req - 1); setup->len = 0; setup->xfer = xfer; setup->flags = 0; xfer->hcpriv = setup; stat->td.td_flags = htole32( (usbd_xfer_isread(xfer) ? OHCI_TD_OUT : OHCI_TD_IN) | OHCI_TD_NOCC | OHCI_TD_TOGGLE_1 | OHCI_TD_SET_DI(1)); stat->td.td_cbp = 0; stat->nexttd = tail; stat->td.td_nexttd = htole32(tail->physaddr); stat->td.td_be = 0; stat->flags = OHCI_CALL_DONE; stat->len = 0; stat->xfer = xfer; #ifdef OHCI_DEBUG if (ohcidebug > 5) { DPRINTF(("ohci_device_request:\n")); ohci_dump_ed(sed); ohci_dump_tds(setup); } #endif /* Insert ED in schedule */ s = splusb(); sed->ed.ed_tailp = htole32(tail->physaddr); opipe->tail.td = tail; OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF); if (xfer->timeout && !sc->sc_bus.use_polling) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, ohci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } splx(s); #ifdef OHCI_DEBUG if (ohcidebug > 20) { delay(10000); DPRINTF(("ohci_device_request: status=%x\n", OREAD4(sc, OHCI_COMMAND_STATUS))); ohci_dumpregs(sc); printf("ctrl head:\n"); ohci_dump_ed(sc->sc_ctrl_head); printf("sed:\n"); ohci_dump_ed(sed); ohci_dump_tds(setup); } #endif return (USBD_NORMAL_COMPLETION); bad3: ohci_free_std(sc, tail); bad2: ohci_free_std(sc, stat); bad1: return (err); } /* * Add an ED to the schedule. Called at splusb(). */ void ohci_add_ed(struct ohci_soft_ed *sed, struct ohci_soft_ed *head) { DPRINTFN(8,("ohci_add_ed: sed=%p head=%p\n", sed, head)); splsoftassert(IPL_SOFTUSB); sed->next = head->next; sed->ed.ed_nexted = head->ed.ed_nexted; head->next = sed; head->ed.ed_nexted = htole32(sed->physaddr); } /* * Remove an ED from the schedule. Called at splusb(). */ void ohci_rem_ed(struct ohci_soft_ed *sed, struct ohci_soft_ed *head) { struct ohci_soft_ed *p; splsoftassert(IPL_SOFTUSB); /* XXX */ for (p = head; p != NULL && p->next != sed; p = p->next) ; if (p == NULL) panic("ohci_rem_ed: ED not found"); p->next = sed->next; p->ed.ed_nexted = sed->ed.ed_nexted; } /* * When a transfer is completed the TD is added to the done queue by * the host controller. This queue is the processed by software. * Unfortunately the queue contains the physical address of the TD * and we have no simple way to translate this back to a kernel address. * To make the translation possible (and fast) we use a hash table of * TDs currently in the schedule. The physical address is used as the * hash value. */ #define HASH(a) (((a) >> 4) % OHCI_HASH_SIZE) /* Called at splusb() */ void ohci_hash_add_td(struct ohci_softc *sc, struct ohci_soft_td *std) { int h = HASH(std->physaddr); splsoftassert(IPL_SOFTUSB); LIST_INSERT_HEAD(&sc->sc_hash_tds[h], std, hnext); } struct ohci_soft_td * ohci_hash_find_td(struct ohci_softc *sc, ohci_physaddr_t a) { int h = HASH(a); struct ohci_soft_td *std; for (std = LIST_FIRST(&sc->sc_hash_tds[h]); std != NULL; std = LIST_NEXT(std, hnext)) if (std->physaddr == a) return (std); return (NULL); } /* Called at splusb() */ void ohci_hash_add_itd(struct ohci_softc *sc, struct ohci_soft_itd *sitd) { int h = HASH(sitd->physaddr); splsoftassert(IPL_SOFTUSB); DPRINTFN(10,("ohci_hash_add_itd: sitd=%p physaddr=0x%08lx\n", sitd, (u_long)sitd->physaddr)); LIST_INSERT_HEAD(&sc->sc_hash_itds[h], sitd, hnext); } /* Called at splusb() */ void ohci_hash_rem_itd(struct ohci_softc *sc, struct ohci_soft_itd *sitd) { splsoftassert(IPL_SOFTUSB); DPRINTFN(10,("ohci_hash_rem_itd: sitd=%p physaddr=0x%08lx\n", sitd, (u_long)sitd->physaddr)); LIST_REMOVE(sitd, hnext); } struct ohci_soft_itd * ohci_hash_find_itd(struct ohci_softc *sc, ohci_physaddr_t a) { int h = HASH(a); struct ohci_soft_itd *sitd; for (sitd = LIST_FIRST(&sc->sc_hash_itds[h]); sitd != NULL; sitd = LIST_NEXT(sitd, hnext)) if (sitd->physaddr == a) return (sitd); return (NULL); } void ohci_timeout(void *addr) { struct usbd_xfer *xfer = addr; struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; if (sc->sc_bus.dying) { ohci_timeout_task(addr); return; } usb_init_task(&xfer->abort_task, ohci_timeout_task, addr, USB_TASK_TYPE_ABORT); usb_add_task(xfer->device, &xfer->abort_task); } void ohci_timeout_task(void *addr) { struct usbd_xfer *xfer = addr; int s; DPRINTF(("%s: xfer=%p\n", __func__, xfer)); s = splusb(); ohci_abort_xfer(xfer, USBD_TIMEOUT); splx(s); } #ifdef OHCI_DEBUG void ohci_dump_tds(struct ohci_soft_td *std) { for (; std; std = std->nexttd) ohci_dump_td(std); } void ohci_dump_td(struct ohci_soft_td *std) { char sbuf[128]; bitmask_snprintf((u_int32_t)letoh32(std->td.td_flags), "\20\23R\24OUT\25IN\31TOG1\32SETTOGGLE", sbuf, sizeof(sbuf)); printf("TD(%p) at %08lx: %s delay=%d ec=%d cc=%d\ncbp=0x%08lx " "nexttd=0x%08lx be=0x%08lx\n", std, (u_long)std->physaddr, sbuf, OHCI_TD_GET_DI(letoh32(std->td.td_flags)), OHCI_TD_GET_EC(letoh32(std->td.td_flags)), OHCI_TD_GET_CC(letoh32(std->td.td_flags)), (u_long)letoh32(std->td.td_cbp), (u_long)letoh32(std->td.td_nexttd), (u_long)letoh32(std->td.td_be)); } void ohci_dump_itd(struct ohci_soft_itd *sitd) { int i; printf("ITD(%p) at %08lx: sf=%d di=%d fc=%d cc=%d\n" "bp0=0x%08lx next=0x%08lx be=0x%08lx\n", sitd, (u_long)sitd->physaddr, OHCI_ITD_GET_SF(letoh32(sitd->itd.itd_flags)), OHCI_ITD_GET_DI(letoh32(sitd->itd.itd_flags)), OHCI_ITD_GET_FC(letoh32(sitd->itd.itd_flags)), OHCI_ITD_GET_CC(letoh32(sitd->itd.itd_flags)), (u_long)letoh32(sitd->itd.itd_bp0), (u_long)letoh32(sitd->itd.itd_nextitd), (u_long)letoh32(sitd->itd.itd_be)); for (i = 0; i < OHCI_ITD_NOFFSET; i++) printf("offs[%d]=0x%04x ", i, (u_int)letoh16(sitd->itd.itd_offset[i])); printf("\n"); } void ohci_dump_itds(struct ohci_soft_itd *sitd) { for (; sitd; sitd = sitd->nextitd) ohci_dump_itd(sitd); } void ohci_dump_ed(struct ohci_soft_ed *sed) { char sbuf[128], sbuf2[128]; bitmask_snprintf((u_int32_t)letoh32(sed->ed.ed_flags), "\20\14OUT\15IN\16LOWSPEED\17SKIP\20ISO", sbuf, sizeof(sbuf)); bitmask_snprintf((u_int32_t)letoh32(sed->ed.ed_headp), "\20\1HALT\2CARRY", sbuf2, sizeof(sbuf2)); printf("ED(%p) at 0x%08lx: addr=%d endpt=%d maxp=%d flags=%s\n" "tailp=0x%08lx headflags=%s headp=0x%08lx nexted=0x%08lx\n", sed, (u_long)sed->physaddr, OHCI_ED_GET_FA(letoh32(sed->ed.ed_flags)), OHCI_ED_GET_EN(letoh32(sed->ed.ed_flags)), OHCI_ED_GET_MAXP(letoh32(sed->ed.ed_flags)), sbuf, (u_long)letoh32(sed->ed.ed_tailp), sbuf2, (u_long)letoh32(sed->ed.ed_headp), (u_long)letoh32(sed->ed.ed_nexted)); } #endif usbd_status ohci_open(struct usbd_pipe *pipe) { struct ohci_softc *sc = (struct ohci_softc *)pipe->device->bus; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; u_int8_t xfertype = ed->bmAttributes & UE_XFERTYPE; struct ohci_soft_ed *sed = NULL; struct ohci_soft_td *std = NULL; struct ohci_soft_itd *sitd; ohci_physaddr_t tdphys; u_int32_t fmt; usbd_status err; int s; int ival; DPRINTFN(1, ("ohci_open: pipe=%p, addr=%d, endpt=%d\n", pipe, pipe->device->address, ed->bEndpointAddress)); if (sc->sc_bus.dying) return (USBD_IOERROR); /* Root Hub */ if (pipe->device->depth == 0) { switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->methods = &ohci_root_ctrl_methods; break; case UE_DIR_IN | OHCI_INTR_ENDPT: pipe->methods = &ohci_root_intr_methods; break; default: return (USBD_INVAL); } } else { sed = ohci_alloc_sed(sc); if (sed == NULL) goto bad0; opipe->sed = sed; if (xfertype == UE_ISOCHRONOUS) { sitd = ohci_alloc_sitd(sc); if (sitd == NULL) goto bad1; opipe->tail.itd = sitd; tdphys = sitd->physaddr; fmt = OHCI_ED_FORMAT_ISO; if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) fmt |= OHCI_ED_DIR_IN; else fmt |= OHCI_ED_DIR_OUT; } else { std = ohci_alloc_std(sc); if (std == NULL) goto bad1; opipe->tail.td = std; tdphys = std->physaddr; fmt = OHCI_ED_FORMAT_GEN | OHCI_ED_DIR_TD; } sed->ed.ed_flags = htole32( OHCI_ED_SET_FA(pipe->device->address) | OHCI_ED_SET_EN(UE_GET_ADDR(ed->bEndpointAddress)) | (pipe->device->speed == USB_SPEED_LOW ? OHCI_ED_SPEED : 0) | fmt | OHCI_ED_SET_MAXP(UGETW(ed->wMaxPacketSize))); sed->ed.ed_headp = htole32(tdphys | (pipe->endpoint->savedtoggle ? OHCI_TOGGLECARRY : 0)); sed->ed.ed_tailp = htole32(tdphys); switch (xfertype) { case UE_CONTROL: pipe->methods = &ohci_device_ctrl_methods; err = usb_allocmem(&sc->sc_bus, sizeof(usb_device_request_t), 0, &opipe->u.ctl.reqdma); if (err) goto bad; s = splusb(); ohci_add_ed(sed, sc->sc_ctrl_head); splx(s); break; case UE_INTERRUPT: pipe->methods = &ohci_device_intr_methods; ival = pipe->interval; if (ival == USBD_DEFAULT_INTERVAL) ival = ed->bInterval; return (ohci_device_setintr(sc, opipe, ival)); case UE_ISOCHRONOUS: pipe->methods = &ohci_device_isoc_methods; return (ohci_setup_isoc(pipe)); case UE_BULK: pipe->methods = &ohci_device_bulk_methods; s = splusb(); ohci_add_ed(sed, sc->sc_bulk_head); splx(s); break; } } return (USBD_NORMAL_COMPLETION); bad: if (std != NULL) ohci_free_std(sc, std); bad1: if (sed != NULL) ohci_free_sed(sc, sed); bad0: return (USBD_NOMEM); } /* * Work around the half configured control (default) pipe when setting * the address of a device. * * Because a single ED is setup per endpoint in ohci_open(), and the * control pipe is configured before we could have set the address * of the device or read the wMaxPacketSize of the endpoint, we have * to re-open the pipe twice here. */ int ohci_setaddr(struct usbd_device *dev, int addr) { /* Root Hub */ if (dev->depth == 0) return (0); /* Re-establish the default pipe with the new max packet size. */ ohci_device_ctrl_close(dev->default_pipe); if (ohci_open(dev->default_pipe)) return (EINVAL); if (usbd_set_address(dev, addr)) return (1); dev->address = addr; /* Re-establish the default pipe with the new address. */ ohci_device_ctrl_close(dev->default_pipe); if (ohci_open(dev->default_pipe)) return (EINVAL); return (0); } /* * Close a reqular pipe. * Assumes that there are no pending transactions. */ void ohci_close_pipe(struct usbd_pipe *pipe, struct ohci_soft_ed *head) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; struct ohci_softc *sc = (struct ohci_softc *)pipe->device->bus; struct ohci_soft_ed *sed = opipe->sed; int s; s = splusb(); #ifdef DIAGNOSTIC sed->ed.ed_flags |= htole32(OHCI_ED_SKIP); if ((letoh32(sed->ed.ed_tailp) & OHCI_HEADMASK) != (letoh32(sed->ed.ed_headp) & OHCI_HEADMASK)) { struct ohci_soft_td *std; std = ohci_hash_find_td(sc, letoh32(sed->ed.ed_headp)); printf("ohci_close_pipe: pipe not empty sed=%p hd=0x%x " "tl=0x%x pipe=%p, std=%p\n", sed, (int)letoh32(sed->ed.ed_headp), (int)letoh32(sed->ed.ed_tailp), pipe, std); #ifdef OHCI_DEBUG ohci_dump_ed(sed); if (std) ohci_dump_td(std); #endif usb_delay_ms(&sc->sc_bus, 2); if ((letoh32(sed->ed.ed_tailp) & OHCI_HEADMASK) != (letoh32(sed->ed.ed_headp) & OHCI_HEADMASK)) printf("ohci_close_pipe: pipe still not empty\n"); } #endif ohci_rem_ed(sed, head); /* Make sure the host controller is not touching this ED */ usb_delay_ms(&sc->sc_bus, 1); splx(s); pipe->endpoint->savedtoggle = (letoh32(sed->ed.ed_headp) & OHCI_TOGGLECARRY) ? 1 : 0; ohci_free_sed(sc, opipe->sed); } /* * Abort a device request. * If this routine is called at splusb() it guarantees that the request * will be removed from the hardware scheduling and that the callback * for it will be called with USBD_CANCELLED status. * It's impossible to guarantee that the requested transfer will not * have happened since the hardware runs concurrently. * If the transaction has already happened we rely on the ordinary * interrupt processing to process it. */ void ohci_abort_xfer(struct usbd_xfer *xfer, usbd_status status) { struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; struct ohci_soft_ed *sed = opipe->sed; struct ohci_soft_td *p, *n; ohci_physaddr_t headp; int s, hit; DPRINTF(("ohci_abort_xfer: xfer=%p pipe=%p sed=%p\n", xfer, opipe, sed)); if (sc->sc_bus.dying) { /* If we're dying, just do the software part. */ s = splusb(); xfer->status = status; /* make software ignore it */ timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); usb_transfer_complete(xfer); splx(s); return; } if (xfer->device->bus->intr_context || !curproc) panic("ohci_abort_xfer: not in process context"); /* * Step 1: Make interrupt routine and hardware ignore xfer. */ s = splusb(); xfer->status = status; /* make software ignore it */ timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); splx(s); DPRINTFN(1,("ohci_abort_xfer: stop ed=%p\n", sed)); sed->ed.ed_flags |= htole32(OHCI_ED_SKIP); /* force hardware skip */ /* * Step 2: Wait until we know hardware has finished any possible * use of the xfer. Also make sure the soft interrupt routine * has run. */ usb_delay_ms(xfer->device->bus, 20); /* Hardware finishes in 1ms */ s = splusb(); sc->sc_softwake = 1; usb_schedsoftintr(&sc->sc_bus); tsleep(&sc->sc_softwake, PZERO, "ohciab", 0); splx(s); /* * Step 3: Remove any vestiges of the xfer from the hardware. * The complication here is that the hardware may have executed * beyond the xfer we're trying to abort. So as we're scanning * the TDs of this xfer we check if the hardware points to * any of them. */ s = splusb(); /* XXX why? */ p = xfer->hcpriv; #ifdef DIAGNOSTIC if (p == NULL) { splx(s); printf("ohci_abort_xfer: hcpriv is NULL\n"); return; } #endif #ifdef OHCI_DEBUG if (ohcidebug > 1) { DPRINTF(("ohci_abort_xfer: sed=\n")); ohci_dump_ed(sed); ohci_dump_tds(p); } #endif headp = letoh32(sed->ed.ed_headp) & OHCI_HEADMASK; hit = 0; for (; p->xfer == xfer; p = n) { hit |= headp == p->physaddr; n = p->nexttd; if (OHCI_TD_GET_CC(letoh32(p->td.td_flags)) == OHCI_CC_NOT_ACCESSED) ohci_free_std(sc, p); } /* Zap headp register if hardware pointed inside the xfer. */ if (hit) { DPRINTFN(1,("ohci_abort_xfer: set hd=0x%08x, tl=0x%08x\n", (int)p->physaddr, (int)letoh32(sed->ed.ed_tailp))); sed->ed.ed_headp = htole32(p->physaddr); /* unlink TDs */ } else { DPRINTFN(1,("ohci_abort_xfer: no hit\n")); } /* * Step 4: Turn on hardware again. */ sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP); /* remove hardware skip */ /* * Step 5: Execute callback. */ usb_transfer_complete(xfer); splx(s); } /* * Data structures and routines to emulate the root hub. */ usb_device_descriptor_t ohci_devd = { USB_DEVICE_DESCRIPTOR_SIZE, UDESC_DEVICE, /* type */ {0x00, 0x01}, /* USB version */ UDCLASS_HUB, /* class */ UDSUBCLASS_HUB, /* subclass */ UDPROTO_FSHUB, 64, /* max packet */ {0},{0},{0x00,0x01}, /* device id */ 1,2,0, /* string indices */ 1 /* # of configurations */ }; usb_config_descriptor_t ohci_confd = { USB_CONFIG_DESCRIPTOR_SIZE, UDESC_CONFIG, {USB_CONFIG_DESCRIPTOR_SIZE + USB_INTERFACE_DESCRIPTOR_SIZE + USB_ENDPOINT_DESCRIPTOR_SIZE}, 1, 1, 0, UC_BUS_POWERED | UC_SELF_POWERED, 0 /* max power */ }; usb_interface_descriptor_t ohci_ifcd = { USB_INTERFACE_DESCRIPTOR_SIZE, UDESC_INTERFACE, 0, 0, 1, UICLASS_HUB, UISUBCLASS_HUB, UIPROTO_FSHUB, 0 }; usb_endpoint_descriptor_t ohci_endpd = { USB_ENDPOINT_DESCRIPTOR_SIZE, UDESC_ENDPOINT, UE_DIR_IN | OHCI_INTR_ENDPT, UE_INTERRUPT, {8, 0}, /* max packet */ 255 }; usb_hub_descriptor_t ohci_hubd = { USB_HUB_DESCRIPTOR_SIZE, UDESC_HUB, 0, {0,0}, 0, 0, {0}, }; /* * Simulate a hardware hub by handling all the necessary requests. */ usbd_status ohci_root_ctrl_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ohci_root_ctrl_start(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; usb_device_request_t *req; void *buf = NULL; int port, i; int s, len, value, index, l, totlen = 0; usb_port_status_t ps; usb_hub_descriptor_t hubd; usbd_status err; u_int32_t v; if (sc->sc_bus.dying) return (USBD_IOERROR); #ifdef DIAGNOSTIC if (!(xfer->rqflags & URQ_REQUEST)) /* XXX panic */ return (USBD_INVAL); #endif req = &xfer->request; DPRINTFN(4,("ohci_root_ctrl_control type=0x%02x request=%02x\n", req->bmRequestType, req->bRequest)); len = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); if (len != 0) buf = KERNADDR(&xfer->dmabuf, 0); #define C(x,y) ((x) | ((y) << 8)) switch(C(req->bRequest, req->bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): if (len > 0) { *(u_int8_t *)buf = sc->sc_conf; totlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): DPRINTFN(8,("ohci_root_ctrl_control wValue=0x%04x\n", value)); switch(value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE); USETW(ohci_devd.idVendor, sc->sc_id_vendor); memcpy(buf, &ohci_devd, l); break; case UDESC_CONFIG: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE); memcpy(buf, &ohci_confd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &ohci_ifcd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &ohci_endpd, l); break; case UDESC_STRING: if (len == 0) break; *(u_int8_t *)buf = 0; totlen = 1; switch (value & 0xff) { case 0: /* Language table */ totlen = usbd_str(buf, len, "\001"); break; case 1: /* Vendor */ totlen = usbd_str(buf, len, sc->sc_vendor); break; case 2: /* Product */ totlen = usbd_str(buf, len, "OHCI root hub"); break; } break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): if (len > 0) { *(u_int8_t *)buf = 0; totlen = 1; } break; case C(UR_GET_STATUS, UT_READ_DEVICE): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED); totlen = 2; } break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus, 0); totlen = 2; } break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= USB_MAX_DEVICES) { err = USBD_IOERROR; goto ret; } break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if (value != 0 && value != 1) { err = USBD_IOERROR; goto ret; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): err = USBD_IOERROR; goto ret; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(8, ("ohci_root_ctrl_control: UR_CLEAR_PORT_FEATURE " "port=%d feature=%d\n", index, value)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = OHCI_RH_PORT_STATUS(index); switch(value) { case UHF_PORT_ENABLE: OWRITE4(sc, port, UPS_CURRENT_CONNECT_STATUS); break; case UHF_PORT_SUSPEND: OWRITE4(sc, port, UPS_OVERCURRENT_INDICATOR); break; case UHF_PORT_POWER: /* Yes, writing to the LOW_SPEED bit clears power. */ OWRITE4(sc, port, UPS_LOW_SPEED); break; case UHF_C_PORT_CONNECTION: OWRITE4(sc, port, UPS_C_CONNECT_STATUS << 16); break; case UHF_C_PORT_ENABLE: OWRITE4(sc, port, UPS_C_PORT_ENABLED << 16); break; case UHF_C_PORT_SUSPEND: OWRITE4(sc, port, UPS_C_SUSPEND << 16); break; case UHF_C_PORT_OVER_CURRENT: OWRITE4(sc, port, UPS_C_OVERCURRENT_INDICATOR << 16); break; case UHF_C_PORT_RESET: OWRITE4(sc, port, UPS_C_PORT_RESET << 16); break; default: err = USBD_IOERROR; goto ret; } switch(value) { case UHF_C_PORT_CONNECTION: case UHF_C_PORT_ENABLE: case UHF_C_PORT_SUSPEND: case UHF_C_PORT_OVER_CURRENT: case UHF_C_PORT_RESET: /* Enable RHSC interrupt if condition is cleared. */ if ((OREAD4(sc, port) >> 16) == 0) ohci_rhsc_able(sc, 1); break; default: break; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } v = OREAD4(sc, OHCI_RH_DESCRIPTOR_A); hubd = ohci_hubd; hubd.bNbrPorts = sc->sc_noport; USETW(hubd.wHubCharacteristics, (v & OHCI_NPS ? UHD_PWR_NO_SWITCH : v & OHCI_PSM ? UHD_PWR_GANGED : UHD_PWR_INDIVIDUAL) /* XXX overcurrent */ ); hubd.bPwrOn2PwrGood = OHCI_GET_POTPGT(v); v = OREAD4(sc, OHCI_RH_DESCRIPTOR_B); for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8) hubd.DeviceRemovable[i++] = (u_int8_t)v; hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i; l = min(len, hubd.bDescLength); totlen = l; memcpy(buf, &hubd, l); break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): if (len != 4) { err = USBD_IOERROR; goto ret; } memset(buf, 0, len); /* ? XXX */ totlen = len; break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): DPRINTFN(8,("ohci_root_ctrl_transfer: get port status i=%d\n", index)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } if (len != 4) { err = USBD_IOERROR; goto ret; } v = OREAD4(sc, OHCI_RH_PORT_STATUS(index)); DPRINTFN(8,("ohci_root_ctrl_transfer: port status=0x%04x\n", v)); USETW(ps.wPortStatus, v); USETW(ps.wPortChange, v >> 16); l = min(len, sizeof ps); memcpy(buf, &ps, l); totlen = l; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): err = USBD_IOERROR; goto ret; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = OHCI_RH_PORT_STATUS(index); switch(value) { case UHF_PORT_ENABLE: OWRITE4(sc, port, UPS_PORT_ENABLED); break; case UHF_PORT_SUSPEND: OWRITE4(sc, port, UPS_SUSPEND); break; case UHF_PORT_RESET: DPRINTFN(5,("ohci_root_ctrl_transfer: reset port %d\n", index)); OWRITE4(sc, port, UPS_RESET); for (i = 0; i < 5; i++) { usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY); if (sc->sc_bus.dying) { err = USBD_IOERROR; goto ret; } if ((OREAD4(sc, port) & UPS_RESET) == 0) break; } DPRINTFN(8,("ohci port %d reset, status = 0x%04x\n", index, OREAD4(sc, port))); break; case UHF_PORT_POWER: DPRINTFN(2,("ohci_root_ctrl_transfer: set port power " "%d\n", index)); OWRITE4(sc, port, UPS_PORT_POWER); break; case UHF_PORT_DISOWN_TO_1_1: /* accept, but do nothing */ break; default: err = USBD_IOERROR; goto ret; } break; default: err = USBD_IOERROR; goto ret; } xfer->actlen = totlen; err = USBD_NORMAL_COMPLETION; ret: xfer->status = err; s = splusb(); usb_transfer_complete(xfer); splx(s); return (err); } /* Abort a root control request. */ void ohci_root_ctrl_abort(struct usbd_xfer *xfer) { /* Nothing to do, all transfers are synchronous. */ } /* Close the root pipe. */ void ohci_root_ctrl_close(struct usbd_pipe *pipe) { DPRINTF(("ohci_root_ctrl_close\n")); /* Nothing to do. */ } usbd_status ohci_root_intr_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ohci_root_intr_start(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; if (sc->sc_bus.dying) return (USBD_IOERROR); sc->sc_intrxfer = xfer; return (USBD_IN_PROGRESS); } void ohci_root_intr_abort(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; int s; sc->sc_intrxfer = NULL; xfer->status = USBD_CANCELLED; s = splusb(); usb_transfer_complete(xfer); splx(s); } void ohci_root_intr_close(struct usbd_pipe *pipe) { } usbd_status ohci_device_ctrl_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ohci_device_ctrl_start(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; usbd_status err; if (sc->sc_bus.dying) return (USBD_IOERROR); #ifdef DIAGNOSTIC if (!(xfer->rqflags & URQ_REQUEST)) { /* XXX panic */ printf("ohci_device_ctrl_transfer: not a request\n"); return (USBD_INVAL); } #endif err = ohci_device_request(xfer); if (err) return (err); return (USBD_IN_PROGRESS); } /* Abort a device control request. */ void ohci_device_ctrl_abort(struct usbd_xfer *xfer) { DPRINTF(("ohci_device_ctrl_abort: xfer=%p\n", xfer)); ohci_abort_xfer(xfer, USBD_CANCELLED); } /* Close a device control pipe. */ void ohci_device_ctrl_close(struct usbd_pipe *pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; struct ohci_softc *sc = (struct ohci_softc *)pipe->device->bus; DPRINTF(("ohci_device_ctrl_close: pipe=%p\n", pipe)); ohci_close_pipe(pipe, sc->sc_ctrl_head); ohci_free_std(sc, opipe->tail.td); } /************************/ void ohci_device_clear_toggle(struct usbd_pipe *pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; opipe->sed->ed.ed_headp &= htole32(~OHCI_TOGGLECARRY); } usbd_status ohci_device_bulk_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_device_bulk_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ohci_device_bulk_start(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; struct ohci_soft_td *data, *tail, *tdp; struct ohci_soft_ed *sed; u_int len; int s, endpt; usbd_status err; if (sc->sc_bus.dying) return (USBD_IOERROR); #ifdef DIAGNOSTIC if (xfer->rqflags & URQ_REQUEST) { /* XXX panic */ printf("ohci_device_bulk_start: a request\n"); return (USBD_INVAL); } #endif len = xfer->length; endpt = xfer->pipe->endpoint->edesc->bEndpointAddress; sed = opipe->sed; DPRINTFN(4,("ohci_device_bulk_start: xfer=%p len=%u " "flags=%d endpt=%d\n", xfer, len, xfer->flags, endpt)); /* Update device address */ sed->ed.ed_flags = htole32( (letoh32(sed->ed.ed_flags) & ~OHCI_ED_ADDRMASK) | OHCI_ED_SET_FA(xfer->device->address)); /* Allocate a chain of new TDs (including a new tail). */ data = opipe->tail.td; err = ohci_alloc_std_chain(sc, len, xfer, data, &tail); /* We want interrupt at the end of the transfer. */ tail->td.td_flags &= htole32(~OHCI_TD_INTR_MASK); tail->td.td_flags |= htole32(OHCI_TD_SET_DI(1)); tail->flags |= OHCI_CALL_DONE; tail = tail->nexttd; /* point at sentinel */ if (err) return (err); tail->xfer = NULL; xfer->hcpriv = data; DPRINTFN(4,("ohci_device_bulk_start: ed_flags=0x%08x td_flags=0x%08x " "td_cbp=0x%08x td_be=0x%08x\n", (int)letoh32(sed->ed.ed_flags), (int)letoh32(data->td.td_flags), (int)letoh32(data->td.td_cbp), (int)letoh32(data->td.td_be))); #ifdef OHCI_DEBUG if (ohcidebug > 5) { ohci_dump_ed(sed); ohci_dump_tds(data); } #endif /* Insert ED in schedule */ s = splusb(); for (tdp = data; tdp != tail; tdp = tdp->nexttd) { tdp->xfer = xfer; } sed->ed.ed_tailp = htole32(tail->physaddr); opipe->tail.td = tail; sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP); OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_BLF); if (xfer->timeout && !sc->sc_bus.use_polling) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, ohci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } #if 0 /* This goes wrong if we are too slow. */ if (ohcidebug > 10) { delay(10000); DPRINTF(("ohci_device_intr_transfer: status=%x\n", OREAD4(sc, OHCI_COMMAND_STATUS))); ohci_dump_ed(sed); ohci_dump_tds(data); } #endif splx(s); return (USBD_IN_PROGRESS); } void ohci_device_bulk_abort(struct usbd_xfer *xfer) { DPRINTF(("ohci_device_bulk_abort: xfer=%p\n", xfer)); ohci_abort_xfer(xfer, USBD_CANCELLED); } /* * Close a device bulk pipe. */ void ohci_device_bulk_close(struct usbd_pipe *pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; struct ohci_softc *sc = (struct ohci_softc *)pipe->device->bus; DPRINTF(("ohci_device_bulk_close: pipe=%p\n", pipe)); ohci_close_pipe(pipe, sc->sc_bulk_head); ohci_free_std(sc, opipe->tail.td); } /************************/ usbd_status ohci_device_intr_transfer(struct usbd_xfer *xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_device_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status ohci_device_intr_start(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; struct ohci_soft_ed *sed = opipe->sed; struct ohci_soft_td *data, *tail; int s, len, endpt; if (sc->sc_bus.dying) return (USBD_IOERROR); DPRINTFN(3, ("ohci_device_intr_transfer: xfer=%p len=%u " "flags=%d priv=%p\n", xfer, xfer->length, xfer->flags, xfer->priv)); #ifdef DIAGNOSTIC if (xfer->rqflags & URQ_REQUEST) panic("ohci_device_intr_transfer: a request"); #endif len = xfer->length; endpt = xfer->pipe->endpoint->edesc->bEndpointAddress; data = opipe->tail.td; tail = ohci_alloc_std(sc); if (tail == NULL) return (USBD_NOMEM); tail->xfer = NULL; data->td.td_flags = htole32( (usbd_xfer_isread(xfer) ? OHCI_TD_IN : OHCI_TD_OUT) | OHCI_TD_NOCC | OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY); if (xfer->flags & USBD_SHORT_XFER_OK) data->td.td_flags |= htole32(OHCI_TD_R); data->td.td_cbp = htole32(DMAADDR(&xfer->dmabuf, 0)); data->nexttd = tail; data->td.td_nexttd = htole32(tail->physaddr); data->td.td_be = htole32(letoh32(data->td.td_cbp) + len - 1); data->len = len; data->xfer = xfer; data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN; xfer->hcpriv = data; #ifdef OHCI_DEBUG if (ohcidebug > 5) { DPRINTF(("ohci_device_intr_transfer:\n")); ohci_dump_ed(sed); ohci_dump_tds(data); } #endif /* Insert ED in schedule */ s = splusb(); sed->ed.ed_tailp = htole32(tail->physaddr); opipe->tail.td = tail; sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP); #if 0 /* * This goes horribly wrong, printing thousands of descriptors, * because false references are followed due to the fact that the * TD is gone. */ if (ohcidebug > 5) { usb_delay_ms(&sc->sc_bus, 5); DPRINTF(("ohci_device_intr_transfer: status=%x\n", OREAD4(sc, OHCI_COMMAND_STATUS))); ohci_dump_ed(sed); ohci_dump_tds(data); } #endif splx(s); return (USBD_IN_PROGRESS); } void ohci_device_intr_abort(struct usbd_xfer *xfer) { KASSERT(!xfer->pipe->repeat || xfer->pipe->intrxfer == xfer); ohci_abort_xfer(xfer, USBD_CANCELLED); } /* Close a device interrupt pipe. */ void ohci_device_intr_close(struct usbd_pipe *pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; struct ohci_softc *sc = (struct ohci_softc *)pipe->device->bus; int nslots = opipe->u.intr.nslots; int pos = opipe->u.intr.pos; int j; struct ohci_soft_ed *p, *sed = opipe->sed; int s; DPRINTFN(1,("ohci_device_intr_close: pipe=%p nslots=%d pos=%d\n", pipe, nslots, pos)); s = splusb(); sed->ed.ed_flags |= htole32(OHCI_ED_SKIP); if ((letoh32(sed->ed.ed_tailp) & OHCI_HEADMASK) != (letoh32(sed->ed.ed_headp) & OHCI_HEADMASK)) usb_delay_ms(&sc->sc_bus, 2); for (p = sc->sc_eds[pos]; p && p->next != sed; p = p->next) ; #ifdef DIAGNOSTIC if (p == NULL) panic("ohci_device_intr_close: ED not found"); #endif p->next = sed->next; p->ed.ed_nexted = sed->ed.ed_nexted; splx(s); for (j = 0; j < nslots; j++) --sc->sc_bws[(pos * nslots + j) % OHCI_NO_INTRS]; ohci_free_std(sc, opipe->tail.td); ohci_free_sed(sc, opipe->sed); } usbd_status ohci_device_setintr(struct ohci_softc *sc, struct ohci_pipe *opipe, int ival) { int i, j, s, best; u_int npoll, slow, shigh, nslots; u_int bestbw, bw; struct ohci_soft_ed *hsed, *sed = opipe->sed; DPRINTFN(2, ("ohci_setintr: pipe=%p\n", opipe)); if (ival == 0) { printf("ohci_setintr: 0 interval\n"); return (USBD_INVAL); } npoll = OHCI_NO_INTRS; while (npoll > ival) npoll /= 2; DPRINTFN(2, ("ohci_setintr: ival=%d npoll=%d\n", ival, npoll)); /* * We now know which level in the tree the ED must go into. * Figure out which slot has most bandwidth left over. * Slots to examine: * npoll * 1 0 * 2 1 2 * 4 3 4 5 6 * 8 7 8 9 10 11 12 13 14 * N (N-1) .. (N-1+N-1) */ slow = npoll-1; shigh = slow + npoll; nslots = OHCI_NO_INTRS / npoll; for (best = i = slow, bestbw = ~0; i < shigh; i++) { bw = 0; for (j = 0; j < nslots; j++) bw += sc->sc_bws[(i * nslots + j) % OHCI_NO_INTRS]; if (bw < bestbw) { best = i; bestbw = bw; } } DPRINTFN(2, ("ohci_setintr: best=%d(%d..%d) bestbw=%d\n", best, slow, shigh, bestbw)); s = splusb(); hsed = sc->sc_eds[best]; sed->next = hsed->next; sed->ed.ed_nexted = hsed->ed.ed_nexted; hsed->next = sed; hsed->ed.ed_nexted = htole32(sed->physaddr); splx(s); for (j = 0; j < nslots; j++) ++sc->sc_bws[(best * nslots + j) % OHCI_NO_INTRS]; opipe->u.intr.nslots = nslots; opipe->u.intr.pos = best; DPRINTFN(5, ("ohci_setintr: returns %p\n", opipe)); return (USBD_NORMAL_COMPLETION); } /***********************/ usbd_status ohci_device_isoc_transfer(struct usbd_xfer *xfer) { usbd_status err; DPRINTFN(5,("ohci_device_isoc_transfer: xfer=%p\n", xfer)); /* Put it on our queue, */ err = usb_insert_transfer(xfer); /* bail out on error, */ if (err && err != USBD_IN_PROGRESS) return (err); /* XXX should check inuse here */ /* insert into schedule, */ ohci_device_isoc_enter(xfer); /* and start if the pipe wasn't running */ if (!err) ohci_device_isoc_start(SIMPLEQ_FIRST(&xfer->pipe->queue)); return (err); } void ohci_device_isoc_enter(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; struct ohci_soft_ed *sed = opipe->sed; struct iso *iso = &opipe->u.iso; struct ohci_soft_itd *sitd, *nsitd; ohci_physaddr_t buf, offs, noffs, bp0; int i, ncur, nframes; int s; DPRINTFN(1,("ohci_device_isoc_enter: used=%d next=%d xfer=%p " "nframes=%d\n", iso->inuse, iso->next, xfer, xfer->nframes)); if (sc->sc_bus.dying) return; if (iso->next == -1) { /* Not in use yet, schedule it a few frames ahead. */ iso->next = letoh32(sc->sc_hcca->hcca_frame_number) + 5; DPRINTFN(2,("ohci_device_isoc_enter: start next=%d\n", iso->next)); } sitd = opipe->tail.itd; buf = DMAADDR(&xfer->dmabuf, 0); bp0 = OHCI_PAGE(buf); offs = OHCI_PAGE_OFFSET(buf); nframes = xfer->nframes; xfer->hcpriv = sitd; for (i = ncur = 0; i < nframes; i++, ncur++) { noffs = offs + xfer->frlengths[i]; if (ncur == OHCI_ITD_NOFFSET || /* all offsets used */ OHCI_PAGE(buf + noffs) > bp0 + OHCI_PAGE_SIZE) { /* too many page crossings */ /* Allocate next ITD */ nsitd = ohci_alloc_sitd(sc); if (nsitd == NULL) { /* XXX what now? */ printf("%s: isoc TD alloc failed\n", sc->sc_bus.bdev.dv_xname); return; } /* Fill current ITD */ sitd->itd.itd_flags = htole32( OHCI_ITD_NOCC | OHCI_ITD_SET_SF(iso->next) | OHCI_ITD_SET_DI(6) | /* delay intr a little */ OHCI_ITD_SET_FC(ncur)); sitd->itd.itd_bp0 = htole32(bp0); sitd->nextitd = nsitd; sitd->itd.itd_nextitd = htole32(nsitd->physaddr); sitd->itd.itd_be = htole32(bp0 + offs - 1); sitd->xfer = xfer; sitd->flags = 0; sitd = nsitd; iso->next = iso->next + ncur; bp0 = OHCI_PAGE(buf + offs); ncur = 0; } sitd->itd.itd_offset[ncur] = htole16(OHCI_ITD_MK_OFFS(offs)); offs = noffs; } nsitd = ohci_alloc_sitd(sc); if (nsitd == NULL) { /* XXX what now? */ printf("%s: isoc TD alloc failed\n", sc->sc_bus.bdev.dv_xname); return; } /* Fixup last used ITD */ sitd->itd.itd_flags = htole32( OHCI_ITD_NOCC | OHCI_ITD_SET_SF(iso->next) | OHCI_ITD_SET_DI(0) | OHCI_ITD_SET_FC(ncur)); sitd->itd.itd_bp0 = htole32(bp0); sitd->nextitd = nsitd; sitd->itd.itd_nextitd = htole32(nsitd->physaddr); sitd->itd.itd_be = htole32(bp0 + offs - 1); sitd->xfer = xfer; sitd->flags = OHCI_CALL_DONE; iso->next = iso->next + ncur; iso->inuse += nframes; xfer->actlen = offs; /* XXX pretend we did it all */ xfer->status = USBD_IN_PROGRESS; #ifdef OHCI_DEBUG if (ohcidebug > 5) { DPRINTF(("ohci_device_isoc_enter: frame=%d\n", letoh32(sc->sc_hcca->hcca_frame_number))); ohci_dump_itds(xfer->hcpriv); ohci_dump_ed(sed); } #endif s = splusb(); sed->ed.ed_tailp = htole32(nsitd->physaddr); opipe->tail.itd = nsitd; sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP); splx(s); #ifdef OHCI_DEBUG if (ohcidebug > 5) { delay(150000); DPRINTF(("ohci_device_isoc_enter: after frame=%d\n", letoh32(sc->sc_hcca->hcca_frame_number))); ohci_dump_itds(xfer->hcpriv); ohci_dump_ed(sed); } #endif } usbd_status ohci_device_isoc_start(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; DPRINTFN(5,("ohci_device_isoc_start: xfer=%p\n", xfer)); if (sc->sc_bus.dying) return (USBD_IOERROR); #ifdef DIAGNOSTIC if (xfer->status != USBD_IN_PROGRESS) printf("ohci_device_isoc_start: not in progress %p\n", xfer); #endif return (USBD_IN_PROGRESS); } void ohci_device_isoc_abort(struct usbd_xfer *xfer) { struct ohci_softc *sc = (struct ohci_softc *)xfer->device->bus; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; struct ohci_soft_ed *sed; struct ohci_soft_itd *sitd; int s; s = splusb(); DPRINTFN(1,("ohci_device_isoc_abort: xfer=%p\n", xfer)); /* Transfer is already done. */ if (xfer->status != USBD_NOT_STARTED && xfer->status != USBD_IN_PROGRESS) { splx(s); printf("ohci_device_isoc_abort: early return\n"); return; } /* Give xfer the requested abort code. */ xfer->status = USBD_CANCELLED; sed = opipe->sed; sed->ed.ed_flags |= htole32(OHCI_ED_SKIP); /* force hardware skip */ sitd = xfer->hcpriv; #ifdef DIAGNOSTIC if (sitd == NULL) { splx(s); printf("ohci_device_isoc_abort: hcpriv==0\n"); return; } #endif for (; sitd->xfer == xfer; sitd = sitd->nextitd) { #ifdef DIAGNOSTIC DPRINTFN(1,("abort sets done sitd=%p\n", sitd)); sitd->isdone = 1; #endif } splx(s); usb_delay_ms(&sc->sc_bus, OHCI_ITD_NOFFSET); s = splusb(); /* Run callback. */ usb_transfer_complete(xfer); sed->ed.ed_headp = htole32(sitd->physaddr); /* unlink TDs */ sed->ed.ed_flags &= htole32(~OHCI_ED_SKIP); /* remove hardware skip */ splx(s); } void ohci_device_isoc_done(struct usbd_xfer *xfer) { DPRINTFN(1,("ohci_device_isoc_done: xfer=%p\n", xfer)); } usbd_status ohci_setup_isoc(struct usbd_pipe *pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; struct ohci_softc *sc = (struct ohci_softc *)pipe->device->bus; struct iso *iso = &opipe->u.iso; int s; iso->next = -1; iso->inuse = 0; s = splusb(); ohci_add_ed(opipe->sed, sc->sc_isoc_head); splx(s); return (USBD_NORMAL_COMPLETION); } void ohci_device_isoc_close(struct usbd_pipe *pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; struct ohci_softc *sc = (struct ohci_softc *)pipe->device->bus; DPRINTF(("ohci_device_isoc_close: pipe=%p\n", pipe)); ohci_close_pipe(pipe, sc->sc_isoc_head); #ifdef DIAGNOSTIC opipe->tail.itd->isdone = 1; #endif ohci_free_sitd(sc, opipe->tail.itd); }