/* $OpenBSD: udcf.c,v 1.58 2014/07/12 20:26:33 mpi Exp $ */ /* * Copyright (c) 2006, 2007, 2008 Marc Balmer * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef UDCF_DEBUG #define DPRINTFN(n, x) do { if (udcfdebug > (n)) printf x; } while (0) int udcfdebug = 0; #else #define DPRINTFN(n, x) #endif #define DPRINTF(x) DPRINTFN(0, x) #define UDCF_READ_IDX 0x1f #define UDCF_CTRL_IDX 0x33 #define UDCF_CTRL_VAL 0x98 #define FT232R_RESET 0x00 /* reset USB request */ #define FT232R_STATUS 0x05 /* get modem status USB request */ #define FT232R_RI 0x40 /* ring indicator */ #define DPERIOD1 ((long) 5 * 60) /* degrade OK -> WARN */ #define DPERIOD2 ((long) 15 * 60) /* degrade WARN -> CRIT */ /* max. skew of received time diff vs. measured time diff in percent. */ #define MAX_SKEW 5 #define CLOCK_DCF77 0 #define CLOCK_HBG 1 static const char *clockname[2] = { "DCF77", "HBG" }; struct udcf_softc { struct device sc_dev; /* base device */ struct usbd_device *sc_udev; /* USB device */ struct usbd_interface *sc_iface; /* data interface */ struct timeout sc_to; struct usb_task sc_task; struct timeout sc_bv_to; /* bit-value detect */ struct timeout sc_db_to; /* debounce */ struct timeout sc_mg_to; /* minute-gap detect */ struct timeout sc_sl_to; /* signal-loss detect */ struct timeout sc_it_to; /* invalidate time */ struct timeout sc_ct_to; /* detect clock type */ struct usb_task sc_bv_task; struct usb_task sc_mg_task; struct usb_task sc_sl_task; struct usb_task sc_ct_task; usb_device_request_t sc_req; int sc_detect_ct; /* != 0: autodetect type */ int sc_clocktype; /* DCF77 or HBG */ int sc_sync; /* 1 during sync */ u_int64_t sc_mask; /* 64 bit mask */ u_int64_t sc_tbits; /* Time bits */ int sc_minute; int sc_level; time_t sc_last_mg; int (*sc_signal)(struct udcf_softc *); time_t sc_current; /* current time */ time_t sc_next; /* time to become valid next */ time_t sc_last; int sc_nrecv; /* consecutive valid times */ struct timeval sc_last_tv; /* uptime of last valid time */ struct ksensor sc_sensor; #ifdef UDCF_DEBUG struct ksensor sc_skew; /* recv vs local skew */ #endif struct ksensordev sc_sensordev; }; /* * timeouts being used in hz: * t_bv bit value detection (150ms) * t_ct detect clocktype (250ms) * t_sync sync (950ms) * t_mg minute gap detection (1500ms) * t_mgsync resync after a minute gap (450ms) * t_sl detect signal loss (3sec) * t_wait wait (5sec) * t_warn degrade sensor status to warning (5min) * t_crit degrade sensor status to critical (15min) */ static int t_bv, t_ct, t_sync, t_mg, t_sl, t_mgsync, t_wait, t_warn, t_crit; void udcf_intr(void *); void udcf_probe(void *); void udcf_bv_intr(void *); void udcf_mg_intr(void *); void udcf_sl_intr(void *); void udcf_it_intr(void *); void udcf_ct_intr(void *); void udcf_bv_probe(void *); void udcf_mg_probe(void *); void udcf_sl_probe(void *); void udcf_ct_probe(void *); int udcf_match(struct device *, void *, void *); void udcf_attach(struct device *, struct device *, void *); int udcf_detach(struct device *, int); int udcf_nc_signal(struct udcf_softc *); int udcf_nc_init_hw(struct udcf_softc *); int udcf_ft232r_signal(struct udcf_softc *); int udcf_ft232r_init_hw(struct udcf_softc *); struct cfdriver udcf_cd = { NULL, "udcf", DV_DULL }; const struct cfattach udcf_ca = { sizeof(struct udcf_softc), udcf_match, udcf_attach, udcf_detach, }; static const struct usb_devno udcf_devs[] = { { USB_VENDOR_GUDE, USB_PRODUCT_GUDE_DCF }, { USB_VENDOR_FTDI, USB_PRODUCT_FTDI_DCF }, { USB_VENDOR_FTDI, USB_PRODUCT_FTDI_HBG } }; int udcf_match(struct device *parent, void *match, void *aux) { struct usb_attach_arg *uaa = aux; if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(udcf_devs, uaa->vendor, uaa->product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE); } void udcf_attach(struct device *parent, struct device *self, void *aux) { struct udcf_softc *sc = (struct udcf_softc *)self; struct usb_attach_arg *uaa = aux; struct usbd_device *dev = uaa->device; struct usbd_interface *iface; struct timeval t; usbd_status err; switch (uaa->product) { case USB_PRODUCT_GUDE_DCF: sc->sc_detect_ct = 1; sc->sc_signal = udcf_nc_signal; strlcpy(sc->sc_sensor.desc, "Unknown", sizeof(sc->sc_sensor.desc)); break; case USB_PRODUCT_FTDI_DCF: sc->sc_signal = udcf_ft232r_signal; strlcpy(sc->sc_sensor.desc, clockname[CLOCK_DCF77], sizeof(sc->sc_sensor.desc)); break; case USB_PRODUCT_FTDI_HBG: sc->sc_signal = udcf_ft232r_signal; strlcpy(sc->sc_sensor.desc, clockname[CLOCK_HBG], sizeof(sc->sc_sensor.desc)); break; } usb_init_task(&sc->sc_task, udcf_probe, sc, USB_TASK_TYPE_GENERIC); usb_init_task(&sc->sc_bv_task, udcf_bv_probe, sc, USB_TASK_TYPE_GENERIC); usb_init_task(&sc->sc_mg_task, udcf_mg_probe, sc, USB_TASK_TYPE_GENERIC); usb_init_task(&sc->sc_sl_task, udcf_sl_probe, sc, USB_TASK_TYPE_GENERIC); timeout_set(&sc->sc_to, udcf_intr, sc); timeout_set(&sc->sc_bv_to, udcf_bv_intr, sc); timeout_set(&sc->sc_mg_to, udcf_mg_intr, sc); timeout_set(&sc->sc_sl_to, udcf_sl_intr, sc); timeout_set(&sc->sc_it_to, udcf_it_intr, sc); if (sc->sc_detect_ct) { usb_init_task(&sc->sc_ct_task, udcf_ct_probe, sc, USB_TASK_TYPE_GENERIC); timeout_set(&sc->sc_ct_to, udcf_ct_intr, sc); } strlcpy(sc->sc_sensordev.xname, sc->sc_dev.dv_xname, sizeof(sc->sc_sensordev.xname)); sc->sc_sensor.type = SENSOR_TIMEDELTA; sc->sc_sensor.status = SENSOR_S_UNKNOWN; sensor_attach(&sc->sc_sensordev, &sc->sc_sensor); #ifdef UDCF_DEBUG sc->sc_skew.type = SENSOR_TIMEDELTA; sc->sc_skew.status = SENSOR_S_UNKNOWN; strlcpy(sc->sc_skew.desc, "local clock skew", sizeof(sc->sc_skew.desc)); sensor_attach(&sc->sc_sensordev, &sc->sc_skew); #endif sensordev_install(&sc->sc_sensordev); sc->sc_udev = dev; if ((err = usbd_set_config_index(dev, 0, 1))) { DPRINTF(("%s: failed to set configuration, err=%s\n", sc->sc_dev.dv_xname, usbd_errstr(err))); goto fishy; } if ((err = usbd_device2interface_handle(dev, 0, &iface))) { DPRINTF(("%s: failed to get interface, err=%s\n", sc->sc_dev.dv_xname, usbd_errstr(err))); goto fishy; } sc->sc_iface = iface; sc->sc_clocktype = -1; sc->sc_level = 0; sc->sc_minute = 0; sc->sc_last_mg = 0L; sc->sc_sync = 1; sc->sc_current = 0L; sc->sc_next = 0L; sc->sc_nrecv = 0; sc->sc_last = 0L; sc->sc_last_tv.tv_sec = 0L; switch (uaa->product) { case USB_PRODUCT_GUDE_DCF: if (udcf_nc_init_hw(sc)) goto fishy; break; case USB_PRODUCT_FTDI_DCF: /* FALLTHROUGH */ case USB_PRODUCT_FTDI_HBG: if (udcf_ft232r_init_hw(sc)) goto fishy; break; } /* convert timevals to hz */ t.tv_sec = 0L; t.tv_usec = 150000L; t_bv = tvtohz(&t); t.tv_usec = 450000L; t_mgsync = tvtohz(&t); t.tv_usec = 950000L; t_sync = tvtohz(&t); t.tv_sec = 1L; t.tv_usec = 500000L; t_mg = tvtohz(&t); t.tv_sec = 3L; t.tv_usec = 0L; t_sl = tvtohz(&t); t.tv_sec = 5L; t_wait = tvtohz(&t); t.tv_sec = DPERIOD1; t_warn = tvtohz(&t); t.tv_sec = DPERIOD2; t_crit = tvtohz(&t); if (sc->sc_detect_ct) { t.tv_sec = 0L; t.tv_usec = 250000L; t_ct = tvtohz(&t); } /* Give the receiver some slack to stabilize */ timeout_add(&sc->sc_to, t_wait); /* Detect signal loss */ timeout_add(&sc->sc_sl_to, t_wait + t_sl); DPRINTF(("synchronizing\n")); return; fishy: DPRINTF(("udcf_attach failed\n")); usbd_deactivate(sc->sc_udev); } int udcf_detach(struct device *self, int flags) { struct udcf_softc *sc = (struct udcf_softc *)self; if (timeout_initialized(&sc->sc_to)) timeout_del(&sc->sc_to); if (timeout_initialized(&sc->sc_bv_to)) timeout_del(&sc->sc_bv_to); if (timeout_initialized(&sc->sc_mg_to)) timeout_del(&sc->sc_mg_to); if (timeout_initialized(&sc->sc_sl_to)) timeout_del(&sc->sc_sl_to); if (timeout_initialized(&sc->sc_it_to)) timeout_del(&sc->sc_it_to); if (sc->sc_detect_ct) { if (timeout_initialized(&sc->sc_ct_to)) timeout_del(&sc->sc_ct_to); } /* Unregister the clock with the kernel */ sensordev_deinstall(&sc->sc_sensordev); usb_rem_task(sc->sc_udev, &sc->sc_task); usb_rem_task(sc->sc_udev, &sc->sc_bv_task); usb_rem_task(sc->sc_udev, &sc->sc_mg_task); usb_rem_task(sc->sc_udev, &sc->sc_sl_task); if (sc->sc_detect_ct) usb_rem_task(sc->sc_udev, &sc->sc_ct_task); return 0; } /* udcf_intr runs in an interrupt context */ void udcf_intr(void *xsc) { struct udcf_softc *sc = xsc; usb_add_task(sc->sc_udev, &sc->sc_task); } /* bit value detection */ void udcf_bv_intr(void *xsc) { struct udcf_softc *sc = xsc; usb_add_task(sc->sc_udev, &sc->sc_bv_task); } /* minute gap detection */ void udcf_mg_intr(void *xsc) { struct udcf_softc *sc = xsc; usb_add_task(sc->sc_udev, &sc->sc_mg_task); } /* signal loss detection */ void udcf_sl_intr(void *xsc) { struct udcf_softc *sc = xsc; usb_add_task(sc->sc_udev, &sc->sc_sl_task); } /* detect the clock type (DCF77 or HBG) */ void udcf_ct_intr(void *xsc) { struct udcf_softc *sc = xsc; usb_add_task(sc->sc_udev, &sc->sc_ct_task); } /* * initialize the Expert mouseCLOCK USB devices, they use a NetCologne * chip to interface the receiver. Power must be supplied to the * receiver and the receiver must be turned on. */ int udcf_nc_init_hw(struct udcf_softc *sc) { usbd_status err; usb_device_request_t req; uWord result; int actlen; /* Prepare the USB request to probe the value */ sc->sc_req.bmRequestType = UT_READ_VENDOR_DEVICE; sc->sc_req.bRequest = 1; USETW(sc->sc_req.wValue, 0); USETW(sc->sc_req.wIndex, UDCF_READ_IDX); USETW(sc->sc_req.wLength, 1); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = 0; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); if ((err = usbd_do_request_flags(sc->sc_udev, &req, &result, USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT))) { DPRINTF(("failed to turn on power for receiver\n")); return -1; } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = 0; USETW(req.wValue, UDCF_CTRL_VAL); USETW(req.wIndex, UDCF_CTRL_IDX); USETW(req.wLength, 0); if ((err = usbd_do_request_flags(sc->sc_udev, &req, &result, USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT))) { DPRINTF(("failed to turn on receiver\n")); return -1; } return 0; } /* * initialize the Expert mouseCLOCK USB II devices, they use an FTDI * FT232R chip to interface the receiver. Only reset the chip. */ int udcf_ft232r_init_hw(struct udcf_softc *sc) { usbd_status err; usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = FT232R_RESET; /* 0 resets the SIO */ USETW(req.wValue,FT232R_RESET); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = usbd_do_request(sc->sc_udev, &req, NULL); if (err) { DPRINTF(("failed to reset ftdi\n")); return -1; } return 0; } /* * return 1 during high-power-, 0 during low-power-emission * If bit 0 is set, the transmitter emits at full power. * During the low-power emission we decode a zero bit. */ int udcf_nc_signal(struct udcf_softc *sc) { int actlen; unsigned char data; if (usbd_do_request_flags(sc->sc_udev, &sc->sc_req, &data, USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT)) /* This happens if we pull the receiver */ return -1; return data & 0x01; } /* pick up the signal level through the FTDI FT232R chip */ int udcf_ft232r_signal(struct udcf_softc *sc) { usb_device_request_t req; int actlen; u_int16_t data; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = FT232R_STATUS; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 2); if (usbd_do_request_flags(sc->sc_udev, &req, &data, USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT)) { DPRINTFN(2, ("error reading ftdi modem status\n")); return -1; } DPRINTFN(2, ("ftdi status 0x%04x\n", data)); return data & FT232R_RI ? 0 : 1; } /* udcf_probe runs in a process context. */ void udcf_probe(void *xsc) { struct udcf_softc *sc = xsc; struct timespec now; int data; if (usbd_is_dying(sc->sc_udev)) return; data = sc->sc_signal(sc); if (data == -1) return; if (data) { sc->sc_level = 1; timeout_add(&sc->sc_to, 1); return; } if (sc->sc_level == 0) return; /* the beginning of a second */ sc->sc_level = 0; if (sc->sc_minute == 1) { if (sc->sc_sync) { DPRINTF(("start collecting bits\n")); sc->sc_sync = 0; if (sc->sc_sensor.status == SENSOR_S_UNKNOWN && sc->sc_detect_ct) sc->sc_clocktype = -1; } else { /* provide the timedelta */ microtime(&sc->sc_sensor.tv); nanotime(&now); sc->sc_current = sc->sc_next; sc->sc_sensor.value = (int64_t)(now.tv_sec - sc->sc_current) * 1000000000LL + now.tv_nsec; /* set the clocktype and make sensor valid */ if (sc->sc_sensor.status == SENSOR_S_UNKNOWN && sc->sc_detect_ct) { strlcpy(sc->sc_sensor.desc, sc->sc_clocktype ? clockname[CLOCK_HBG] : clockname[CLOCK_DCF77], sizeof(sc->sc_sensor.desc)); } sc->sc_sensor.status = SENSOR_S_OK; /* * if no valid time information is received * during the next 5 minutes, the sensor state * will be degraded to SENSOR_S_WARN */ timeout_add(&sc->sc_it_to, t_warn); } sc->sc_minute = 0; } timeout_add(&sc->sc_to, t_sync); /* resync in 950 ms */ /* no clock and bit detection during sync */ if (!sc->sc_sync) { /* detect bit value */ timeout_add(&sc->sc_bv_to, t_bv); /* detect clocktype */ if (sc->sc_detect_ct && sc->sc_clocktype == -1) timeout_add(&sc->sc_ct_to, t_ct); } timeout_add(&sc->sc_mg_to, t_mg); /* detect minute gap */ timeout_add(&sc->sc_sl_to, t_sl); /* detect signal loss */ } /* detect the bit value */ void udcf_bv_probe(void *xsc) { struct udcf_softc *sc = xsc; int data; if (usbd_is_dying(sc->sc_udev)) return; data = sc->sc_signal(sc); if (data == -1) { DPRINTF(("bit detection failed\n")); return; } DPRINTFN(1, (data ? "0" : "1")); if (!(data)) sc->sc_tbits |= sc->sc_mask; sc->sc_mask <<= 1; } /* detect the minute gap */ void udcf_mg_probe(void *xsc) { struct udcf_softc *sc = xsc; struct clock_ymdhms ymdhm; struct timeval monotime; int tdiff_recv, tdiff_local; int skew; int minute_bits, hour_bits, day_bits; int month_bits, year_bits, wday; int p1, p2, p3; int p1_bit, p2_bit, p3_bit; int r_bit, a1_bit, a2_bit, z1_bit, z2_bit; int s_bit, m_bit; u_int32_t parity = 0x6996; if (sc->sc_sync) { sc->sc_minute = 1; goto cleanbits; } if (time_second - sc->sc_last_mg < 57) { DPRINTF(("\nunexpected gap, resync\n")); sc->sc_sync = sc->sc_minute = 1; goto cleanbits; } /* extract bits w/o parity */ m_bit = sc->sc_tbits & 1; r_bit = sc->sc_tbits >> 15 & 1; a1_bit = sc->sc_tbits >> 16 & 1; z1_bit = sc->sc_tbits >> 17 & 1; z2_bit = sc->sc_tbits >> 18 & 1; a2_bit = sc->sc_tbits >> 19 & 1; s_bit = sc->sc_tbits >> 20 & 1; p1_bit = sc->sc_tbits >> 28 & 1; p2_bit = sc->sc_tbits >> 35 & 1; p3_bit = sc->sc_tbits >> 58 & 1; minute_bits = sc->sc_tbits >> 21 & 0x7f; hour_bits = sc->sc_tbits >> 29 & 0x3f; day_bits = sc->sc_tbits >> 36 & 0x3f; wday = (sc->sc_tbits >> 42) & 0x07; month_bits = sc->sc_tbits >> 45 & 0x1f; year_bits = sc->sc_tbits >> 50 & 0xff; /* validate time information */ p1 = (parity >> (minute_bits & 0x0f) & 1) ^ (parity >> (minute_bits >> 4) & 1); p2 = (parity >> (hour_bits & 0x0f) & 1) ^ (parity >> (hour_bits >> 4) & 1); p3 = (parity >> (day_bits & 0x0f) & 1) ^ (parity >> (day_bits >> 4) & 1) ^ ((parity >> wday) & 1) ^ (parity >> (month_bits & 0x0f) & 1) ^ (parity >> (month_bits >> 4) & 1) ^ (parity >> (year_bits & 0x0f) & 1) ^ (parity >> (year_bits >> 4) & 1); if (m_bit == 0 && s_bit == 1 && p1 == p1_bit && p2 == p2_bit && p3 == p3_bit && (z1_bit ^ z2_bit)) { /* Decode time */ if ((ymdhm.dt_year = 2000 + FROMBCD(year_bits)) > 2037) { DPRINTF(("year out of range, resync\n")); sc->sc_sync = 1; goto cleanbits; } ymdhm.dt_min = FROMBCD(minute_bits); ymdhm.dt_hour = FROMBCD(hour_bits); ymdhm.dt_day = FROMBCD(day_bits); ymdhm.dt_mon = FROMBCD(month_bits); ymdhm.dt_sec = 0; sc->sc_next = clock_ymdhms_to_secs(&ymdhm); getmicrouptime(&monotime); /* convert to coordinated universal time */ sc->sc_next -= z1_bit ? 7200 : 3600; DPRINTF(("\n%02d.%02d.%04d %02d:%02d:00 %s", ymdhm.dt_day, ymdhm.dt_mon, ymdhm.dt_year, ymdhm.dt_hour, ymdhm.dt_min, z1_bit ? "CEST" : "CET")); DPRINTF((r_bit ? ", call bit" : "")); DPRINTF((a1_bit ? ", dst chg ann." : "")); DPRINTF((a2_bit ? ", leap sec ann." : "")); DPRINTF(("\n")); if (sc->sc_last) { tdiff_recv = sc->sc_next - sc->sc_last; tdiff_local = monotime.tv_sec - sc->sc_last_tv.tv_sec; skew = abs(tdiff_local - tdiff_recv); #ifdef UDCF_DEBUG if (sc->sc_skew.status == SENSOR_S_UNKNOWN) sc->sc_skew.status = SENSOR_S_CRIT; sc->sc_skew.value = skew * 1000000000LL; getmicrotime(&sc->sc_skew.tv); #endif DPRINTF(("local = %d, recv = %d, skew = %d\n", tdiff_local, tdiff_recv, skew)); if (skew && skew * 100LL / tdiff_local > MAX_SKEW) { DPRINTF(("skew out of tolerated range\n")); goto cleanbits; } else { if (sc->sc_nrecv < 2) { sc->sc_nrecv++; DPRINTF(("got frame %d\n", sc->sc_nrecv)); } else { DPRINTF(("data is valid\n")); sc->sc_minute = 1; } } } else { DPRINTF(("received the first frame\n")); sc->sc_nrecv = 1; } /* record the time received and when it was received */ sc->sc_last = sc->sc_next; sc->sc_last_tv.tv_sec = monotime.tv_sec; } else { DPRINTF(("\nparity error, resync\n")); sc->sc_sync = sc->sc_minute = 1; } cleanbits: timeout_add(&sc->sc_to, t_mgsync); /* re-sync in 450 ms */ sc->sc_last_mg = time_second; sc->sc_tbits = 0LL; sc->sc_mask = 1LL; } /* detect signal loss */ void udcf_sl_probe(void *xsc) { struct udcf_softc *sc = xsc; if (usbd_is_dying(sc->sc_udev)) return; DPRINTF(("no signal\n")); sc->sc_sync = 1; timeout_add(&sc->sc_to, t_wait); timeout_add(&sc->sc_sl_to, t_wait + t_sl); } /* invalidate timedelta (called in an interrupt context) */ void udcf_it_intr(void *xsc) { struct udcf_softc *sc = xsc; if (usbd_is_dying(sc->sc_udev)) return; if (sc->sc_sensor.status == SENSOR_S_OK) { sc->sc_sensor.status = SENSOR_S_WARN; /* * further degrade in 15 minutes if we dont receive any new * time information */ timeout_add(&sc->sc_it_to, t_crit); } else { sc->sc_sensor.status = SENSOR_S_CRIT; sc->sc_nrecv = 0; } } /* detect clock type. used for older devices only. */ void udcf_ct_probe(void *xsc) { struct udcf_softc *sc = xsc; int data; if (usbd_is_dying(sc->sc_udev)) return; data = sc->sc_signal(sc); if (data == -1) { DPRINTF(("clocktype detection failed\n")); return; } sc->sc_clocktype = data ? 0 : 1; DPRINTF(("\nclocktype is %s\n", sc->sc_clocktype ? clockname[CLOCK_HBG] : clockname[CLOCK_DCF77])); }