/* $OpenBSD: uaudio.c,v 1.100 2013/05/15 08:29:26 ratchov Exp $ */ /* $NetBSD: uaudio.c,v 1.90 2004/10/29 17:12:53 kent Exp $ */ /* * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB audio specs: http://www.usb.org/developers/devclass_docs/audio10.pdf * http://www.usb.org/developers/devclass_docs/frmts10.pdf * http://www.usb.org/developers/devclass_docs/termt10.pdf */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define UAUDIO_DEBUG */ #ifdef UAUDIO_DEBUG #define DPRINTF(x) do { if (uaudiodebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (uaudiodebug>(n)) printf x; } while (0) int uaudiodebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define UAUDIO_NCHANBUFS 3 /* number of outstanding request */ #define UAUDIO_MIN_FRAMES 2 /* ms of sound in each request */ #define UAUDIO_MAX_FRAMES 16 #define UAUDIO_NSYNCBUFS 3 /* number of outstanding sync requests */ #define UAUDIO_MAX_ALTS 32 /* max alt settings allowed by driver */ #define MIX_MAX_CHAN 8 struct mixerctl { u_int16_t wValue[MIX_MAX_CHAN]; /* using nchan */ u_int16_t wIndex; u_int8_t nchan; u_int8_t type; #define MIX_ON_OFF 1 #define MIX_SIGNED_16 2 #define MIX_UNSIGNED_16 3 #define MIX_SIGNED_8 4 #define MIX_SELECTOR 5 #define MIX_SIZE(n) ((n) == MIX_SIGNED_16 || (n) == MIX_UNSIGNED_16 ? 2 : 1) #define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16) int minval, maxval; u_int delta; u_int8_t class; char ctlname[MAX_AUDIO_DEV_LEN]; char *ctlunit; }; #define MAKE(h,l) (((h) << 8) | (l)) struct as_info { u_int8_t alt; u_int8_t encoding; u_int8_t attributes; /* Copy of bmAttributes of * usb_audio_streaming_endpoint_descriptor */ struct usbd_interface *ifaceh; const usb_interface_descriptor_t *idesc; const struct usb_endpoint_descriptor_audio *edesc; const struct usb_endpoint_descriptor_audio *edesc1; const struct usb_audio_streaming_type1_descriptor *asf1desc; int sc_busy; /* currently used */ }; struct chan { void (*intr)(void *); /* DMA completion intr handler */ void *arg; /* arg for intr() */ struct usbd_pipe *pipe; struct usbd_pipe *sync_pipe; u_int sample_size; u_int sample_rate; u_int bytes_per_frame; u_int max_bytes_per_frame; u_int fraction; /* fraction/frac_denom is the extra samples/frame */ u_int frac_denom; /* denominator for fractional samples */ u_int residue; /* accumulates the fractional samples */ u_int nframes; /* # of frames per transfer */ u_int nsync_frames; /* # of frames per sync transfer */ u_int usb_fps; u_int maxpktsize; u_int reqms; /* usb request data duration, in ms */ u_int hi_speed; u_char *start; /* upper layer buffer start */ u_char *end; /* upper layer buffer end */ u_char *cur; /* current position in upper layer buffer */ int blksize; /* chunk size to report up */ int transferred; /* transferred bytes not reported up */ int altidx; /* currently used altidx */ int curchanbuf; int cursyncbuf; struct chanbuf { struct chan *chan; struct usbd_xfer *xfer; u_char *buffer; u_int16_t sizes[UAUDIO_MAX_FRAMES]; u_int16_t offsets[UAUDIO_MAX_FRAMES]; u_int16_t size; } chanbufs[UAUDIO_NCHANBUFS]; struct syncbuf { struct chan *chan; struct usbd_xfer *xfer; u_char *buffer; u_int16_t sizes[UAUDIO_MAX_FRAMES]; u_int16_t offsets[UAUDIO_MAX_FRAMES]; u_int16_t size; } syncbufs[UAUDIO_NSYNCBUFS]; struct uaudio_softc *sc; /* our softc */ }; #define UAUDIO_FLAG_BAD_AUDIO 0x0001 /* claims audio class, but isn't */ #define UAUDIO_FLAG_NO_FRAC 0x0002 /* don't use fractional samples */ #define UAUDIO_FLAG_NO_XU 0x0004 /* has broken extension unit */ #define UAUDIO_FLAG_BAD_ADC 0x0008 /* bad audio spec version number */ #define UAUDIO_FLAG_VENDOR_CLASS 0x0010 /* claims vendor class but works */ #define UAUDIO_FLAG_DEPENDENT 0x0020 /* play and record params must equal */ #define UAUDIO_FLAG_EMU0202 0x0040 struct uaudio_devs { struct usb_devno uv_dev; int flags; } uaudio_devs[] = { { { USB_VENDOR_ALTEC, USB_PRODUCT_ALTEC_ADA70 }, UAUDIO_FLAG_BAD_ADC } , { { USB_VENDOR_ALTEC, USB_PRODUCT_ALTEC_ASC495 }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPHONE }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPHONE_3G }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPHONE_3GS }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPHONE_4_GSM }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPHONE_4_CDMA }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPHONE_4S }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPOD_TOUCH }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPOD_TOUCH_2G }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPOD_TOUCH_3G }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPOD_TOUCH_4G }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPAD }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_IPAD2 }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_CREATIVE, USB_PRODUCT_CREATIVE_EMU0202 }, UAUDIO_FLAG_VENDOR_CLASS | UAUDIO_FLAG_EMU0202 | UAUDIO_FLAG_DEPENDENT }, { { USB_VENDOR_DALLAS, USB_PRODUCT_DALLAS_J6502 }, UAUDIO_FLAG_NO_XU | UAUDIO_FLAG_BAD_ADC }, { { USB_VENDOR_LOGITECH, USB_PRODUCT_LOGITECH_QUICKCAMNBDLX }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_LOGITECH, USB_PRODUCT_LOGITECH_QUICKCAMPRONB }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_LOGITECH, USB_PRODUCT_LOGITECH_QUICKCAMPRO4K }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_LOGITECH, USB_PRODUCT_LOGITECH_QUICKCAMZOOM }, UAUDIO_FLAG_BAD_AUDIO }, { { USB_VENDOR_TELEX, USB_PRODUCT_TELEX_MIC1 }, UAUDIO_FLAG_NO_FRAC } }; #define uaudio_lookup(v, p) \ ((struct uaudio_devs *)usb_lookup(uaudio_devs, v, p)) struct uaudio_softc { struct device sc_dev; /* base device */ struct usbd_device *sc_udev; /* USB device */ int sc_ac_iface; /* Audio Control interface */ struct chan sc_playchan; /* play channel */ struct chan sc_recchan; /* record channel */ int sc_nullalt; int sc_audio_rev; struct as_info *sc_alts; /* alternate settings */ int sc_nalts; /* # of alternate settings */ int sc_altflags; #define HAS_8 0x01 #define HAS_16 0x02 #define HAS_8U 0x04 #define HAS_ALAW 0x08 #define HAS_MULAW 0x10 #define UA_NOFRAC 0x20 /* don't do sample rate adjustment */ #define HAS_24 0x40 int sc_mode; /* play/record capability */ struct audio_encoding *sc_encs; int sc_nencs; struct mixerctl *sc_ctls; /* mixer controls */ int sc_nctls; /* # of mixer controls */ struct device *sc_audiodev; char sc_dying; int sc_quirks; }; struct terminal_list { int size; uint16_t terminals[1]; }; #define TERMINAL_LIST_SIZE(N) (offsetof(struct terminal_list, terminals) \ + sizeof(uint16_t) * (N)) struct io_terminal { union { const usb_descriptor_t *desc; const struct usb_audio_input_terminal *it; const struct usb_audio_output_terminal *ot; const struct usb_audio_mixer_unit *mu; const struct usb_audio_selector_unit *su; const struct usb_audio_feature_unit *fu; const struct usb_audio_processing_unit *pu; const struct usb_audio_extension_unit *eu; } d; int inputs_size; struct terminal_list **inputs; /* list of source input terminals */ struct terminal_list *output; /* list of destination output terminals */ int direct; /* directly connected to an output terminal */ }; #define UAC_OUTPUT 0 #define UAC_INPUT 1 #define UAC_EQUAL 2 #define UAC_RECORD 3 #define UAC_NCLASSES 4 #ifdef UAUDIO_DEBUG const char *uac_names[] = { AudioCoutputs, AudioCinputs, AudioCequalization, AudioCrecord, }; #endif usbd_status uaudio_identify_ac (struct uaudio_softc *, const usb_config_descriptor_t *); usbd_status uaudio_identify_as (struct uaudio_softc *, const usb_config_descriptor_t *); usbd_status uaudio_process_as (struct uaudio_softc *, const char *, int *, int, const usb_interface_descriptor_t *); void uaudio_add_alt(struct uaudio_softc *, const struct as_info *); void uaudio_create_encodings(struct uaudio_softc *); const usb_interface_descriptor_t *uaudio_find_iface (const char *, int, int *, int, int); void uaudio_mixer_add_ctl(struct uaudio_softc *, struct mixerctl *); char *uaudio_id_name (struct uaudio_softc *, const struct io_terminal *, int); uByte uaudio_get_cluster_nchan (int, const struct io_terminal *); void uaudio_add_input (struct uaudio_softc *, const struct io_terminal *, int); void uaudio_add_output (struct uaudio_softc *, const struct io_terminal *, int); void uaudio_add_mixer (struct uaudio_softc *, const struct io_terminal *, int); void uaudio_add_selector (struct uaudio_softc *, const struct io_terminal *, int); #ifdef UAUDIO_DEBUG const char *uaudio_get_terminal_name(int); #endif int uaudio_determine_class (const struct io_terminal *, struct mixerctl *); const char *uaudio_feature_name (const struct io_terminal *, struct mixerctl *); void uaudio_add_feature (struct uaudio_softc *, const struct io_terminal *, int); void uaudio_add_processing_updown (struct uaudio_softc *, const struct io_terminal *, int); void uaudio_add_processing (struct uaudio_softc *, const struct io_terminal *, int); void uaudio_add_extension (struct uaudio_softc *, const struct io_terminal *, int); struct terminal_list *uaudio_merge_terminal_list (const struct io_terminal *); struct terminal_list *uaudio_io_terminaltype (int, struct io_terminal *, int); usbd_status uaudio_identify (struct uaudio_softc *, const usb_config_descriptor_t *); int uaudio_signext(int, int); int uaudio_unsignext(int, int); int uaudio_value2bsd(struct mixerctl *, int); int uaudio_bsd2value(struct mixerctl *, int); int uaudio_get(struct uaudio_softc *, int, int, int, int, int); int uaudio_ctl_get (struct uaudio_softc *, int, struct mixerctl *, int); void uaudio_set (struct uaudio_softc *, int, int, int, int, int, int); void uaudio_ctl_set (struct uaudio_softc *, int, struct mixerctl *, int, int); usbd_status uaudio_set_speed(struct uaudio_softc *, int, u_int); void uaudio_set_speed_emu0202(struct chan *ch); usbd_status uaudio_chan_open(struct uaudio_softc *, struct chan *); void uaudio_chan_close(struct uaudio_softc *, struct chan *); usbd_status uaudio_chan_alloc_buffers (struct uaudio_softc *, struct chan *); void uaudio_chan_free_buffers(struct uaudio_softc *, struct chan *); void uaudio_chan_init (struct chan *, int, int, const struct audio_params *); void uaudio_chan_set_param(struct chan *, u_char *, u_char *, int); void uaudio_chan_ptransfer(struct chan *); void uaudio_chan_pintr (struct usbd_xfer *, void *, usbd_status); void uaudio_chan_psync_transfer(struct chan *); void uaudio_chan_psync_intr (struct usbd_xfer *, void *, usbd_status); void uaudio_chan_rtransfer(struct chan *); void uaudio_chan_rintr (struct usbd_xfer *, void *, usbd_status); int uaudio_open(void *, int); void uaudio_close(void *); int uaudio_drain(void *); int uaudio_query_encoding(void *, struct audio_encoding *); void uaudio_get_minmax_rates (int, const struct as_info *, const struct audio_params *, int, int, int, u_long *, u_long *); int uaudio_match_alt_rate(void *, int, int); int uaudio_match_alt(void *, struct audio_params *, int); int uaudio_set_params (void *, int, int, struct audio_params *, struct audio_params *); int uaudio_round_blocksize(void *, int); int uaudio_trigger_output (void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); int uaudio_trigger_input (void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); int uaudio_halt_in_dma(void *); int uaudio_halt_out_dma(void *); int uaudio_getdev(void *, struct audio_device *); int uaudio_mixer_set_port(void *, mixer_ctrl_t *); int uaudio_mixer_get_port(void *, mixer_ctrl_t *); int uaudio_query_devinfo(void *, mixer_devinfo_t *); int uaudio_get_props(void *); void uaudio_get_default_params(void *, int, struct audio_params *); struct audio_hw_if uaudio_hw_if = { uaudio_open, uaudio_close, uaudio_drain, uaudio_query_encoding, uaudio_set_params, uaudio_round_blocksize, NULL, NULL, NULL, NULL, NULL, uaudio_halt_out_dma, uaudio_halt_in_dma, NULL, uaudio_getdev, NULL, uaudio_mixer_set_port, uaudio_mixer_get_port, uaudio_query_devinfo, NULL, NULL, NULL, NULL, uaudio_get_props, uaudio_trigger_output, uaudio_trigger_input, uaudio_get_default_params }; struct audio_device uaudio_device = { "USB audio", "", "uaudio" }; int uaudio_match(struct device *, void *, void *); void uaudio_attach(struct device *, struct device *, void *); int uaudio_detach(struct device *, int); int uaudio_activate(struct device *, int); struct cfdriver uaudio_cd = { NULL, "uaudio", DV_DULL }; const struct cfattach uaudio_ca = { sizeof(struct uaudio_softc), uaudio_match, uaudio_attach, uaudio_detach, uaudio_activate, }; int uaudio_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; usb_interface_descriptor_t *id; const usb_interface_descriptor_t *cd_id; usb_config_descriptor_t *cdesc; struct uaudio_devs *quirk; const char *buf; int flags = 0, size, offs; if (uaa->iface == NULL || uaa->device == NULL) return (UMATCH_NONE); quirk = uaudio_lookup(uaa->vendor, uaa->product); if (quirk) flags = quirk->flags; if (flags & UAUDIO_FLAG_BAD_AUDIO) return (UMATCH_NONE); id = usbd_get_interface_descriptor(uaa->iface); if (id == NULL) return (UMATCH_NONE); if (!(id->bInterfaceClass == UICLASS_AUDIO || ((flags & UAUDIO_FLAG_VENDOR_CLASS) && id->bInterfaceClass == UICLASS_VENDOR))) return (UMATCH_NONE); if (id->bInterfaceSubClass != UISUBCLASS_AUDIOCONTROL) return (UMATCH_NONE); cdesc = usbd_get_config_descriptor(uaa->device); if (cdesc == NULL) return (UMATCH_NONE); size = UGETW(cdesc->wTotalLength); buf = (const char *)cdesc; offs = 0; cd_id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOSTREAM, flags); if (cd_id == NULL) return (UMATCH_NONE); offs = 0; cd_id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOCONTROL, flags); if (cd_id == NULL) return (UMATCH_NONE); return (UMATCH_VENDOR_PRODUCT_CONF_IFACE); } void uaudio_attach(struct device *parent, struct device *self, void *aux) { struct uaudio_softc *sc = (struct uaudio_softc *)self; struct usb_attach_arg *uaa = aux; struct uaudio_devs *quirk; usb_interface_descriptor_t *id; usb_config_descriptor_t *cdesc; usbd_status err; int i, j, found; sc->sc_udev = uaa->device; quirk = uaudio_lookup(uaa->vendor, uaa->product); if (quirk) sc->sc_quirks = quirk->flags; cdesc = usbd_get_config_descriptor(sc->sc_udev); if (cdesc == NULL) { printf("%s: failed to get configuration descriptor\n", sc->sc_dev.dv_xname); return; } err = uaudio_identify(sc, cdesc); if (err) { printf("%s: audio descriptors make no sense, error=%d\n", sc->sc_dev.dv_xname, err); return; } /* Pick up the AS interface. */ for (i = 0; i < uaa->nifaces; i++) { if (usbd_iface_claimed(sc->sc_udev, i)) continue; id = usbd_get_interface_descriptor(uaa->ifaces[i]); if (id == NULL) continue; found = 0; for (j = 0; j < sc->sc_nalts; j++) { if (id->bInterfaceNumber == sc->sc_alts[j].idesc->bInterfaceNumber) { sc->sc_alts[j].ifaceh = uaa->ifaces[i]; found = 1; } } if (found) usbd_claim_iface(sc->sc_udev, i); } for (j = 0; j < sc->sc_nalts; j++) { if (sc->sc_alts[j].ifaceh == NULL) { printf("%s: alt %d missing AS interface(s)\n", sc->sc_dev.dv_xname, j); return; } } printf("%s: audio rev %d.%02x", sc->sc_dev.dv_xname, sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff); sc->sc_playchan.sc = sc->sc_recchan.sc = sc; sc->sc_playchan.altidx = -1; sc->sc_recchan.altidx = -1; if (sc->sc_quirks & UAUDIO_FLAG_NO_FRAC) sc->sc_altflags |= UA_NOFRAC; printf(", %d mixer controls\n", sc->sc_nctls); uaudio_create_encodings(sc); DPRINTF(("uaudio_attach: doing audio_attach_mi\n")); sc->sc_audiodev = audio_attach_mi(&uaudio_hw_if, sc, &sc->sc_dev); } int uaudio_activate(struct device *self, int act) { struct uaudio_softc *sc = (struct uaudio_softc *)self; int rv = 0; switch (act) { case DVACT_DEACTIVATE: if (sc->sc_audiodev != NULL) rv = config_deactivate(sc->sc_audiodev); sc->sc_dying = 1; break; } return (rv); } int uaudio_detach(struct device *self, int flags) { struct uaudio_softc *sc = (struct uaudio_softc *)self; int rv = 0; /* * sc_alts may be NULL if uaudio_identify_as() failed, in * which case uaudio_attach() didn't finish and there's * nothing to detach. */ if (sc->sc_alts == NULL) return (rv); /* Wait for outstanding requests to complete. */ uaudio_drain(sc); if (sc->sc_audiodev != NULL) rv = config_detach(sc->sc_audiodev, flags); return (rv); } int uaudio_query_encoding(void *addr, struct audio_encoding *fp) { struct uaudio_softc *sc = addr; if (sc->sc_dying) return (EIO); if (sc->sc_nalts == 0 || sc->sc_altflags == 0) return (ENXIO); if (fp->index < 0 || fp->index >= sc->sc_nencs) return (EINVAL); *fp = sc->sc_encs[fp->index]; return (0); } const usb_interface_descriptor_t * uaudio_find_iface(const char *buf, int size, int *offsp, int subtype, int flags) { const usb_interface_descriptor_t *d; while (*offsp < size) { d = (const void *)(buf + *offsp); *offsp += d->bLength; if (d->bDescriptorType == UDESC_INTERFACE && d->bInterfaceSubClass == subtype && (d->bInterfaceClass == UICLASS_AUDIO || (d->bInterfaceClass == UICLASS_VENDOR && (flags & UAUDIO_FLAG_VENDOR_CLASS)))) return (d); } return (NULL); } void uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct mixerctl *mc) { int res, range; size_t len; struct mixerctl *nmc; if (mc->class < UAC_NCLASSES) { DPRINTF(("%s: adding %s.%s\n", __func__, uac_names[mc->class], mc->ctlname)); } else { DPRINTF(("%s: adding %s\n", __func__, mc->ctlname)); } len = sizeof(*mc) * (sc->sc_nctls + 1); nmc = malloc(len, M_USBDEV, M_NOWAIT); if (nmc == NULL) { printf("uaudio_mixer_add_ctl: no memory\n"); return; } /* Copy old data, if there was any */ if (sc->sc_nctls != 0) { bcopy(sc->sc_ctls, nmc, sizeof(*mc) * (sc->sc_nctls)); free(sc->sc_ctls, M_USBDEV); } sc->sc_ctls = nmc; mc->delta = 0; if (mc->type == MIX_ON_OFF) { mc->minval = 0; mc->maxval = 1; } else if (mc->type == MIX_SELECTOR) { ; } else { /* Determine min and max values. */ mc->minval = uaudio_signext(mc->type, uaudio_get(sc, GET_MIN, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); mc->maxval = uaudio_signext(mc->type, uaudio_get(sc, GET_MAX, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); range = mc->maxval - mc->minval; res = uaudio_get(sc, GET_RES, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type)); if (res > 0 && range > 0) mc->delta = (res * 255 + res - 1) / range; } sc->sc_ctls[sc->sc_nctls++] = *mc; #ifdef UAUDIO_DEBUG if (uaudiodebug > 2) { int i; DPRINTF(("uaudio_mixer_add_ctl: wValue=%04x",mc->wValue[0])); for (i = 1; i < mc->nchan; i++) DPRINTF((",%04x", mc->wValue[i])); DPRINTF((" wIndex=%04x type=%d name='%s' unit='%s' " "min=%d max=%d\n", mc->wIndex, mc->type, mc->ctlname, mc->ctlunit, mc->minval, mc->maxval)); } #endif } char * uaudio_id_name(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { static char buf[32]; snprintf(buf, sizeof(buf), "i%d", id); return (buf); } uByte uaudio_get_cluster_nchan(int id, const struct io_terminal *iot) { struct usb_audio_cluster r; const usb_descriptor_t *dp; int i; for (i = 0; i < 25; i++) { /* avoid infinite loops */ dp = iot[id].d.desc; if (dp == 0) goto bad; switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: return (iot[id].d.it->bNrChannels); case UDESCSUB_AC_OUTPUT: id = iot[id].d.ot->bSourceId; break; case UDESCSUB_AC_MIXER: r = *(struct usb_audio_cluster *) &iot[id].d.mu->baSourceId[iot[id].d.mu->bNrInPins]; return (r.bNrChannels); case UDESCSUB_AC_SELECTOR: /* XXX This is not really right */ id = iot[id].d.su->baSourceId[0]; break; case UDESCSUB_AC_FEATURE: id = iot[id].d.fu->bSourceId; break; case UDESCSUB_AC_PROCESSING: r = *(struct usb_audio_cluster *) &iot[id].d.pu->baSourceId[iot[id].d.pu->bNrInPins]; return (r.bNrChannels); case UDESCSUB_AC_EXTENSION: r = *(struct usb_audio_cluster *) &iot[id].d.eu->baSourceId[iot[id].d.eu->bNrInPins]; return (r.bNrChannels); default: goto bad; } } bad: printf("uaudio_get_cluster_nchan: bad data\n"); return (0); } void uaudio_add_input(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { #ifdef UAUDIO_DEBUG const struct usb_audio_input_terminal *d = iot[id].d.it; DPRINTFN(2,("uaudio_add_input: bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d " "iChannelNames=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bNrChannels, UGETW(d->wChannelConfig), d->iChannelNames, d->iTerminal)); #endif } void uaudio_add_output(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { #ifdef UAUDIO_DEBUG const struct usb_audio_output_terminal *d = iot[id].d.ot; DPRINTFN(2,("uaudio_add_output: bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bSourceId=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bSourceId, d->iTerminal)); #endif } void uaudio_add_mixer(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_mixer_unit *d = iot[id].d.mu; struct usb_audio_mixer_unit_1 *d1; int c, chs, ichs, ochs, i, o, bno, p, mo, mc, k; uByte *bm; struct mixerctl mix; DPRINTFN(2,("uaudio_add_mixer: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); /* Compute the number of input channels */ ichs = 0; for (i = 0; i < d->bNrInPins; i++) ichs += uaudio_get_cluster_nchan(d->baSourceId[i], iot); /* and the number of output channels */ d1 = (struct usb_audio_mixer_unit_1 *)&d->baSourceId[d->bNrInPins]; ochs = d1->bNrChannels; DPRINTFN(2,("uaudio_add_mixer: ichs=%d ochs=%d\n", ichs, ochs)); bm = d1->bmControls; mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; #define BIT(bno) ((bm[bno / 8] >> (7 - bno % 8)) & 1) for (p = i = 0; i < d->bNrInPins; i++) { chs = uaudio_get_cluster_nchan(d->baSourceId[i], iot); mc = 0; for (c = 0; c < chs; c++) { mo = 0; for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (BIT(bno)) mo++; } if (mo == 1) mc++; } if (mc == chs && chs <= MIX_MAX_CHAN) { k = 0; for (c = 0; c < chs; c++) for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (BIT(bno)) mix.wValue[k++] = MAKE(p+c+1, o+1); } snprintf(mix.ctlname, sizeof(mix.ctlname), "mix%d-%s", d->bUnitId, uaudio_id_name(sc, iot, d->baSourceId[i])); mix.nchan = chs; uaudio_mixer_add_ctl(sc, &mix); } else { /* XXX */ } #undef BIT p += chs; } } void uaudio_add_selector(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_selector_unit *d = iot[id].d.su; struct mixerctl mix; int i, wp; DPRINTFN(2,("uaudio_add_selector: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.wValue[0] = MAKE(0, 0); uaudio_determine_class(&iot[id], &mix); mix.nchan = 1; mix.type = MIX_SELECTOR; mix.ctlunit = ""; mix.minval = 1; mix.maxval = d->bNrInPins; wp = snprintf(mix.ctlname, MAX_AUDIO_DEV_LEN, "sel%d-", d->bUnitId); for (i = 1; i <= d->bNrInPins; i++) { wp += snprintf(mix.ctlname + wp, MAX_AUDIO_DEV_LEN - wp, "i%d", d->baSourceId[i - 1]); if (wp > MAX_AUDIO_DEV_LEN - 1) break; } uaudio_mixer_add_ctl(sc, &mix); } #ifdef UAUDIO_DEBUG const char * uaudio_get_terminal_name(int terminal_type) { static char buf[100]; switch (terminal_type) { /* USB terminal types */ case UAT_UNDEFINED: return "UAT_UNDEFINED"; case UAT_STREAM: return "UAT_STREAM"; case UAT_VENDOR: return "UAT_VENDOR"; /* input terminal types */ case UATI_UNDEFINED: return "UATI_UNDEFINED"; case UATI_MICROPHONE: return "UATI_MICROPHONE"; case UATI_DESKMICROPHONE: return "UATI_DESKMICROPHONE"; case UATI_PERSONALMICROPHONE: return "UATI_PERSONALMICROPHONE"; case UATI_OMNIMICROPHONE: return "UATI_OMNIMICROPHONE"; case UATI_MICROPHONEARRAY: return "UATI_MICROPHONEARRAY"; case UATI_PROCMICROPHONEARR: return "UATI_PROCMICROPHONEARR"; /* output terminal types */ case UATO_UNDEFINED: return "UATO_UNDEFINED"; case UATO_SPEAKER: return "UATO_SPEAKER"; case UATO_HEADPHONES: return "UATO_HEADPHONES"; case UATO_DISPLAYAUDIO: return "UATO_DISPLAYAUDIO"; case UATO_DESKTOPSPEAKER: return "UATO_DESKTOPSPEAKER"; case UATO_ROOMSPEAKER: return "UATO_ROOMSPEAKER"; case UATO_COMMSPEAKER: return "UATO_COMMSPEAKER"; case UATO_SUBWOOFER: return "UATO_SUBWOOFER"; /* bidir terminal types */ case UATB_UNDEFINED: return "UATB_UNDEFINED"; case UATB_HANDSET: return "UATB_HANDSET"; case UATB_HEADSET: return "UATB_HEADSET"; case UATB_SPEAKERPHONE: return "UATB_SPEAKERPHONE"; case UATB_SPEAKERPHONEESUP: return "UATB_SPEAKERPHONEESUP"; case UATB_SPEAKERPHONEECANC: return "UATB_SPEAKERPHONEECANC"; /* telephony terminal types */ case UATT_UNDEFINED: return "UATT_UNDEFINED"; case UATT_PHONELINE: return "UATT_PHONELINE"; case UATT_TELEPHONE: return "UATT_TELEPHONE"; case UATT_DOWNLINEPHONE: return "UATT_DOWNLINEPHONE"; /* external terminal types */ case UATE_UNDEFINED: return "UATE_UNDEFINED"; case UATE_ANALOGCONN: return "UATE_ANALOGCONN"; case UATE_LINECONN: return "UATE_LINECONN"; case UATE_LEGACYCONN: return "UATE_LEGACYCONN"; case UATE_DIGITALAUIFC: return "UATE_DIGITALAUIFC"; case UATE_SPDIF: return "UATE_SPDIF"; case UATE_1394DA: return "UATE_1394DA"; case UATE_1394DV: return "UATE_1394DV"; /* embedded function terminal types */ case UATF_UNDEFINED: return "UATF_UNDEFINED"; case UATF_CALIBNOISE: return "UATF_CALIBNOISE"; case UATF_EQUNOISE: return "UATF_EQUNOISE"; case UATF_CDPLAYER: return "UATF_CDPLAYER"; case UATF_DAT: return "UATF_DAT"; case UATF_DCC: return "UATF_DCC"; case UATF_MINIDISK: return "UATF_MINIDISK"; case UATF_ANALOGTAPE: return "UATF_ANALOGTAPE"; case UATF_PHONOGRAPH: return "UATF_PHONOGRAPH"; case UATF_VCRAUDIO: return "UATF_VCRAUDIO"; case UATF_VIDEODISCAUDIO: return "UATF_VIDEODISCAUDIO"; case UATF_DVDAUDIO: return "UATF_DVDAUDIO"; case UATF_TVTUNERAUDIO: return "UATF_TVTUNERAUDIO"; case UATF_SATELLITE: return "UATF_SATELLITE"; case UATF_CABLETUNER: return "UATF_CABLETUNER"; case UATF_DSS: return "UATF_DSS"; case UATF_RADIORECV: return "UATF_RADIORECV"; case UATF_RADIOXMIT: return "UATF_RADIOXMIT"; case UATF_MULTITRACK: return "UATF_MULTITRACK"; case UATF_SYNTHESIZER: return "UATF_SYNTHESIZER"; default: snprintf(buf, sizeof(buf), "unknown type (0x%.4x)", terminal_type); return buf; } } #endif int uaudio_determine_class(const struct io_terminal *iot, struct mixerctl *mix) { int terminal_type; if (iot == NULL || iot->output == NULL) { mix->class = UAC_OUTPUT; return 0; } terminal_type = 0; if (iot->output->size == 1) terminal_type = iot->output->terminals[0]; /* * If the only output terminal is USB, * the class is UAC_RECORD. */ if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) { mix->class = UAC_RECORD; if (iot->inputs_size == 1 && iot->inputs[0] != NULL && iot->inputs[0]->size == 1) return iot->inputs[0]->terminals[0]; else return 0; } /* * If the ultimate destination of the unit is just one output * terminal and the unit is connected to the output terminal * directly, the class is UAC_OUTPUT. */ if (terminal_type != 0 && iot->direct) { mix->class = UAC_OUTPUT; return terminal_type; } /* * If the unit is connected to just one input terminal, * the class is UAC_INPUT. */ if (iot->inputs_size == 1 && iot->inputs[0] != NULL && iot->inputs[0]->size == 1) { mix->class = UAC_INPUT; return iot->inputs[0]->terminals[0]; } /* * Otherwise, the class is UAC_OUTPUT. */ mix->class = UAC_OUTPUT; return terminal_type; } const char * uaudio_feature_name(const struct io_terminal *iot, struct mixerctl *mix) { int terminal_type; terminal_type = uaudio_determine_class(iot, mix); if (mix->class == UAC_RECORD && terminal_type == 0) return AudioNmixerout; DPRINTF(("%s: terminal_type=%s\n", __func__, uaudio_get_terminal_name(terminal_type))); switch (terminal_type) { case UAT_STREAM: return AudioNdac; case UATI_MICROPHONE: case UATI_DESKMICROPHONE: case UATI_PERSONALMICROPHONE: case UATI_OMNIMICROPHONE: case UATI_MICROPHONEARRAY: case UATI_PROCMICROPHONEARR: return AudioNmicrophone; case UATO_SPEAKER: case UATO_DESKTOPSPEAKER: case UATO_ROOMSPEAKER: case UATO_COMMSPEAKER: return AudioNspeaker; case UATO_HEADPHONES: return AudioNheadphone; case UATO_SUBWOOFER: return AudioNlfe; /* telephony terminal types */ case UATT_UNDEFINED: case UATT_PHONELINE: case UATT_TELEPHONE: case UATT_DOWNLINEPHONE: return "phone"; case UATE_ANALOGCONN: case UATE_LINECONN: case UATE_LEGACYCONN: return AudioNline; case UATE_DIGITALAUIFC: case UATE_SPDIF: case UATE_1394DA: case UATE_1394DV: return AudioNaux; case UATF_CDPLAYER: return AudioNcd; case UATF_SYNTHESIZER: return AudioNfmsynth; case UATF_VIDEODISCAUDIO: case UATF_DVDAUDIO: case UATF_TVTUNERAUDIO: return AudioNvideo; case UAT_UNDEFINED: case UAT_VENDOR: case UATI_UNDEFINED: /* output terminal types */ case UATO_UNDEFINED: case UATO_DISPLAYAUDIO: /* bidir terminal types */ case UATB_UNDEFINED: case UATB_HANDSET: case UATB_HEADSET: case UATB_SPEAKERPHONE: case UATB_SPEAKERPHONEESUP: case UATB_SPEAKERPHONEECANC: /* external terminal types */ case UATE_UNDEFINED: /* embedded function terminal types */ case UATF_UNDEFINED: case UATF_CALIBNOISE: case UATF_EQUNOISE: case UATF_DAT: case UATF_DCC: case UATF_MINIDISK: case UATF_ANALOGTAPE: case UATF_PHONOGRAPH: case UATF_VCRAUDIO: case UATF_SATELLITE: case UATF_CABLETUNER: case UATF_DSS: case UATF_RADIORECV: case UATF_RADIOXMIT: case UATF_MULTITRACK: case 0xffff: default: DPRINTF(("%s: 'master' for 0x%.4x\n", __func__, terminal_type)); return AudioNmaster; } } void uaudio_add_feature(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_feature_unit *d = iot[id].d.fu; uByte *ctls = (uByte *)d->bmaControls; int ctlsize = d->bControlSize; int nchan = (d->bLength - 7) / ctlsize; u_int fumask, mmask, cmask; struct mixerctl mix; int chan, ctl, i, unit; const char *mixername; #define GET(i) (ctls[(i)*ctlsize] | \ (ctlsize > 1 ? ctls[(i)*ctlsize+1] << 8 : 0)) mmask = GET(0); /* Figure out what we can control */ for (cmask = 0, chan = 1; chan < nchan; chan++) { DPRINTFN(9,("uaudio_add_feature: chan=%d mask=%x\n", chan, GET(chan))); cmask |= GET(chan); } DPRINTFN(1,("uaudio_add_feature: bUnitId=%d, " "%d channels, mmask=0x%04x, cmask=0x%04x\n", d->bUnitId, nchan, mmask, cmask)); if (nchan > MIX_MAX_CHAN) nchan = MIX_MAX_CHAN; unit = d->bUnitId; mix.wIndex = MAKE(unit, sc->sc_ac_iface); for (ctl = MUTE_CONTROL; ctl < LOUDNESS_CONTROL; ctl++) { fumask = FU_MASK(ctl); DPRINTFN(4,("uaudio_add_feature: ctl=%d fumask=0x%04x\n", ctl, fumask)); if (mmask & fumask) { mix.nchan = 1; mix.wValue[0] = MAKE(ctl, 0); } else if (cmask & fumask) { mix.nchan = nchan - 1; for (i = 1; i < nchan; i++) { if (GET(i) & fumask) mix.wValue[i-1] = MAKE(ctl, i); else mix.wValue[i-1] = -1; } } else { continue; } #undef GET mixername = uaudio_feature_name(&iot[id], &mix); switch (ctl) { case MUTE_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNmute); break; case VOLUME_CONTROL: mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; strlcpy(mix.ctlname, mixername, sizeof(mix.ctlname)); break; case BASS_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNbass; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNbass); break; case MID_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNmid; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNmid); break; case TREBLE_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNtreble; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNtreble); break; case GRAPHIC_EQUALIZER_CONTROL: continue; /* XXX don't add anything */ break; case AGC_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNagc); break; case DELAY_CONTROL: mix.type = MIX_UNSIGNED_16; mix.ctlunit = "4 ms"; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNdelay); break; case BASS_BOOST_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNbassboost); break; case LOUDNESS_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNloudness); break; } uaudio_mixer_add_ctl(sc, &mix); } } void uaudio_add_processing_updown(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_processing_unit *d = iot[id].d.pu; const struct usb_audio_processing_unit_1 *d1 = (const struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins]; const struct usb_audio_processing_unit_updown *ud = (const struct usb_audio_processing_unit_updown *) &d1->bmControls[d1->bControlSize]; struct mixerctl mix; int i; DPRINTFN(2,("uaudio_add_processing_updown: bUnitId=%d bNrModes=%d\n", d->bUnitId, ud->bNrModes)); if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) { DPRINTF(("uaudio_add_processing_updown: no mode select\n")); return; } mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UD_MODE_SELECT_CONTROL, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; /* XXX */ mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d-mode", d->bUnitId); for (i = 0; i < ud->bNrModes; i++) { DPRINTFN(2,("uaudio_add_processing_updown: i=%d bm=0x%x\n", i, UGETW(ud->waModes[i]))); /* XXX */ } uaudio_mixer_add_ctl(sc, &mix); } void uaudio_add_processing(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_processing_unit *d = iot[id].d.pu; const struct usb_audio_processing_unit_1 *d1 = (const struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins]; int ptype = UGETW(d->wProcessType); struct mixerctl mix; DPRINTFN(2,("uaudio_add_processing: wProcessType=%d bUnitId=%d " "bNrInPins=%d\n", ptype, d->bUnitId, d->bNrInPins)); if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(XX_ENABLE_CONTROL, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d.%d-enable", d->bUnitId, ptype); uaudio_mixer_add_ctl(sc, &mix); } switch(ptype) { case UPDOWNMIX_PROCESS: uaudio_add_processing_updown(sc, iot, id); break; case DOLBY_PROLOGIC_PROCESS: case P3D_STEREO_EXTENDER_PROCESS: case REVERBATION_PROCESS: case CHORUS_PROCESS: case DYN_RANGE_COMP_PROCESS: default: #ifdef UAUDIO_DEBUG printf("uaudio_add_processing: unit %d, type=%d not impl.\n", d->bUnitId, ptype); #endif break; } } void uaudio_add_extension(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_extension_unit *d = iot[id].d.eu; const struct usb_audio_extension_unit_1 *d1 = (const struct usb_audio_extension_unit_1 *)&d->baSourceId[d->bNrInPins]; struct mixerctl mix; DPRINTFN(2,("uaudio_add_extension: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); if (sc->sc_quirks & UAUDIO_FLAG_NO_XU) return; if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UA_EXT_ENABLE, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "ext%d-enable", d->bUnitId); uaudio_mixer_add_ctl(sc, &mix); } } struct terminal_list* uaudio_merge_terminal_list(const struct io_terminal *iot) { struct terminal_list *tml; uint16_t *ptm; int i, len; len = 0; if (iot->inputs == NULL) return NULL; for (i = 0; i < iot->inputs_size; i++) { if (iot->inputs[i] != NULL) len += iot->inputs[i]->size; } tml = malloc(TERMINAL_LIST_SIZE(len), M_TEMP, M_NOWAIT); if (tml == NULL) { printf("uaudio_merge_terminal_list: no memory\n"); return NULL; } tml->size = 0; ptm = tml->terminals; for (i = 0; i < iot->inputs_size; i++) { if (iot->inputs[i] == NULL) continue; if (iot->inputs[i]->size > len) break; memcpy(ptm, iot->inputs[i]->terminals, iot->inputs[i]->size * sizeof(uint16_t)); tml->size += iot->inputs[i]->size; ptm += iot->inputs[i]->size; len -= iot->inputs[i]->size; } return tml; } struct terminal_list * uaudio_io_terminaltype(int outtype, struct io_terminal *iot, int id) { struct terminal_list *tml; struct io_terminal *it; int src_id, i; it = &iot[id]; if (it->output != NULL) { /* already has outtype? */ for (i = 0; i < it->output->size; i++) if (it->output->terminals[i] == outtype) return uaudio_merge_terminal_list(it); tml = malloc(TERMINAL_LIST_SIZE(it->output->size + 1), M_TEMP, M_NOWAIT); if (tml == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return uaudio_merge_terminal_list(it); } memcpy(tml, it->output, TERMINAL_LIST_SIZE(it->output->size)); tml->terminals[it->output->size] = outtype; tml->size++; free(it->output, M_TEMP); it->output = tml; if (it->inputs != NULL) { for (i = 0; i < it->inputs_size; i++) if (it->inputs[i] != NULL) free(it->inputs[i], M_TEMP); free(it->inputs, M_TEMP); } it->inputs_size = 0; it->inputs = NULL; } else { /* end `iot[id] != NULL' */ it->inputs_size = 0; it->inputs = NULL; it->output = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); if (it->output == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } it->output->terminals[0] = outtype; it->output->size = 1; it->direct = 0; } switch (it->d.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } tml = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); if (tml == NULL) { printf("uaudio_io_terminaltype: no memory\n"); free(it->inputs, M_TEMP); it->inputs = NULL; return NULL; } it->inputs[0] = tml; tml->terminals[0] = UGETW(it->d.it->wTerminalType); tml->size = 1; it->inputs_size = 1; return uaudio_merge_terminal_list(it); case UDESCSUB_AC_FEATURE: src_id = it->d.fu->bSourceId; it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return uaudio_io_terminaltype(outtype, iot, src_id); } it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size = 1; return uaudio_merge_terminal_list(it); case UDESCSUB_AC_OUTPUT: it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } src_id = it->d.ot->bSourceId; it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size = 1; iot[src_id].direct = 1; return NULL; case UDESCSUB_AC_MIXER: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.mu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.mu->bNrInPins; i++) { src_id = it->d.mu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_SELECTOR: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.su->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.su->bNrInPins; i++) { src_id = it->d.su->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_PROCESSING: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.pu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.pu->bNrInPins; i++) { src_id = it->d.pu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_EXTENSION: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.eu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.eu->bNrInPins; i++) { src_id = it->d.eu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_HEADER: default: return NULL; } } usbd_status uaudio_identify(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { usbd_status err; err = uaudio_identify_ac(sc, cdesc); if (err) return (err); return (uaudio_identify_as(sc, cdesc)); } void uaudio_add_alt(struct uaudio_softc *sc, const struct as_info *ai) { size_t len; struct as_info *nai; len = sizeof(*ai) * (sc->sc_nalts + 1); nai = malloc(len, M_USBDEV, M_NOWAIT); if (nai == NULL) { printf("uaudio_add_alt: no memory\n"); return; } /* Copy old data, if there was any */ if (sc->sc_nalts != 0) { bcopy(sc->sc_alts, nai, sizeof(*ai) * (sc->sc_nalts)); free(sc->sc_alts, M_USBDEV); } sc->sc_alts = nai; DPRINTFN(2,("uaudio_add_alt: adding alt=%d, enc=%d\n", ai->alt, ai->encoding)); sc->sc_alts[sc->sc_nalts++] = *ai; } void uaudio_create_encodings(struct uaudio_softc *sc) { int enc, encs[16], nencs, i, j; nencs = 0; for (i = 0; i < sc->sc_nalts && nencs < 16; i++) { enc = (sc->sc_alts[i].asf1desc->bSubFrameSize << 16) | (sc->sc_alts[i].asf1desc->bBitResolution << 8) | sc->sc_alts[i].encoding; for (j = 0; j < nencs; j++) { if (encs[j] == enc) break; } if (j < nencs) continue; encs[j] = enc; nencs++; } sc->sc_nencs = 0; sc->sc_encs = malloc(sizeof(struct audio_encoding) * nencs, M_USBDEV, M_NOWAIT); if (sc->sc_encs == NULL) { printf("%s: no memory\n", __func__); return; } sc->sc_nencs = nencs; for (i = 0; i < sc->sc_nencs; i++) { sc->sc_encs[i].index = i; sc->sc_encs[i].encoding = encs[i] & 0xff; sc->sc_encs[i].precision = (encs[i] >> 8) & 0xff; sc->sc_encs[i].bps = (encs[i] >> 16) & 0xff; sc->sc_encs[i].msb = 1; sc->sc_encs[i].flags = 0; switch (sc->sc_encs[i].encoding) { case AUDIO_ENCODING_SLINEAR_LE: strlcpy(sc->sc_encs[i].name, sc->sc_encs[i].precision == 8 ? AudioEslinear : AudioEslinear_le, sizeof(sc->sc_encs[i].name)); break; case AUDIO_ENCODING_ULINEAR_LE: if (sc->sc_encs[i].precision != 8) { DPRINTF(("%s: invalid precision for ulinear: %d\n", __func__, sc->sc_encs[i].precision)); continue; } strlcpy(sc->sc_encs[i].name, AudioEulinear, sizeof(sc->sc_encs[i].name)); break; case AUDIO_ENCODING_ALAW: if (sc->sc_encs[i].precision != 8) { DPRINTF(("%s: invalid precision for alaw: %d\n", __func__, sc->sc_encs[i].precision)); continue; } strlcpy(sc->sc_encs[i].name, AudioEalaw, sizeof(sc->sc_encs[i].name)); break; case AUDIO_ENCODING_ULAW: if (sc->sc_encs[i].precision != 8) { DPRINTF(("%s: invalid precision for ulaw: %d\n", __func__, sc->sc_encs[i].precision)); continue; } strlcpy(sc->sc_encs[i].name, AudioEmulaw, sizeof(sc->sc_encs[i].name)); break; default: DPRINTF(("%s: unknown format\n", __func__)); break; } } } usbd_status uaudio_process_as(struct uaudio_softc *sc, const char *buf, int *offsp, int size, const usb_interface_descriptor_t *id) #define offs (*offsp) { const struct usb_audio_streaming_interface_descriptor *asid; const struct usb_audio_streaming_type1_descriptor *asf1d; const struct usb_endpoint_descriptor_audio *ed; const struct usb_endpoint_descriptor_audio *sync_ed; const struct usb_audio_streaming_endpoint_descriptor *sed; int format, chan, prec, enc, bps; int dir, type, sync, sync_addr; struct as_info ai; const char *format_str; asid = (const void *)(buf + offs); if (asid->bDescriptorType != UDESC_CS_INTERFACE || asid->bDescriptorSubtype != AS_GENERAL) return (USBD_INVAL); DPRINTF(("uaudio_process_as: asid: bTerminalLink=%d wFormatTag=%d\n", asid->bTerminalLink, UGETW(asid->wFormatTag))); offs += asid->bLength; if (offs > size) return (USBD_INVAL); asf1d = (const void *)(buf + offs); if (asf1d->bDescriptorType != UDESC_CS_INTERFACE || asf1d->bDescriptorSubtype != FORMAT_TYPE) return (USBD_INVAL); offs += asf1d->bLength; if (offs > size) return (USBD_INVAL); if (asf1d->bFormatType != FORMAT_TYPE_I) { printf("%s: ignored setting with type %d format\n", sc->sc_dev.dv_xname, UGETW(asid->wFormatTag)); return (USBD_NORMAL_COMPLETION); } ed = (const void *)(buf + offs); if (ed->bDescriptorType != UDESC_ENDPOINT) return (USBD_INVAL); DPRINTF(("uaudio_process_as: endpoint[0] bLength=%d bDescriptorType=%d " "bEndpointAddress=%d bmAttributes=0x%x wMaxPacketSize=%d " "bInterval=%d bRefresh=%d bSynchAddress=%d\n", ed->bLength, ed->bDescriptorType, ed->bEndpointAddress, ed->bmAttributes, UGETW(ed->wMaxPacketSize), ed->bInterval, ed->bRefresh, ed->bSynchAddress)); offs += ed->bLength; if (offs > size) return (USBD_INVAL); if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS) return (USBD_INVAL); dir = UE_GET_DIR(ed->bEndpointAddress); type = UE_GET_ISO_TYPE(ed->bmAttributes); /* Check for sync endpoint. */ sync = 0; sync_addr = 0; if (id->bNumEndpoints > 1 && ((dir == UE_DIR_IN && type == UE_ISO_ADAPT) || (dir != UE_DIR_IN && type == UE_ISO_ASYNC))) sync = 1; /* Check whether sync endpoint address is given. */ if (ed->bLength >= USB_ENDPOINT_DESCRIPTOR_AUDIO_SIZE) { /* bSynchAdress set to 0 indicates sync is not used. */ if (ed->bSynchAddress == 0) sync = 0; else sync_addr = ed->bSynchAddress; } sed = (const void *)(buf + offs); if (sed->bDescriptorType != UDESC_CS_ENDPOINT || sed->bDescriptorSubtype != AS_GENERAL) return (USBD_INVAL); DPRINTF((" streaming_endpoint: offset=%d bLength=%d\n", offs, sed->bLength)); offs += sed->bLength; if (offs > size) return (USBD_INVAL); sync_ed = NULL; if (sync == 1) { sync_ed = (const void*)(buf + offs); if (sync_ed->bDescriptorType != UDESC_ENDPOINT) { printf("%s: sync ep descriptor wrong type\n", sc->sc_dev.dv_xname); return (USBD_NORMAL_COMPLETION); } DPRINTF(("uaudio_process_as: endpoint[1] bLength=%d " "bDescriptorType=%d bEndpointAddress=%d " "bmAttributes=0x%x wMaxPacketSize=%d bInterval=%d " "bRefresh=%d bSynchAddress=%d\n", sync_ed->bLength, sync_ed->bDescriptorType, sync_ed->bEndpointAddress, sync_ed->bmAttributes, UGETW(sync_ed->wMaxPacketSize), sync_ed->bInterval, sync_ed->bRefresh, sync_ed->bSynchAddress)); offs += sync_ed->bLength; if (offs > size) { printf("%s: sync ep descriptor too large\n", sc->sc_dev.dv_xname); return (USBD_NORMAL_COMPLETION); } if (dir == UE_GET_DIR(sync_ed->bEndpointAddress)) { printf("%s: sync ep wrong direction\n", sc->sc_dev.dv_xname); return (USBD_NORMAL_COMPLETION); } if (UE_GET_XFERTYPE(sync_ed->bmAttributes) != UE_ISOCHRONOUS) { printf("%s: sync ep wrong xfer type\n", sc->sc_dev.dv_xname); return (USBD_NORMAL_COMPLETION); } if (sync_ed->bLength >= USB_ENDPOINT_DESCRIPTOR_AUDIO_SIZE && sync_ed->bSynchAddress != 0) { printf("%s: sync ep bSynchAddress != 0\n", sc->sc_dev.dv_xname); return (USBD_NORMAL_COMPLETION); } if (sync_addr && UE_GET_ADDR(sync_ed->bEndpointAddress) != sync_addr) { printf("%s: sync ep address mismatch\n", sc->sc_dev.dv_xname); return (USBD_NORMAL_COMPLETION); } } if (sync_ed != NULL && dir == UE_DIR_IN) { printf("%s: sync pipe for recording not yet implemented\n", sc->sc_dev.dv_xname); return (USBD_NORMAL_COMPLETION); } format = UGETW(asid->wFormatTag); chan = asf1d->bNrChannels; prec = asf1d->bBitResolution; bps = asf1d->bSubFrameSize; if ((prec != 8 && prec != 16 && prec != 24) || (bps < 1 || bps > 4)) { printf("%s: ignored setting with precision %d bps %d\n", sc->sc_dev.dv_xname, prec, bps); return (USBD_NORMAL_COMPLETION); } switch (format) { case UA_FMT_PCM: if (prec == 8) { sc->sc_altflags |= HAS_8; } else if (prec == 16) { sc->sc_altflags |= HAS_16; } else if (prec == 24) { sc->sc_altflags |= HAS_24; } enc = AUDIO_ENCODING_SLINEAR_LE; format_str = "pcm"; break; case UA_FMT_PCM8: enc = AUDIO_ENCODING_ULINEAR_LE; sc->sc_altflags |= HAS_8U; format_str = "pcm8"; break; case UA_FMT_ALAW: enc = AUDIO_ENCODING_ALAW; sc->sc_altflags |= HAS_ALAW; format_str = "alaw"; break; case UA_FMT_MULAW: enc = AUDIO_ENCODING_ULAW; sc->sc_altflags |= HAS_MULAW; format_str = "mulaw"; break; case UA_FMT_IEEE_FLOAT: default: printf("%s: ignored setting with format %d\n", sc->sc_dev.dv_xname, format); return (USBD_NORMAL_COMPLETION); } #ifdef UAUDIO_DEBUG printf("%s: %s: %d-ch %d-bit %d-byte %s,", sc->sc_dev.dv_xname, dir == UE_DIR_IN ? "recording" : "playback", chan, prec, bps, format_str); if (asf1d->bSamFreqType == UA_SAMP_CONTNUOUS) { printf(" %d-%dHz\n", UA_SAMP_LO(asf1d), UA_SAMP_HI(asf1d)); } else { int r; printf(" %d", UA_GETSAMP(asf1d, 0)); for (r = 1; r < asf1d->bSamFreqType; r++) printf(",%d", UA_GETSAMP(asf1d, r)); printf("Hz\n"); } #endif ai.alt = id->bAlternateSetting; ai.encoding = enc; ai.attributes = sed->bmAttributes; ai.idesc = id; ai.edesc = ed; ai.edesc1 = sync_ed; ai.asf1desc = asf1d; ai.sc_busy = 0; if (sc->sc_nalts < UAUDIO_MAX_ALTS) uaudio_add_alt(sc, &ai); #ifdef UAUDIO_DEBUG if (ai.attributes & UA_SED_FREQ_CONTROL) DPRINTFN(1, ("uaudio_process_as: FREQ_CONTROL\n")); if (ai.attributes & UA_SED_PITCH_CONTROL) DPRINTFN(1, ("uaudio_process_as: PITCH_CONTROL\n")); #endif sc->sc_mode |= (dir == UE_DIR_OUT) ? AUMODE_PLAY : AUMODE_RECORD; return (USBD_NORMAL_COMPLETION); } #undef offs usbd_status uaudio_identify_as(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { const usb_interface_descriptor_t *id; const char *buf; int size, offs; size = UGETW(cdesc->wTotalLength); buf = (const char *)cdesc; /* Locate the AudioStreaming interface descriptor. */ offs = 0; id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOSTREAM, sc->sc_quirks); if (id == NULL) return (USBD_INVAL); /* Loop through all the alternate settings. */ while (offs <= size) { DPRINTFN(2, ("uaudio_identify: interface=%d offset=%d\n", id->bInterfaceNumber, offs)); switch (id->bNumEndpoints) { case 0: DPRINTFN(2, ("uaudio_identify: AS null alt=%d\n", id->bAlternateSetting)); sc->sc_nullalt = id->bAlternateSetting; break; case 1: case 2: uaudio_process_as(sc, buf, &offs, size, id); break; default: printf("%s: ignored audio interface with %d " "endpoints\n", sc->sc_dev.dv_xname, id->bNumEndpoints); break; } id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOSTREAM, sc->sc_quirks); if (id == NULL) break; } if (offs > size) return (USBD_INVAL); DPRINTF(("uaudio_identify_as: %d alts available\n", sc->sc_nalts)); if (sc->sc_mode == 0) { printf("%s: no usable endpoint found\n", sc->sc_dev.dv_xname); return (USBD_INVAL); } return (USBD_NORMAL_COMPLETION); } usbd_status uaudio_identify_ac(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { struct io_terminal* iot; const usb_interface_descriptor_t *id; const struct usb_audio_control_descriptor *acdp; const usb_descriptor_t *dp; const struct usb_audio_output_terminal *pot; struct terminal_list *tml; const char *buf, *ibuf, *ibufend; int size, offs, aclen, ndps, i, j; size = UGETW(cdesc->wTotalLength); buf = (char *)cdesc; /* Locate the AudioControl interface descriptor. */ offs = 0; id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOCONTROL, sc->sc_quirks); if (id == NULL) return (USBD_INVAL); if (offs + sizeof *acdp > size) return (USBD_INVAL); sc->sc_ac_iface = id->bInterfaceNumber; DPRINTFN(2,("uaudio_identify_ac: AC interface is %d\n", sc->sc_ac_iface)); /* A class-specific AC interface header should follow. */ ibuf = buf + offs; acdp = (const struct usb_audio_control_descriptor *)ibuf; if (acdp->bDescriptorType != UDESC_CS_INTERFACE || acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER) return (USBD_INVAL); aclen = UGETW(acdp->wTotalLength); if (offs + aclen > size) return (USBD_INVAL); if (!(sc->sc_quirks & UAUDIO_FLAG_BAD_ADC) && UGETW(acdp->bcdADC) != UAUDIO_VERSION) return (USBD_INVAL); sc->sc_audio_rev = UGETW(acdp->bcdADC); DPRINTFN(2,("uaudio_identify_ac: found AC header, vers=%03x, len=%d\n", sc->sc_audio_rev, aclen)); sc->sc_nullalt = -1; /* Scan through all the AC specific descriptors */ ibufend = ibuf + aclen; dp = (const usb_descriptor_t *)ibuf; ndps = 0; iot = malloc(sizeof(struct io_terminal) * 256, M_TEMP, M_NOWAIT | M_ZERO); if (iot == NULL) { printf("%s: no memory\n", __func__); return USBD_NOMEM; } for (;;) { ibuf += dp->bLength; if (ibuf >= ibufend) break; dp = (const usb_descriptor_t *)ibuf; if (ibuf + dp->bLength > ibufend) { free(iot, M_TEMP); return (USBD_INVAL); } if (dp->bDescriptorType != UDESC_CS_INTERFACE) { printf("uaudio_identify_ac: skip desc type=0x%02x\n", dp->bDescriptorType); continue; } i = ((const struct usb_audio_input_terminal *)dp)->bTerminalId; iot[i].d.desc = dp; if (i > ndps) ndps = i; } ndps++; /* construct io_terminal */ for (i = 0; i < ndps; i++) { dp = iot[i].d.desc; if (dp == NULL) continue; if (dp->bDescriptorSubtype != UDESCSUB_AC_OUTPUT) continue; pot = iot[i].d.ot; tml = uaudio_io_terminaltype(UGETW(pot->wTerminalType), iot, i); if (tml != NULL) free(tml, M_TEMP); } #ifdef UAUDIO_DEBUG for (i = 0; i < 256; i++) { if (iot[i].d.desc == NULL) continue; printf("id %d:\t", i); switch (iot[i].d.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: printf("AC_INPUT type=%s\n", uaudio_get_terminal_name (UGETW(iot[i].d.it->wTerminalType))); break; case UDESCSUB_AC_OUTPUT: printf("AC_OUTPUT type=%s ", uaudio_get_terminal_name (UGETW(iot[i].d.ot->wTerminalType))); printf("src=%d\n", iot[i].d.ot->bSourceId); break; case UDESCSUB_AC_MIXER: printf("AC_MIXER src="); for (j = 0; j < iot[i].d.mu->bNrInPins; j++) printf("%d ", iot[i].d.mu->baSourceId[j]); printf("\n"); break; case UDESCSUB_AC_SELECTOR: printf("AC_SELECTOR src="); for (j = 0; j < iot[i].d.su->bNrInPins; j++) printf("%d ", iot[i].d.su->baSourceId[j]); printf("\n"); break; case UDESCSUB_AC_FEATURE: printf("AC_FEATURE src=%d\n", iot[i].d.fu->bSourceId); break; case UDESCSUB_AC_PROCESSING: printf("AC_PROCESSING src="); for (j = 0; j < iot[i].d.pu->bNrInPins; j++) printf("%d ", iot[i].d.pu->baSourceId[j]); printf("\n"); break; case UDESCSUB_AC_EXTENSION: printf("AC_EXTENSION src="); for (j = 0; j < iot[i].d.eu->bNrInPins; j++) printf("%d ", iot[i].d.eu->baSourceId[j]); printf("\n"); break; default: printf("unknown audio control (subtype=%d)\n", iot[i].d.desc->bDescriptorSubtype); } for (j = 0; j < iot[i].inputs_size; j++) { int k; printf("\tinput%d: ", j); tml = iot[i].inputs[j]; if (tml == NULL) { printf("NULL\n"); continue; } for (k = 0; k < tml->size; k++) printf("%s ", uaudio_get_terminal_name (tml->terminals[k])); printf("\n"); } printf("\toutput: "); tml = iot[i].output; for (j = 0; j < tml->size; j++) printf("%s ", uaudio_get_terminal_name(tml->terminals[j])); printf("\n"); } #endif for (i = 0; i < ndps; i++) { dp = iot[i].d.desc; if (dp == NULL) continue; DPRINTF(("uaudio_identify_ac: id=%d subtype=%d\n", i, dp->bDescriptorSubtype)); switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_HEADER: printf("uaudio_identify_ac: unexpected AC header\n"); break; case UDESCSUB_AC_INPUT: uaudio_add_input(sc, iot, i); break; case UDESCSUB_AC_OUTPUT: uaudio_add_output(sc, iot, i); break; case UDESCSUB_AC_MIXER: uaudio_add_mixer(sc, iot, i); break; case UDESCSUB_AC_SELECTOR: uaudio_add_selector(sc, iot, i); break; case UDESCSUB_AC_FEATURE: uaudio_add_feature(sc, iot, i); break; case UDESCSUB_AC_PROCESSING: uaudio_add_processing(sc, iot, i); break; case UDESCSUB_AC_EXTENSION: uaudio_add_extension(sc, iot, i); break; default: printf("uaudio_identify_ac: bad AC desc subtype=0x%02x\n", dp->bDescriptorSubtype); break; } } /* delete io_terminal */ for (i = 0; i < 256; i++) { if (iot[i].d.desc == NULL) continue; if (iot[i].inputs != NULL) { for (j = 0; j < iot[i].inputs_size; j++) { if (iot[i].inputs[j] != NULL) free(iot[i].inputs[j], M_TEMP); } free(iot[i].inputs, M_TEMP); } if (iot[i].output != NULL) free(iot[i].output, M_TEMP); iot[i].d.desc = NULL; } free(iot, M_TEMP); return (USBD_NORMAL_COMPLETION); } int uaudio_query_devinfo(void *addr, mixer_devinfo_t *mi) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int n, nctls, i; DPRINTFN(2,("uaudio_query_devinfo: index=%d\n", mi->index)); if (sc->sc_dying) return (EIO); n = mi->index; nctls = sc->sc_nctls; switch (n) { case UAC_OUTPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_OUTPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCoutputs, sizeof(mi->label.name)); return (0); case UAC_INPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_INPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCinputs, sizeof(mi->label.name)); return (0); case UAC_EQUAL: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_EQUAL; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCequalization, sizeof(mi->label.name)); return (0); case UAC_RECORD: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_RECORD; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCrecord, sizeof(mi->label.name)); return 0; default: break; } n -= UAC_NCLASSES; if (n < 0 || n >= nctls) return (ENXIO); mc = &sc->sc_ctls[n]; strlcpy(mi->label.name, mc->ctlname, sizeof(mi->label.name)); mi->mixer_class = mc->class; mi->next = mi->prev = AUDIO_MIXER_LAST; /* XXX */ switch (mc->type) { case MIX_ON_OFF: mi->type = AUDIO_MIXER_ENUM; mi->un.e.num_mem = 2; strlcpy(mi->un.e.member[0].label.name, AudioNoff, sizeof(mi->un.e.member[0].label.name)); mi->un.e.member[0].ord = 0; strlcpy(mi->un.e.member[1].label.name, AudioNon, sizeof(mi->un.e.member[1].label.name)); mi->un.e.member[1].ord = 1; break; case MIX_SELECTOR: mi->type = AUDIO_MIXER_ENUM; mi->un.e.num_mem = mc->maxval - mc->minval + 1; for (i = 0; i <= mc->maxval - mc->minval; i++) { snprintf(mi->un.e.member[i].label.name, sizeof(mi->un.e.member[i].label.name), "%d", i + mc->minval); mi->un.e.member[i].ord = i + mc->minval; } break; default: mi->type = AUDIO_MIXER_VALUE; strlcpy(mi->un.v.units.name, mc->ctlunit, sizeof(mi->un.v.units.name)); mi->un.v.num_channels = mc->nchan; mi->un.v.delta = mc->delta; break; } return (0); } int uaudio_open(void *addr, int flags) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_open: sc=%p\n", sc)); if (sc->sc_dying) return (EIO); if ((flags & FWRITE) && !(sc->sc_mode & AUMODE_PLAY)) return (ENXIO); if ((flags & FREAD) && !(sc->sc_mode & AUMODE_RECORD)) return (ENXIO); return (0); } /* * Close function is called at splaudio(). */ void uaudio_close(void *addr) { struct uaudio_softc *sc = addr; if (sc->sc_playchan.altidx != -1) uaudio_chan_close(sc, &sc->sc_playchan); if (sc->sc_recchan.altidx != -1) uaudio_chan_close(sc, &sc->sc_recchan); } int uaudio_drain(void *addr) { struct uaudio_softc *sc = addr; struct chan *pchan = &sc->sc_playchan; struct chan *rchan = &sc->sc_recchan; int ms = 0; /* Wait for outstanding requests to complete. */ if (pchan->altidx != -1 && sc->sc_alts[pchan->altidx].sc_busy) ms = max(ms, pchan->reqms); if (rchan->altidx != -1 && sc->sc_alts[rchan->altidx].sc_busy) ms = max(ms, rchan->reqms); usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * ms); return (0); } int uaudio_halt_out_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_halt_out_dma: enter\n")); if (sc->sc_playchan.pipe != NULL) { uaudio_chan_close(sc, &sc->sc_playchan); sc->sc_playchan.pipe = NULL; if (sc->sc_playchan.sync_pipe != NULL) sc->sc_playchan.sync_pipe = NULL; uaudio_chan_free_buffers(sc, &sc->sc_playchan); sc->sc_playchan.intr = NULL; } return (0); } int uaudio_halt_in_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_halt_in_dma: enter\n")); if (sc->sc_recchan.pipe != NULL) { uaudio_chan_close(sc, &sc->sc_recchan); sc->sc_recchan.pipe = NULL; if (sc->sc_recchan.sync_pipe != NULL) sc->sc_recchan.sync_pipe = NULL; uaudio_chan_free_buffers(sc, &sc->sc_recchan); sc->sc_recchan.intr = NULL; } return (0); } int uaudio_getdev(void *addr, struct audio_device *retp) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_mixer_getdev:\n")); if (sc->sc_dying) return (EIO); *retp = uaudio_device; return (0); } /* * Make sure the block size is large enough to hold at least 1 transfer. * Ideally, the block size should be a multiple of the transfer size. * Currently, the transfer size for play and record can differ, and there's * no way to round playback and record blocksizes separately. */ int uaudio_round_blocksize(void *addr, int blk) { struct uaudio_softc *sc = addr; int bpf, pbpf, rbpf; DPRINTF(("uaudio_round_blocksize: p.mbpf=%d r.mbpf=%d\n", sc->sc_playchan.max_bytes_per_frame, sc->sc_recchan.max_bytes_per_frame)); pbpf = rbpf = 0; if (sc->sc_mode & AUMODE_PLAY) { pbpf = (sc->sc_playchan.max_bytes_per_frame) * sc->sc_playchan.nframes; } if (sc->sc_mode & AUMODE_RECORD) { rbpf = (sc->sc_recchan.max_bytes_per_frame) * sc->sc_recchan.nframes; } bpf = max(pbpf, rbpf); if (blk < bpf) blk = bpf; #ifdef DIAGNOSTIC if (blk <= 0) { printf("uaudio_round_blocksize: blk=%d\n", blk); blk = 512; } #endif DPRINTFN(1,("uaudio_round_blocksize: blk=%d\n", blk)); return (blk); } int uaudio_get_props(void *addr) { struct uaudio_softc *sc = addr; int props = 0; if (!(sc->sc_quirks & UAUDIO_FLAG_DEPENDENT)) props |= AUDIO_PROP_INDEPENDENT; if ((sc->sc_mode & (AUMODE_PLAY | AUMODE_RECORD)) == (AUMODE_PLAY | AUMODE_RECORD)) props |= AUDIO_PROP_FULLDUPLEX; return props; } void uaudio_get_default_params(void *addr, int mode, struct audio_params *p) { struct uaudio_softc *sc = addr; int flags, alt; /* try aucat(1) defaults: 44100 Hz stereo s16le */ p->sample_rate = 44100; p->encoding = AUDIO_ENCODING_SLINEAR_LE; p->precision = 16; p->bps = 2; p->msb = 1; p->channels = 2; p->sw_code = NULL; p->factor = 1; /* If the device doesn't support the current mode, there's no * need to find better parameters. */ if (!(sc->sc_mode & mode)) return; flags = sc->sc_altflags; if (flags & HAS_16) ; else if (flags & HAS_24) p->precision = 24; else { p->precision = 8; if (flags & HAS_8) ; else if (flags & HAS_8U) p->encoding = AUDIO_ENCODING_ULINEAR_LE; else if (flags & HAS_MULAW) p->encoding = AUDIO_ENCODING_ULAW; else if (flags & HAS_ALAW) p->encoding = AUDIO_ENCODING_ALAW; } alt = uaudio_match_alt(sc, p, mode); if (alt != -1) p->bps = sc->sc_alts[alt].asf1desc->bSubFrameSize; } int uaudio_get(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len) { usb_device_request_t req; u_int8_t data[4]; usbd_status err; int val; if (wValue == -1) return (0); req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); DPRINTFN(2,("uaudio_get: type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d\n", type, which, wValue, wIndex, len)); err = usbd_do_request(sc->sc_udev, &req, data); if (err) { DPRINTF(("uaudio_get: err=%s\n", usbd_errstr(err))); return (-1); } switch (len) { case 1: val = data[0]; break; case 2: val = data[0] | (data[1] << 8); break; default: DPRINTF(("uaudio_get: bad length=%d\n", len)); return (-1); } DPRINTFN(2,("uaudio_get: val=%d\n", val)); return (val); } void uaudio_set(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len, int val) { usb_device_request_t req; u_int8_t data[4]; usbd_status err; if (wValue == -1) return; req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); switch (len) { case 1: data[0] = val; break; case 2: data[0] = val; data[1] = val >> 8; break; default: return; } DPRINTFN(2,("uaudio_set: type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d, val=%d\n", type, which, wValue, wIndex, len, val & 0xffff)); err = usbd_do_request(sc->sc_udev, &req, data); #ifdef UAUDIO_DEBUG if (err) DPRINTF(("uaudio_set: err=%d\n", err)); #endif } int uaudio_signext(int type, int val) { if (!MIX_UNSIGNED(type)) { if (MIX_SIZE(type) == 2) val = (int16_t)val; else val = (int8_t)val; } return (val); } int uaudio_unsignext(int type, int val) { if (!MIX_UNSIGNED(type)) { if (MIX_SIZE(type) == 2) val = (u_int16_t)val; else val = (u_int8_t)val; } return (val); } int uaudio_value2bsd(struct mixerctl *mc, int val) { int range; DPRINTFN(5, ("uaudio_value2bsd: type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval)); if (mc->type == MIX_ON_OFF) { val = (val != 0); } else if (mc->type == MIX_SELECTOR) { if (val < mc->minval || val > mc->maxval) val = mc->minval; } else { range = mc->maxval - mc->minval; if (range == 0) val = 0; else val = 255 * (uaudio_signext(mc->type, val) - mc->minval) / range; } DPRINTFN(5, ("val'=%d\n", val)); return (val); } int uaudio_bsd2value(struct mixerctl *mc, int val) { DPRINTFN(5,("uaudio_bsd2value: type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval)); if (mc->type == MIX_ON_OFF) { val = (val != 0); } else if (mc->type == MIX_SELECTOR) { if (val < mc->minval || val > mc->maxval) val = mc->minval; } else val = uaudio_unsignext(mc->type, val * (mc->maxval - mc->minval) / 255 + mc->minval); DPRINTFN(5, ("val'=%d\n", val)); return (val); } int uaudio_ctl_get(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan) { int val; DPRINTFN(5,("uaudio_ctl_get: which=%d chan=%d\n", which, chan)); val = uaudio_get(sc, which, UT_READ_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type)); return (uaudio_value2bsd(mc, val)); } void uaudio_ctl_set(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan, int val) { val = uaudio_bsd2value(mc, val); uaudio_set(sc, which, UT_WRITE_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type), val); } int uaudio_mixer_get_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN], val; DPRINTFN(2,("uaudio_mixer_get_port: index=%d\n", cp->dev)); if (sc->sc_dying) return (EIO); n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return (ENXIO); mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); } else if (mc->type == MIX_SELECTOR) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); } else { if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1 && cp->un.value.num_channels != mc->nchan) return (EINVAL); for (i = 0; i < mc->nchan; i++) vals[i] = uaudio_ctl_get(sc, GET_CUR, mc, i); if (cp->un.value.num_channels == 1 && mc->nchan != 1) { for (val = 0, i = 0; i < mc->nchan; i++) val += vals[i]; vals[0] = val / mc->nchan; } for (i = 0; i < cp->un.value.num_channels; i++) cp->un.value.level[i] = vals[i]; } return (0); } int uaudio_mixer_set_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN]; DPRINTFN(2,("uaudio_mixer_set_port: index = %d\n", cp->dev)); if (sc->sc_dying) return (EIO); n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return (ENXIO); mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); } else if (mc->type == MIX_SELECTOR) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); } else { if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels == 1) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[0]; else if (cp->un.value.num_channels == mc->nchan) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[i]; else return (EINVAL); for (i = 0; i < mc->nchan; i++) uaudio_ctl_set(sc, SET_CUR, mc, i, vals[i]); } return (0); } int uaudio_trigger_input(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct uaudio_softc *sc = addr; struct chan *ch = &sc->sc_recchan; usbd_status err; int i, s; if (sc->sc_dying) return (EIO); DPRINTFN(3,("uaudio_trigger_input: sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize)); uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3,("uaudio_trigger_input: sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction)); err = uaudio_chan_alloc_buffers(sc, ch); if (err) return (EIO); err = uaudio_chan_open(sc, ch); if (err) { uaudio_chan_free_buffers(sc, ch); return (EIO); } ch->intr = intr; ch->arg = arg; s = splusb(); for (i = 0; i < UAUDIO_NCHANBUFS; i++) uaudio_chan_rtransfer(ch); splx(s); return (0); } int uaudio_trigger_output(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct uaudio_softc *sc = addr; struct chan *ch = &sc->sc_playchan; usbd_status err; int i, s; if (sc->sc_dying) return (EIO); DPRINTFN(3,("uaudio_trigger_output: sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize)); uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3,("uaudio_trigger_output: sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction)); err = uaudio_chan_alloc_buffers(sc, ch); if (err) return (EIO); err = uaudio_chan_open(sc, ch); if (err) { uaudio_chan_free_buffers(sc, ch); return (EIO); } ch->intr = intr; ch->arg = arg; s = splusb(); for (i = 0; i < UAUDIO_NCHANBUFS; i++) uaudio_chan_ptransfer(ch); if (ch->sync_pipe) { for (i = 0; i < UAUDIO_NSYNCBUFS; i++) uaudio_chan_psync_transfer(ch); } splx(s); return (0); } /* Set up a pipe for a channel. */ usbd_status uaudio_chan_open(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; int endpt = as->edesc->bEndpointAddress; usbd_status err; DPRINTF(("uaudio_chan_open: endpt=0x%02x, speed=%d, alt=%d\n", endpt, ch->sample_rate, as->alt)); /* Set alternate interface corresponding to the mode. */ err = usbd_set_interface(as->ifaceh, as->alt); if (err) { DPRINTF(("%s: usbd_set_interface failed\n", __func__)); return (err); } /* * If just one sampling rate is supported, * no need to call uaudio_set_speed(). * Roland SD-90 freezes by a SAMPLING_FREQ_CONTROL request. */ if (as->asf1desc->bSamFreqType != 1) { err = uaudio_set_speed(sc, endpt, ch->sample_rate); if (err) DPRINTF(("uaudio_chan_open: set_speed failed err=%s\n", usbd_errstr(err))); } if (sc->sc_quirks & UAUDIO_FLAG_EMU0202) uaudio_set_speed_emu0202(ch); ch->pipe = 0; ch->sync_pipe = 0; DPRINTF(("uaudio_chan_open: create pipe to 0x%02x\n", endpt)); err = usbd_open_pipe(as->ifaceh, endpt, 0, &ch->pipe); if (err) { printf("%s: error creating pipe: err=%s endpt=0x%02x\n", __func__, usbd_errstr(err), endpt); return err; } if (as->edesc1 != NULL) { endpt = as->edesc1->bEndpointAddress; DPRINTF(("uaudio_chan_open: create sync-pipe to 0x%02x\n", endpt)); err = usbd_open_pipe(as->ifaceh, endpt, 0, &ch->sync_pipe); if (err) { printf("%s: error creating sync-pipe: err=%s endpt=0x%02x\n", __func__, usbd_errstr(err), endpt); } } return err; } void uaudio_chan_close(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; as->sc_busy = 0; if (sc->sc_nullalt >= 0) { DPRINTF(("uaudio_chan_close: set null alt=%d\n", sc->sc_nullalt)); usbd_set_interface(as->ifaceh, sc->sc_nullalt); } if (ch->pipe) { usbd_abort_pipe(ch->pipe); usbd_close_pipe(ch->pipe); } if (ch->sync_pipe) { usbd_abort_pipe(ch->sync_pipe); usbd_close_pipe(ch->sync_pipe); } } usbd_status uaudio_chan_alloc_buffers(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; struct usbd_xfer *xfer; void *buf; int i, size; DPRINTF(("%s: max_bytes_per_frame=%d nframes=%d\n", __func__, ch->max_bytes_per_frame, ch->nframes)); size = ch->max_bytes_per_frame * ch->nframes; for (i = 0; i < UAUDIO_NCHANBUFS; i++) { xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == 0) goto bad; ch->chanbufs[i].xfer = xfer; buf = usbd_alloc_buffer(xfer, size); if (buf == 0) { i++; goto bad; } ch->chanbufs[i].buffer = buf; ch->chanbufs[i].chan = ch; } if (as->edesc1 != NULL) { size = (ch->hi_speed ? 4 : 3) * ch->nsync_frames; for (i = 0; i < UAUDIO_NSYNCBUFS; i++) { xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == 0) goto bad_sync; ch->syncbufs[i].xfer = xfer; buf = usbd_alloc_buffer(xfer, size); if (buf == 0) { i++; goto bad_sync; } ch->syncbufs[i].buffer = buf; ch->syncbufs[i].chan = ch; } } return (USBD_NORMAL_COMPLETION); bad: while (--i >= 0) /* implicit buffer free */ usbd_free_xfer(ch->chanbufs[i].xfer); return (USBD_NOMEM); bad_sync: while (--i >= 0) /* implicit buffer free */ usbd_free_xfer(ch->syncbufs[i].xfer); return (USBD_NOMEM); } void uaudio_chan_free_buffers(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; int i; for (i = 0; i < UAUDIO_NCHANBUFS; i++) usbd_free_xfer(ch->chanbufs[i].xfer); if (as->edesc1 != NULL) { for (i = 0; i < UAUDIO_NSYNCBUFS; i++) usbd_free_xfer(ch->syncbufs[i].xfer); } } /* Called at splusb() */ void uaudio_chan_ptransfer(struct chan *ch) { struct chanbuf *cb; u_char *pos; int i, n, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < ch->nframes; i++) { size = ch->bytes_per_frame; residue += ch->fraction; if (residue >= ch->frac_denom) { if ((ch->sc->sc_altflags & UA_NOFRAC) == 0) size += ch->sample_size; residue -= ch->frac_denom; } cb->sizes[i] = size; total += size; } ch->residue = residue; cb->size = total; /* * Transfer data from upper layer buffer to channel buffer. Be sure * to let the upper layer know each time a block is moved, so it can * add more. */ pos = cb->buffer; while (total > 0) { n = min(total, ch->end - ch->cur); n = min(n, ch->blksize - ch->transferred); memcpy(pos, ch->cur, n); total -= n; pos += n; ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; ch->transferred += n; /* Call back to upper layer */ if (ch->transferred >= ch->blksize) { DPRINTFN(5,("uaudio_chan_ptransfer: call %p(%p)\n", ch->intr, ch->arg)); mtx_enter(&audio_lock); ch->intr(ch->arg); mtx_leave(&audio_lock); ch->transferred -= ch->blksize; } } #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF(("uaudio_chan_ptransfer: buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue)); for (i = 0; i < ch->nframes; i++) { DPRINTF((" [%d] length %d\n", i, cb->sizes[i])); } } #endif DPRINTFN(5,("uaudio_chan_ptransfer: transfer xfer=%p\n", cb->xfer)); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes, ch->nframes, USBD_NO_COPY, uaudio_chan_pintr); (void)usbd_transfer(cb->xfer); } void uaudio_chan_pintr(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct chanbuf *cb = priv; struct chan *ch = cb->chan; u_int32_t count; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5,("uaudio_chan_pintr: count=%d, transferred=%d\n", count, ch->transferred)); #ifdef UAUDIO_DEBUG if (count != cb->size) { printf("uaudio_chan_pintr: count(%d) != size(%d)\n", count, cb->size); } #endif /* start next transfer */ uaudio_chan_ptransfer(ch); } /* Called at splusb() */ void uaudio_chan_psync_transfer(struct chan *ch) { struct syncbuf *sb; int i, size, total = 0; if (ch->sc->sc_dying) return; /* Pick the next sync buffer. */ sb = &ch->syncbufs[ch->cursyncbuf]; if (++ch->cursyncbuf >= UAUDIO_NSYNCBUFS) ch->cursyncbuf = 0; size = ch->hi_speed ? 4 : 3; for (i = 0; i < ch->nsync_frames; i++) { sb->sizes[i] = size; sb->offsets[i] = total; total += size; } sb->size = total; DPRINTFN(5,("%s: transfer xfer=%p\n", __func__, sb->xfer)); /* Fill the request */ usbd_setup_isoc_xfer(sb->xfer, ch->sync_pipe, sb, sb->sizes, ch->nsync_frames, USBD_NO_COPY, uaudio_chan_psync_intr); (void)usbd_transfer(sb->xfer); } void uaudio_chan_psync_intr(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct syncbuf *sb = priv; struct chan *ch = sb->chan; u_int32_t count, tmp; u_int32_t freq, freq_w, freq_f; int i, pos, size; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5,("%s: count=%d\n", __func__, count)); size = ch->hi_speed ? 4 : 3; for (i = 0; count > 0 && i < ch->nsync_frames; i++) { if (sb->sizes[i] != size) continue; count -= size; pos = sb->offsets[i]; if (ch->hi_speed) { /* 16.16 (12.13) -> 16.16 (12.16) */ freq = sb->buffer[pos+3] << 24 | sb->buffer[pos+2] << 16 | sb->buffer[pos+1] << 8 | sb->buffer[pos]; } else { /* 10.14 (10.10) -> 16.16 (10.16) */ freq = sb->buffer[pos+2] << 18 | sb->buffer[pos+1] << 10 | sb->buffer[pos] << 2; } freq_w = (freq >> 16) & (ch->hi_speed ? 0x0fff : 0x03ff); freq_f = freq & 0xffff; DPRINTFN(5,("%s: freq = %d %d/%d\n", __func__, freq_w, freq_f, ch->frac_denom)); tmp = freq_w * ch->sample_size; if (tmp + (freq_f ? ch->sample_size : 0) > ch->max_bytes_per_frame) { DPRINTF(("%s: packet size request too large: %d/%d/%d\n", __func__, tmp, ch->max_bytes_per_frame, ch->maxpktsize)); } else { ch->bytes_per_frame = tmp; ch->fraction = freq_f; } } /* start next transfer */ uaudio_chan_psync_transfer(ch); } /* Called at splusb() */ void uaudio_chan_rtransfer(struct chan *ch) { struct chanbuf *cb; int i, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < ch->nframes; i++) { size = ch->bytes_per_frame; cb->sizes[i] = size; cb->offsets[i] = total; total += size; } ch->residue = residue; cb->size = total; #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF(("uaudio_chan_rtransfer: buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue)); for (i = 0; i < ch->nframes; i++) { DPRINTF((" [%d] length %d\n", i, cb->sizes[i])); } } #endif DPRINTFN(5,("uaudio_chan_rtransfer: transfer xfer=%p\n", cb->xfer)); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes, ch->nframes, USBD_NO_COPY, uaudio_chan_rintr); (void)usbd_transfer(cb->xfer); } void uaudio_chan_rintr(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct chanbuf *cb = priv; struct chan *ch = cb->chan; u_int16_t pos; u_int32_t count; int i, n, frsize; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5,("uaudio_chan_rintr: count=%d, transferred=%d\n", count, ch->transferred)); /* count < cb->size is normal for asynchronous source */ #ifdef DIAGNOSTIC if (count > cb->size) { printf("uaudio_chan_rintr: count(%d) > size(%d)\n", count, cb->size); } #endif /* * Transfer data from channel buffer to upper layer buffer, taking * care of wrapping the upper layer buffer. */ for (i = 0; i < ch->nframes; i++) { frsize = cb->sizes[i]; pos = cb->offsets[i]; while (frsize > 0) { n = min(frsize, ch->end - ch->cur); n = min(n, ch->blksize - ch->transferred); memcpy(ch->cur, cb->buffer + pos, n); frsize -= n; pos += n; ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; ch->transferred += n; /* Call back to upper layer */ if (ch->transferred >= ch->blksize) { DPRINTFN(5,("uaudio_chan_rintr: call %p(%p)\n", ch->intr, ch->arg)); mtx_enter(&audio_lock); ch->intr(ch->arg); mtx_leave(&audio_lock); ch->transferred -= ch->blksize; } if (count < n) printf("%s: count < n\n", __func__); else count -= n; } } if (count != 0) { printf("%s: transfer count - frame total = %d\n", __func__, count); } /* start next transfer */ uaudio_chan_rtransfer(ch); } void uaudio_chan_init(struct chan *ch, int mode, int altidx, const struct audio_params *param) { struct as_info *ai = &ch->sc->sc_alts[altidx]; int samples_per_frame, ival, use_maxpkt = 0; if (ai->attributes & UA_SED_MAXPACKETSONLY) { DPRINTF(("%s: alt %d needs maxpktsize packets\n", __func__, altidx)); use_maxpkt = 1; } if (mode == AUMODE_RECORD) { DPRINTF(("%s: using maxpktsize packets for record channel\n", __func__)); use_maxpkt = 1; } ch->altidx = altidx; ch->maxpktsize = UGETW(ai->edesc->wMaxPacketSize); ch->sample_rate = param->sample_rate; ch->sample_size = param->channels * param->bps; ch->usb_fps = USB_FRAMES_PER_SECOND; ch->hi_speed = ch->sc->sc_udev->speed == USB_SPEED_HIGH; if (ch->hi_speed) { ch->usb_fps *= 8; /* * Polling interval is considered a frame, as opposed to * micro-frame being a frame. */ ival = ch->sc->sc_alts[altidx].edesc->bInterval; if (ival > 0 && ival <= 4) ch->usb_fps >>= (ival - 1); DPRINTF(("%s: detected USB high-speed with ival %d\n", __func__, ival)); } /* * Use UAUDIO_MIN_FRAMES here, so uaudio_round_blocksize() can * make sure the blocksize duration will be > 1 USB frame. */ samples_per_frame = ch->sample_rate / ch->usb_fps; if (!use_maxpkt) { ch->fraction = ch->sample_rate % ch->usb_fps; if (samples_per_frame * ch->sample_size > ch->maxpktsize) { DPRINTF(("%s: packet size %d too big, max %d\n", __func__, ch->bytes_per_frame, ch->maxpktsize)); samples_per_frame = ch->maxpktsize / ch->sample_size; } ch->bytes_per_frame = samples_per_frame * ch->sample_size; ch->nframes = UAUDIO_MIN_FRAMES; } else { ch->fraction = 0; ch->bytes_per_frame = ch->maxpktsize; ch->nframes = UAUDIO_MIN_FRAMES * samples_per_frame * ch->sample_size / ch->maxpktsize; } if (ch->nframes > UAUDIO_MAX_FRAMES) ch->nframes = UAUDIO_MAX_FRAMES; else if (ch->nframes < 1) ch->nframes = 1; ch->max_bytes_per_frame = ch->bytes_per_frame; if (!use_maxpkt) ch->max_bytes_per_frame += ch->sample_size; if (ch->max_bytes_per_frame > ch->maxpktsize) ch->max_bytes_per_frame = ch->maxpktsize; ch->residue = 0; ch->frac_denom = ch->usb_fps; if (ai->edesc1 != NULL) { /* * The lower 16-bits of the sync request represent * fractional samples. Scale up the fraction here once * so all fractions are using the same denominator. */ ch->frac_denom = 1 << 16; ch->fraction = (ch->fraction * ch->frac_denom) / ch->usb_fps; /* * Have to set nsync_frames somewhere. We can request * a lot of sync data; the device will reply when it's * ready, with empty frames meaning to keep using the * current rate. */ ch->nsync_frames = UAUDIO_MAX_FRAMES; } DPRINTF(("%s: residual sample fraction: %d/%d\n", __func__, ch->fraction, ch->frac_denom)); } void uaudio_chan_set_param(struct chan *ch, u_char *start, u_char *end, int blksize) { ch->start = start; ch->end = end; ch->cur = start; ch->transferred = 0; ch->curchanbuf = 0; ch->blksize = blksize; /* * Recompute nframes based on blksize, but make sure nframes * is not longer in time duration than blksize. */ ch->nframes = ch->blksize * ch->usb_fps / (ch->bytes_per_frame * ch->usb_fps + ch->sample_size * ch->fraction); if (ch->nframes > UAUDIO_MAX_FRAMES) ch->nframes = UAUDIO_MAX_FRAMES; else if (ch->nframes < 1) ch->nframes = 1; ch->reqms = ch->bytes_per_frame / ch->sample_size * ch->nframes * 1000 / ch->sample_rate; DPRINTF(("%s: alt=%d blk=%d maxpkt=%u bpf=%u rate=%u nframes=%u reqms=%u\n", __func__, ch->altidx, ch->blksize, ch->maxpktsize, ch->bytes_per_frame, ch->sample_rate, ch->nframes, ch->reqms)); } int uaudio_match_alt_rate(void *addr, int alt, int rate) { struct uaudio_softc *sc = addr; const struct usb_audio_streaming_type1_descriptor *a1d; int i, j, r; a1d = sc->sc_alts[alt].asf1desc; if (a1d->bSamFreqType == UA_SAMP_CONTNUOUS) { if ((UA_SAMP_LO(a1d) <= rate) && (UA_SAMP_HI(a1d) >= rate)) { return rate; } else { if (UA_SAMP_LO(a1d) > rate) return UA_SAMP_LO(a1d); else return UA_SAMP_HI(a1d); } } else { for (i = 0; i < 100; i++) { for (j = 0; j < a1d->bSamFreqType; j++) { r = UA_GETSAMP(a1d, j); if ((r - (500 * i) <= rate) && (r + (500 * i) >= rate)) return r; } } /* assumes rates are listed in order from lowest to highest */ if (rate < UA_GETSAMP(a1d, 0)) j = 0; else j = a1d->bSamFreqType - 1; return UA_GETSAMP(a1d, j); } DPRINTF(("%s: could not match rate\n", __func__)); return rate; } int uaudio_match_alt(void *addr, struct audio_params *p, int mode) { struct uaudio_softc *sc = addr; const struct usb_audio_streaming_type1_descriptor *a1d; int i, j, dir, rate; int alts_eh, alts_ch, ualt; DPRINTF(("%s: mode=%s rate=%d ch=%d pre=%d bps=%d enc=%d\n", __func__, mode == AUMODE_RECORD ? "rec" : "play", p->sample_rate, p->channels, p->precision, p->bps, p->encoding)); alts_eh = 0; for (i = 0; i < sc->sc_nalts; i++) { dir = UE_GET_DIR(sc->sc_alts[i].edesc->bEndpointAddress); if ((mode == AUMODE_RECORD && dir != UE_DIR_IN) || (mode == AUMODE_PLAY && dir == UE_DIR_IN)) continue; DPRINTFN(6,("%s: matched %s alt %d for direction\n", __func__, mode == AUMODE_RECORD ? "rec" : "play", i)); if (sc->sc_alts[i].encoding != p->encoding) continue; a1d = sc->sc_alts[i].asf1desc; if (a1d->bBitResolution != p->precision) continue; alts_eh |= 1 << i; DPRINTFN(6,("%s: matched %s alt %d for enc/pre\n", __func__, mode == AUMODE_RECORD ? "rec" : "play", i)); } if (alts_eh == 0) { DPRINTF(("%s: could not match dir/enc/prec\n", __func__)); return -1; } alts_ch = 0; for (i = 0; i < 3; i++) { for (j = 0; j < sc->sc_nalts; j++) { if (!(alts_eh & (1 << j))) continue; a1d = sc->sc_alts[j].asf1desc; if (a1d->bNrChannels == p->channels) { alts_ch |= 1 << j; DPRINTFN(6,("%s: matched alt %d for channels\n", __func__, j)); } } if (alts_ch) break; if (p->channels == 2) p->channels = 1; else p->channels = 2; } if (!alts_ch) { /* just use the first alt that matched the encoding */ for (i = 0; i < sc->sc_nalts; i++) if (alts_eh & (1 << i)) break; alts_ch = 1 << i; a1d = sc->sc_alts[i].asf1desc; p->channels = a1d->bNrChannels; } ualt = -1; for (i = 0; i < sc->sc_nalts; i++) { if (alts_ch & (1 << i)) { rate = uaudio_match_alt_rate(sc, i, p->sample_rate); if (rate - 50 <= p->sample_rate && rate + 50 >= p->sample_rate) { DPRINTFN(6,("%s: alt %d matched rate %d with %d\n", __func__, i, p->sample_rate, rate)); p->sample_rate = rate; break; } } } if (i < sc->sc_nalts) { ualt = i; } else { for (i = 0; i < sc->sc_nalts; i++) { if (alts_ch & (1 << i)) { ualt = i; p->sample_rate = uaudio_match_alt_rate(sc, i, p->sample_rate); break; } } } return ualt; } int uaudio_set_params(void *addr, int setmode, int usemode, struct audio_params *play, struct audio_params *rec) { struct uaudio_softc *sc = addr; int flags = sc->sc_altflags; int i; int paltidx = -1, raltidx = -1; struct audio_params *p; int mode; if (sc->sc_dying) return (EIO); if (((usemode & AUMODE_PLAY) && sc->sc_playchan.pipe != NULL) || ((usemode & AUMODE_RECORD) && sc->sc_recchan.pipe != NULL)) return (EBUSY); if ((usemode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 0; if ((usemode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 0; /* Some uaudio devices are unidirectional. Don't try to find a matching mode for the unsupported direction. */ setmode &= sc->sc_mode; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = (mode == AUMODE_PLAY) ? play : rec; switch (p->precision) { case 24: if (!(flags & HAS_24)) { if (flags & HAS_16) p->precision = 16; else p->precision = 8; } break; case 16: if (!(flags & HAS_16)) { if (flags & HAS_24) p->precision = 24; else p->precision = 8; } break; case 8: if (!(flags & HAS_8) && !(flags & HAS_8U)) { if (flags & HAS_16) p->precision = 16; else p->precision = 24; } break; } i = uaudio_match_alt(sc, p, mode); if (i < 0) { DPRINTF(("%s: uaudio_match_alt failed for %s\n", __func__, mode == AUMODE_RECORD ? "rec" : "play")); continue; } p->sw_code = NULL; p->factor = 1; p->bps = sc->sc_alts[i].asf1desc->bSubFrameSize; p->msb = 1; if (mode == AUMODE_PLAY) paltidx = i; else raltidx = i; } if (setmode & AUMODE_PLAY) { if (paltidx == -1) { DPRINTF(("%s: did not find alt for playback\n", __func__)); return (EINVAL); } /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_playchan, AUMODE_PLAY, paltidx, play); } if (setmode & AUMODE_RECORD) { if (raltidx == -1) { DPRINTF(("%s: did not find alt for recording\n", __func__)); return (EINVAL); } /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_recchan, AUMODE_RECORD, raltidx, rec); } if ((usemode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 1; if ((usemode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 1; DPRINTF(("uaudio_set_params: use altidx=p%d/r%d, altno=p%d/r%d\n", sc->sc_playchan.altidx, sc->sc_recchan.altidx, (sc->sc_playchan.altidx >= 0) ?sc->sc_alts[sc->sc_playchan.altidx].idesc->bAlternateSetting : -1, (sc->sc_recchan.altidx >= 0) ? sc->sc_alts[sc->sc_recchan.altidx].idesc->bAlternateSetting : -1)); return (0); } usbd_status uaudio_set_speed(struct uaudio_softc *sc, int endpt, u_int speed) { usb_device_request_t req; u_int8_t data[3]; DPRINTFN(5,("uaudio_set_speed: endpt=%d speed=%u\n", endpt, speed)); req.bmRequestType = UT_WRITE_CLASS_ENDPOINT; req.bRequest = SET_CUR; USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0); USETW(req.wIndex, endpt); USETW(req.wLength, 3); data[0] = speed; data[1] = speed >> 8; data[2] = speed >> 16; return (usbd_do_request(sc->sc_udev, &req, data)); } void uaudio_set_speed_emu0202(struct chan *ch) { usb_device_request_t req; int rates[6] = { 44100, 48000, 88200, 96000, 176400, 192000 }; int i; u_int8_t data[1]; for (i = 0; i < 6; i++) if (rates[i] >= ch->sample_rate) break; if (i >= 6) { DPRINTF(("%s: unhandled rate %d\n", __func__, ch->sample_rate)); i = 0; } req.bmRequestType = UT_WRITE_CLASS_INTERFACE; req.bRequest = SET_CUR; USETW2(req.wValue, 0x03, 0); USETW2(req.wIndex, 12, ch->sc->sc_ac_iface); USETW(req.wLength, 1); data[0] = i; usbd_do_request(ch->sc->sc_udev, &req, data); }