/* $OpenBSD: uaudio.c,v 1.37 2006/06/23 06:27:11 miod Exp $ */ /* $NetBSD: uaudio.c,v 1.90 2004/10/29 17:12:53 kent Exp $ */ /* * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB audio specs: http://www.usb.org/developers/devclass_docs/audio10.pdf * http://www.usb.org/developers/devclass_docs/frmts10.pdf * http://www.usb.org/developers/devclass_docs/termt10.pdf */ #include #include #include #include #include #include #include #include #include /* for bootverbose */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define UAUDIO_DEBUG */ /* #define UAUDIO_MULTIPLE_ENDPOINTS */ #ifdef UAUDIO_DEBUG #define DPRINTF(x) do { if (uaudiodebug) logprintf x; } while (0) #define DPRINTFN(n,x) do { if (uaudiodebug>(n)) logprintf x; } while (0) int uaudiodebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define UAUDIO_NCHANBUFS 6 /* number of outstanding request */ #define UAUDIO_NFRAMES 10 /* ms of sound in each request */ #define MIX_MAX_CHAN 8 struct mixerctl { u_int16_t wValue[MIX_MAX_CHAN]; /* using nchan */ u_int16_t wIndex; u_int8_t nchan; u_int8_t type; #define MIX_ON_OFF 1 #define MIX_SIGNED_16 2 #define MIX_UNSIGNED_16 3 #define MIX_SIGNED_8 4 #define MIX_SELECTOR 5 #define MIX_SIZE(n) ((n) == MIX_SIGNED_16 || (n) == MIX_UNSIGNED_16 ? 2 : 1) #define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16) int minval, maxval; u_int delta; u_int mul; u_int8_t class; char ctlname[MAX_AUDIO_DEV_LEN]; char *ctlunit; }; #define MAKE(h,l) (((h) << 8) | (l)) struct as_info { u_int8_t alt; u_int8_t encoding; u_int8_t attributes; /* Copy of bmAttributes of * usb_audio_streaming_endpoint_descriptor */ usbd_interface_handle ifaceh; const usb_interface_descriptor_t *idesc; const usb_endpoint_descriptor_audio_t *edesc; const usb_endpoint_descriptor_audio_t *edesc1; const struct usb_audio_streaming_type1_descriptor *asf1desc; int sc_busy; /* currently used */ }; struct chan { void (*intr)(void *); /* DMA completion intr handler */ void *arg; /* arg for intr() */ usbd_pipe_handle pipe; usbd_pipe_handle sync_pipe; u_int sample_size; u_int sample_rate; u_int bytes_per_frame; u_int fraction; /* fraction/1000 is the extra samples/frame */ u_int residue; /* accumulates the fractional samples */ u_char *start; /* upper layer buffer start */ u_char *end; /* upper layer buffer end */ u_char *cur; /* current position in upper layer buffer */ int blksize; /* chunk size to report up */ int transferred; /* transferred bytes not reported up */ int altidx; /* currently used altidx */ int curchanbuf; struct chanbuf { struct chan *chan; usbd_xfer_handle xfer; u_char *buffer; u_int16_t sizes[UAUDIO_NFRAMES]; u_int16_t offsets[UAUDIO_NFRAMES]; u_int16_t size; } chanbufs[UAUDIO_NCHANBUFS]; struct uaudio_softc *sc; /* our softc */ }; struct uaudio_softc { USBBASEDEVICE sc_dev; /* base device */ usbd_device_handle sc_udev; /* USB device */ int sc_ac_iface; /* Audio Control interface */ usbd_interface_handle sc_ac_ifaceh; struct chan sc_playchan; /* play channel */ struct chan sc_recchan; /* record channel */ int sc_nullalt; int sc_audio_rev; struct as_info *sc_alts; /* alternate settings */ int sc_nalts; /* # of alternate settings */ int sc_altflags; #define HAS_8 0x01 #define HAS_16 0x02 #define HAS_8U 0x04 #define HAS_ALAW 0x08 #define HAS_MULAW 0x10 #define UA_NOFRAC 0x20 /* don't do sample rate adjustment */ #define HAS_24 0x40 int sc_mode; /* play/record capability */ struct mixerctl *sc_ctls; /* mixer controls */ int sc_nctls; /* # of mixer controls */ device_ptr_t sc_audiodev; char sc_dying; }; struct terminal_list { int size; uint16_t terminals[1]; }; #define TERMINAL_LIST_SIZE(N) (offsetof(struct terminal_list, terminals) \ + sizeof(uint16_t) * (N)) struct io_terminal { union { const usb_descriptor_t *desc; const struct usb_audio_input_terminal *it; const struct usb_audio_output_terminal *ot; const struct usb_audio_mixer_unit *mu; const struct usb_audio_selector_unit *su; const struct usb_audio_feature_unit *fu; const struct usb_audio_processing_unit *pu; const struct usb_audio_extension_unit *eu; } d; int inputs_size; struct terminal_list **inputs; /* list of source input terminals */ struct terminal_list *output; /* list of destination output terminals */ int direct; /* directly connected to an output terminal */ }; #define UAC_OUTPUT 0 #define UAC_INPUT 1 #define UAC_EQUAL 2 #define UAC_RECORD 3 #define UAC_NCLASSES 4 #ifdef UAUDIO_DEBUG Static const char *uac_names[] = { AudioCoutputs, AudioCinputs, AudioCequalization, AudioCrecord, }; #endif Static usbd_status uaudio_identify_ac (struct uaudio_softc *, const usb_config_descriptor_t *); Static usbd_status uaudio_identify_as (struct uaudio_softc *, const usb_config_descriptor_t *); Static usbd_status uaudio_process_as (struct uaudio_softc *, const char *, int *, int, const usb_interface_descriptor_t *); Static void uaudio_add_alt(struct uaudio_softc *, const struct as_info *); Static const usb_interface_descriptor_t *uaudio_find_iface (const char *, int, int *, int); Static void uaudio_mixer_add_ctl(struct uaudio_softc *, struct mixerctl *); Static char *uaudio_id_name (struct uaudio_softc *, const struct io_terminal *, int); Static struct usb_audio_cluster uaudio_get_cluster (int, const struct io_terminal *); Static void uaudio_add_input (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_output (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_mixer (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_selector (struct uaudio_softc *, const struct io_terminal *, int); #ifdef UAUDIO_DEBUG Static const char *uaudio_get_terminal_name(int); #endif Static int uaudio_determine_class (const struct io_terminal *, struct mixerctl *); Static const char *uaudio_feature_name (const struct io_terminal *, struct mixerctl *); Static void uaudio_add_feature (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_processing_updown (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_processing (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_extension (struct uaudio_softc *, const struct io_terminal *, int); Static struct terminal_list *uaudio_merge_terminal_list (const struct io_terminal *); Static struct terminal_list *uaudio_io_terminaltype (int, struct io_terminal *, int); Static usbd_status uaudio_identify (struct uaudio_softc *, const usb_config_descriptor_t *); Static int uaudio_signext(int, int); Static int uaudio_value2bsd(struct mixerctl *, int); Static int uaudio_bsd2value(struct mixerctl *, int); Static int uaudio_get(struct uaudio_softc *, int, int, int, int, int); Static int uaudio_ctl_get (struct uaudio_softc *, int, struct mixerctl *, int); Static void uaudio_set (struct uaudio_softc *, int, int, int, int, int, int); Static void uaudio_ctl_set (struct uaudio_softc *, int, struct mixerctl *, int, int); Static usbd_status uaudio_set_speed(struct uaudio_softc *, int, u_int); Static usbd_status uaudio_chan_open(struct uaudio_softc *, struct chan *); Static void uaudio_chan_close(struct uaudio_softc *, struct chan *); Static usbd_status uaudio_chan_alloc_buffers (struct uaudio_softc *, struct chan *); Static void uaudio_chan_free_buffers(struct uaudio_softc *, struct chan *); Static void uaudio_chan_init (struct chan *, int, const struct audio_params *, int); Static void uaudio_chan_set_param(struct chan *, u_char *, u_char *, int); Static void uaudio_chan_ptransfer(struct chan *); Static void uaudio_chan_pintr (usbd_xfer_handle, usbd_private_handle, usbd_status); Static void uaudio_chan_rtransfer(struct chan *); Static void uaudio_chan_rintr (usbd_xfer_handle, usbd_private_handle, usbd_status); Static int uaudio_open(void *, int); Static void uaudio_close(void *); Static int uaudio_drain(void *); Static int uaudio_query_encoding(void *, struct audio_encoding *); Static void uaudio_get_minmax_rates (int, const struct as_info *, const struct audio_params *, int, u_long *, u_long *); Static int uaudio_match_alt_sub (int, const struct as_info *, const struct audio_params *, int, u_long); Static int uaudio_match_alt_chan (int, const struct as_info *, struct audio_params *, int); Static int uaudio_match_alt (int, const struct as_info *, struct audio_params *, int); Static int uaudio_set_params (void *, int, int, struct audio_params *, struct audio_params *); Static int uaudio_round_blocksize(void *, int); Static int uaudio_trigger_output (void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); Static int uaudio_trigger_input (void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); Static int uaudio_halt_in_dma(void *); Static int uaudio_halt_out_dma(void *); Static int uaudio_getdev(void *, struct audio_device *); Static int uaudio_mixer_set_port(void *, mixer_ctrl_t *); Static int uaudio_mixer_get_port(void *, mixer_ctrl_t *); Static int uaudio_query_devinfo(void *, mixer_devinfo_t *); Static int uaudio_get_props(void *); Static struct audio_hw_if uaudio_hw_if = { uaudio_open, uaudio_close, uaudio_drain, uaudio_query_encoding, uaudio_set_params, uaudio_round_blocksize, NULL, NULL, NULL, NULL, NULL, uaudio_halt_out_dma, uaudio_halt_in_dma, NULL, uaudio_getdev, NULL, uaudio_mixer_set_port, uaudio_mixer_get_port, uaudio_query_devinfo, NULL, NULL, NULL, NULL, uaudio_get_props, uaudio_trigger_output, uaudio_trigger_input, #if defined(__NetBSD__) NULL, #endif }; Static struct audio_device uaudio_device = { "USB audio", "", "uaudio" }; USB_DECLARE_DRIVER(uaudio); USB_MATCH(uaudio) { USB_MATCH_START(uaudio, uaa); usb_interface_descriptor_t *id; if (uaa->iface == NULL) return (UMATCH_NONE); id = usbd_get_interface_descriptor(uaa->iface); /* Trigger on the control interface. */ if (id == NULL || id->bInterfaceClass != UICLASS_AUDIO || id->bInterfaceSubClass != UISUBCLASS_AUDIOCONTROL || (usbd_get_quirks(uaa->device)->uq_flags & UQ_BAD_AUDIO)) return (UMATCH_NONE); return (UMATCH_IFACECLASS_IFACESUBCLASS); } USB_ATTACH(uaudio) { USB_ATTACH_START(uaudio, sc, uaa); usb_interface_descriptor_t *id; usb_config_descriptor_t *cdesc; char *devinfop; usbd_status err; int i, j, found; devinfop = usbd_devinfo_alloc(uaa->device, 0); printf(": %s\n", devinfop); usbd_devinfo_free(devinfop); sc->sc_udev = uaa->device; cdesc = usbd_get_config_descriptor(sc->sc_udev); if (cdesc == NULL) { printf("%s: failed to get configuration descriptor\n", USBDEVNAME(sc->sc_dev)); USB_ATTACH_ERROR_RETURN; } err = uaudio_identify(sc, cdesc); if (err) { printf("%s: audio descriptors make no sense, error=%d\n", USBDEVNAME(sc->sc_dev), err); USB_ATTACH_ERROR_RETURN; } sc->sc_ac_ifaceh = uaa->iface; /* Pick up the AS interface. */ for (i = 0; i < uaa->nifaces; i++) { if (uaa->ifaces[i] == NULL) continue; id = usbd_get_interface_descriptor(uaa->ifaces[i]); if (id == NULL) continue; found = 0; for (j = 0; j < sc->sc_nalts; j++) { if (id->bInterfaceNumber == sc->sc_alts[j].idesc->bInterfaceNumber) { sc->sc_alts[j].ifaceh = uaa->ifaces[i]; found = 1; } } if (found) uaa->ifaces[i] = NULL; } for (j = 0; j < sc->sc_nalts; j++) { if (sc->sc_alts[j].ifaceh == NULL) { printf("%s: alt %d missing AS interface(s)\n", USBDEVNAME(sc->sc_dev), j); USB_ATTACH_ERROR_RETURN; } } printf("%s: audio rev %d.%02x", USBDEVNAME(sc->sc_dev), sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff); sc->sc_playchan.sc = sc->sc_recchan.sc = sc; sc->sc_playchan.altidx = -1; sc->sc_recchan.altidx = -1; if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_FRAC) sc->sc_altflags |= UA_NOFRAC; #if defined(__NetBSD__) && !defined(UAUDIO_DEBUG) if (bootverbose) #endif printf(", %d mixer controls", sc->sc_nctls); printf("\n"); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, USBDEV(sc->sc_dev)); DPRINTF(("uaudio_attach: doing audio_attach_mi\n")); sc->sc_audiodev = audio_attach_mi(&uaudio_hw_if, sc, &sc->sc_dev); USB_ATTACH_SUCCESS_RETURN; } /* * Macros to help sync OpenBSD to NetBSD */ #if defined(__OpenBSD__) #define hw_channels channels #define hw_sample_rate sample_rate #define hw_precision precision #define hw_encoding encoding #endif int uaudio_activate(device_ptr_t self, enum devact act) { struct uaudio_softc *sc = (struct uaudio_softc *)self; int rv = 0; switch (act) { case DVACT_ACTIVATE: break; case DVACT_DEACTIVATE: if (sc->sc_audiodev != NULL) rv = config_deactivate(sc->sc_audiodev); sc->sc_dying = 1; break; } return (rv); } int uaudio_detach(device_ptr_t self, int flags) { struct uaudio_softc *sc = (struct uaudio_softc *)self; int rv = 0; /* Wait for outstanding requests to complete. */ usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * UAUDIO_NFRAMES); if (sc->sc_audiodev != NULL) rv = config_detach(sc->sc_audiodev, flags); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, USBDEV(sc->sc_dev)); return (rv); } Static int uaudio_query_encoding(void *addr, struct audio_encoding *fp) { struct uaudio_softc *sc = addr; int flags = sc->sc_altflags; int idx; if (sc->sc_dying) return (EIO); if (sc->sc_nalts == 0 || flags == 0) return (ENXIO); idx = fp->index; switch (idx) { case 0: strlcpy(fp->name, AudioEulinear, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = flags&HAS_8U ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 1: strlcpy(fp->name, AudioEmulaw, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = flags&HAS_MULAW ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 2: strlcpy(fp->name, AudioEalaw, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = flags&HAS_ALAW ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 3: strlcpy(fp->name, AudioEslinear, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = flags&HAS_8 ? 0 : AUDIO_ENCODINGFLAG_EMULATED; return (0); case 4: strlcpy(fp->name, AudioEslinear_le, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; return (0); case 5: strlcpy(fp->name, AudioEulinear_le, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 6: strlcpy(fp->name, AudioEslinear_be, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 7: strlcpy(fp->name, AudioEulinear_be, sizeof(fp->name)); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); default: return (EINVAL); } } Static const usb_interface_descriptor_t * uaudio_find_iface(const char *buf, int size, int *offsp, int subtype) { const usb_interface_descriptor_t *d; while (*offsp < size) { d = (const void *)(buf + *offsp); *offsp += d->bLength; if (d->bDescriptorType == UDESC_INTERFACE && d->bInterfaceClass == UICLASS_AUDIO && d->bInterfaceSubClass == subtype) return (d); } return (NULL); } Static void uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct mixerctl *mc) { int res; size_t len; struct mixerctl *nmc; if (mc->class < UAC_NCLASSES) { DPRINTF(("%s: adding %s.%s\n", __func__, uac_names[mc->class], mc->ctlname)); } else { DPRINTF(("%s: adding %s\n", __func__, mc->ctlname)); } len = sizeof(*mc) * (sc->sc_nctls + 1); nmc = malloc(len, M_USBDEV, M_NOWAIT); if (nmc == NULL) { printf("uaudio_mixer_add_ctl: no memory\n"); return; } /* Copy old data, if there was any */ if (sc->sc_nctls != 0) { bcopy(sc->sc_ctls, nmc, sizeof(*mc) * (sc->sc_nctls)); free(sc->sc_ctls, M_USBDEV); } sc->sc_ctls = nmc; mc->delta = 0; if (mc->type == MIX_ON_OFF) { mc->minval = 0; mc->maxval = 1; } else if (mc->type == MIX_SELECTOR) { ; } else { /* Determine min and max values. */ mc->minval = uaudio_signext(mc->type, uaudio_get(sc, GET_MIN, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); mc->maxval = 1 + uaudio_signext(mc->type, uaudio_get(sc, GET_MAX, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); mc->mul = mc->maxval - mc->minval; if (mc->mul == 0) mc->mul = 1; res = uaudio_get(sc, GET_RES, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type)); if (res > 0) mc->delta = (res * 255 + mc->mul/2) / mc->mul; } sc->sc_ctls[sc->sc_nctls++] = *mc; #ifdef UAUDIO_DEBUG if (uaudiodebug > 2) { int i; DPRINTF(("uaudio_mixer_add_ctl: wValue=%04x",mc->wValue[0])); for (i = 1; i < mc->nchan; i++) DPRINTF((",%04x", mc->wValue[i])); DPRINTF((" wIndex=%04x type=%d name='%s' unit='%s' " "min=%d max=%d\n", mc->wIndex, mc->type, mc->ctlname, mc->ctlunit, mc->minval, mc->maxval)); } #endif } Static char * uaudio_id_name(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { static char buf[32]; snprintf(buf, sizeof(buf), "i%d", id); return (buf); } Static struct usb_audio_cluster uaudio_get_cluster(int id, const struct io_terminal *iot) { struct usb_audio_cluster r; const usb_descriptor_t *dp; int i; for (i = 0; i < 25; i++) { /* avoid infinite loops */ dp = iot[id].d.desc; if (dp == 0) goto bad; switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: r.bNrChannels = iot[id].d.it->bNrChannels; USETW(r.wChannelConfig, UGETW(iot[id].d.it->wChannelConfig)); r.iChannelNames = iot[id].d.it->iChannelNames; return (r); case UDESCSUB_AC_OUTPUT: id = iot[id].d.ot->bSourceId; break; case UDESCSUB_AC_MIXER: r = *(struct usb_audio_cluster *) &iot[id].d.mu->baSourceId[iot[id].d.mu->bNrInPins]; return (r); case UDESCSUB_AC_SELECTOR: /* XXX This is not really right */ id = iot[id].d.su->baSourceId[0]; break; case UDESCSUB_AC_FEATURE: id = iot[id].d.fu->bSourceId; break; case UDESCSUB_AC_PROCESSING: r = *(struct usb_audio_cluster *) &iot[id].d.pu->baSourceId[iot[id].d.pu->bNrInPins]; return (r); case UDESCSUB_AC_EXTENSION: r = *(struct usb_audio_cluster *) &iot[id].d.eu->baSourceId[iot[id].d.eu->bNrInPins]; return (r); default: goto bad; } } bad: printf("uaudio_get_cluster: bad data\n"); memset(&r, 0, sizeof r); return (r); } Static void uaudio_add_input(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { #ifdef UAUDIO_DEBUG const struct usb_audio_input_terminal *d = iot[id].d.it; DPRINTFN(2,("uaudio_add_input: bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d " "iChannelNames=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bNrChannels, UGETW(d->wChannelConfig), d->iChannelNames, d->iTerminal)); #endif } Static void uaudio_add_output(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { #ifdef UAUDIO_DEBUG const struct usb_audio_output_terminal *d = iot[id].d.ot; DPRINTFN(2,("uaudio_add_output: bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bSourceId=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bSourceId, d->iTerminal)); #endif } Static void uaudio_add_mixer(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_mixer_unit *d = iot[id].d.mu; struct usb_audio_mixer_unit_1 *d1; int c, chs, ichs, ochs, i, o, bno, p, mo, mc, k; uByte *bm; struct mixerctl mix; DPRINTFN(2,("uaudio_add_mixer: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); /* Compute the number of input channels */ ichs = 0; for (i = 0; i < d->bNrInPins; i++) ichs += uaudio_get_cluster(d->baSourceId[i], iot).bNrChannels; /* and the number of output channels */ d1 = (struct usb_audio_mixer_unit_1 *)&d->baSourceId[d->bNrInPins]; ochs = d1->bNrChannels; DPRINTFN(2,("uaudio_add_mixer: ichs=%d ochs=%d\n", ichs, ochs)); bm = d1->bmControls; mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; #define BIT(bno) ((bm[bno / 8] >> (7 - bno % 8)) & 1) for (p = i = 0; i < d->bNrInPins; i++) { chs = uaudio_get_cluster(d->baSourceId[i], iot).bNrChannels; mc = 0; for (c = 0; c < chs; c++) { mo = 0; for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (BIT(bno)) mo++; } if (mo == 1) mc++; } if (mc == chs && chs <= MIX_MAX_CHAN) { k = 0; for (c = 0; c < chs; c++) for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (BIT(bno)) mix.wValue[k++] = MAKE(p+c+1, o+1); } snprintf(mix.ctlname, sizeof(mix.ctlname), "mix%d-%s", d->bUnitId, uaudio_id_name(sc, iot, d->baSourceId[i])); mix.nchan = chs; uaudio_mixer_add_ctl(sc, &mix); } else { /* XXX */ } #undef BIT p += chs; } } Static void uaudio_add_selector(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_selector_unit *d = iot[id].d.su; struct mixerctl mix; int i, wp; DPRINTFN(2,("uaudio_add_selector: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.wValue[0] = MAKE(0, 0); uaudio_determine_class(&iot[id], &mix); mix.nchan = 1; mix.type = MIX_SELECTOR; mix.ctlunit = ""; mix.minval = 1; mix.maxval = d->bNrInPins; mix.mul = mix.maxval - mix.minval; wp = snprintf(mix.ctlname, MAX_AUDIO_DEV_LEN, "sel%d-", d->bUnitId); for (i = 1; i <= d->bNrInPins; i++) { wp += snprintf(mix.ctlname + wp, MAX_AUDIO_DEV_LEN - wp, "i%d", d->baSourceId[i - 1]); if (wp > MAX_AUDIO_DEV_LEN - 1) break; } uaudio_mixer_add_ctl(sc, &mix); } #ifdef UAUDIO_DEBUG Static const char * uaudio_get_terminal_name(int terminal_type) { static char buf[100]; switch (terminal_type) { /* USB terminal types */ case UAT_UNDEFINED: return "UAT_UNDEFINED"; case UAT_STREAM: return "UAT_STREAM"; case UAT_VENDOR: return "UAT_VENDOR"; /* input terminal types */ case UATI_UNDEFINED: return "UATI_UNDEFINED"; case UATI_MICROPHONE: return "UATI_MICROPHONE"; case UATI_DESKMICROPHONE: return "UATI_DESKMICROPHONE"; case UATI_PERSONALMICROPHONE: return "UATI_PERSONALMICROPHONE"; case UATI_OMNIMICROPHONE: return "UATI_OMNIMICROPHONE"; case UATI_MICROPHONEARRAY: return "UATI_MICROPHONEARRAY"; case UATI_PROCMICROPHONEARR: return "UATI_PROCMICROPHONEARR"; /* output terminal types */ case UATO_UNDEFINED: return "UATO_UNDEFINED"; case UATO_SPEAKER: return "UATO_SPEAKER"; case UATO_HEADPHONES: return "UATO_HEADPHONES"; case UATO_DISPLAYAUDIO: return "UATO_DISPLAYAUDIO"; case UATO_DESKTOPSPEAKER: return "UATO_DESKTOPSPEAKER"; case UATO_ROOMSPEAKER: return "UATO_ROOMSPEAKER"; case UATO_COMMSPEAKER: return "UATO_COMMSPEAKER"; case UATO_SUBWOOFER: return "UATO_SUBWOOFER"; /* bidir terminal types */ case UATB_UNDEFINED: return "UATB_UNDEFINED"; case UATB_HANDSET: return "UATB_HANDSET"; case UATB_HEADSET: return "UATB_HEADSET"; case UATB_SPEAKERPHONE: return "UATB_SPEAKERPHONE"; case UATB_SPEAKERPHONEESUP: return "UATB_SPEAKERPHONEESUP"; case UATB_SPEAKERPHONEECANC: return "UATB_SPEAKERPHONEECANC"; /* telephony terminal types */ case UATT_UNDEFINED: return "UATT_UNDEFINED"; case UATT_PHONELINE: return "UATT_PHONELINE"; case UATT_TELEPHONE: return "UATT_TELEPHONE"; case UATT_DOWNLINEPHONE: return "UATT_DOWNLINEPHONE"; /* external terminal types */ case UATE_UNDEFINED: return "UATE_UNDEFINED"; case UATE_ANALOGCONN: return "UATE_ANALOGCONN"; case UATE_LINECONN: return "UATE_LINECONN"; case UATE_LEGACYCONN: return "UATE_LEGACYCONN"; case UATE_DIGITALAUIFC: return "UATE_DIGITALAUIFC"; case UATE_SPDIF: return "UATE_SPDIF"; case UATE_1394DA: return "UATE_1394DA"; case UATE_1394DV: return "UATE_1394DV"; /* embedded function terminal types */ case UATF_UNDEFINED: return "UATF_UNDEFINED"; case UATF_CALIBNOISE: return "UATF_CALIBNOISE"; case UATF_EQUNOISE: return "UATF_EQUNOISE"; case UATF_CDPLAYER: return "UATF_CDPLAYER"; case UATF_DAT: return "UATF_DAT"; case UATF_DCC: return "UATF_DCC"; case UATF_MINIDISK: return "UATF_MINIDISK"; case UATF_ANALOGTAPE: return "UATF_ANALOGTAPE"; case UATF_PHONOGRAPH: return "UATF_PHONOGRAPH"; case UATF_VCRAUDIO: return "UATF_VCRAUDIO"; case UATF_VIDEODISCAUDIO: return "UATF_VIDEODISCAUDIO"; case UATF_DVDAUDIO: return "UATF_DVDAUDIO"; case UATF_TVTUNERAUDIO: return "UATF_TVTUNERAUDIO"; case UATF_SATELLITE: return "UATF_SATELLITE"; case UATF_CABLETUNER: return "UATF_CABLETUNER"; case UATF_DSS: return "UATF_DSS"; case UATF_RADIORECV: return "UATF_RADIORECV"; case UATF_RADIOXMIT: return "UATF_RADIOXMIT"; case UATF_MULTITRACK: return "UATF_MULTITRACK"; case UATF_SYNTHESIZER: return "UATF_SYNTHESIZER"; default: snprintf(buf, sizeof(buf), "unknown type (0x%.4x)", terminal_type); return buf; } } #endif Static int uaudio_determine_class(const struct io_terminal *iot, struct mixerctl *mix) { int terminal_type; if (iot == NULL || iot->output == NULL) { mix->class = UAC_OUTPUT; return 0; } terminal_type = 0; if (iot->output->size == 1) terminal_type = iot->output->terminals[0]; /* * If the only output terminal is USB, * the class is UAC_RECORD. */ if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) { mix->class = UAC_RECORD; if (iot->inputs_size == 1 && iot->inputs[0] != NULL && iot->inputs[0]->size == 1) return iot->inputs[0]->terminals[0]; else return 0; } /* * If the ultimate destination of the unit is just one output * terminal and the unit is connected to the output terminal * directly, the class is UAC_OUTPUT. */ if (terminal_type != 0 && iot->direct) { mix->class = UAC_OUTPUT; return terminal_type; } /* * If the unit is connected to just one input terminal, * the class is UAC_INPUT. */ if (iot->inputs_size == 1 && iot->inputs[0] != NULL && iot->inputs[0]->size == 1) { mix->class = UAC_INPUT; return iot->inputs[0]->terminals[0]; } /* * Otherwise, the class is UAC_OUTPUT. */ mix->class = UAC_OUTPUT; return terminal_type; } Static const char * uaudio_feature_name(const struct io_terminal *iot, struct mixerctl *mix) { int terminal_type; terminal_type = uaudio_determine_class(iot, mix); if (mix->class == UAC_RECORD && terminal_type == 0) return AudioNmixerout; DPRINTF(("%s: terminal_type=%s\n", __func__, uaudio_get_terminal_name(terminal_type))); switch (terminal_type) { case UAT_STREAM: return AudioNdac; case UATI_MICROPHONE: case UATI_DESKMICROPHONE: case UATI_PERSONALMICROPHONE: case UATI_OMNIMICROPHONE: case UATI_MICROPHONEARRAY: case UATI_PROCMICROPHONEARR: return AudioNmicrophone; case UATO_SPEAKER: case UATO_DESKTOPSPEAKER: case UATO_ROOMSPEAKER: case UATO_COMMSPEAKER: return AudioNspeaker; case UATO_HEADPHONES: return AudioNheadphone; case UATO_SUBWOOFER: return AudioNlfe; /* telephony terminal types */ case UATT_UNDEFINED: case UATT_PHONELINE: case UATT_TELEPHONE: case UATT_DOWNLINEPHONE: return "phone"; case UATE_ANALOGCONN: case UATE_LINECONN: case UATE_LEGACYCONN: return AudioNline; case UATE_DIGITALAUIFC: case UATE_SPDIF: case UATE_1394DA: case UATE_1394DV: return AudioNaux; case UATF_CDPLAYER: return AudioNcd; case UATF_SYNTHESIZER: return AudioNfmsynth; case UATF_VIDEODISCAUDIO: case UATF_DVDAUDIO: case UATF_TVTUNERAUDIO: return AudioNvideo; case UAT_UNDEFINED: case UAT_VENDOR: case UATI_UNDEFINED: /* output terminal types */ case UATO_UNDEFINED: case UATO_DISPLAYAUDIO: /* bidir terminal types */ case UATB_UNDEFINED: case UATB_HANDSET: case UATB_HEADSET: case UATB_SPEAKERPHONE: case UATB_SPEAKERPHONEESUP: case UATB_SPEAKERPHONEECANC: /* external terminal types */ case UATE_UNDEFINED: /* embedded function terminal types */ case UATF_UNDEFINED: case UATF_CALIBNOISE: case UATF_EQUNOISE: case UATF_DAT: case UATF_DCC: case UATF_MINIDISK: case UATF_ANALOGTAPE: case UATF_PHONOGRAPH: case UATF_VCRAUDIO: case UATF_SATELLITE: case UATF_CABLETUNER: case UATF_DSS: case UATF_RADIORECV: case UATF_RADIOXMIT: case UATF_MULTITRACK: case 0xffff: default: DPRINTF(("%s: 'master' for 0x%.4x\n", __func__, terminal_type)); return AudioNmaster; } } Static void uaudio_add_feature(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_feature_unit *d = iot[id].d.fu; uByte *ctls = d->bmaControls; int ctlsize = d->bControlSize; int nchan = (d->bLength - 7) / ctlsize; u_int fumask, mmask, cmask; struct mixerctl mix; int chan, ctl, i, unit; const char *mixername; #define GET(i) (ctls[(i)*ctlsize] | \ (ctlsize > 1 ? ctls[(i)*ctlsize+1] << 8 : 0)) mmask = GET(0); /* Figure out what we can control */ for (cmask = 0, chan = 1; chan < nchan; chan++) { DPRINTFN(9,("uaudio_add_feature: chan=%d mask=%x\n", chan, GET(chan))); cmask |= GET(chan); } DPRINTFN(1,("uaudio_add_feature: bUnitId=%d, " "%d channels, mmask=0x%04x, cmask=0x%04x\n", d->bUnitId, nchan, mmask, cmask)); if (nchan > MIX_MAX_CHAN) nchan = MIX_MAX_CHAN; unit = d->bUnitId; mix.wIndex = MAKE(unit, sc->sc_ac_iface); for (ctl = MUTE_CONTROL; ctl < LOUDNESS_CONTROL; ctl++) { fumask = FU_MASK(ctl); DPRINTFN(4,("uaudio_add_feature: ctl=%d fumask=0x%04x\n", ctl, fumask)); if (mmask & fumask) { mix.nchan = 1; mix.wValue[0] = MAKE(ctl, 0); } else if (cmask & fumask) { mix.nchan = nchan - 1; for (i = 1; i < nchan; i++) { if (GET(i) & fumask) mix.wValue[i-1] = MAKE(ctl, i); else mix.wValue[i-1] = -1; } } else { continue; } #undef GET mixername = uaudio_feature_name(&iot[id], &mix); switch (ctl) { case MUTE_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNmute); break; case VOLUME_CONTROL: mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; strlcpy(mix.ctlname, mixername, sizeof(mix.ctlname)); break; case BASS_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNbass; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNbass); break; case MID_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNmid; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNmid); break; case TREBLE_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNtreble; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNtreble); break; case GRAPHIC_EQUALIZER_CONTROL: continue; /* XXX don't add anything */ break; case AGC_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNagc); break; case DELAY_CONTROL: mix.type = MIX_UNSIGNED_16; mix.ctlunit = "4 ms"; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNdelay); break; case BASS_BOOST_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNbassboost); break; case LOUDNESS_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNloudness); break; } uaudio_mixer_add_ctl(sc, &mix); } } Static void uaudio_add_processing_updown(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_processing_unit *d = iot[id].d.pu; const struct usb_audio_processing_unit_1 *d1 = (const struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins]; const struct usb_audio_processing_unit_updown *ud = (const struct usb_audio_processing_unit_updown *) &d1->bmControls[d1->bControlSize]; struct mixerctl mix; int i; DPRINTFN(2,("uaudio_add_processing_updown: bUnitId=%d bNrModes=%d\n", d->bUnitId, ud->bNrModes)); if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) { DPRINTF(("uaudio_add_processing_updown: no mode select\n")); return; } mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UD_MODE_SELECT_CONTROL, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; /* XXX */ mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d-mode", d->bUnitId); for (i = 0; i < ud->bNrModes; i++) { DPRINTFN(2,("uaudio_add_processing_updown: i=%d bm=0x%x\n", i, UGETW(ud->waModes[i]))); /* XXX */ } uaudio_mixer_add_ctl(sc, &mix); } Static void uaudio_add_processing(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_processing_unit *d = iot[id].d.pu; const struct usb_audio_processing_unit_1 *d1 = (const struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins]; int ptype = UGETW(d->wProcessType); struct mixerctl mix; DPRINTFN(2,("uaudio_add_processing: wProcessType=%d bUnitId=%d " "bNrInPins=%d\n", ptype, d->bUnitId, d->bNrInPins)); if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(XX_ENABLE_CONTROL, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d.%d-enable", d->bUnitId, ptype); uaudio_mixer_add_ctl(sc, &mix); } switch(ptype) { case UPDOWNMIX_PROCESS: uaudio_add_processing_updown(sc, iot, id); break; case DOLBY_PROLOGIC_PROCESS: case P3D_STEREO_EXTENDER_PROCESS: case REVERBATION_PROCESS: case CHORUS_PROCESS: case DYN_RANGE_COMP_PROCESS: default: #ifdef UAUDIO_DEBUG printf("uaudio_add_processing: unit %d, type=%d not impl.\n", d->bUnitId, ptype); #endif break; } } Static void uaudio_add_extension(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_extension_unit *d = iot[id].d.eu; const struct usb_audio_extension_unit_1 *d1 = (const struct usb_audio_extension_unit_1 *)&d->baSourceId[d->bNrInPins]; struct mixerctl mix; DPRINTFN(2,("uaudio_add_extension: bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins)); if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_XU) return; if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UA_EXT_ENABLE, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "ext%d-enable", d->bUnitId); uaudio_mixer_add_ctl(sc, &mix); } } Static struct terminal_list* uaudio_merge_terminal_list(const struct io_terminal *iot) { struct terminal_list *tml; uint16_t *ptm; int i, len; len = 0; if (iot->inputs == NULL) return NULL; for (i = 0; i < iot->inputs_size; i++) { if (iot->inputs[i] != NULL) len += iot->inputs[i]->size; } tml = malloc(TERMINAL_LIST_SIZE(len), M_TEMP, M_NOWAIT); if (tml == NULL) { printf("uaudio_merge_terminal_list: no memory\n"); return NULL; } tml->size = 0; ptm = tml->terminals; for (i = 0; i < iot->inputs_size; i++) { if (iot->inputs[i] == NULL) continue; if (iot->inputs[i]->size > len) break; memcpy(ptm, iot->inputs[i]->terminals, iot->inputs[i]->size * sizeof(uint16_t)); tml->size += iot->inputs[i]->size; ptm += iot->inputs[i]->size; len -= iot->inputs[i]->size; } return tml; } Static struct terminal_list * uaudio_io_terminaltype(int outtype, struct io_terminal *iot, int id) { struct terminal_list *tml; struct io_terminal *it; int src_id, i; it = &iot[id]; if (it->output != NULL) { /* already has outtype? */ for (i = 0; i < it->output->size; i++) if (it->output->terminals[i] == outtype) return uaudio_merge_terminal_list(it); tml = malloc(TERMINAL_LIST_SIZE(it->output->size + 1), M_TEMP, M_NOWAIT); if (tml == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return uaudio_merge_terminal_list(it); } memcpy(tml, it->output, TERMINAL_LIST_SIZE(it->output->size)); tml->terminals[it->output->size] = outtype; tml->size++; free(it->output, M_TEMP); it->output = tml; if (it->inputs != NULL) { for (i = 0; i < it->inputs_size; i++) if (it->inputs[i] != NULL) free(it->inputs[i], M_TEMP); free(it->inputs, M_TEMP); } it->inputs_size = 0; it->inputs = NULL; } else { /* end `iot[id] != NULL' */ it->inputs_size = 0; it->inputs = NULL; it->output = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); if (it->output == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } it->output->terminals[0] = outtype; it->output->size = 1; it->direct = FALSE; } switch (it->d.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } tml = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); if (tml == NULL) { printf("uaudio_io_terminaltype: no memory\n"); free(it->inputs, M_TEMP); it->inputs = NULL; return NULL; } it->inputs[0] = tml; tml->terminals[0] = UGETW(it->d.it->wTerminalType); tml->size = 1; it->inputs_size = 1; return uaudio_merge_terminal_list(it); case UDESCSUB_AC_FEATURE: src_id = it->d.fu->bSourceId; it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return uaudio_io_terminaltype(outtype, iot, src_id); } it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size = 1; return uaudio_merge_terminal_list(it); case UDESCSUB_AC_OUTPUT: it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } src_id = it->d.ot->bSourceId; it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size = 1; iot[src_id].direct = TRUE; return NULL; case UDESCSUB_AC_MIXER: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.mu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.mu->bNrInPins; i++) { src_id = it->d.mu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_SELECTOR: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.su->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.su->bNrInPins; i++) { src_id = it->d.su->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_PROCESSING: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.pu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.pu->bNrInPins; i++) { src_id = it->d.pu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_EXTENSION: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.eu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { printf("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.eu->bNrInPins; i++) { src_id = it->d.eu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_HEADER: default: return NULL; } } Static usbd_status uaudio_identify(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { usbd_status err; err = uaudio_identify_ac(sc, cdesc); if (err) return (err); return (uaudio_identify_as(sc, cdesc)); } Static void uaudio_add_alt(struct uaudio_softc *sc, const struct as_info *ai) { size_t len; struct as_info *nai; len = sizeof(*ai) * (sc->sc_nalts + 1); nai = malloc(len, M_USBDEV, M_NOWAIT); if (nai == NULL) { printf("uaudio_add_alt: no memory\n"); return; } /* Copy old data, if there was any */ if (sc->sc_nalts != 0) { bcopy(sc->sc_alts, nai, sizeof(*ai) * (sc->sc_nalts)); free(sc->sc_alts, M_USBDEV); } sc->sc_alts = nai; DPRINTFN(2,("uaudio_add_alt: adding alt=%d, enc=%d\n", ai->alt, ai->encoding)); sc->sc_alts[sc->sc_nalts++] = *ai; } Static usbd_status uaudio_process_as(struct uaudio_softc *sc, const char *buf, int *offsp, int size, const usb_interface_descriptor_t *id) #define offs (*offsp) { const struct usb_audio_streaming_interface_descriptor *asid; const struct usb_audio_streaming_type1_descriptor *asf1d; const usb_endpoint_descriptor_audio_t *ed; const usb_endpoint_descriptor_audio_t *epdesc1; const struct usb_audio_streaming_endpoint_descriptor *sed; int format, chan, prec, enc; int dir, type, sync; struct as_info ai; const char *format_str; asid = (const void *)(buf + offs); if (asid->bDescriptorType != UDESC_CS_INTERFACE || asid->bDescriptorSubtype != AS_GENERAL) return (USBD_INVAL); DPRINTF(("uaudio_process_as: asid: bTerminakLink=%d wFormatTag=%d\n", asid->bTerminalLink, UGETW(asid->wFormatTag))); offs += asid->bLength; if (offs > size) return (USBD_INVAL); asf1d = (const void *)(buf + offs); if (asf1d->bDescriptorType != UDESC_CS_INTERFACE || asf1d->bDescriptorSubtype != FORMAT_TYPE) return (USBD_INVAL); offs += asf1d->bLength; if (offs > size) return (USBD_INVAL); if (asf1d->bFormatType != FORMAT_TYPE_I) { printf("%s: ignored setting with type %d format\n", USBDEVNAME(sc->sc_dev), UGETW(asid->wFormatTag)); return (USBD_NORMAL_COMPLETION); } ed = (const void *)(buf + offs); if (ed->bDescriptorType != UDESC_ENDPOINT) return (USBD_INVAL); DPRINTF(("uaudio_process_as: endpoint[0] bLength=%d bDescriptorType=%d " "bEndpointAddress=%d bmAttributes=0x%x wMaxPacketSize=%d " "bInterval=%d bRefresh=%d bSynchAddress=%d\n", ed->bLength, ed->bDescriptorType, ed->bEndpointAddress, ed->bmAttributes, UGETW(ed->wMaxPacketSize), ed->bInterval, ed->bRefresh, ed->bSynchAddress)); offs += ed->bLength; if (offs > size) return (USBD_INVAL); if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS) return (USBD_INVAL); dir = UE_GET_DIR(ed->bEndpointAddress); type = UE_GET_ISO_TYPE(ed->bmAttributes); if ((usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_INP_ASYNC) && dir == UE_DIR_IN && type == UE_ISO_ADAPT) type = UE_ISO_ASYNC; /* We can't handle endpoints that need a sync pipe yet. */ sync = FALSE; if (dir == UE_DIR_IN && type == UE_ISO_ADAPT) { sync = TRUE; #ifndef UAUDIO_MULTIPLE_ENDPOINTS printf("%s: ignored input endpoint of type adaptive\n", USBDEVNAME(sc->sc_dev)); return (USBD_NORMAL_COMPLETION); #endif } if (dir != UE_DIR_IN && type == UE_ISO_ASYNC) { sync = TRUE; #ifndef UAUDIO_MULTIPLE_ENDPOINTS printf("%s: ignored output endpoint of type async\n", USBDEVNAME(sc->sc_dev)); return (USBD_NORMAL_COMPLETION); #endif } sed = (const void *)(buf + offs); if (sed->bDescriptorType != UDESC_CS_ENDPOINT || sed->bDescriptorSubtype != AS_GENERAL) return (USBD_INVAL); DPRINTF((" streadming_endpoint: offset=%d bLength=%d\n", offs, sed->bLength)); offs += sed->bLength; if (offs > size) return (USBD_INVAL); if (sync && id->bNumEndpoints <= 1) { printf("%s: a sync-pipe endpoint but no other endpoint\n", USBDEVNAME(sc->sc_dev)); return USBD_INVAL; } if (!sync && id->bNumEndpoints > 1) { printf("%s: non sync-pipe endpoint but multiple endpoints\n", USBDEVNAME(sc->sc_dev)); return USBD_INVAL; } epdesc1 = NULL; if (id->bNumEndpoints > 1) { epdesc1 = (const void*)(buf + offs); if (epdesc1->bDescriptorType != UDESC_ENDPOINT) return USBD_INVAL; DPRINTF(("uaudio_process_as: endpoint[1] bLength=%d " "bDescriptorType=%d bEndpointAddress=%d " "bmAttributes=0x%x wMaxPacketSize=%d bInterval=%d " "bRefresh=%d bSynchAddress=%d\n", epdesc1->bLength, epdesc1->bDescriptorType, epdesc1->bEndpointAddress, epdesc1->bmAttributes, UGETW(epdesc1->wMaxPacketSize), epdesc1->bInterval, epdesc1->bRefresh, epdesc1->bSynchAddress)); offs += epdesc1->bLength; if (offs > size) return USBD_INVAL; if (epdesc1->bSynchAddress != 0) { printf("%s: invalid endpoint: bSynchAddress=0\n", USBDEVNAME(sc->sc_dev)); return USBD_INVAL; } if (UE_GET_XFERTYPE(epdesc1->bmAttributes) != UE_ISOCHRONOUS) { printf("%s: invalid endpoint: bmAttributes=0x%x\n", USBDEVNAME(sc->sc_dev), epdesc1->bmAttributes); return USBD_INVAL; } if (epdesc1->bEndpointAddress != ed->bSynchAddress) { printf("%s: invalid endpoint addresses: " "ep[0]->bSynchAddress=0x%x " "ep[1]->bEndpointAddress=0x%x\n", USBDEVNAME(sc->sc_dev), ed->bSynchAddress, epdesc1->bEndpointAddress); return USBD_INVAL; } /* UE_GET_ADDR(epdesc1->bEndpointAddress), and epdesc1->bRefresh */ } format = UGETW(asid->wFormatTag); chan = asf1d->bNrChannels; prec = asf1d->bBitResolution; if (prec != 8 && prec != 16 && prec != 24) { printf("%s: ignored setting with precision %d\n", USBDEVNAME(sc->sc_dev), prec); return (USBD_NORMAL_COMPLETION); } switch (format) { case UA_FMT_PCM: if (prec == 8) { sc->sc_altflags |= HAS_8; } else if (prec == 16) { sc->sc_altflags |= HAS_16; } else if (prec == 24) { sc->sc_altflags |= HAS_24; } enc = AUDIO_ENCODING_SLINEAR_LE; format_str = "pcm"; break; case UA_FMT_PCM8: enc = AUDIO_ENCODING_ULINEAR_LE; sc->sc_altflags |= HAS_8U; format_str = "pcm8"; break; case UA_FMT_ALAW: enc = AUDIO_ENCODING_ALAW; sc->sc_altflags |= HAS_ALAW; format_str = "alaw"; break; case UA_FMT_MULAW: enc = AUDIO_ENCODING_ULAW; sc->sc_altflags |= HAS_MULAW; format_str = "mulaw"; break; case UA_FMT_IEEE_FLOAT: default: printf("%s: ignored setting with format %d\n", USBDEVNAME(sc->sc_dev), format); return (USBD_NORMAL_COMPLETION); } #ifdef UAUDIO_DEBUG printf("%s: %s: %dch, %d/%dbit, %s,", USBDEVNAME(sc->sc_dev), dir == UE_DIR_IN ? "recording" : "playback", chan, prec, asf1d->bSubFrameSize * 8, format_str); if (asf1d->bSamFreqType == UA_SAMP_CONTNUOUS) { printf(" %d-%dHz\n", UA_SAMP_LO(asf1d), UA_SAMP_HI(asf1d)); } else { int r; printf(" %d", UA_GETSAMP(asf1d, 0)); for (r = 1; r < asf1d->bSamFreqType; r++) printf(",%d", UA_GETSAMP(asf1d, r)); printf("Hz\n"); } #endif ai.alt = id->bAlternateSetting; ai.encoding = enc; ai.attributes = sed->bmAttributes; ai.idesc = id; ai.edesc = ed; ai.edesc1 = epdesc1; ai.asf1desc = asf1d; ai.sc_busy = 0; uaudio_add_alt(sc, &ai); #ifdef UAUDIO_DEBUG if (ai.attributes & UA_SED_FREQ_CONTROL) DPRINTFN(1, ("uaudio_process_as: FREQ_CONTROL\n")); if (ai.attributes & UA_SED_PITCH_CONTROL) DPRINTFN(1, ("uaudio_process_as: PITCH_CONTROL\n")); #endif sc->sc_mode |= (dir == UE_DIR_OUT) ? AUMODE_PLAY : AUMODE_RECORD; return (USBD_NORMAL_COMPLETION); } #undef offs Static usbd_status uaudio_identify_as(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { const usb_interface_descriptor_t *id; const char *buf; int size, offs; size = UGETW(cdesc->wTotalLength); buf = (const char *)cdesc; /* Locate the AudioStreaming interface descriptor. */ offs = 0; id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOSTREAM); if (id == NULL) return (USBD_INVAL); /* Loop through all the alternate settings. */ while (offs <= size) { DPRINTFN(2, ("uaudio_identify: interface=%d offset=%d\n", id->bInterfaceNumber, offs)); switch (id->bNumEndpoints) { case 0: DPRINTFN(2, ("uaudio_identify: AS null alt=%d\n", id->bAlternateSetting)); sc->sc_nullalt = id->bAlternateSetting; break; case 1: #ifdef UAUDIO_MULTIPLE_ENDPOINTS case 2: #endif uaudio_process_as(sc, buf, &offs, size, id); break; default: printf("%s: ignored audio interface with %d " "endpoints\n", USBDEVNAME(sc->sc_dev), id->bNumEndpoints); break; } id = uaudio_find_iface(buf, size, &offs,UISUBCLASS_AUDIOSTREAM); if (id == NULL) break; } if (offs > size) return (USBD_INVAL); DPRINTF(("uaudio_identify_as: %d alts available\n", sc->sc_nalts)); if (sc->sc_mode == 0) { printf("%s: no usable endpoint found\n", USBDEVNAME(sc->sc_dev)); return (USBD_INVAL); } return (USBD_NORMAL_COMPLETION); } Static usbd_status uaudio_identify_ac(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { struct io_terminal* iot; const usb_interface_descriptor_t *id; const struct usb_audio_control_descriptor *acdp; const usb_descriptor_t *dp; const struct usb_audio_output_terminal *pot; struct terminal_list *tml; const char *buf, *ibuf, *ibufend; int size, offs, aclen, ndps, i, j; size = UGETW(cdesc->wTotalLength); buf = (char *)cdesc; /* Locate the AudioControl interface descriptor. */ offs = 0; id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOCONTROL); if (id == NULL) return (USBD_INVAL); if (offs + sizeof *acdp > size) return (USBD_INVAL); sc->sc_ac_iface = id->bInterfaceNumber; DPRINTFN(2,("uaudio_identify_ac: AC interface is %d\n", sc->sc_ac_iface)); /* A class-specific AC interface header should follow. */ ibuf = buf + offs; acdp = (const struct usb_audio_control_descriptor *)ibuf; if (acdp->bDescriptorType != UDESC_CS_INTERFACE || acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER) return (USBD_INVAL); aclen = UGETW(acdp->wTotalLength); if (offs + aclen > size) return (USBD_INVAL); if (!(usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_BAD_ADC) && UGETW(acdp->bcdADC) != UAUDIO_VERSION) return (USBD_INVAL); sc->sc_audio_rev = UGETW(acdp->bcdADC); DPRINTFN(2,("uaudio_identify_ac: found AC header, vers=%03x, len=%d\n", sc->sc_audio_rev, aclen)); sc->sc_nullalt = -1; /* Scan through all the AC specific descriptors */ ibufend = ibuf + aclen; dp = (const usb_descriptor_t *)ibuf; ndps = 0; iot = malloc(sizeof(struct io_terminal) * 256, M_TEMP, M_NOWAIT); if (iot == NULL) { printf("%s: no memory\n", __func__); return USBD_NOMEM; } bzero(iot, sizeof(struct io_terminal) * 256); for (;;) { ibuf += dp->bLength; if (ibuf >= ibufend) break; dp = (const usb_descriptor_t *)ibuf; if (ibuf + dp->bLength > ibufend) { free(iot, M_TEMP); return (USBD_INVAL); } if (dp->bDescriptorType != UDESC_CS_INTERFACE) { printf("uaudio_identify_ac: skip desc type=0x%02x\n", dp->bDescriptorType); continue; } i = ((const struct usb_audio_input_terminal *)dp)->bTerminalId; iot[i].d.desc = dp; if (i > ndps) ndps = i; } ndps++; /* construct io_terminal */ for (i = 0; i < ndps; i++) { dp = iot[i].d.desc; if (dp == NULL) continue; if (dp->bDescriptorSubtype != UDESCSUB_AC_OUTPUT) continue; pot = iot[i].d.ot; tml = uaudio_io_terminaltype(UGETW(pot->wTerminalType), iot, i); if (tml != NULL) free(tml, M_TEMP); } #ifdef UAUDIO_DEBUG for (i = 0; i < 256; i++) { if (iot[i].d.desc == NULL) continue; printf("id %d:\t", i); switch (iot[i].d.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: printf("AC_INPUT type=%s\n", uaudio_get_terminal_name (UGETW(iot[i].d.it->wTerminalType))); break; case UDESCSUB_AC_OUTPUT: printf("AC_OUTPUT type=%s ", uaudio_get_terminal_name (UGETW(iot[i].d.ot->wTerminalType))); printf("src=%d\n", iot[i].d.ot->bSourceId); break; case UDESCSUB_AC_MIXER: printf("AC_MIXER src="); for (j = 0; j < iot[i].d.mu->bNrInPins; j++) printf("%d ", iot[i].d.mu->baSourceId[j]); printf("\n"); break; case UDESCSUB_AC_SELECTOR: printf("AC_SELECTOR src="); for (j = 0; j < iot[i].d.su->bNrInPins; j++) printf("%d ", iot[i].d.su->baSourceId[j]); printf("\n"); break; case UDESCSUB_AC_FEATURE: printf("AC_FEATURE src=%d\n", iot[i].d.fu->bSourceId); break; case UDESCSUB_AC_PROCESSING: printf("AC_PROCESSING src="); for (j = 0; j < iot[i].d.pu->bNrInPins; j++) printf("%d ", iot[i].d.pu->baSourceId[j]); printf("\n"); break; case UDESCSUB_AC_EXTENSION: printf("AC_EXTENSION src="); for (j = 0; j < iot[i].d.eu->bNrInPins; j++) printf("%d ", iot[i].d.eu->baSourceId[j]); printf("\n"); break; default: printf("unknown audio control (subtype=%d)\n", iot[i].d.desc->bDescriptorSubtype); } for (j = 0; j < iot[i].inputs_size; j++) { int k; printf("\tinput%d: ", j); tml = iot[i].inputs[j]; if (tml == NULL) { printf("NULL\n"); continue; } for (k = 0; k < tml->size; k++) printf("%s ", uaudio_get_terminal_name (tml->terminals[k])); printf("\n"); } printf("\toutput: "); tml = iot[i].output; for (j = 0; j < tml->size; j++) printf("%s ", uaudio_get_terminal_name(tml->terminals[j])); printf("\n"); } #endif for (i = 0; i < ndps; i++) { dp = iot[i].d.desc; if (dp == NULL) continue; DPRINTF(("uaudio_identify_ac: id=%d subtype=%d\n", i, dp->bDescriptorSubtype)); switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_HEADER: printf("uaudio_identify_ac: unexpected AC header\n"); break; case UDESCSUB_AC_INPUT: uaudio_add_input(sc, iot, i); break; case UDESCSUB_AC_OUTPUT: uaudio_add_output(sc, iot, i); break; case UDESCSUB_AC_MIXER: uaudio_add_mixer(sc, iot, i); break; case UDESCSUB_AC_SELECTOR: uaudio_add_selector(sc, iot, i); break; case UDESCSUB_AC_FEATURE: uaudio_add_feature(sc, iot, i); break; case UDESCSUB_AC_PROCESSING: uaudio_add_processing(sc, iot, i); break; case UDESCSUB_AC_EXTENSION: uaudio_add_extension(sc, iot, i); break; default: printf("uaudio_identify_ac: bad AC desc subtype=0x%02x\n", dp->bDescriptorSubtype); break; } } /* delete io_terminal */ for (i = 0; i < 256; i++) { if (iot[i].d.desc == NULL) continue; if (iot[i].inputs != NULL) { for (j = 0; j < iot[i].inputs_size; j++) { if (iot[i].inputs[j] != NULL) free(iot[i].inputs[j], M_TEMP); } free(iot[i].inputs, M_TEMP); } if (iot[i].output != NULL) free(iot[i].output, M_TEMP); iot[i].d.desc = NULL; } free(iot, M_TEMP); return (USBD_NORMAL_COMPLETION); } Static int uaudio_query_devinfo(void *addr, mixer_devinfo_t *mi) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int n, nctls, i; DPRINTFN(2,("uaudio_query_devinfo: index=%d\n", mi->index)); if (sc->sc_dying) return (EIO); n = mi->index; nctls = sc->sc_nctls; switch (n) { case UAC_OUTPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_OUTPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCoutputs, sizeof(mi->label.name)); return (0); case UAC_INPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_INPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCinputs, sizeof(mi->label.name)); return (0); case UAC_EQUAL: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_EQUAL; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCequalization, sizeof(mi->label.name)); return (0); case UAC_RECORD: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_RECORD; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCrecord, sizeof(mi->label.name)); return 0; default: break; } n -= UAC_NCLASSES; if (n < 0 || n >= nctls) return (ENXIO); mc = &sc->sc_ctls[n]; strlcpy(mi->label.name, mc->ctlname, sizeof(mi->label.name)); mi->mixer_class = mc->class; mi->next = mi->prev = AUDIO_MIXER_LAST; /* XXX */ switch (mc->type) { case MIX_ON_OFF: mi->type = AUDIO_MIXER_ENUM; mi->un.e.num_mem = 2; strlcpy(mi->un.e.member[0].label.name, AudioNoff, sizeof(mi->un.e.member[0].label.name)); mi->un.e.member[0].ord = 0; strlcpy(mi->un.e.member[1].label.name, AudioNon, sizeof(mi->un.e.member[1].label.name)); mi->un.e.member[1].ord = 1; break; case MIX_SELECTOR: mi->type = AUDIO_MIXER_ENUM; mi->un.e.num_mem = mc->maxval - mc->minval + 1; for (i = 0; i <= mc->maxval - mc->minval; i++) { snprintf(mi->un.e.member[i].label.name, sizeof(mi->un.e.member[i].label.name), "%d", i + mc->minval); mi->un.e.member[i].ord = i + mc->minval; } break; default: mi->type = AUDIO_MIXER_VALUE; strlcpy(mi->un.v.units.name, mc->ctlunit, sizeof(mi->un.v.units.name)); mi->un.v.num_channels = mc->nchan; mi->un.v.delta = mc->delta; break; } return (0); } Static int uaudio_open(void *addr, int flags) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_open: sc=%p\n", sc)); if (sc->sc_dying) return (EIO); if ((flags & FWRITE) && !(sc->sc_mode & AUMODE_PLAY)) return (EACCES); if ((flags & FREAD) && !(sc->sc_mode & AUMODE_RECORD)) return (EACCES); return (0); } /* * Close function is called at splaudio(). */ Static void uaudio_close(void *addr) { struct uaudio_softc *sc = addr; if (sc->sc_playchan.altidx != -1) uaudio_chan_close(sc, &sc->sc_playchan); if (sc->sc_recchan.altidx != -1) uaudio_chan_close(sc, &sc->sc_recchan); } Static int uaudio_drain(void *addr) { struct uaudio_softc *sc = addr; usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * UAUDIO_NFRAMES); return (0); } Static int uaudio_halt_out_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_halt_out_dma: enter\n")); if (sc->sc_playchan.pipe != NULL) { uaudio_chan_close(sc, &sc->sc_playchan); sc->sc_playchan.pipe = NULL; uaudio_chan_free_buffers(sc, &sc->sc_playchan); sc->sc_playchan.intr = NULL; } return (0); } Static int uaudio_halt_in_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_halt_in_dma: enter\n")); if (sc->sc_recchan.pipe != NULL) { uaudio_chan_close(sc, &sc->sc_recchan); sc->sc_recchan.pipe = NULL; uaudio_chan_free_buffers(sc, &sc->sc_recchan); sc->sc_recchan.intr = NULL; } return (0); } Static int uaudio_getdev(void *addr, struct audio_device *retp) { struct uaudio_softc *sc = addr; DPRINTF(("uaudio_mixer_getdev:\n")); if (sc->sc_dying) return (EIO); *retp = uaudio_device; return (0); } /* * Make sure the block size is large enough to hold all outstanding transfers. */ Static int uaudio_round_blocksize(void *addr, int blk) { struct uaudio_softc *sc = addr; int bpf; DPRINTF(("uaudio_round_blocksize: p.bpf=%d r.bpf=%d\n", sc->sc_playchan.bytes_per_frame, sc->sc_recchan.bytes_per_frame)); if (sc->sc_playchan.bytes_per_frame > sc->sc_recchan.bytes_per_frame) { bpf = sc->sc_playchan.bytes_per_frame + sc->sc_playchan.sample_size; } else { bpf = sc->sc_recchan.bytes_per_frame + sc->sc_recchan.sample_size; } /* XXX */ bpf *= UAUDIO_NFRAMES * UAUDIO_NCHANBUFS; bpf = (bpf + 15) &~ 15; if (blk < bpf) blk = bpf; #ifdef DIAGNOSTIC if (blk <= 0) { printf("uaudio_round_blocksize: blk=%d\n", blk); blk = 512; } #endif DPRINTFN(1,("uaudio_round_blocksize: blk=%d\n", blk)); return (blk); } Static int uaudio_get_props(void *addr) { return (AUDIO_PROP_FULLDUPLEX | AUDIO_PROP_INDEPENDENT); } Static int uaudio_get(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len) { usb_device_request_t req; u_int8_t data[4]; usbd_status err; int val; if (wValue == -1) return (0); req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); DPRINTFN(2,("uaudio_get: type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d\n", type, which, wValue, wIndex, len)); err = usbd_do_request(sc->sc_udev, &req, data); if (err) { DPRINTF(("uaudio_get: err=%s\n", usbd_errstr(err))); return (-1); } switch (len) { case 1: val = data[0]; break; case 2: val = data[0] | (data[1] << 8); break; default: DPRINTF(("uaudio_get: bad length=%d\n", len)); return (-1); } DPRINTFN(2,("uaudio_get: val=%d\n", val)); return (val); } Static void uaudio_set(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len, int val) { usb_device_request_t req; u_int8_t data[4]; usbd_status err; if (wValue == -1) return; req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); switch (len) { case 1: data[0] = val; break; case 2: data[0] = val; data[1] = val >> 8; break; default: return; } DPRINTFN(2,("uaudio_set: type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d, val=%d\n", type, which, wValue, wIndex, len, val & 0xffff)); err = usbd_do_request(sc->sc_udev, &req, data); #ifdef UAUDIO_DEBUG if (err) DPRINTF(("uaudio_set: err=%d\n", err)); #endif } Static int uaudio_signext(int type, int val) { if (!MIX_UNSIGNED(type)) { if (MIX_SIZE(type) == 2) val = (int16_t)val; else val = (int8_t)val; } return (val); } Static int uaudio_value2bsd(struct mixerctl *mc, int val) { DPRINTFN(5, ("uaudio_value2bsd: type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval)); if (mc->type == MIX_ON_OFF) { val = (val != 0); } else if (mc->type == MIX_SELECTOR) { if (val < mc->minval || val > mc->maxval) val = mc->minval; } else val = ((uaudio_signext(mc->type, val) - mc->minval) * 255 + mc->mul/2) / mc->mul; DPRINTFN(5, ("val'=%d\n", val)); return (val); } int uaudio_bsd2value(struct mixerctl *mc, int val) { DPRINTFN(5,("uaudio_bsd2value: type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval)); if (mc->type == MIX_ON_OFF) { val = (val != 0); } else if (mc->type == MIX_SELECTOR) { if (val < mc->minval || val > mc->maxval) val = mc->minval; } else val = (val + mc->delta/2) * mc->mul / 255 + mc->minval; DPRINTFN(5, ("val'=%d\n", val)); return (val); } Static int uaudio_ctl_get(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan) { int val; DPRINTFN(5,("uaudio_ctl_get: which=%d chan=%d\n", which, chan)); val = uaudio_get(sc, which, UT_READ_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type)); return (uaudio_value2bsd(mc, val)); } Static void uaudio_ctl_set(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan, int val) { val = uaudio_bsd2value(mc, val); uaudio_set(sc, which, UT_WRITE_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type), val); } Static int uaudio_mixer_get_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN], val; DPRINTFN(2,("uaudio_mixer_get_port: index=%d\n", cp->dev)); if (sc->sc_dying) return (EIO); n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return (ENXIO); mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); } else if (mc->type == MIX_SELECTOR) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); } else { if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels != 1 && cp->un.value.num_channels != mc->nchan) return (EINVAL); for (i = 0; i < mc->nchan; i++) vals[i] = uaudio_ctl_get(sc, GET_CUR, mc, i); if (cp->un.value.num_channels == 1 && mc->nchan != 1) { for (val = 0, i = 0; i < mc->nchan; i++) val += vals[i]; vals[0] = val / mc->nchan; } for (i = 0; i < cp->un.value.num_channels; i++) cp->un.value.level[i] = vals[i]; } return (0); } Static int uaudio_mixer_set_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc = addr; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN]; DPRINTFN(2,("uaudio_mixer_set_port: index = %d\n", cp->dev)); if (sc->sc_dying) return (EIO); n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return (ENXIO); mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); } else if (mc->type == MIX_SELECTOR) { if (cp->type != AUDIO_MIXER_ENUM) return (EINVAL); uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); } else { if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels == 1) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[0]; else if (cp->un.value.num_channels == mc->nchan) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[i]; else return (EINVAL); for (i = 0; i < mc->nchan; i++) uaudio_ctl_set(sc, SET_CUR, mc, i, vals[i]); } return (0); } Static int uaudio_trigger_input(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct uaudio_softc *sc = addr; struct chan *ch = &sc->sc_recchan; usbd_status err; int i, s; if (sc->sc_dying) return (EIO); DPRINTFN(3,("uaudio_trigger_input: sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize)); uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3,("uaudio_trigger_input: sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction)); err = uaudio_chan_alloc_buffers(sc, ch); if (err) return (EIO); err = uaudio_chan_open(sc, ch); if (err) { uaudio_chan_free_buffers(sc, ch); return (EIO); } ch->intr = intr; ch->arg = arg; s = splusb(); for (i = 0; i < UAUDIO_NCHANBUFS-1; i++) /* XXX -1 shouldn't be needed */ uaudio_chan_rtransfer(ch); splx(s); return (0); } Static int uaudio_trigger_output(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct uaudio_softc *sc = addr; struct chan *ch = &sc->sc_playchan; usbd_status err; int i, s; if (sc->sc_dying) return (EIO); DPRINTFN(3,("uaudio_trigger_output: sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize)); uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3,("uaudio_trigger_output: sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction)); err = uaudio_chan_alloc_buffers(sc, ch); if (err) return (EIO); err = uaudio_chan_open(sc, ch); if (err) { uaudio_chan_free_buffers(sc, ch); return (EIO); } ch->intr = intr; ch->arg = arg; s = splusb(); for (i = 0; i < UAUDIO_NCHANBUFS-1; i++) /* XXX */ uaudio_chan_ptransfer(ch); splx(s); return (0); } /* Set up a pipe for a channel. */ Static usbd_status uaudio_chan_open(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; int endpt = as->edesc->bEndpointAddress; usbd_status err; DPRINTF(("uaudio_chan_open: endpt=0x%02x, speed=%d, alt=%d\n", endpt, ch->sample_rate, as->alt)); /* Set alternate interface corresponding to the mode. */ err = usbd_set_interface(as->ifaceh, as->alt); if (err) return (err); /* * If just one sampling rate is supported, * no need to call uaudio_set_speed(). * Roland SD-90 freezes by a SAMPLING_FREQ_CONTROL request. */ if (as->asf1desc->bSamFreqType != 1) { err = uaudio_set_speed(sc, endpt, ch->sample_rate); if (err) DPRINTF(("uaudio_chan_open: set_speed failed err=%s\n", usbd_errstr(err))); } ch->pipe = 0; ch->sync_pipe = 0; DPRINTF(("uaudio_chan_open: create pipe to 0x%02x\n", endpt)); err = usbd_open_pipe(as->ifaceh, endpt, 0, &ch->pipe); if (err) return err; if (as->edesc1 != NULL) { endpt = as->edesc1->bEndpointAddress; DPRINTF(("uaudio_chan_open: create sync-pipe to 0x%02x\n", endpt)); err = usbd_open_pipe(as->ifaceh, endpt, 0, &ch->sync_pipe); } return err; } Static void uaudio_chan_close(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as = &sc->sc_alts[ch->altidx]; as->sc_busy = 0; if (sc->sc_nullalt >= 0) { DPRINTF(("uaudio_chan_close: set null alt=%d\n", sc->sc_nullalt)); usbd_set_interface(as->ifaceh, sc->sc_nullalt); } if (ch->pipe) { usbd_abort_pipe(ch->pipe); usbd_close_pipe(ch->pipe); } if (ch->sync_pipe) { usbd_abort_pipe(ch->sync_pipe); usbd_close_pipe(ch->sync_pipe); } } Static usbd_status uaudio_chan_alloc_buffers(struct uaudio_softc *sc, struct chan *ch) { usbd_xfer_handle xfer; void *buf; int i, size; size = (ch->bytes_per_frame + ch->sample_size) * UAUDIO_NFRAMES; for (i = 0; i < UAUDIO_NCHANBUFS; i++) { xfer = usbd_alloc_xfer(sc->sc_udev); if (xfer == 0) goto bad; ch->chanbufs[i].xfer = xfer; buf = usbd_alloc_buffer(xfer, size); if (buf == 0) { i++; goto bad; } ch->chanbufs[i].buffer = buf; ch->chanbufs[i].chan = ch; } return (USBD_NORMAL_COMPLETION); bad: while (--i >= 0) /* implicit buffer free */ usbd_free_xfer(ch->chanbufs[i].xfer); return (USBD_NOMEM); } Static void uaudio_chan_free_buffers(struct uaudio_softc *sc, struct chan *ch) { int i; for (i = 0; i < UAUDIO_NCHANBUFS; i++) usbd_free_xfer(ch->chanbufs[i].xfer); } /* Called at splusb() */ Static void uaudio_chan_ptransfer(struct chan *ch) { struct chanbuf *cb; int i, n, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < UAUDIO_NFRAMES; i++) { size = ch->bytes_per_frame; residue += ch->fraction; if (residue >= USB_FRAMES_PER_SECOND) { if ((ch->sc->sc_altflags & UA_NOFRAC) == 0) size += ch->sample_size; residue -= USB_FRAMES_PER_SECOND; } cb->sizes[i] = size; total += size; } ch->residue = residue; cb->size = total; /* * Transfer data from upper layer buffer to channel buffer, taking * care of wrapping the upper layer buffer. */ n = min(total, ch->end - ch->cur); memcpy(cb->buffer, ch->cur, n); ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; if (total > n) { total -= n; memcpy(cb->buffer + n, ch->cur, total); ch->cur += total; } #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF(("uaudio_chan_ptransfer: buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue)); for (i = 0; i < UAUDIO_NFRAMES; i++) { DPRINTF((" [%d] length %d\n", i, cb->sizes[i])); } } #endif DPRINTFN(5,("uaudio_chan_transfer: ptransfer xfer=%p\n", cb->xfer)); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes, UAUDIO_NFRAMES, USBD_NO_COPY, uaudio_chan_pintr); (void)usbd_transfer(cb->xfer); } Static void uaudio_chan_pintr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct chanbuf *cb = priv; struct chan *ch = cb->chan; u_int32_t count; int s; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5,("uaudio_chan_pintr: count=%d, transferred=%d\n", count, ch->transferred)); #ifdef DIAGNOSTIC if (count != cb->size) { printf("uaudio_chan_pintr: count(%d) != size(%d)\n", count, cb->size); } #endif ch->transferred += cb->size; s = splaudio(); /* Call back to upper layer */ while (ch->transferred >= ch->blksize) { ch->transferred -= ch->blksize; DPRINTFN(5,("uaudio_chan_pintr: call %p(%p)\n", ch->intr, ch->arg)); ch->intr(ch->arg); } splx(s); /* start next transfer */ uaudio_chan_ptransfer(ch); } /* Called at splusb() */ Static void uaudio_chan_rtransfer(struct chan *ch) { struct chanbuf *cb; int i, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < UAUDIO_NFRAMES; i++) { size = ch->bytes_per_frame; cb->sizes[i] = size; cb->offsets[i] = total; total += size; } ch->residue = residue; cb->size = total; #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF(("uaudio_chan_rtransfer: buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue)); for (i = 0; i < UAUDIO_NFRAMES; i++) { DPRINTF((" [%d] length %d\n", i, cb->sizes[i])); } } #endif DPRINTFN(5,("uaudio_chan_rtransfer: transfer xfer=%p\n", cb->xfer)); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes, UAUDIO_NFRAMES, USBD_NO_COPY, uaudio_chan_rintr); (void)usbd_transfer(cb->xfer); } Static void uaudio_chan_rintr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct chanbuf *cb = priv; struct chan *ch = cb->chan; u_int32_t count; int s, i, n, frsize; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5,("uaudio_chan_rintr: count=%d, transferred=%d\n", count, ch->transferred)); /* count < cb->size is normal for asynchronous source */ #ifdef DIAGNOSTIC if (count > cb->size) { printf("uaudio_chan_rintr: count(%d) > size(%d)\n", count, cb->size); } #endif /* * Transfer data from channel buffer to upper layer buffer, taking * care of wrapping the upper layer buffer. */ for(i = 0; i < UAUDIO_NFRAMES; i++) { frsize = cb->sizes[i]; n = min(frsize, ch->end - ch->cur); memcpy(ch->cur, cb->buffer + cb->offsets[i], n); ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; if (frsize > n) { memcpy(ch->cur, cb->buffer + cb->offsets[i] + n, frsize - n); ch->cur += frsize - n; } } /* Call back to upper layer */ ch->transferred += count; s = splaudio(); while (ch->transferred >= ch->blksize) { ch->transferred -= ch->blksize; DPRINTFN(5,("uaudio_chan_rintr: call %p(%p)\n", ch->intr, ch->arg)); ch->intr(ch->arg); } splx(s); /* start next transfer */ uaudio_chan_rtransfer(ch); } Static void uaudio_chan_init(struct chan *ch, int altidx, const struct audio_params *param, int maxpktsize) { int samples_per_frame, sample_size; ch->altidx = altidx; sample_size = param->precision * param->factor * param->hw_channels / 8; samples_per_frame = param->hw_sample_rate / USB_FRAMES_PER_SECOND; ch->sample_size = sample_size; ch->sample_rate = param->hw_sample_rate; if (maxpktsize == 0) { ch->fraction = param->hw_sample_rate % USB_FRAMES_PER_SECOND; ch->bytes_per_frame = samples_per_frame * sample_size; } else { ch->fraction = 0; ch->bytes_per_frame = maxpktsize; } ch->residue = 0; } Static void uaudio_chan_set_param(struct chan *ch, u_char *start, u_char *end, int blksize) { ch->start = start; ch->end = end; ch->cur = start; ch->blksize = blksize; ch->transferred = 0; ch->curchanbuf = 0; } Static void uaudio_get_minmax_rates(int nalts, const struct as_info *alts, const struct audio_params *p, int mode, u_long *min, u_long *max) { const struct usb_audio_streaming_type1_descriptor *a1d; int i, j; *min = ULONG_MAX; *max = 0; for (i = 0; i < nalts; i++) { a1d = alts[i].asf1desc; if (alts[i].sc_busy) continue; if (p->hw_channels != a1d->bNrChannels) continue; if (p->hw_precision != a1d->bBitResolution) continue; if (p->hw_encoding != alts[i].encoding) continue; if (mode != UE_GET_DIR(alts[i].edesc->bEndpointAddress)) continue; if (a1d->bSamFreqType == UA_SAMP_CONTNUOUS) { DPRINTFN(2,("uaudio_get_minmax_rates: cont %d-%d\n", UA_SAMP_LO(a1d), UA_SAMP_HI(a1d))); if (UA_SAMP_LO(a1d) < *min) *min = UA_SAMP_LO(a1d); if (UA_SAMP_HI(a1d) > *max) *max = UA_SAMP_HI(a1d); } else { for (j = 0; j < a1d->bSamFreqType; j++) { DPRINTFN(2,("uaudio_get_minmax_rates: disc #%d: %d\n", j, UA_GETSAMP(a1d, j))); if (UA_GETSAMP(a1d, j) < *min) *min = UA_GETSAMP(a1d, j); if (UA_GETSAMP(a1d, j) > *max) *max = UA_GETSAMP(a1d, j); } } } } Static int uaudio_match_alt_sub(int nalts, const struct as_info *alts, const struct audio_params *p, int mode, u_long rate) { const struct usb_audio_streaming_type1_descriptor *a1d; int i, j; DPRINTF(("uaudio_match_alt_sub: search for %luHz %dch\n", rate, p->hw_channels)); for (i = 0; i < nalts; i++) { a1d = alts[i].asf1desc; if (alts[i].sc_busy) continue; if (p->hw_channels != a1d->bNrChannels) continue; if (p->hw_precision != a1d->bBitResolution) continue; if (p->hw_encoding != alts[i].encoding) continue; if (mode != UE_GET_DIR(alts[i].edesc->bEndpointAddress)) continue; if (a1d->bSamFreqType == UA_SAMP_CONTNUOUS) { DPRINTFN(3,("uaudio_match_alt_sub: cont %d-%d\n", UA_SAMP_LO(a1d), UA_SAMP_HI(a1d))); if (UA_SAMP_LO(a1d) <= rate && rate <= UA_SAMP_HI(a1d)) return i; } else { for (j = 0; j < a1d->bSamFreqType; j++) { DPRINTFN(3,("uaudio_match_alt_sub: disc #%d: %d\n", j, UA_GETSAMP(a1d, j))); /* XXX allow for some slack */ if (UA_GETSAMP(a1d, j) == rate) return i; } } } return -1; } Static int uaudio_match_alt_chan(int nalts, const struct as_info *alts, struct audio_params *p, int mode) { int i, n; u_long min, max; u_long rate; /* Exact match */ DPRINTF(("uaudio_match_alt_chan: examine %ldHz %dch %dbit.\n", p->sample_rate, p->hw_channels, p->hw_precision)); i = uaudio_match_alt_sub(nalts, alts, p, mode, p->sample_rate); if (i >= 0) return i; uaudio_get_minmax_rates(nalts, alts, p, mode, &min, &max); DPRINTF(("uaudio_match_alt_chan: min=%lu max=%lu\n", min, max)); if (max <= 0) return -1; /* Search for biggers */ n = 2; while ((rate = p->sample_rate * n++) <= max) { i = uaudio_match_alt_sub(nalts, alts, p, mode, rate); if (i >= 0) { p->hw_sample_rate = rate; return i; } } if (p->sample_rate >= min) { i = uaudio_match_alt_sub(nalts, alts, p, mode, max); if (i >= 0) { p->hw_sample_rate = max; return i; } } else { i = uaudio_match_alt_sub(nalts, alts, p, mode, min); if (i >= 0) { p->hw_sample_rate = min; return i; } } return -1; } Static int uaudio_match_alt(int nalts, const struct as_info *alts, struct audio_params *p, int mode) { int i, n; mode = mode == AUMODE_PLAY ? UE_DIR_OUT : UE_DIR_IN; i = uaudio_match_alt_chan(nalts, alts, p, mode); if (i >= 0) return i; for (n = p->channels + 1; n <= AUDIO_MAX_CHANNELS; n++) { p->hw_channels = n; i = uaudio_match_alt_chan(nalts, alts, p, mode); if (i >= 0) return i; } if (p->channels != 2) return -1; p->hw_channels = 1; return uaudio_match_alt_chan(nalts, alts, p, mode); } Static int uaudio_set_params(void *addr, int setmode, int usemode, struct audio_params *play, struct audio_params *rec) { struct uaudio_softc *sc = addr; int flags = sc->sc_altflags; int factor; int enc, i; int paltidx=-1, raltidx=-1; void (*swcode)(void *, u_char *buf, int cnt); struct audio_params *p; int mode; if (sc->sc_dying) return (EIO); if (((usemode & AUMODE_PLAY) && sc->sc_playchan.pipe != NULL) || ((usemode & AUMODE_RECORD) && sc->sc_recchan.pipe != NULL)) return (EBUSY); if ((usemode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 0; if ((usemode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 0; /* Some uaudio devices are unidirectional. Don't try to find a matching mode for the unsupported direction. */ setmode &= sc->sc_mode; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = (mode == AUMODE_PLAY) ? play : rec; factor = 1; swcode = 0; enc = p->encoding; switch (enc) { case AUDIO_ENCODING_SLINEAR_BE: /* FALLTHROUGH */ case AUDIO_ENCODING_SLINEAR_LE: if (enc == AUDIO_ENCODING_SLINEAR_BE && p->precision == 16 && (flags & HAS_16)) { swcode = swap_bytes; enc = AUDIO_ENCODING_SLINEAR_LE; } else if (p->precision == 8) { if (flags & HAS_8) { /* No conversion */ } else if (flags & HAS_8U) { swcode = change_sign8; enc = AUDIO_ENCODING_ULINEAR_LE; } else if (flags & HAS_16) { factor = 2; p->hw_precision = 16; if (mode == AUMODE_PLAY) swcode = linear8_to_linear16_le; else swcode = linear16_to_linear8_le; } } break; case AUDIO_ENCODING_ULINEAR_BE: /* FALLTHROUGH */ case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 16) { if (enc == AUDIO_ENCODING_ULINEAR_LE) swcode = change_sign16_le; else if (mode == AUMODE_PLAY) swcode = swap_bytes_change_sign16_le; else swcode = change_sign16_swap_bytes_le; enc = AUDIO_ENCODING_SLINEAR_LE; } else if (p->precision == 8) { if (flags & HAS_8U) { /* No conversion */ } else if (flags & HAS_8) { swcode = change_sign8; enc = AUDIO_ENCODING_SLINEAR_LE; } else if (flags & HAS_16) { factor = 2; p->hw_precision = 16; enc = AUDIO_ENCODING_SLINEAR_LE; if (mode == AUMODE_PLAY) swcode = ulinear8_to_slinear16_le; else swcode = slinear16_to_ulinear8_le; } } break; case AUDIO_ENCODING_ULAW: if (flags & HAS_MULAW) break; if (flags & HAS_16) { if (mode == AUMODE_PLAY) swcode = mulaw_to_slinear16_le; else swcode = slinear16_to_mulaw_le; factor = 2; enc = AUDIO_ENCODING_SLINEAR_LE; p->hw_precision = 16; } else if (flags & HAS_8U) { if (mode == AUMODE_PLAY) swcode = mulaw_to_ulinear8; else swcode = ulinear8_to_mulaw; enc = AUDIO_ENCODING_ULINEAR_LE; } else if (flags & HAS_8) { if (mode == AUMODE_PLAY) swcode = mulaw_to_slinear8; else swcode = slinear8_to_mulaw; enc = AUDIO_ENCODING_SLINEAR_LE; } else return (EINVAL); break; case AUDIO_ENCODING_ALAW: if (flags & HAS_ALAW) break; if (mode == AUMODE_PLAY && (flags & HAS_16)) { swcode = alaw_to_slinear16_le; factor = 2; enc = AUDIO_ENCODING_SLINEAR_LE; p->hw_precision = 16; } else if (flags & HAS_8U) { if (mode == AUMODE_PLAY) swcode = alaw_to_ulinear8; else swcode = ulinear8_to_alaw; enc = AUDIO_ENCODING_ULINEAR_LE; } else if (flags & HAS_8) { if (mode == AUMODE_PLAY) swcode = alaw_to_slinear8; else swcode = slinear8_to_alaw; enc = AUDIO_ENCODING_SLINEAR_LE; } else return (EINVAL); break; default: return (EINVAL); } /* XXX do some other conversions... */ DPRINTF(("uaudio_set_params: chan=%d prec=%d enc=%d rate=%ld\n", p->channels, p->hw_precision, enc, p->sample_rate)); p->hw_encoding = enc; i = uaudio_match_alt(sc->sc_nalts, sc->sc_alts, p, mode); if (i < 0) return (EINVAL); p->sw_code = swcode; p->factor = factor; if (mode == AUMODE_PLAY) paltidx = i; else raltidx = i; } if ((setmode & AUMODE_PLAY)) { /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_playchan, paltidx, play, 0); } if ((setmode & AUMODE_RECORD)) { /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_recchan, raltidx, rec, UGETW(sc->sc_alts[raltidx].edesc->wMaxPacketSize)); } if ((usemode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 1; if ((usemode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 1; DPRINTF(("uaudio_set_params: use altidx=p%d/r%d, altno=p%d/r%d\n", sc->sc_playchan.altidx, sc->sc_recchan.altidx, (sc->sc_playchan.altidx >= 0) ?sc->sc_alts[sc->sc_playchan.altidx].idesc->bAlternateSetting : -1, (sc->sc_recchan.altidx >= 0) ? sc->sc_alts[sc->sc_recchan.altidx].idesc->bAlternateSetting : -1)); return (0); } Static usbd_status uaudio_set_speed(struct uaudio_softc *sc, int endpt, u_int speed) { usb_device_request_t req; u_int8_t data[3]; DPRINTFN(5,("uaudio_set_speed: endpt=%d speed=%u\n", endpt, speed)); req.bmRequestType = UT_WRITE_CLASS_ENDPOINT; req.bRequest = SET_CUR; USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0); USETW(req.wIndex, endpt); USETW(req.wLength, 3); data[0] = speed; data[1] = speed >> 8; data[2] = speed >> 16; return (usbd_do_request(sc->sc_udev, &req, data)); }