/* $OpenBSD: uaudio.c,v 1.24 2006/01/01 22:13:52 fgsch Exp $ */ /* $NetBSD: uaudio.c,v 1.67 2003/05/03 18:11:41 wiz Exp $ */ /* * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB audio specs: http://www.usb.org/developers/devclass_docs/audio10.pdf * http://www.usb.org/developers/devclass_docs/frmts10.pdf * http://www.usb.org/developers/devclass_docs/termt10.pdf */ #include #include #include #include #include #include #include #include #include /* for bootverbose */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef UAUDIO_DEBUG #define DPRINTF(x) do { if (uaudiodebug) logprintf x; } while (0) #define DPRINTFN(n,x) do { if (uaudiodebug>(n)) logprintf x; } while (0) int uaudiodebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define UAUDIO_NCHANBUFS 6 /* number of outstanding request */ #define UAUDIO_NFRAMES 10 /* ms of sound in each request */ #define MIX_MAX_CHAN 8 struct mixerctl { u_int16_t wValue[MIX_MAX_CHAN]; /* using nchan */ u_int16_t wIndex; u_int8_t nchan; u_int8_t type; #define MIX_ON_OFF 1 #define MIX_SIGNED_16 2 #define MIX_UNSIGNED_16 3 #define MIX_SIGNED_8 4 #define MIX_SIZE(n) ((n) == MIX_SIGNED_16 || (n) == MIX_UNSIGNED_16 ? 2 : 1) #define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16) int minval, maxval; u_int delta; u_int mul; u_int8_t class; char ctlname[MAX_AUDIO_DEV_LEN]; char *ctlunit; }; #define MAKE(h,l) (((h) << 8) | (l)) struct as_info { u_int8_t alt; u_int8_t encoding; u_int8_t attributes; /* Copy of bmAttributes of * usb_audio_streaming_endpoint_descriptor */ usbd_interface_handle ifaceh; usb_interface_descriptor_t *idesc; usb_endpoint_descriptor_audio_t *edesc; struct usb_audio_streaming_type1_descriptor *asf1desc; int sc_busy; /* currently used */ }; struct chan { void (*intr)(void *); /* DMA completion intr handler */ void *arg; /* arg for intr() */ usbd_pipe_handle pipe; u_int sample_size; u_int sample_rate; u_int bytes_per_frame; u_int fraction; /* fraction/1000 is the extra samples/frame */ u_int residue; /* accumulates the fractional samples */ u_char *start; /* upper layer buffer start */ u_char *end; /* upper layer buffer end */ u_char *cur; /* current position in upper layer buffer */ int blksize; /* chunk size to report up */ int transferred; /* transferred bytes not reported up */ int altidx; /* currently used altidx */ int curchanbuf; struct chanbuf { struct chan *chan; usbd_xfer_handle xfer; u_char *buffer; u_int16_t sizes[UAUDIO_NFRAMES]; u_int16_t offsets[UAUDIO_NFRAMES]; u_int16_t size; } chanbufs[UAUDIO_NCHANBUFS]; struct uaudio_softc *sc; /* our softc */ }; struct uaudio_softc { USBBASEDEVICE sc_dev; /* base device */ usbd_device_handle sc_udev; /* USB device */ int sc_ac_iface; /* Audio Control interface */ usbd_interface_handle sc_ac_ifaceh; struct chan sc_playchan; /* play channel */ struct chan sc_recchan; /* record channel */ int sc_nullalt; int sc_audio_rev; struct as_info *sc_alts; int sc_nalts; int sc_altflags; #define HAS_8 0x01 #define HAS_16 0x02 #define HAS_8U 0x04 #define HAS_ALAW 0x08 #define HAS_MULAW 0x10 #define UA_NOFRAC 0x20 /* don't do sample rate adjustment */ #define HAS_24 0x40 int sc_mode; /* play/record capability */ struct mixerctl *sc_ctls; int sc_nctls; device_ptr_t sc_audiodev; char sc_dying; }; #define UAC_OUTPUT 0 #define UAC_INPUT 1 #define UAC_EQUAL 2 #define UAC_NCLASSES 3 Static usbd_status uaudio_identify_ac(struct uaudio_softc *sc, usb_config_descriptor_t *cdesc); Static usbd_status uaudio_identify_as(struct uaudio_softc *sc, usb_config_descriptor_t *cdesc); Static usbd_status uaudio_process_as(struct uaudio_softc *sc, char *buf, int *offsp, int size, usb_interface_descriptor_t *id); Static void uaudio_add_alt(struct uaudio_softc *sc, struct as_info *ai); Static void uaudio_mixer_alias_ctl(struct uaudio_softc *sc, struct mixerctl *mp, const char *ctl); Static usb_interface_descriptor_t *uaudio_find_iface(char *buf, int size, int *offsp, int subtype); Static void uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct mixerctl *mp); Static char *uaudio_id_name(struct uaudio_softc *sc, usb_descriptor_t **dps, int id); Static struct usb_audio_cluster uaudio_get_cluster(int id, usb_descriptor_t **dps); Static void uaudio_add_input(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static void uaudio_add_output(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static void uaudio_add_mixer(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static void uaudio_add_selector(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static void uaudio_add_feature(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static void uaudio_add_processing_updown(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static void uaudio_add_processing(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static void uaudio_add_extension(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps); Static usbd_status uaudio_identify(struct uaudio_softc *sc, usb_config_descriptor_t *cdesc); Static int uaudio_signext(int type, int val); Static int uaudio_value2bsd(struct mixerctl *mc, int val); Static int uaudio_bsd2value(struct mixerctl *mc, int val); Static int uaudio_get(struct uaudio_softc *sc, int type, int which, int wValue, int wIndex, int len); Static int uaudio_ctl_get(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan); Static void uaudio_set(struct uaudio_softc *sc, int type, int which, int wValue, int wIndex, int l, int v); Static void uaudio_ctl_set(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan, int val); Static usbd_status uaudio_set_speed(struct uaudio_softc *, int, u_int); Static usbd_status uaudio_chan_open(struct uaudio_softc *sc, struct chan *ch); Static void uaudio_chan_close(struct uaudio_softc *sc, struct chan *ch); Static usbd_status uaudio_chan_alloc_buffers(struct uaudio_softc *, struct chan *); Static void uaudio_chan_free_buffers(struct uaudio_softc *, struct chan *); Static void uaudio_chan_init(struct chan *, int, const struct audio_params *, int); Static void uaudio_chan_set_param(struct chan *ch, u_char *start, u_char *end, int blksize); Static void uaudio_chan_ptransfer(struct chan *ch); Static void uaudio_chan_pintr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status); Static void uaudio_chan_rtransfer(struct chan *ch); Static void uaudio_chan_rintr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status); Static int uaudio_open(void *, int); Static void uaudio_close(void *); Static int uaudio_drain(void *); Static int uaudio_query_encoding(void *, struct audio_encoding *); Static void uaudio_get_minmax_rates(int, const struct as_info *, const struct audio_params *, int, u_long *, u_long *); Static int uaudio_match_alt_sub(int, const struct as_info *, const struct audio_params *, int, u_long); Static int uaudio_match_alt_chan(int, const struct as_info *, struct audio_params *, int); Static int uaudio_match_alt(int, const struct as_info *, struct audio_params *, int); Static int uaudio_set_params(void *, int, int, struct audio_params *, struct audio_params *); Static int uaudio_round_blocksize(void *, int); Static int uaudio_trigger_output(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); Static int uaudio_trigger_input (void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); Static int uaudio_halt_in_dma(void *); Static int uaudio_halt_out_dma(void *); Static int uaudio_getdev(void *, struct audio_device *); Static int uaudio_mixer_set_port(void *, mixer_ctrl_t *); Static int uaudio_mixer_get_port(void *, mixer_ctrl_t *); Static int uaudio_query_devinfo(void *, mixer_devinfo_t *); Static int uaudio_get_props(void *); Static struct audio_hw_if uaudio_hw_if = { uaudio_open, uaudio_close, uaudio_drain, uaudio_query_encoding, uaudio_set_params, uaudio_round_blocksize, NULL, NULL, NULL, NULL, NULL, uaudio_halt_out_dma, uaudio_halt_in_dma, NULL, uaudio_getdev, NULL, uaudio_mixer_set_port, uaudio_mixer_get_port, uaudio_query_devinfo, NULL, NULL, NULL, NULL, uaudio_get_props, uaudio_trigger_output, uaudio_trigger_input, #if defined(__NetBSD__) NULL, #endif }; Static struct audio_device uaudio_device = { "USB audio", "", "uaudio" }; USB_DECLARE_DRIVER(uaudio); USB_MATCH(uaudio) { USB_MATCH_START(uaudio, uaa); usb_interface_descriptor_t *id; if (uaa->iface == NULL) return (UMATCH_NONE); id = usbd_get_interface_descriptor(uaa->iface); /* Trigger on the control interface. */ if (id == NULL || id->bInterfaceClass != UICLASS_AUDIO || id->bInterfaceSubClass != UISUBCLASS_AUDIOCONTROL || (usbd_get_quirks(uaa->device)->uq_flags & UQ_BAD_AUDIO)) return (UMATCH_NONE); return (UMATCH_IFACECLASS_IFACESUBCLASS); } USB_ATTACH(uaudio) { USB_ATTACH_START(uaudio, sc, uaa); usb_interface_descriptor_t *id; usb_config_descriptor_t *cdesc; char *devinfop; usbd_status err; int i, j, found; devinfop = usbd_devinfo_alloc(uaa->device, 0); printf(": %s\n", devinfop); usbd_devinfo_free(devinfop); sc->sc_udev = uaa->device; cdesc = usbd_get_config_descriptor(sc->sc_udev); if (cdesc == NULL) { printf("%s: failed to get configuration descriptor\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } err = uaudio_identify(sc, cdesc); if (err) { printf("%s: audio descriptors make no sense, error=%d\n", USBDEVNAME(sc->sc_dev), err); USB_ATTACH_ERROR_RETURN; } sc->sc_ac_ifaceh = uaa->iface; /* Pick up the AS interface. */ for (i = 0; i < uaa->nifaces; i++) { if (uaa->ifaces[i] == NULL) continue; id = usbd_get_interface_descriptor(uaa->ifaces[i]); if (id == NULL) continue; found = 0; for (j = 0; j < sc->sc_nalts; j++) { if (id->bInterfaceNumber == sc->sc_alts[j].idesc->bInterfaceNumber) { sc->sc_alts[j].ifaceh = uaa->ifaces[i]; found = 1; } } if (found) uaa->ifaces[i] = NULL; } for (j = 0; j < sc->sc_nalts; j++) { if (sc->sc_alts[j].ifaceh == NULL) { printf("%s: alt %d missing AS interface(s)\n", USBDEVNAME(sc->sc_dev), j); USB_ATTACH_ERROR_RETURN; } } printf("%s: audio rev %d.%02x", USBDEVNAME(sc->sc_dev), sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff); sc->sc_playchan.sc = sc->sc_recchan.sc = sc; sc->sc_playchan.altidx = -1; sc->sc_recchan.altidx = -1; if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_FRAC) sc->sc_altflags |= UA_NOFRAC; #if defined(__NetBSD__) && !defined(UAUDIO_DEBUG) if (bootverbose) #endif printf(", %d mixer controls", sc->sc_nctls); printf("\n"); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, USBDEV(sc->sc_dev)); DPRINTF(("uaudio_attach: doing audio_attach_mi\n")); sc->sc_audiodev = audio_attach_mi(&uaudio_hw_if, sc, &sc->sc_dev); USB_ATTACH_SUCCESS_RETURN; } /* * Macros to help sync OpenBSD to NetBSD */ #if defined(__OpenBSD__) #define hw_channels channels #define hw_sample_rate sample_rate #define hw_precision precision #define hw_encoding encoding #endif int uaudio_activate(device_ptr_t self, enum devact act) { struct uaudio_softc *sc = (struct uaudio_softc *)self; int rv = 0; switch (act) { case DVACT_ACTIVATE: return (EOPNOTSUPP); break; case DVACT_DEACTIVATE: if (sc->sc_audiodev != NULL) rv = config_deactivate(sc->sc_audiodev); sc->sc_dying = 1; break; } return (rv); } int uaudio_detach(device_ptr_t self, int flags) { struct uaudio_softc *sc = (struct uaudio_softc *)self; int rv = 0; /* Wait for outstanding requests to complete. */ usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * UAUDIO_NFRAMES); if (sc->sc_audiodev != NULL) rv = config_detach(sc->sc_audiodev, flags); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, USBDEV(sc->sc_dev)); return (rv); } int uaudio_query_encoding(void *addr, struct audio_encoding *fp) { struct uaudio_softc *sc = addr; int flags = sc->sc_altflags; int idx; if (sc->sc_dying) return (EIO); if (sc->sc_nalts == 0 || flags == 0) return (ENXIO); idx = fp->index; switch (idx) { case 0: strlcpy(fp->name, AudioEulinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = flags&HAS_8U ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 1: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = flags&HAS_MULAW ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 2: strlcpy(fp->name, AudioEalaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = flags&HAS_ALAW ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 3: strlcpy(fp->name, AudioEslinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = flags&HAS_8 ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 4: strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; return (0); case 5: strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 6: strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 7: strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); default: return (EINVAL); } } usb_interface_descriptor_t * uaudio_find_iface(char *buf, int size, int *offsp, int subtype) { usb_interface_descriptor_t *d; while (*offsp < size) { d = (void *)(buf + *offsp); *offsp += d->bLength; if (d->bDescriptorType == UDESC_INTERFACE && d->bInterfaceClass == UICLASS_AUDIO && d->bInterfaceSubClass == subtype) return (d); } return (NULL); } void uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct mixerctl *mc) { int res; size_t len = sizeof(*mc) * (sc->sc_nctls + 1); struct mixerctl *nmc = malloc(len, M_USBDEV, M_NOWAIT); if (nmc == NULL) { printf("uaudio_mixer_add_ctl: no memory\n"); return; } /* Copy old data, if there was any */ if (sc->sc_nctls != 0) { bcopy(sc->sc_ctls, nmc, sizeof(*mc) * (sc->sc_nctls)); free(sc->sc_ctls, M_USBDEV); } sc->sc_ctls = nmc; mc->delta = 0; if (mc->type != MIX_ON_OFF) { /* Determine min and max values. */ mc->minval = uaudio_signext(mc->type, uaudio_get(sc, GET_MIN, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); mc->maxval = 1 + uaudio_signext(mc->type, uaudio_get(sc, GET_MAX, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); mc->mul = mc->maxval - mc->minval; if (mc->mul == 0) mc->mul = 1; res = uaudio_get(sc, GET_RES, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type)); if (res > 0) mc->delta = (res * 255 + mc->mul/2) / mc->mul; } else { mc->minval = 0; mc->maxval = 1; } sc->sc_ctls[sc->sc_nctls++] = *mc; #ifdef UAUDIO_DEBUG if (uaudiodebug > 2) { int i; DPRINTF(("uaudio_mixer_add_ctl: wValue=%04x",mc->wValue[0])); for (i = 1; i < mc->nchan; i++) DPRINTF((",%04x", mc->wValue[i])); DPRINTF((" wIndex=%04x type=%d name='%s' unit='%s' " "min=%d max=%d\n", mc->wIndex, mc->type, mc->ctlname, mc->ctlunit, mc->minval, mc->maxval)); } #endif } void uaudio_mixer_alias_ctl(struct uaudio_softc *sc, struct mixerctl *mc, const char *name) { /* XXX mark as alias? */ strlcpy(mc->ctlname, name, sizeof mc->ctlname); uaudio_mixer_add_ctl(sc, mc); } char * uaudio_id_name(struct uaudio_softc *sc, usb_descriptor_t **dps, int id) { static char buf[32]; snprintf(buf, sizeof buf, "i%d", id); return (buf); } struct usb_audio_cluster uaudio_get_cluster(int id, usb_descriptor_t **dps) { struct usb_audio_cluster r; usb_descriptor_t *dp; int i; for (i = 0; i < 25; i++) { /* avoid infinite loops */ dp = dps[id]; if (dp == 0) goto bad; switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: #define p ((struct usb_audio_input_terminal *)dp) r.bNrChannels = p->bNrChannels; USETW(r.wChannelConfig, UGETW(p->wChannelConfig)); r.iChannelNames = p->iChannelNames; #undef p return (r); case UDESCSUB_AC_OUTPUT: #define p ((struct usb_audio_output_terminal *)dp) id = p->bSourceId; #undef p break; case UDESCSUB_AC_MIXER: #define p ((struct usb_audio_mixer_unit *)dp) r = *(struct usb_audio_cluster *) &p->baSourceId[p->bNrInPins]; #undef p return (r); case UDESCSUB_AC_SELECTOR: /* XXX This is not really right */ #define p ((struct usb_audio_selector_unit *)dp) id = p->baSourceId[0]; #undef p break; case UDESCSUB_AC_FEATURE: #define p ((struct usb_audio_feature_unit *)dp) id = p->bSourceId; #undef p break; case UDESCSUB_AC_PROCESSING: #define p ((struct usb_audio_processing_unit *)dp) r = *(struct usb_audio_cluster *) &p->baSourceId[p->bNrInPins]; #undef p return (r); case UDESCSUB_AC_EXTENSION: #define p ((struct usb_audio_extension_unit *)dp) r = *(struct usb_audio_cluster *) &p->baSourceId[p->bNrInPins]; #undef p return (r); default: goto bad; } } bad: printf("uaudio_get_cluster: bad data\n"); memset(&r, 0, sizeof r); return (r); } void uaudio_add_input(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { #ifdef UAUDIO_DEBUG struct usb_audio_input_terminal *d = (struct usb_audio_input_terminal *)v; DPRINTFN(2,("uaudio_add_input: bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d " "iChannelNames=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bNrChannels, UGETW(d->wChannelConfig), d->iChannelNames, d->iTerminal)); #endif } void uaudio_add_output(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { #ifdef UAUDIO_DEBUG struct usb_audio_output_terminal *d = (struct usb_audio_output_terminal *)v; DPRINTFN(2,("uaudio_add_output: bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bSourceId=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bSourceId, d->iTerminal)); #endif } void uaudio_add_mixer(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { struct usb_audio_mixer_unit *d = (struct usb_audio_mixer_unit *)v; struct usb_audio_mixer_unit_1 *d1; int c, chs, ichs, ochs, i, o, bno, p, mo, mc, k; uByte *bm; struct mixerctl mix; DPRINTFN(2,("uaudio_add_mixer: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); /* Compute the number of input channels */ ichs = 0; for (i = 0; i < d->bNrInPins; i++) ichs += uaudio_get_cluster(d->baSourceId[i], dps).bNrChannels; /* and the number of output channels */ d1 = (struct usb_audio_mixer_unit_1 *)&d->baSourceId[d->bNrInPins]; ochs = d1->bNrChannels; DPRINTFN(2,("uaudio_add_mixer: ichs=%d ochs=%d\n", ichs, ochs)); bm = d1->bmControls; mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.class = -1; mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; #define BIT(bno) ((bm[bno / 8] >> (7 - bno % 8)) & 1) for (p = i = 0; i < d->bNrInPins; i++) { chs = uaudio_get_cluster(d->baSourceId[i], dps).bNrChannels; mc = 0; for (c = 0; c < chs; c++) { mo = 0; for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (BIT(bno)) mo++; } if (mo == 1) mc++; } if (mc == chs && chs <= MIX_MAX_CHAN) { k = 0; for (c = 0; c < chs; c++) for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (BIT(bno)) mix.wValue[k++] = MAKE(p+c+1, o+1); } snprintf(mix.ctlname, sizeof mix.ctlname, "mix%d-%s", d->bUnitId, uaudio_id_name(sc, dps, d->baSourceId[i])); mix.nchan = chs; uaudio_mixer_add_ctl(sc, &mix); } else { /* XXX */ } #undef BIT p += chs; } } void uaudio_add_selector(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { #ifdef UAUDIO_DEBUG struct usb_audio_selector_unit *d = (struct usb_audio_selector_unit *)v; DPRINTFN(2,("uaudio_add_selector: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); #endif printf("uaudio_add_selector: NOT IMPLEMENTED\n"); } void uaudio_add_feature(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { struct usb_audio_feature_unit *d = (struct usb_audio_feature_unit *)v; uByte *ctls = d->bmaControls; int ctlsize = d->bControlSize; int nchan = (d->bLength - 7) / ctlsize; int srcId = d->bSourceId; u_int fumask, mmask, cmask; struct mixerctl mix; int chan, ctl, i, unit; #define GET(i) (ctls[(i)*ctlsize] | \ (ctlsize > 1 ? ctls[(i)*ctlsize+1] << 8 : 0)) mmask = GET(0); /* Figure out what we can control */ for (cmask = 0, chan = 1; chan < nchan; chan++) { DPRINTFN(9,("uaudio_add_feature: chan=%d mask=%x\n", chan, GET(chan))); cmask |= GET(chan); } DPRINTFN(1,("uaudio_add_feature: bUnitId=%d bSourceId=%d, " "%d channels, mmask=0x%04x, cmask=0x%04x\n", d->bUnitId, srcId, nchan, mmask, cmask)); if (nchan > MIX_MAX_CHAN) nchan = MIX_MAX_CHAN; unit = d->bUnitId; mix.wIndex = MAKE(unit, sc->sc_ac_iface); for (ctl = MUTE_CONTROL; ctl < LOUDNESS_CONTROL; ctl++) { fumask = FU_MASK(ctl); DPRINTFN(4,("uaudio_add_feature: ctl=%d fumask=0x%04x\n", ctl, fumask)); if (mmask & fumask) { mix.nchan = 1; mix.wValue[0] = MAKE(ctl, 0); } else if (cmask & fumask) { mix.nchan = nchan - 1; for (i = 1; i < nchan; i++) { if (GET(i) & fumask) mix.wValue[i-1] = MAKE(ctl, i); else mix.wValue[i-1] = -1; } } else { continue; } #undef GET mix.class = UAC_OUTPUT; /* XXX we don't really know this */ switch (ctl) { case MUTE_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; uaudio_mixer_alias_ctl(sc, &mix, AudioNmute); snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNmute); break; case VOLUME_CONTROL: mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; uaudio_mixer_alias_ctl(sc, &mix, AudioNmaster); snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNmaster); break; case BASS_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNbass; uaudio_mixer_alias_ctl(sc, &mix, AudioNbass); snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNbass); break; case MID_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNmid; snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNmid); break; case TREBLE_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNtreble; uaudio_mixer_alias_ctl(sc, &mix, AudioNtreble); snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNtreble); break; case GRAPHIC_EQUALIZER_CONTROL: continue; /* XXX don't add anything */ break; case AGC_CONTROL: mix.type = MIX_ON_OFF; snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNagc); mix.ctlunit = ""; break; case DELAY_CONTROL: mix.type = MIX_UNSIGNED_16; snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNdelay); mix.ctlunit = "4 ms"; break; case BASS_BOOST_CONTROL: mix.type = MIX_ON_OFF; snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNbassboost); mix.ctlunit = ""; break; case LOUDNESS_CONTROL: mix.type = MIX_ON_OFF; snprintf(mix.ctlname, sizeof mix.ctlname, "fea%d-%s-%s", unit, uaudio_id_name(sc, dps, srcId), AudioNloudness); mix.ctlunit = ""; break; } uaudio_mixer_add_ctl(sc, &mix); } } void uaudio_add_processing_updown(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { struct usb_audio_processing_unit *d = (struct usb_audio_processing_unit *)v; struct usb_audio_processing_unit_1 *d1 = (struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins]; struct usb_audio_processing_unit_updown *ud = (struct usb_audio_processing_unit_updown *) &d1->bmControls[d1->bControlSize]; struct mixerctl mix; int i; DPRINTFN(2,("uaudio_add_processing_updown: bUnitId=%d bNrModes=%d\n", d->bUnitId, ud->bNrModes)); if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) { DPRINTF(("uaudio_add_processing_updown: no mode select\n")); return; } mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UD_MODE_SELECT_CONTROL, 0); mix.class = -1; mix.type = MIX_ON_OFF; /* XXX */ mix.ctlunit = ""; snprintf(mix.ctlname, sizeof mix.ctlname, "pro%d-mode", d->bUnitId); for (i = 0; i < ud->bNrModes; i++) { DPRINTFN(2,("uaudio_add_processing_updown: i=%d bm=0x%x\n", i, UGETW(ud->waModes[i]))); /* XXX */ } uaudio_mixer_add_ctl(sc, &mix); } void uaudio_add_processing(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { struct usb_audio_processing_unit *d = (struct usb_audio_processing_unit *)v; struct usb_audio_processing_unit_1 *d1 = (struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins]; int ptype = UGETW(d->wProcessType); struct mixerctl mix; DPRINTFN(2,("uaudio_add_processing: wProcessType=%d bUnitId=%d " "bNrInPins=%d\n", ptype, d->bUnitId, d->bNrInPins)); if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(XX_ENABLE_CONTROL, 0); mix.class = -1; mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof mix.ctlname, "pro%d.%d-enable", d->bUnitId, ptype); uaudio_mixer_add_ctl(sc, &mix); } switch(ptype) { case UPDOWNMIX_PROCESS: uaudio_add_processing_updown(sc, v, dps); break; case DOLBY_PROLOGIC_PROCESS: case P3D_STEREO_EXTENDER_PROCESS: case REVERBATION_PROCESS: case CHORUS_PROCESS: case DYN_RANGE_COMP_PROCESS: default: #ifdef UAUDIO_DEBUG printf("uaudio_add_processing: unit %d, type=%d not impl.\n", d->bUnitId, ptype); #endif break; } } void uaudio_add_extension(struct uaudio_softc *sc, usb_descriptor_t *v, usb_descriptor_t **dps) { struct usb_audio_extension_unit *d = (struct usb_audio_extension_unit *)v; struct usb_audio_extension_unit_1 *d1 = (struct usb_audio_extension_unit_1 *)&d->baSourceId[d->bNrInPins]; struct mixerctl mix; DPRINTFN(2,("uaudio_add_extension: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_XU) return; if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UA_EXT_ENABLE, 0); mix.class = -1; mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof mix.ctlname, "ext%d-enable", d->bUnitId); uaudio_mixer_add_ctl(sc, &mix); } } usbd_status uaudio_identify(struct uaudio_softc *sc, usb_config_descriptor_t *cdesc) { usbd_status err; err = uaudio_identify_ac(sc, cdesc); if (err) return (err); return (uaudio_identify_as(sc, cdesc)); } void uaudio_add_alt(struct uaudio_softc *sc, struct as_info *ai) { size_t len = sizeof(*ai) * (sc->sc_nalts + 1); struct as_info *nai = malloc(len, M_USBDEV, M_NOWAIT); if (nai == NULL) { printf("uaudio_add_alt: no memory\n"); return; } /* Copy old data, if there was any */ if (sc->sc_nalts != 0) { bcopy(sc->sc_alts, nai, sizeof(*ai) * (sc->sc_nalts)); free(sc->sc_alts, M_USBDEV); } sc->sc_alts = nai; DPRINTFN(2,("uaudio_add_alt: adding alt=%d, enc=%d\n", ai->alt, ai->encoding)); sc->sc_alts[sc->sc_nalts++] = *ai; } usbd_status uaudio_process_as(struct uaudio_softc *sc, char *buf, int *offsp, int size, usb_interface_descriptor_t *id) #define offs (*offsp) { struct usb_audio_streaming_interface_descriptor *asid; struct usb_audio_streaming_type1_descriptor *asf1d; usb_endpoint_descriptor_audio_t *ed; struct usb_audio_streaming_endpoint_descriptor *sed; int format, chan, prec, enc; int dir, type; struct as_info ai; asid = (void *)(buf + offs); if (asid->bDescriptorType != UDESC_CS_INTERFACE || asid->bDescriptorSubtype != AS_GENERAL) return (USBD_INVAL); offs += asid->bLength; if (offs > size) return (USBD_INVAL); asf1d = (void *)(buf + offs); if (asf1d->bDescriptorType != UDESC_CS_INTERFACE || asf1d->bDescriptorSubtype != FORMAT_TYPE) return (USBD_INVAL); offs += asf1d->bLength; if (offs > size) return (USBD_INVAL); if (asf1d->bFormatType != FORMAT_TYPE_I) { printf("%s: ignored setting with type %d format\n", USBDEVNAME(sc->sc_dev), UGETW(asid->wFormatTag)); return (USBD_NORMAL_COMPLETION); } ed = (void *)(buf + offs); if (ed->bDescriptorType != UDESC_ENDPOINT) return (USBD_INVAL); DPRINTF(("uaudio_process_as: endpoint bLength=%d bDescriptorType=%d " "bEndpointAddress=%d bmAttributes=0x%x wMaxPacketSize=%d " "bInterval=%d bRefresh=%d bSynchAddress=%d\n", ed->bLength, ed->bDescriptorType, ed->bEndpointAddress, ed->bmAttributes, UGETW(ed->wMaxPacketSize), ed->bInterval, ed->bRefresh, ed->bSynchAddress)); offs += ed->bLength; if (offs > size) return (USBD_INVAL); if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS) return (USBD_INVAL); dir = UE_GET_DIR(ed->bEndpointAddress); type = UE_GET_ISO_TYPE(ed->bmAttributes); if ((usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_INP_ASYNC) && dir == UE_DIR_IN && type == UE_ISO_ADAPT) type = UE_ISO_ASYNC; /* We can't handle endpoints that need a sync pipe yet. */ if (dir == UE_DIR_IN ? type == UE_ISO_ADAPT : type == UE_ISO_ASYNC) { printf("%s: ignored %sput endpoint of type %s\n", USBDEVNAME(sc->sc_dev), dir == UE_DIR_IN ? "in" : "out", dir == UE_DIR_IN ? "adaptive" : "async"); return (USBD_NORMAL_COMPLETION); } sed = (void *)(buf + offs); if (sed->bDescriptorType != UDESC_CS_ENDPOINT || sed->bDescriptorSubtype != AS_GENERAL) return (USBD_INVAL); offs += sed->bLength; if (offs > size) return (USBD_INVAL); format = UGETW(asid->wFormatTag); chan = asf1d->bNrChannels; prec = asf1d->bBitResolution; if (prec != 8 && prec != 16 && prec != 24) { printf("%s: ignored setting with precision %d\n", USBDEVNAME(sc->sc_dev), prec); return (USBD_NORMAL_COMPLETION); } switch (format) { case UA_FMT_PCM: if (prec == 8) { sc->sc_altflags |= HAS_8; } else if (prec == 16) { sc->sc_altflags |= HAS_16; } else if (prec == 24) { sc->sc_altflags |= HAS_24; } enc = AUDIO_ENCODING_SLINEAR_LE; break; case UA_FMT_PCM8: enc = AUDIO_ENCODING_ULINEAR_LE; sc->sc_altflags |= HAS_8U; break; case UA_FMT_ALAW: enc = AUDIO_ENCODING_ALAW; sc->sc_altflags |= HAS_ALAW; break; case UA_FMT_MULAW: enc = AUDIO_ENCODING_ULAW; sc->sc_altflags |= HAS_MULAW; break; default: printf("%s: ignored setting with format %d\n", USBDEVNAME(sc->sc_dev), format); return (USBD_NORMAL_COMPLETION); } DPRINTFN(1, ("uaudio_process_as: alt=%d enc=%d chan=%d prec=%d\n", id->bAlternateSetting, enc, chan, prec)); ai.alt = id->bAlternateSetting; ai.encoding = enc; ai.attributes = sed->bmAttributes; ai.idesc = id; ai.edesc = ed; ai.asf1desc = asf1d; ai.sc_busy = 0; uaudio_add_alt(sc, &ai); #ifdef UAUDIO_DEBUG { int j; if (asf1d->bSamFreqType == UA_SAMP_CONTNUOUS) { DPRINTFN(1, ("uaudio_process_as: rate=%d-%d\n", UA_SAMP_LO(asf1d), UA_SAMP_HI(asf1d))); } else { DPRINTFN(1, ("uaudio_process_as: ")); for (j = 0; j < asf1d->bSamFreqType; j++) DPRINTFN(1, (" %d", UA_GETSAMP(asf1d, j))); DPRINTFN(1, ("\n")); } if (ai.attributes & UA_SED_FREQ_CONTROL) DPRINTFN(1, ("uaudio_process_as: FREQ_CONTROL\n")); if (ai.attributes & UA_SED_PITCH_CONTROL) DPRINTFN(1, ("uaudio_process_as: PITCH_CONTROL\n")); } #endif sc->sc_mode |= (dir == UE_DIR_OUT) ? AUMODE_PLAY : AUMODE_RECORD; return (USBD_NORMAL_COMPLETION); } #undef offs usbd_status uaudio_identify_as(struct uaudio_softc *sc, usb_config_descriptor_t *cdesc) { usb_interface_descriptor_t *id; char *buf; int size, offs; size = UGETW(cdesc->wTotalLength); buf = (char *)cdesc; /* Locate the AudioStreaming interface descriptor. */ offs = 0; id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOSTREAM); if (id == NULL) return (USBD_INVAL); /* Loop through all the alternate settings. */ while (offs <= size) { DPRINTFN(2, ("uaudio_identify: interface %d\n", id->bInterfaceNumber)); switch (id->bNumEndpoints) { case 0: DPRINTFN(2, ("uaudio_identify: AS null alt=%d\n", id->bAlternateSetting)); sc->sc_nullalt = id->bAlternateSetting; break; case 1: uaudio_process_as(sc, buf, &offs, size, id); break; default: #ifdef UAUDIO_DEBUG printf("%s: ignored audio interface with %d " "endpoints\n", USBDEVNAME(sc->sc_dev), id->bNumEndpoints); #endif break; } id = uaudio_find_iface(buf, size, &offs,UISUBCLASS_AUDIOSTREAM); if (id == NULL) break; } if (offs > size) return (USBD_INVAL); DPRINTF(("uaudio_identify_as: %d alts available\n", sc->sc_nalts)); if ((sc->sc_mode & (AUMODE_PLAY | AUMODE_RECORD)) == 0) { printf("%s: no usable endpoint found\n", USBDEVNAME(sc->sc_dev)); return (USBD_INVAL); } return (USBD_NORMAL_COMPLETION); } usbd_status uaudio_identify_ac(struct uaudio_softc *sc, usb_config_descriptor_t *cdesc) { usb_interface_descriptor_t *id; struct usb_audio_control_descriptor *acdp; usb_descriptor_t *dp, *dps[256]; char *buf, *ibuf, *ibufend; int size, offs, aclen, ndps, i; size = UGETW(cdesc->wTotalLength); buf = (char *)cdesc; /* Locate the AudioControl interface descriptor. */ offs = 0; id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOCONTROL); if (id == NULL) return (USBD_INVAL); if (offs + sizeof *acdp > size) return (USBD_INVAL); sc->sc_ac_iface = id->bInterfaceNumber; DPRINTFN(2,("uaudio_identify: AC interface is %d\n", sc->sc_ac_iface)); /* A class-specific AC interface header should follow. */ ibuf = buf + offs; acdp = (struct usb_audio_control_descriptor *)ibuf; if (acdp->bDescriptorType != UDESC_CS_INTERFACE || acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER) return (USBD_INVAL); aclen = UGETW(acdp->wTotalLength); if (offs + aclen > size) return (USBD_INVAL); if (!(usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_BAD_ADC) && UGETW(acdp->bcdADC) != UAUDIO_VERSION) return (USBD_INVAL); sc->sc_audio_rev = UGETW(acdp->bcdADC); DPRINTFN(2,("uaudio_identify: found AC header, vers=%03x, len=%d\n", sc->sc_audio_rev, aclen)); sc->sc_nullalt = -1; /* Scan through all the AC specific descriptors */ ibufend = ibuf + aclen; dp = (usb_descriptor_t *)ibuf; ndps = 0; memset(dps, 0, sizeof dps); for (;;) { ibuf += dp->bLength; if (ibuf >= ibufend) break; dp = (usb_descriptor_t *)ibuf; if (ibuf + dp->bLength > ibufend) return (USBD_INVAL); if (dp->bDescriptorType != UDESC_CS_INTERFACE) { printf("uaudio_identify: skip desc type=0x%02x\n", dp->bDescriptorType); continue; } i = ((struct usb_audio_input_terminal *)dp)->bTerminalId; dps[i] = dp; if (i > ndps) ndps = i; } ndps++; for (i = 0; i < ndps; i++) { dp = dps[i]; if (dp == NULL) continue; DPRINTF(("uaudio_identify: subtype=%d\n", dp->bDescriptorSubtype)); switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_HEADER: printf("uaudio_identify: unexpected AC header\n"); break; case UDESCSUB_AC_INPUT: uaudio_add_input(sc, dp, dps); break; case UDESCSUB_AC_OUTPUT: uaudio_add_output(sc, dp, dps); break; case UDESCSUB_AC_MIXER: uaudio_add_mixer(sc, dp, dps); break; case UDESCSUB_AC_SELECTOR: uaudio_add_selector(sc, dp, dps); break; case UDESCSUB_AC_FEATURE: uaudio_add_feature(sc, dp, dps); break; case UDESCSUB_AC_PROCESSING: uaudio_add_processing(sc, dp, dps); break; case UDESCSUB_AC_EXTENSION: uaudio_add_extension(sc, dp, dps); break; default: printf("uaudio_identify: bad AC desc subtype=0x%02x\n", dp->bDescriptorSubtype); break; } } return (USBD_NORMAL_COMPLETION); } int uaudio_query_devinfo(void *addr, mixer_devinfo_t *mi) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int n, nctls; DPRINTFN(2,("uaudio_query_devinfo: index=%d\n", mi->index)); if (sc->sc_dying) return (EIO); n = mi->index; nctls = sc->sc_nctls; switch (n) { case UAC_OUTPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_OUTPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCoutputs, sizeof mi->label.name); return (0); case UAC_INPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_INPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCinputs, sizeof mi->label.name); return (0); case UAC_EQUAL: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_EQUAL; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCequalization, sizeof mi->label.name); return (0); default: break; } n -= UAC_NCLASSES; if (n < 0 || n >= nctls) return (ENXIO); mc = &sc->sc_ctls[n]; strlcpy(mi->label.name, mc->ctlname, sizeof mi->label.name); mi->mixer_class = mc->class; mi->next = mi->prev = AUDIO_MIXER_LAST; /* XXX */ switch (mc->type) { case MIX_ON_OFF: mi->type = AUDIO_MIXER_ENUM; mi->un.e.num_mem = 2; strlcpy(mi->un.e.member[0].label.name, AudioNoff, sizeof mi->un.e.member[0].label.name); mi->un.e.member[0].ord = 0; strlcpy(mi->un.e.member[1].label.name, AudioNon, sizeof mi->un.e.member[1].label.name); mi->un.e.member[1].ord = 1; break; default: mi->type = AUDIO_MIXER_VALUE; strlcpy(mi->un.v.units.name, mc->ctlunit, sizeof mi->un.v.units.name); mi->un.v.num_channels = mc->nchan; mi->un.v.delta = mc->delta; break; } return (0); } int uaudio_open(void *addr, int flags) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_open: sc=%p\n", sc)); if (sc->sc_dying) return (EIO); if (sc->sc_mode == 0) return (ENXIO); if (flags & FREAD) { if ((sc->sc_mode & AUMODE_RECORD) == 0) return (EACCES); sc->sc_recchan.intr = NULL; } if (flags & FWRITE) { if ((sc->sc_mode & AUMODE_PLAY) == 0) return (EACCES); sc->sc_playchan.intr = NULL; } return (0); } /* * Close function is called at splaudio(). */ void uaudio_close(void *addr) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_close: sc=%p\n", sc)); uaudio_halt_in_dma(sc); uaudio_halt_out_dma(sc); sc->sc_playchan.intr = sc->sc_recchan.intr = NULL; } int uaudio_drain(void *addr) { struct uaudio_softc *sc = addr; usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * UAUDIO_NFRAMES); return (0); } int uaudio_halt_out_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_halt_out_dma: enter\n")); if (sc->sc_playchan.pipe != NULL) { uaudio_chan_close(sc, &sc->sc_playchan); sc->sc_playchan.pipe = NULL; uaudio_chan_free_buffers(sc, &sc->sc_playchan); } return (0); } int uaudio_halt_in_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_halt_in_dma: enter\n")); if (sc->sc_recchan.pipe != NULL) { uaudio_chan_close(sc, &sc->sc_recchan); sc->sc_recchan.pipe = NULL; uaudio_chan_free_buffers(sc, &sc->sc_recchan); } return (0); } int uaudio_getdev(void *addr, struct audio_device *retp) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_mixer_getdev:\n")); if (sc->sc_dying) return (EIO); *retp = uaudio_device; return (0); } /* * Make sure the block size is large enough to hold all outstanding transfers. */ int uaudio_round_blocksize(void *addr, int blk) { struct uaudio_softc *sc = addr; int bpf; DPRINTF(("uaudio_round_blocksize: p.bpf=%d r.bpf=%d\n", sc->sc_playchan.bytes_per_frame, sc->sc_recchan.bytes_per_frame)); if (sc->sc_playchan.bytes_per_frame > sc->sc_recchan.bytes_per_frame) { bpf = sc->sc_playchan.bytes_per_frame + sc->sc_playchan.sample_size; } else { bpf = sc->sc_recchan.bytes_per_frame + sc->sc_recchan.sample_size; } /* XXX */ bpf *= UAUDIO_NFRAMES * UAUDIO_NCHANBUFS; bpf = (bpf + 15) &~ 15; if (blk < bpf) blk = bpf; #ifdef DIAGNOSTIC if (blk <= 0) { printf("uaudio_round_blocksize: blk=%d\n", blk); blk = 512; } #endif DPRINTFN(1,("uaudio_round_blocksize: blk=%d\n", blk)); return (blk); } int uaudio_get_props(void *addr) { return (AUDIO_PROP_FULLDUPLEX | AUDIO_PROP_INDEPENDENT); } int uaudio_get(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len) { usb_device_request_t req; u_int8_t data[4]; usbd_status err; int val; if (wValue == -1) return (0); req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); DPRINTFN(2,("uaudio_get: type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d\n", type, which, wValue, wIndex, len)); err = usbd_do_request(sc->sc_udev, &req, data); if (err) { DPRINTF(("uaudio_get: err=%s\n", usbd_errstr(err))); return (-1); } switch (len) { case 1: val = data[0]; break; case 2: val = data[0] | (data[1] << 8); break; default: DPRINTF(("uaudio_get: bad length=%d\n", len)); return (-1); } DPRINTFN(2,("uaudio_get: val=%d\n", val)); return (val); } void uaudio_set(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len, int val) { usb_device_request_t req; u_int8_t data[4]; usbd_status err; if (wValue == -1) return; req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); switch (len) { case 1: data[0] = val; break; case 2: data[0] = val; data[1] = val >> 8; break; default: return; } DPRINTFN(2,("uaudio_set: type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d, val=%d\n", type, which, wValue, wIndex, len, val & 0xffff)); err = usbd_do_request(sc->sc_udev, &req, data); #ifdef UAUDIO_DEBUG if (err) DPRINTF(("uaudio_set: err=%d\n", err)); #endif } int uaudio_signext(int type, int val) { if (!MIX_UNSIGNED(type)) { if (MIX_SIZE(type) == 2) val = (int16_t)val; else val = (int8_t)val; } return (val); } int uaudio_value2bsd(struct mixerctl *mc, int val) { DPRINTFN(5, ("uaudio_value2bsd: type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval)); if (mc->type == MIX_ON_OFF) val = (val != 0); else val = ((uaudio_signext(mc->type, val) - mc->minval) * 255 + mc->mul/2) / mc->mul; DPRINTFN(5, ("val'=%d\n", val)); return (val); } int uaudio_bsd2value(struct mixerctl *mc, int val) { DPRINTFN(5,("uaudio_bsd2value: type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval)); if (mc->type == MIX_ON_OFF) val = (val != 0); else val = (val + mc->delta/2) * mc->mul / 255 + mc->minval; DPRINTFN(5, ("val'=%d\n", val)); return (val); } int uaudio_ctl_get(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan) { int val; DPRINTFN(5,("uaudio_ctl_get: which=%d chan=%d\n", which, chan)); val = uaudio_get(sc, which, UT_READ_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type)); return (uaudio_value2bsd(mc, val)); } void uaudio_ctl_set(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan, int val) { val = uaudio_bsd2value(mc, val); uaudio_set(sc, which, UT_WRITE_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type), val); } int uaudio_mixer_get_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN], val; DPRINTFN(2,("uaudio_mixer_get_port: index=%d\n", cp->dev)); if (sc->sc_dying) return (EIO); n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return (ENXIO); mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); } else { if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1 && cp->un.value.num_channels != mc->nchan) return (EINVAL); for (i = 0; i < mc->nchan; i++) vals[i] = uaudio_ctl_get(sc, GET_CUR, mc, i); if (cp->un.value.num_channels == 1 && mc->nchan != 1) { for (val = 0, i = 0; i < mc->nchan; i++) val += vals[i]; vals[0] = val / mc->nchan; } for (i = 0; i < cp->un.value.num_channels; i++) cp->un.value.level[i] = vals[i]; } return (0); } int uaudio_mixer_set_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN]; DPRINTFN(2,("uaudio_mixer_set_port: index = %d\n", cp->dev)); if (sc->sc_dying) return (EIO); n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return (ENXIO); mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); } else { if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels == 1) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[0]; else if (cp->un.value.num_channels == mc->nchan) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[i]; else return (EINVAL); for (i = 0; i < mc->nchan; i++) uaudio_ctl_set(sc, SET_CUR, mc, i, vals[i]); } return (0); } int uaudio_trigger_input(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct uaudio_softc *sc = addr; struct chan *ch = &sc->sc_recchan; usbd_status err; int i, s; if (sc->sc_dying) return (EIO); DPRINTFN(3,("uaudio_trigger_input: sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize)); uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3,("uaudio_trigger_input: sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction)); err = uaudio_chan_alloc_buffers(sc, ch); if (err) return (EIO); err = uaudio_chan_open(sc, ch); if (err) { uaudio_chan_free_buffers(sc, ch); return (EIO); } ch->intr = intr; ch->arg = arg; s = splusb(); for (i = 0; i < UAUDIO_NCHANBUFS-1; i++) /* XXX -1 shouldn't be needed */ uaudio_chan_rtransfer(ch); splx(s); return (0); } int uaudio_trigger_output(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct uaudio_softc *sc = addr; struct chan *ch = &sc->sc_playchan; usbd_status err; int i, s; if (sc->sc_dying) return (EIO); DPRINTFN(3,("uaudio_trigger_output: sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize)); uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3,("uaudio_trigger_output: sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction)); err = uaudio_chan_alloc_buffers(sc, ch); if (err) return (EIO); err = uaudio_chan_open(sc, ch); if (err) { uaudio_chan_free_buffers(sc, ch); return (EIO); } ch->intr = intr; ch->arg = arg; s = splusb(); for (i = 0; i < UAUDIO_NCHANBUFS-1; i++) /* XXX */ uaudio_chan_ptransfer(ch); splx(s); return (0); } /* Set up a pipe for a channel. */ usbd_status uaudio_chan_open(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; int endpt = as->edesc->bEndpointAddress; usbd_status err; DPRINTF(("uaudio_chan_open: endpt=0x%02x, speed=%d, alt=%d\n", endpt, ch->sample_rate, as->alt)); /* Set alternate interface corresponding to the mode. */ err = usbd_set_interface(as->ifaceh, as->alt); if (err) return (err); /* Some devices do not support this request, so ignore errors. */ #ifdef UAUDIO_DEBUG err = uaudio_set_speed(sc, endpt, ch->sample_rate); if (err) DPRINTF(("uaudio_chan_open: set_speed failed err=%s\n", usbd_errstr(err))); #else (void)uaudio_set_speed(sc, endpt, ch->sample_rate); #endif DPRINTF(("uaudio_chan_open: create pipe to 0x%02x\n", endpt)); err = usbd_open_pipe(as->ifaceh, endpt, 0, &ch->pipe); return (err); } void uaudio_chan_close(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; as->sc_busy = 0; if (sc->sc_nullalt >= 0) { DPRINTF(("uaudio_chan_close: set null alt=%d\n", sc->sc_nullalt)); usbd_set_interface(as->ifaceh, sc->sc_nullalt); } usbd_abort_pipe(ch->pipe); usbd_close_pipe(ch->pipe); } usbd_status uaudio_chan_alloc_buffers(struct uaudio_softc *sc, struct chan *ch) { usbd_xfer_handle xfer; void *buf; int i, size; size = (ch->bytes_per_frame + ch->sample_size) * UAUDIO_NFRAMES; for (i = 0; i < UAUDIO_NCHANBUFS; i++) { xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == 0) goto bad; ch->chanbufs[i].xfer = xfer; buf = usbd_alloc_buffer(xfer, size); if (buf == 0) { i++; goto bad; } ch->chanbufs[i].buffer = buf; ch->chanbufs[i].chan = ch; } return (USBD_NORMAL_COMPLETION); bad: while (--i >= 0) /* implicit buffer free */ usbd_free_xfer(ch->chanbufs[i].xfer); return (USBD_NOMEM); } void uaudio_chan_free_buffers(struct uaudio_softc *sc, struct chan *ch) { int i; for (i = 0; i < UAUDIO_NCHANBUFS; i++) usbd_free_xfer(ch->chanbufs[i].xfer); } /* Called at splusb() */ void uaudio_chan_ptransfer(struct chan *ch) { struct chanbuf *cb; int i, n, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < UAUDIO_NFRAMES; i++) { size = ch->bytes_per_frame; residue += ch->fraction; if (residue >= USB_FRAMES_PER_SECOND) { if ((ch->sc->sc_altflags & UA_NOFRAC) == 0) size += ch->sample_size; residue -= USB_FRAMES_PER_SECOND; } cb->sizes[i] = size; total += size; } ch->residue = residue; cb->size = total; /* * Transfer data from upper layer buffer to channel buffer, taking * care of wrapping the upper layer buffer. */ n = min(total, ch->end - ch->cur); memcpy(cb->buffer, ch->cur, n); ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; if (total > n) { total -= n; memcpy(cb->buffer + n, ch->cur, total); ch->cur += total; } #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF(("uaudio_chan_ptransfer: buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue)); for (i = 0; i < UAUDIO_NFRAMES; i++) { DPRINTF((" [%d] length %d\n", i, cb->sizes[i])); } } #endif DPRINTFN(5,("uaudio_chan_transfer: ptransfer xfer=%p\n", cb->xfer)); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes, UAUDIO_NFRAMES, USBD_NO_COPY, uaudio_chan_pintr); (void)usbd_transfer(cb->xfer); } void uaudio_chan_pintr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct chanbuf *cb = priv; struct chan *ch = cb->chan; u_int32_t count; int s; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5,("uaudio_chan_pintr: count=%d, transferred=%d\n", count, ch->transferred)); #ifdef DIAGNOSTIC if (count != cb->size) { printf("uaudio_chan_pintr: count(%d) != size(%d)\n", count, cb->size); } #endif ch->transferred += cb->size; s = splaudio(); /* Call back to upper layer */ while (ch->transferred >= ch->blksize) { ch->transferred -= ch->blksize; DPRINTFN(5,("uaudio_chan_pintr: call %p(%p)\n", ch->intr, ch->arg)); ch->intr(ch->arg); } splx(s); /* start next transfer */ uaudio_chan_ptransfer(ch); } /* Called at splusb() */ void uaudio_chan_rtransfer(struct chan *ch) { struct chanbuf *cb; int i, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < UAUDIO_NFRAMES; i++) { size = ch->bytes_per_frame; cb->sizes[i] = size; cb->offsets[i] = total; total += size; } ch->residue = residue; cb->size = total; #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF(("uaudio_chan_rtransfer: buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue)); for (i = 0; i < UAUDIO_NFRAMES; i++) { DPRINTF((" [%d] length %d\n", i, cb->sizes[i])); } } #endif DPRINTFN(5,("uaudio_chan_rtransfer: transfer xfer=%p\n", cb->xfer)); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes, UAUDIO_NFRAMES, USBD_NO_COPY, uaudio_chan_rintr); (void)usbd_transfer(cb->xfer); } void uaudio_chan_rintr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct chanbuf *cb = priv; struct chan *ch = cb->chan; u_int32_t count; int s, i, n, frsize; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5,("uaudio_chan_rintr: count=%d, transferred=%d\n", count, ch->transferred)); /* count < cb->size is normal for asynchronous source */ #ifdef DIAGNOSTIC if (count > cb->size) { printf("uaudio_chan_rintr: count(%d) > size(%d)\n", count, cb->size); } #endif /* * Transfer data from channel buffer to upper layer buffer, taking * care of wrapping the upper layer buffer. */ for(i = 0; i < UAUDIO_NFRAMES; i++) { frsize = cb->sizes[i]; n = min(frsize, ch->end - ch->cur); memcpy(ch->cur, cb->buffer + cb->offsets[i], n); ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; if (frsize > n) { memcpy(ch->cur, cb->buffer + cb->offsets[i] + n, frsize - n); ch->cur += frsize - n; } } /* Call back to upper layer */ ch->transferred += count; s = splaudio(); while (ch->transferred >= ch->blksize) { ch->transferred -= ch->blksize; DPRINTFN(5,("uaudio_chan_rintr: call %p(%p)\n", ch->intr, ch->arg)); ch->intr(ch->arg); } splx(s); /* start next transfer */ uaudio_chan_rtransfer(ch); } void uaudio_chan_init(struct chan *ch, int altidx, const struct audio_params *param, int maxpktsize) { int samples_per_frame, sample_size; ch->altidx = altidx; sample_size = param->precision * param->factor * param->hw_channels / 8; samples_per_frame = param->hw_sample_rate / USB_FRAMES_PER_SECOND; ch->sample_size = sample_size; ch->sample_rate = param->hw_sample_rate; if (maxpktsize == 0) { ch->fraction = param->hw_sample_rate % USB_FRAMES_PER_SECOND; ch->bytes_per_frame = samples_per_frame * sample_size; } else { ch->fraction = 0; ch->bytes_per_frame = maxpktsize; } ch->residue = 0; } void uaudio_chan_set_param(struct chan *ch, u_char *start, u_char *end, int blksize) { ch->start = start; ch->end = end; ch->cur = start; ch->blksize = blksize; ch->transferred = 0; ch->curchanbuf = 0; } void uaudio_get_minmax_rates(int nalts, const struct as_info *alts, const struct audio_params *p, int mode, u_long *min, u_long *max) { int i, j; struct usb_audio_streaming_type1_descriptor *a1d; *min = ULONG_MAX; *max = 0; for (i = 0; i < nalts; i++) { a1d = alts[i].asf1desc; if (alts[i].sc_busy) continue; if (p->hw_channels != a1d->bNrChannels) continue; if (p->hw_precision != a1d->bBitResolution) continue; if (p->hw_encoding != alts[i].encoding) continue; if (mode != UE_GET_DIR(alts[i].edesc->bEndpointAddress)) continue; if (a1d->bSamFreqType == UA_SAMP_CONTNUOUS) { DPRINTFN(2,("uaudio_get_minmax_rates: cont %d-%d\n", UA_SAMP_LO(a1d), UA_SAMP_HI(a1d))); if (UA_SAMP_LO(a1d) < *min) *min = UA_SAMP_LO(a1d); if (UA_SAMP_HI(a1d) > *max) *max = UA_SAMP_HI(a1d); } else { for (j = 0; j < a1d->bSamFreqType; j++) { DPRINTFN(2,("uaudio_get_minmax_rates: disc #%d: %d\n", j, UA_GETSAMP(a1d, j))); if (UA_GETSAMP(a1d, j) < *min) *min = UA_GETSAMP(a1d, j); if (UA_GETSAMP(a1d, j) > *max) *max = UA_GETSAMP(a1d, j); } } } } int uaudio_match_alt_sub(int nalts, const struct as_info *alts, const struct audio_params *p, int mode, u_long rate) { int i, j; struct usb_audio_streaming_type1_descriptor *a1d; DPRINTF(("uaudio_match_alt_sub: search for %luHz %dch\n", rate, p->hw_channels)); for (i = 0; i < nalts; i++) { a1d = alts[i].asf1desc; if (alts[i].sc_busy) continue; if (p->hw_channels != a1d->bNrChannels) continue; if (p->hw_precision != a1d->bBitResolution) continue; if (p->hw_encoding != alts[i].encoding) continue; if (mode != UE_GET_DIR(alts[i].edesc->bEndpointAddress)) continue; if (a1d->bSamFreqType == UA_SAMP_CONTNUOUS) { DPRINTFN(2,("uaudio_match_alt_sub: cont %d-%d\n", UA_SAMP_LO(a1d), UA_SAMP_HI(a1d))); if (UA_SAMP_LO(a1d) <= rate && rate <= UA_SAMP_HI(a1d)) return i; } else { for (j = 0; j < a1d->bSamFreqType; j++) { DPRINTFN(2,("uaudio_match_alt_sub: disc #%d: %d\n", j, UA_GETSAMP(a1d, j))); /* XXX allow for some slack */ if (UA_GETSAMP(a1d, j) == rate) return i; } } } return -1; } int uaudio_match_alt_chan(int nalts, const struct as_info *alts, struct audio_params *p, int mode) { int i, n; u_long min, max; u_long rate; /* Exact match */ DPRINTF(("uaudio_match_alt_chan: examine %ldHz %dch %dbit.\n", p->sample_rate, p->hw_channels, p->hw_precision)); i = uaudio_match_alt_sub(nalts, alts, p, mode, p->sample_rate); if (i >= 0) return i; uaudio_get_minmax_rates(nalts, alts, p, mode, &min, &max); DPRINTF(("uaudio_match_alt_chan: min=%lu max=%lu\n", min, max)); if (max <= 0) return -1; /* Search for biggers */ n = 2; while ((rate = p->sample_rate * n++) <= max) { i = uaudio_match_alt_sub(nalts, alts, p, mode, rate); if (i >= 0) { p->hw_sample_rate = rate; return i; } } if (p->sample_rate >= min) { i = uaudio_match_alt_sub(nalts, alts, p, mode, max); if (i >= 0) { p->hw_sample_rate = max; return i; } } else { i = uaudio_match_alt_sub(nalts, alts, p, mode, min); if (i >= 0) { p->hw_sample_rate = min; return i; } } return -1; } int uaudio_match_alt(int nalts, const struct as_info *alts, struct audio_params *p, int mode) { int i, n; mode = mode == AUMODE_PLAY ? UE_DIR_OUT : UE_DIR_IN; i = uaudio_match_alt_chan(nalts, alts, p, mode); if (i >= 0) return i; for (n = p->channels + 1; n <= AUDIO_MAX_CHANNELS; n++) { p->hw_channels = n; i = uaudio_match_alt_chan(nalts, alts, p, mode); if (i >= 0) return i; } if (p->channels != 2) return -1; p->hw_channels = 1; return uaudio_match_alt_chan(nalts, alts, p, mode); } int uaudio_set_params(void *addr, int setmode, int usemode, struct audio_params *play, struct audio_params *rec) { struct uaudio_softc *sc = addr; int flags = sc->sc_altflags; int factor; int enc, i; int paltidx=-1, raltidx=-1; void (*swcode)(void *, u_char *buf, int cnt); struct audio_params *p; int mode; if (sc->sc_dying) return (EIO); if ((usemode == AUMODE_RECORD && sc->sc_recchan.pipe != NULL) || (usemode == AUMODE_PLAY && sc->sc_playchan.pipe != NULL)) return (EBUSY); if (usemode & AUMODE_PLAY && sc->sc_playchan.altidx != -1) sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 0; if (usemode & AUMODE_RECORD && sc->sc_recchan.altidx != -1) sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 0; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; if ((sc->sc_mode & mode) == 0) continue; p = (mode == AUMODE_PLAY) ? play : rec; factor = 1; swcode = 0; enc = p->encoding; switch (enc) { case AUDIO_ENCODING_SLINEAR_BE: /* FALLTHROUGH */ case AUDIO_ENCODING_SLINEAR_LE: if (enc == AUDIO_ENCODING_SLINEAR_BE && p->precision == 16 && (flags & HAS_16)) { swcode = swap_bytes; enc = AUDIO_ENCODING_SLINEAR_LE; } else if (p->precision == 8) { if (flags & HAS_8) { /* No conversion */ } else if (flags & HAS_8U) { swcode = change_sign8; enc = AUDIO_ENCODING_ULINEAR_LE; } else if (flags & HAS_16) { factor = 2; p->hw_precision = 16; if (mode == AUMODE_PLAY) swcode = linear8_to_linear16_le; else swcode = linear16_to_linear8_le; } } break; case AUDIO_ENCODING_ULINEAR_BE: /* FALLTHROUGH */ case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 16) { if (enc == AUDIO_ENCODING_ULINEAR_LE) swcode = change_sign16_le; else if (mode == AUMODE_PLAY) swcode = swap_bytes_change_sign16_le; else swcode = change_sign16_swap_bytes_le; enc = AUDIO_ENCODING_SLINEAR_LE; } else if (p->precision == 8) { if (flags & HAS_8U) { /* No conversion */ } else if (flags & HAS_8) { swcode = change_sign8; enc = AUDIO_ENCODING_SLINEAR_LE; } else if (flags & HAS_16) { factor = 2; p->hw_precision = 16; enc = AUDIO_ENCODING_SLINEAR_LE; if (mode == AUMODE_PLAY) swcode = ulinear8_to_slinear16_le; else swcode = slinear16_to_ulinear8_le; } } break; case AUDIO_ENCODING_ULAW: if (flags & HAS_MULAW) break; if (flags & HAS_16) { if (mode == AUMODE_PLAY) swcode = mulaw_to_slinear16_le; else swcode = slinear16_to_mulaw_le; factor = 2; enc = AUDIO_ENCODING_SLINEAR_LE; p->hw_precision = 16; } else if (flags & HAS_8U) { if (mode == AUMODE_PLAY) swcode = mulaw_to_ulinear8; else swcode = ulinear8_to_mulaw; enc = AUDIO_ENCODING_ULINEAR_LE; } else if (flags & HAS_8) { if (mode == AUMODE_PLAY) swcode = mulaw_to_slinear8; else swcode = slinear8_to_mulaw; enc = AUDIO_ENCODING_SLINEAR_LE; } else return (EINVAL); break; case AUDIO_ENCODING_ALAW: if (flags & HAS_ALAW) break; if (mode == AUMODE_PLAY && (flags & HAS_16)) { swcode = alaw_to_slinear16_le; factor = 2; enc = AUDIO_ENCODING_SLINEAR_LE; p->hw_precision = 16; } else if (flags & HAS_8U) { if (mode == AUMODE_PLAY) swcode = alaw_to_ulinear8; else swcode = ulinear8_to_alaw; enc = AUDIO_ENCODING_ULINEAR_LE; } else if (flags & HAS_8) { if (mode == AUMODE_PLAY) swcode = alaw_to_slinear8; else swcode = slinear8_to_alaw; enc = AUDIO_ENCODING_SLINEAR_LE; } else return (EINVAL); break; default: return (EINVAL); } /* XXX do some other conversions... */ DPRINTF(("uaudio_set_params: chan=%d prec=%d enc=%d rate=%ld\n", p->channels, p->hw_precision, enc, p->sample_rate)); p->hw_encoding = enc; i = uaudio_match_alt(sc->sc_nalts, sc->sc_alts, p, mode); if (i < 0) return (EINVAL); p->sw_code = swcode; p->factor = factor; if (usemode & mode) { if (mode == AUMODE_PLAY) { paltidx = i; sc->sc_alts[i].sc_busy = 1; } else { raltidx = i; sc->sc_alts[i].sc_busy = 1; } } } if ((usemode & AUMODE_PLAY) /*&& paltidx != sc->sc_playchan.altidx*/) { /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_playchan, paltidx, play, 0); } if ((usemode & AUMODE_RECORD) /*&& raltidx != sc->sc_recchan.altidx*/) { /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_recchan, raltidx, rec, UGETW(sc->sc_alts[raltidx].edesc->wMaxPacketSize)); } DPRINTF(("uaudio_set_params: use altidx=p%d/r%d, altno=p%d/r%d\n", sc->sc_playchan.altidx, sc->sc_recchan.altidx, (sc->sc_playchan.altidx >= 0) ?sc->sc_alts[sc->sc_playchan.altidx].idesc->bAlternateSetting : -1, (sc->sc_recchan.altidx >= 0) ? sc->sc_alts[sc->sc_recchan.altidx].idesc->bAlternateSetting : -1)); return (0); } usbd_status uaudio_set_speed(struct uaudio_softc *sc, int endpt, u_int speed) { usb_device_request_t req; u_int8_t data[3]; DPRINTFN(5,("uaudio_set_speed: endpt=%d speed=%u\n", endpt, speed)); req.bmRequestType = UT_WRITE_CLASS_ENDPOINT; req.bRequest = SET_CUR; USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0); USETW(req.wIndex, endpt); USETW(req.wLength, 3); data[0] = speed; data[1] = speed >> 8; data[2] = speed >> 16; return (usbd_do_request(sc->sc_udev, &req, data)); }