/* $OpenBSD: xhci.c,v 1.31 2014/10/30 18:29:59 mpi Exp $ */ /* * Copyright (c) 2014 Martin Pieuchot * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cfdriver xhci_cd = { NULL, "xhci", DV_DULL }; #ifdef XHCI_DEBUG #define DPRINTF(x) do { if (xhcidebug) printf x; } while(0) #define DPRINTFN(n,x) do { if (xhcidebug>(n)) printf x; } while (0) int xhcidebug = 3; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define DEVNAME(sc) ((sc)->sc_bus.bdev.dv_xname) #define TRBOFF(ring, trb) ((char *)(trb) - (char *)((ring).trbs)) struct pool *xhcixfer; struct xhci_pipe { struct usbd_pipe pipe; uint8_t dci; uint8_t slot; /* Device slot ID */ struct xhci_ring ring; /* * XXX used to pass the xfer pointer back to the * interrupt routine, better way? */ struct usbd_xfer *pending_xfers[XHCI_MAX_TRANSFERS]; int halted; size_t free_trbs; }; int xhci_reset(struct xhci_softc *); int xhci_intr1(struct xhci_softc *); void xhci_waitintr(struct xhci_softc *, struct usbd_xfer *); void xhci_event_dequeue(struct xhci_softc *); void xhci_event_xfer(struct xhci_softc *, uint64_t, uint32_t, uint32_t); void xhci_event_command(struct xhci_softc *, uint64_t); void xhci_event_port_change(struct xhci_softc *, uint64_t, uint32_t); int xhci_pipe_init(struct xhci_softc *, struct usbd_pipe *, uint32_t, uint32_t); int xhci_scratchpad_alloc(struct xhci_softc *, int); void xhci_scratchpad_free(struct xhci_softc *); int xhci_softdev_alloc(struct xhci_softc *, uint8_t); void xhci_softdev_free(struct xhci_softc *, uint8_t); int xhci_ring_alloc(struct xhci_softc *, struct xhci_ring *, size_t); void xhci_ring_free(struct xhci_softc *, struct xhci_ring *); void xhci_ring_reset(struct xhci_softc *, struct xhci_ring *); struct xhci_trb *xhci_ring_dequeue(struct xhci_softc *, struct xhci_ring *, int); struct xhci_trb *xhci_xfer_get_trb(struct xhci_softc *, struct usbd_xfer*, uint8_t *, int); void xhci_xfer_done(struct usbd_xfer *xfer); /* xHCI command helpers. */ int xhci_command_submit(struct xhci_softc *, struct xhci_trb *, int); int xhci_command_abort(struct xhci_softc *); void xhci_cmd_reset_endpoint_async(struct xhci_softc *, uint8_t, uint8_t); void xhci_cmd_set_tr_deq_async(struct xhci_softc *, uint8_t, uint8_t, uint64_t); int xhci_cmd_configure_ep(struct xhci_softc *, uint8_t, uint64_t); int xhci_cmd_stop_ep(struct xhci_softc *, uint8_t, uint8_t); int xhci_cmd_slot_control(struct xhci_softc *, uint8_t *, int); int xhci_cmd_address_device(struct xhci_softc *,uint8_t, uint64_t); int xhci_cmd_evaluate_ctx(struct xhci_softc *, uint8_t, uint64_t); #ifdef XHCI_DEBUG int xhci_cmd_noop(struct xhci_softc *); #endif /* XXX should be part of the Bus interface. */ void xhci_abort_xfer(struct usbd_xfer *, usbd_status); void xhci_pipe_close(struct usbd_pipe *); void xhci_noop(struct usbd_xfer *); /* XXX these are common to all HC drivers and should be merged. */ void xhci_timeout(void *); void xhci_timeout_task(void *); /* USBD Bus Interface. */ usbd_status xhci_pipe_open(struct usbd_pipe *); void xhci_softintr(void *); void xhci_poll(struct usbd_bus *); struct usbd_xfer *xhci_allocx(struct usbd_bus *); void xhci_freex(struct usbd_bus *, struct usbd_xfer *); usbd_status xhci_root_ctrl_transfer(struct usbd_xfer *); usbd_status xhci_root_ctrl_start(struct usbd_xfer *); usbd_status xhci_root_intr_transfer(struct usbd_xfer *); usbd_status xhci_root_intr_start(struct usbd_xfer *); void xhci_root_intr_abort(struct usbd_xfer *); void xhci_root_intr_done(struct usbd_xfer *); usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *); usbd_status xhci_device_ctrl_start(struct usbd_xfer *); void xhci_device_ctrl_abort(struct usbd_xfer *); usbd_status xhci_device_generic_transfer(struct usbd_xfer *); usbd_status xhci_device_generic_start(struct usbd_xfer *); void xhci_device_generic_abort(struct usbd_xfer *); void xhci_device_generic_done(struct usbd_xfer *); #define XHCI_INTR_ENDPT 1 struct usbd_bus_methods xhci_bus_methods = { .open_pipe = xhci_pipe_open, .soft_intr = xhci_softintr, .do_poll = xhci_poll, .allocx = xhci_allocx, .freex = xhci_freex, }; struct usbd_pipe_methods xhci_root_ctrl_methods = { .transfer = xhci_root_ctrl_transfer, .start = xhci_root_ctrl_start, .abort = xhci_noop, .close = xhci_pipe_close, .done = xhci_noop, }; struct usbd_pipe_methods xhci_root_intr_methods = { .transfer = xhci_root_intr_transfer, .start = xhci_root_intr_start, .abort = xhci_root_intr_abort, .close = xhci_pipe_close, .done = xhci_root_intr_done, }; struct usbd_pipe_methods xhci_device_ctrl_methods = { .transfer = xhci_device_ctrl_transfer, .start = xhci_device_ctrl_start, .abort = xhci_device_ctrl_abort, .close = xhci_pipe_close, .done = xhci_noop, }; #if notyet struct usbd_pipe_methods xhci_device_isoc_methods = { }; #endif struct usbd_pipe_methods xhci_device_bulk_methods = { .transfer = xhci_device_generic_transfer, .start = xhci_device_generic_start, .abort = xhci_device_generic_abort, .close = xhci_pipe_close, .done = xhci_device_generic_done, }; struct usbd_pipe_methods xhci_device_generic_methods = { .transfer = xhci_device_generic_transfer, .start = xhci_device_generic_start, .abort = xhci_device_generic_abort, .close = xhci_pipe_close, .done = xhci_device_generic_done, }; #ifdef XHCI_DEBUG static void xhci_dump_trb(struct xhci_trb *trb) { printf("trb=%p (0x%016llx 0x%08x 0x%08x)\n", trb, (long long)trb->trb_paddr, trb->trb_status, trb->trb_flags); } #endif int xhci_init(struct xhci_softc *sc) { uint32_t hcr; int npage, error; #ifdef XHCI_DEBUG uint16_t vers; vers = XREAD2(sc, XHCI_HCIVERSION); printf("%s: xHCI version %x.%x\n", DEVNAME(sc), vers >> 8, vers & 0xff); #endif sc->sc_bus.usbrev = USBREV_3_0; sc->sc_bus.methods = &xhci_bus_methods; sc->sc_bus.pipe_size = sizeof(struct xhci_pipe); sc->sc_oper_off = XREAD1(sc, XHCI_CAPLENGTH); sc->sc_door_off = XREAD4(sc, XHCI_DBOFF); sc->sc_runt_off = XREAD4(sc, XHCI_RTSOFF); #ifdef XHCI_DEBUG printf("%s: CAPLENGTH=%#lx\n", DEVNAME(sc), sc->sc_oper_off); printf("%s: DOORBELL=%#lx\n", DEVNAME(sc), sc->sc_door_off); printf("%s: RUNTIME=%#lx\n", DEVNAME(sc), sc->sc_runt_off); #endif error = xhci_reset(sc); if (error) return (error); if (xhcixfer == NULL) { xhcixfer = malloc(sizeof(struct pool), M_DEVBUF, M_NOWAIT); if (xhcixfer == NULL) { printf("%s: unable to allocate pool descriptor\n", DEVNAME(sc)); return (ENOMEM); } pool_init(xhcixfer, sizeof(struct xhci_xfer), 0, 0, 0, "xhcixfer", NULL); pool_setipl(xhcixfer, IPL_SOFTUSB); } hcr = XREAD4(sc, XHCI_HCCPARAMS); sc->sc_ctxsize = XHCI_HCC_CSZ(hcr) ? 64 : 32; DPRINTF(("%s: %d bytes context\n", DEVNAME(sc), sc->sc_ctxsize)); #ifdef XHCI_DEBUG hcr = XOREAD4(sc, XHCI_PAGESIZE); printf("%s: supported page size 0x%08x\n", DEVNAME(sc), hcr); #endif /* Use 4K for the moment since it's easier. */ sc->sc_pagesize = 4096; /* Get port and device slot numbers. */ hcr = XREAD4(sc, XHCI_HCSPARAMS1); sc->sc_noport = XHCI_HCS1_N_PORTS(hcr); sc->sc_noslot = XHCI_HCS1_DEVSLOT_MAX(hcr); DPRINTF(("%s: %d ports and %d slots\n", DEVNAME(sc), sc->sc_noport, sc->sc_noslot)); /* * Section 6.1 - Device Context Base Address Array * shall be aligned to a 64 byte boundary. */ sc->sc_dcbaa.size = (sc->sc_noslot + 1) * sizeof(uint64_t); error = usb_allocmem(&sc->sc_bus, sc->sc_dcbaa.size, 64, &sc->sc_dcbaa.dma); if (error) return (ENOMEM); sc->sc_dcbaa.segs = KERNADDR(&sc->sc_dcbaa.dma, 0); memset(sc->sc_dcbaa.segs, 0, sc->sc_dcbaa.size); usb_syncmem(&sc->sc_dcbaa.dma, 0, sc->sc_dcbaa.size, BUS_DMASYNC_PREWRITE); /* Setup command ring. */ error = xhci_ring_alloc(sc, &sc->sc_cmd_ring, XHCI_MAX_COMMANDS); if (error) { printf("%s: could not allocate command ring.\n", DEVNAME(sc)); usb_freemem(&sc->sc_bus, &sc->sc_dcbaa.dma); return (error); } /* Setup one event ring and its segment table (ERST). */ error = xhci_ring_alloc(sc, &sc->sc_evt_ring, XHCI_MAX_EVENTS); if (error) { printf("%s: could not allocate event ring.\n", DEVNAME(sc)); xhci_ring_free(sc, &sc->sc_cmd_ring); usb_freemem(&sc->sc_bus, &sc->sc_dcbaa.dma); return (error); } /* Allocate the required entry for the segment table. */ sc->sc_erst.size = 1 * sizeof(struct xhci_erseg); error = usb_allocmem(&sc->sc_bus, sc->sc_erst.size, 64, &sc->sc_erst.dma); if (error) { printf("%s: could not allocate segment table.\n", DEVNAME(sc)); xhci_ring_free(sc, &sc->sc_evt_ring); xhci_ring_free(sc, &sc->sc_cmd_ring); usb_freemem(&sc->sc_bus, &sc->sc_dcbaa.dma); return (ENOMEM); } sc->sc_erst.segs = KERNADDR(&sc->sc_erst.dma, 0); /* Set our ring address and size in its corresponding segment. */ sc->sc_erst.segs[0].er_addr = htole64(DMAADDR(&sc->sc_evt_ring.dma, 0)); sc->sc_erst.segs[0].er_size = htole32(XHCI_MAX_EVENTS); sc->sc_erst.segs[0].er_rsvd = 0; usb_syncmem(&sc->sc_erst.dma, 0, sc->sc_erst.size, BUS_DMASYNC_PREWRITE); /* Get the number of scratch pages and configure them if necessary. */ hcr = XREAD4(sc, XHCI_HCSPARAMS2); npage = XHCI_HCS2_SPB_MAX(hcr); DPRINTF(("%s: %d scratch pages\n", DEVNAME(sc), npage)); if (npage > 0 && xhci_scratchpad_alloc(sc, npage)) { printf("%s: could not allocate scratchpad.\n", DEVNAME(sc)); usb_freemem(&sc->sc_bus, &sc->sc_erst.dma); xhci_ring_free(sc, &sc->sc_evt_ring); xhci_ring_free(sc, &sc->sc_cmd_ring); usb_freemem(&sc->sc_bus, &sc->sc_dcbaa.dma); return (ENOMEM); } return (0); } void xhci_config(struct xhci_softc *sc) { uint64_t paddr; uint32_t hcr; /* Make sure to program a number of device slots we can handle. */ if (sc->sc_noslot > USB_MAX_DEVICES) sc->sc_noslot = USB_MAX_DEVICES; hcr = XOREAD4(sc, XHCI_CONFIG) & ~XHCI_CONFIG_SLOTS_MASK; XOWRITE4(sc, XHCI_CONFIG, hcr | sc->sc_noslot); /* Set the device context base array address. */ paddr = (uint64_t)DMAADDR(&sc->sc_dcbaa.dma, 0); XOWRITE4(sc, XHCI_DCBAAP_LO, (uint32_t)paddr); XOWRITE4(sc, XHCI_DCBAAP_HI, (uint32_t)(paddr >> 32)); DPRINTF(("%s: DCBAAP=%#x%#x\n", DEVNAME(sc), XOREAD4(sc, XHCI_DCBAAP_HI), XOREAD4(sc, XHCI_DCBAAP_LO))); /* Set the command ring address. */ paddr = (uint64_t)DMAADDR(&sc->sc_cmd_ring.dma, 0); XOWRITE4(sc, XHCI_CRCR_LO, ((uint32_t)paddr) | XHCI_CRCR_LO_RCS); XOWRITE4(sc, XHCI_CRCR_HI, (uint32_t)(paddr >> 32)); DPRINTF(("%s: CRCR=%#x%#x (%016llx)\n", DEVNAME(sc), XOREAD4(sc, XHCI_CRCR_HI), XOREAD4(sc, XHCI_CRCR_LO), paddr)); /* Set the ERST count number to 1, since we use only one event ring. */ XRWRITE4(sc, XHCI_ERSTSZ(0), XHCI_ERSTS_SET(1)); /* Set the segment table address. */ paddr = (uint64_t)DMAADDR(&sc->sc_erst.dma, 0); XRWRITE4(sc, XHCI_ERSTBA_LO(0), (uint32_t)paddr); XRWRITE4(sc, XHCI_ERSTBA_HI(0), (uint32_t)(paddr >> 32)); DPRINTF(("%s: ERSTBA=%#x%#x\n", DEVNAME(sc), XRREAD4(sc, XHCI_ERSTBA_HI(0)), XRREAD4(sc, XHCI_ERSTBA_LO(0)))); /* Set the ring dequeue address. */ paddr = (uint64_t)DMAADDR(&sc->sc_evt_ring.dma, 0); XRWRITE4(sc, XHCI_ERDP_LO(0), (uint32_t)paddr); XRWRITE4(sc, XHCI_ERDP_HI(0), (uint32_t)(paddr >> 32)); DPRINTF(("%s: ERDP=%#x%#x\n", DEVNAME(sc), XRREAD4(sc, XHCI_ERDP_HI(0)), XRREAD4(sc, XHCI_ERDP_LO(0)))); /* Enable interrupts. */ hcr = XRREAD4(sc, XHCI_IMAN(0)); XRWRITE4(sc, XHCI_IMAN(0), hcr | XHCI_IMAN_INTR_ENA); /* Set default interrupt moderation. */ XRWRITE4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT); /* Allow event interrupt and start the controller. */ XOWRITE4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS); DPRINTF(("%s: USBCMD=%#x\n", DEVNAME(sc), XOREAD4(sc, XHCI_USBCMD))); DPRINTF(("%s: IMAN=%#x\n", DEVNAME(sc), XRREAD4(sc, XHCI_IMAN(0)))); } int xhci_detach(struct device *self, int flags) { struct xhci_softc *sc = (struct xhci_softc *)self; int rv; rv = config_detach_children(self, flags); if (rv != 0) { printf("%s: error while detaching %d\n", DEVNAME(sc), rv); return (rv); } /* Since the hardware might already be gone, ignore the errors. */ xhci_command_abort(sc); xhci_reset(sc); /* Disable interrupts. */ XRWRITE4(sc, XHCI_IMOD(0), 0); XRWRITE4(sc, XHCI_IMAN(0), 0); /* Clear the event ring address. */ XRWRITE4(sc, XHCI_ERDP_LO(0), 0); XRWRITE4(sc, XHCI_ERDP_HI(0), 0); XRWRITE4(sc, XHCI_ERSTBA_LO(0), 0); XRWRITE4(sc, XHCI_ERSTBA_HI(0), 0); XRWRITE4(sc, XHCI_ERSTSZ(0), 0); /* Clear the command ring address. */ XOWRITE4(sc, XHCI_CRCR_LO, 0); XOWRITE4(sc, XHCI_CRCR_HI, 0); XOWRITE4(sc, XHCI_DCBAAP_LO, 0); XOWRITE4(sc, XHCI_DCBAAP_HI, 0); if (sc->sc_spad.npage > 0) xhci_scratchpad_free(sc); usb_freemem(&sc->sc_bus, &sc->sc_erst.dma); xhci_ring_free(sc, &sc->sc_evt_ring); xhci_ring_free(sc, &sc->sc_cmd_ring); usb_freemem(&sc->sc_bus, &sc->sc_dcbaa.dma); return (0); } int xhci_activate(struct device *self, int act) { struct xhci_softc *sc = (struct xhci_softc *)self; int rv = 0; switch (act) { case DVACT_RESUME: sc->sc_bus.use_polling++; xhci_reset(sc); xhci_ring_reset(sc, &sc->sc_cmd_ring); xhci_ring_reset(sc, &sc->sc_evt_ring); xhci_config(sc); sc->sc_bus.use_polling--; rv = config_activate_children(self, act); break; case DVACT_POWERDOWN: rv = config_activate_children(self, act); xhci_reset(sc); break; default: rv = config_activate_children(self, act); break; } return (rv); } int xhci_reset(struct xhci_softc *sc) { uint32_t hcr; int i; XOWRITE4(sc, XHCI_USBCMD, 0); /* Halt controller */ for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = XOREAD4(sc, XHCI_USBSTS) & XHCI_STS_HCH; if (hcr) break; } if (!hcr) printf("%s: halt timeout\n", DEVNAME(sc)); XOWRITE4(sc, XHCI_USBCMD, XHCI_CMD_HCRST); for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = XOREAD4(sc, XHCI_USBCMD) & XHCI_STS_CNR; if (!hcr) break; } if (hcr) { printf("%s: reset timeout\n", DEVNAME(sc)); return (EIO); } return (0); } int xhci_intr(void *v) { struct xhci_softc *sc = v; if (sc == NULL || sc->sc_bus.dying) return (0); /* If we get an interrupt while polling, then just ignore it. */ if (sc->sc_bus.use_polling) { DPRINTFN(16, ("xhci_intr: ignored interrupt while polling\n")); return (0); } return (xhci_intr1(sc)); } int xhci_intr1(struct xhci_softc *sc) { uint32_t intrs; intrs = XOREAD4(sc, XHCI_USBSTS); if (intrs == 0xffffffff) { sc->sc_bus.dying = 1; return (0); } if ((intrs & XHCI_STS_EINT) == 0) return (0); sc->sc_bus.intr_context++; sc->sc_bus.no_intrs++; if (intrs & XHCI_STS_HSE) { printf("%s: host system error\n", DEVNAME(sc)); sc->sc_bus.dying = 1; sc->sc_bus.intr_context--; return (1); } XOWRITE4(sc, XHCI_USBSTS, intrs); /* Acknowledge */ usb_schedsoftintr(&sc->sc_bus); /* Acknowledge PCI interrupt */ intrs = XRREAD4(sc, XHCI_IMAN(0)); XRWRITE4(sc, XHCI_IMAN(0), intrs | XHCI_IMAN_INTR_PEND); sc->sc_bus.intr_context--; return (1); } void xhci_poll(struct usbd_bus *bus) { struct xhci_softc *sc = (struct xhci_softc *)bus; if (XOREAD4(sc, XHCI_USBSTS)) xhci_intr1(sc); } void xhci_waitintr(struct xhci_softc *sc, struct usbd_xfer *xfer) { int timo; for (timo = xfer->timeout; timo >= 0; timo--) { usb_delay_ms(&sc->sc_bus, 1); if (sc->sc_bus.dying) break; if (xfer->status != USBD_IN_PROGRESS) return; xhci_intr1(sc); } xfer->status = USBD_TIMEOUT; usb_transfer_complete(xfer); } void xhci_softintr(void *v) { struct xhci_softc *sc = v; if (sc->sc_bus.dying) return; sc->sc_bus.intr_context++; xhci_event_dequeue(sc); sc->sc_bus.intr_context--; } void xhci_event_dequeue(struct xhci_softc *sc) { struct xhci_trb *trb; uint64_t paddr; uint32_t status, flags; while ((trb = xhci_ring_dequeue(sc, &sc->sc_evt_ring, 1)) != NULL) { paddr = letoh64(trb->trb_paddr); status = letoh32(trb->trb_status); flags = letoh32(trb->trb_flags); switch (flags & XHCI_TRB_TYPE_MASK) { case XHCI_EVT_XFER: xhci_event_xfer(sc, paddr, status, flags); break; case XHCI_EVT_CMD_COMPLETE: memcpy(&sc->sc_result_trb, trb, sizeof(*trb)); xhci_event_command(sc, paddr); break; case XHCI_EVT_PORT_CHANGE: xhci_event_port_change(sc, paddr, status); break; default: #ifdef XHCI_DEBUG printf("event (%d): ", XHCI_TRB_TYPE(flags)); xhci_dump_trb(trb); #endif break; } } paddr = (uint64_t)DMAADDR(&sc->sc_evt_ring.dma, sizeof(struct xhci_trb) * sc->sc_evt_ring.index); XRWRITE4(sc, XHCI_ERDP_LO(0), ((uint32_t)paddr) | XHCI_ERDP_LO_BUSY); XRWRITE4(sc, XHCI_ERDP_HI(0), (uint32_t)(paddr >> 32)); } void xhci_event_xfer(struct xhci_softc *sc, uint64_t paddr, uint32_t status, uint32_t flags) { struct xhci_pipe *xp; struct usbd_xfer *xfer; struct xhci_xfer *xx; uint8_t dci, slot, code, remain; int trb_idx; slot = XHCI_TRB_GET_SLOT(flags); dci = XHCI_TRB_GET_EP(flags); if (slot > sc->sc_noslot) { DPRINTF(("%s: incorrect slot (%u)\n", DEVNAME(sc), slot)); return; } xp = sc->sc_sdevs[slot].pipes[dci - 1]; code = XHCI_TRB_GET_CODE(status); remain = XHCI_TRB_REMAIN(status); trb_idx = (paddr - DMAADDR(&xp->ring.dma, 0)) / sizeof(struct xhci_trb); if (trb_idx < 0 || trb_idx >= xp->ring.ntrb) { printf("%s: wrong trb index (%d) max is %zu\n", DEVNAME(sc), trb_idx, xp->ring.ntrb - 1); return; } xfer = xp->pending_xfers[trb_idx]; if (xfer == NULL) { #if 1 DPRINTF(("%s: dev %d dci=%d paddr=0x%016llx idx=%d remain=%u" " code=%u\n", DEVNAME(sc), slot, dci, (long long)paddr, trb_idx, remain, code)); #endif printf("%s: NULL xfer pointer\n", DEVNAME(sc)); return; } switch (code) { case XHCI_CODE_SUCCESS: /* * This might be the ``Event Status TRB'' of a control * request for which the ``Event Data TRB'' triggered * a Short Transfer condition, see below. */ if (xfer->actlen) break; /* FALLTHROUGH */ case XHCI_CODE_SHORT_XFER: xfer->actlen = xfer->length - remain; xfer->status = USBD_NORMAL_COMPLETION; /* * If this is not the last TRB of a transfer, we should * not assume the USB packet is finished. In the case * of a Sort Transfer condition we should theoretically * clear the IOC flags on the ``Event Status TRB'' but * the HC might have already processed it since before * we start processing the softinterrupt. */ xx = (struct xhci_xfer *)xfer; if (xx->index != trb_idx) return; break; case XHCI_CODE_TXERR: case XHCI_CODE_SPLITERR: xfer->status = USBD_IOERROR; break; case XHCI_CODE_STALL: /* We need to report this condition for umass(4). */ xfer->status = USBD_STALLED; /* FALLTHROUGH */ case XHCI_CODE_BABBLE: /* * Since the stack might try to start a new transfer as * soon as a pending one finishes, make sure the endpoint * is fully reset before calling usb_transfer_complete(). */ xp->halted = 1; xhci_cmd_reset_endpoint_async(sc, slot, dci); return; default: #if 1 DPRINTF(("%s: dev %d dci=%d paddr=0x%016llx idx=%d remain=%u" " code=%u\n", DEVNAME(sc), slot, dci, (long long)paddr, trb_idx, remain, code)); #endif DPRINTF(("%s: unhandled code %d\n", DEVNAME(sc), code)); xfer->status = USBD_IOERROR; xp->halted = 1; break; } xhci_xfer_done(xfer); usb_transfer_complete(xfer); } void xhci_event_command(struct xhci_softc *sc, uint64_t paddr) { struct xhci_trb *trb; struct usbd_xfer *xfer; struct xhci_pipe *xp; uint32_t flags; uint8_t dci, slot; int i, trb_idx; trb_idx = (paddr - DMAADDR(&sc->sc_cmd_ring.dma, 0)) / sizeof(*trb); if (trb_idx < 0 || trb_idx >= sc->sc_cmd_ring.ntrb) { printf("%s: wrong trb index (%d) max is %zu\n", DEVNAME(sc), trb_idx, sc->sc_cmd_ring.ntrb - 1); return; } trb = &sc->sc_cmd_ring.trbs[trb_idx]; flags = letoh32(trb->trb_flags); slot = XHCI_TRB_GET_SLOT(flags); dci = XHCI_TRB_GET_EP(flags); xp = sc->sc_sdevs[slot].pipes[dci - 1]; switch (flags & XHCI_TRB_TYPE_MASK) { case XHCI_CMD_RESET_EP: /* * Clear the TRBs and reconfigure the dequeue pointer * before declaring the endpoint ready. */ xhci_ring_reset(sc, &xp->ring); xp->free_trbs = xp->ring.ntrb; xhci_cmd_set_tr_deq_async(sc, xp->slot, xp->dci, DMAADDR(&xp->ring.dma, 0) | XHCI_EPCTX_DCS); break; case XHCI_CMD_SET_TR_DEQ: /* * Now that the endpoint is in its initial state, we * can finish all its pending transfers and let the * stack play with it again. */ xp->halted = 0; for (i = 0; i < XHCI_MAX_TRANSFERS; i++) { xfer = xp->pending_xfers[i]; if (xfer != NULL && xfer->done == 0) { if (xfer->status != USBD_STALLED) xfer->status = USBD_IOERROR; usb_transfer_complete(xfer); } xp->pending_xfers[i] = NULL; } break; default: /* All other commands are synchronous. */ KASSERT(sc->sc_cmd_trb == trb); sc->sc_cmd_trb = NULL; wakeup(&sc->sc_cmd_trb); break; } } void xhci_event_port_change(struct xhci_softc *sc, uint64_t paddr, uint32_t status) { struct usbd_xfer *xfer = sc->sc_intrxfer; uint32_t port = XHCI_TRB_PORTID(paddr); uint8_t *p; if (XHCI_TRB_GET_CODE(status) != XHCI_CODE_SUCCESS) { DPRINTF(("%s: failed port status event\n", DEVNAME(sc))); return; } if (xfer == NULL) return; p = KERNADDR(&xfer->dmabuf, 0); memset(p, 0, xfer->length); p[port/8] |= 1 << (port%8); DPRINTF(("%s: port=%d change=0x%02x\n", DEVNAME(sc), port, *p)); xfer->actlen = xfer->length; xfer->status = USBD_NORMAL_COMPLETION; usb_transfer_complete(xfer); } void xhci_xfer_done(struct usbd_xfer *xfer) { struct xhci_pipe *xp = (struct xhci_pipe *)xfer->pipe; struct xhci_xfer *xx = (struct xhci_xfer *)xfer; int ntrb, i; #ifdef XHCI_DEBUG if (xp->pending_xfers[xx->index] == NULL) { printf("%s: xfer=%p already done (index=%d)\n", __func__, xfer, xx->index); return; } #endif for (ntrb = 0, i = xx->index; ntrb < xx->ntrb; ntrb++, i--) { xp->pending_xfers[i] = NULL; if (i == 0) i = (xp->ring.ntrb - 1); } xp->free_trbs += xx->ntrb; xx->index = -1; xx->ntrb = 0; } static inline uint8_t xhci_ed2dci(usb_endpoint_descriptor_t *ed) { uint8_t dir; if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) return (UE_GET_ADDR(ed->bEndpointAddress) * 2 + 1); if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) dir = 1; else dir = 0; return (UE_GET_ADDR(ed->bEndpointAddress) * 2 + dir); } usbd_status xhci_pipe_open(struct usbd_pipe *pipe) { struct xhci_softc *sc = (struct xhci_softc *)pipe->device->bus; struct xhci_pipe *xp = (struct xhci_pipe *)pipe; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; uint8_t slot = 0, xfertype = UE_GET_XFERTYPE(ed->bmAttributes); struct usbd_device *hub; uint32_t route = 0, rhport = 0; int error; KASSERT(xp->slot == 0); #ifdef XHCI_DEBUG struct usbd_device *dev = pipe->device; printf("%s: pipe=%p addr=%d depth=%d port=%d speed=%d\n", __func__, pipe, dev->address, dev->depth, dev->powersrc->portno, dev->speed); #endif if (sc->sc_bus.dying) return (USBD_IOERROR); /* Root Hub */ if (pipe->device->depth == 0) { switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->methods = &xhci_root_ctrl_methods; break; case UE_DIR_IN | XHCI_INTR_ENDPT: pipe->methods = &xhci_root_intr_methods; break; default: pipe->methods = NULL; DPRINTF(("%s: bad bEndpointAddress 0x%02x\n", __func__, ed->bEndpointAddress)); return (USBD_INVAL); } return (USBD_NORMAL_COMPLETION); } #if 0 /* Issue a noop to check if the command ring is correctly configured. */ xhci_cmd_noop(sc); #endif switch (xfertype) { case UE_CONTROL: pipe->methods = &xhci_device_ctrl_methods; /* Get a slot and init the device's contexts. */ error = xhci_cmd_slot_control(sc, &slot, 1); if (error || slot == 0 || slot > sc->sc_noslot) return (USBD_INVAL); if (xhci_softdev_alloc(sc, slot)) return (USBD_NOMEM); /* * Calculate the Route String. Note that this code assume * that there is no hub with more than 16 ports and that * they all are at a detph < USB_HUB_MAX_DEPTH. */ for (hub = pipe->device; hub->myhub->depth; hub = hub->myhub) { uint32_t port = hub->powersrc->portno; uint32_t depth = hub->myhub->depth; route |= port << (4 * (depth - 1)); } /* Get Root Hub port */ rhport = hub->powersrc->portno; break; case UE_ISOCHRONOUS: #if notyet pipe->methods = &xhci_device_isoc_methods; break; #else DPRINTF(("%s: isochronous xfer not supported \n", __func__)); return (USBD_INVAL); #endif case UE_BULK: pipe->methods = &xhci_device_bulk_methods; break; case UE_INTERRUPT: pipe->methods = &xhci_device_generic_methods; break; default: DPRINTF(("%s: bad xfer type %d\n", __func__, xfertype)); return (USBD_INVAL); } /* XXX Section nb? */ xp->dci = xhci_ed2dci(ed); if (slot != 0) xp->slot = slot; else xp->slot = ((struct xhci_pipe *)pipe->device->default_pipe)->slot; if (xhci_pipe_init(sc, pipe, rhport, route)) return (USBD_IOERROR); return (USBD_NORMAL_COMPLETION); } /* * Set the maximum Endpoint Service Interface Time (ESIT) payload and * the average TRB buffer length for an endpoint. */ static inline uint32_t xhci_get_txinfo(struct xhci_softc *sc, struct usbd_pipe *pipe) { usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; uint32_t mep, atl, mps = UGETW(ed->wMaxPacketSize); switch (ed->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: mep = 0; atl = 8; break; case UE_INTERRUPT: case UE_ISOCHRONOUS: if (pipe->device->speed == USB_SPEED_SUPER) { /* XXX Read the companion descriptor */ } mep = (UE_GET_TRANS(mps) | 0x1) * UE_GET_SIZE(mps); atl = min(sc->sc_pagesize, mep); break; case UE_BULK: default: mep = 0; atl = 0; } DPRINTF(("%s: max ESIT payload = %u, average TRB length = %u\n", DEVNAME(sc), mep, atl)); return (XHCI_EPCTX_MAX_ESIT_PAYLOAD(mep) | XHCI_EPCTX_AVG_TRB_LEN(atl)); } int xhci_pipe_init(struct xhci_softc *sc, struct usbd_pipe *pipe, uint32_t port, uint32_t route) { struct xhci_pipe *xp = (struct xhci_pipe *)pipe; struct xhci_soft_dev *sdev = &sc->sc_sdevs[xp->slot]; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes); uint8_t ival, speed, cerr = 0; uint32_t mps; int error; DPRINTF(("%s: dev %d dci %u (epAddr=0x%x)\n", DEVNAME(sc), xp->slot, xp->dci, pipe->endpoint->edesc->bEndpointAddress)); if (xhci_ring_alloc(sc, &xp->ring, XHCI_MAX_TRANSFERS)) return (ENOMEM); xp->free_trbs = xp->ring.ntrb; xp->halted = 0; sdev->pipes[xp->dci - 1] = xp; switch (pipe->device->speed) { case USB_SPEED_LOW: ival= 3; speed = XHCI_SPEED_LOW; mps = USB_MAX_IPACKET; break; case USB_SPEED_FULL: ival = 3; speed = XHCI_SPEED_FULL; mps = 64; break; case USB_SPEED_HIGH: ival = min(3, ed->bInterval); speed = XHCI_SPEED_HIGH; mps = 64; break; case USB_SPEED_SUPER: ival = min(3, ed->bInterval); speed = XHCI_SPEED_SUPER; mps = 512; break; default: return (EINVAL); } /* XXX Until we fix wMaxPacketSize for ctrl ep depending on the speed */ mps = max(mps, UE_GET_SIZE(UGETW(ed->wMaxPacketSize))); if (pipe->interval != USBD_DEFAULT_INTERVAL) ival = min(ival, pipe->interval); DPRINTF(("%s: speed %d mps %d rhport %d route 0x%x\n", DEVNAME(sc), speed, mps, port, route)); /* Setup the endpoint context */ if (xfertype != UE_ISOCHRONOUS) cerr = 3; if (xfertype == UE_CONTROL || xfertype == UE_BULK) ival = 0; if ((ed->bEndpointAddress & UE_DIR_IN) || (xfertype == UE_CONTROL)) xfertype |= 0x4; sdev->ep_ctx[xp->dci-1]->info_lo = htole32(XHCI_EPCTX_SET_IVAL(ival)); sdev->ep_ctx[xp->dci-1]->info_hi = htole32( XHCI_EPCTX_SET_MPS(mps) | XHCI_EPCTX_SET_EPTYPE(xfertype) | XHCI_EPCTX_SET_CERR(cerr) | XHCI_EPCTX_SET_MAXB(0) ); sdev->ep_ctx[xp->dci-1]->txinfo = htole32(xhci_get_txinfo(sc, pipe)); sdev->ep_ctx[xp->dci-1]->deqp = htole64( DMAADDR(&xp->ring.dma, 0) | XHCI_EPCTX_DCS ); /* Unmask the new endoint */ sdev->input_ctx->drop_flags = 0; sdev->input_ctx->add_flags = htole32(XHCI_INCTX_MASK_DCI(xp->dci)); /* Setup the slot context */ sdev->slot_ctx->info_lo = htole32( XHCI_SCTX_DCI(xp->dci) | XHCI_SCTX_SPEED(speed) | XHCI_SCTX_ROUTE(route) ); sdev->slot_ctx->info_hi = htole32(XHCI_SCTX_RHPORT(port)); sdev->slot_ctx->tt = 0; sdev->slot_ctx->state = 0; /* If we are opening the interrupt pipe of a hub, update its context. */ if (pipe->device->hub != NULL) { int nports = pipe->device->hub->nports; /* Unmask the slot context */ sdev->input_ctx->add_flags |= htole32(XHCI_INCTX_MASK_DCI(0)); sdev->slot_ctx->info_lo |= htole32(XHCI_SCTX_HUB(1)); sdev->slot_ctx->info_hi |= htole32(XHCI_SCTX_NPORTS(nports)); } usb_syncmem(&sdev->ictx_dma, 0, sc->sc_pagesize, BUS_DMASYNC_PREWRITE); /* * Issue only one Set address to set up the slot context and * assign an address. */ if (xp->dci == 1) { error = xhci_cmd_address_device(sc, xp->slot, DMAADDR(&sdev->ictx_dma, 0)); } else { error = xhci_cmd_configure_ep(sc, xp->slot, DMAADDR(&sdev->ictx_dma, 0)); } usb_syncmem(&sdev->octx_dma, 0, sc->sc_pagesize, BUS_DMASYNC_POSTREAD); #ifdef XHCI_DEBUG if (xp->dci == 1 && !error) { struct xhci_sctx *sctx; uint8_t addr; /* Get output slot context. */ sctx = KERNADDR(&sdev->octx_dma, 0); addr = XHCI_SCTX_DEV_ADDR(letoh32(sctx->state)); error = (addr == 0); printf("%s: dev %d addr %d\n", DEVNAME(sc), xp->slot, addr); } #endif if (error) { xhci_ring_free(sc, &xp->ring); return (EIO); } return (0); } void xhci_pipe_close(struct usbd_pipe *pipe) { struct xhci_softc *sc = (struct xhci_softc *)pipe->device->bus; struct xhci_pipe *lxp, *xp = (struct xhci_pipe *)pipe; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; struct xhci_soft_dev *sdev = &sc->sc_sdevs[xp->slot]; int i; /* Root Hub */ if (pipe->device->depth == 0) return; if (!xp->halted || xhci_cmd_stop_ep(sc, xp->slot, xp->dci)) DPRINTF(("%s: error stopping ep (%d)\n", DEVNAME(sc), xp->dci)); /* Mask the endpoint */ sdev->input_ctx->drop_flags = htole32(XHCI_INCTX_MASK_DCI(xp->dci)); sdev->input_ctx->add_flags = 0; /* Update last valid Endpoint Context */ for (i = 30; i >= 0; i--) { lxp = sdev->pipes[i]; if (lxp != NULL && lxp != xp) break; } sdev->slot_ctx->info_lo = htole32(XHCI_SCTX_DCI(lxp->dci)); /* Clear the Endpoint Context */ memset(&sdev->ep_ctx[xp->dci - 1], 0, sizeof(struct xhci_epctx)); usb_syncmem(&sdev->ictx_dma, 0, sc->sc_pagesize, BUS_DMASYNC_PREWRITE); if (xhci_cmd_configure_ep(sc, xp->slot, DMAADDR(&sdev->ictx_dma, 0))) DPRINTF(("%s: error clearing ep (%d)\n", DEVNAME(sc), xp->dci)); xhci_ring_free(sc, &xp->ring); sdev->pipes[xp->dci - 1] = NULL; if (UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) { xhci_cmd_slot_control(sc, &xp->slot, 0); xhci_softdev_free(sc, xp->slot); } } struct usbd_xfer * xhci_allocx(struct usbd_bus *bus) { return (pool_get(xhcixfer, PR_NOWAIT | PR_ZERO)); } void xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) { pool_put(xhcixfer, xfer); } int xhci_scratchpad_alloc(struct xhci_softc *sc, int npage) { uint64_t *pte; int error, i; /* Allocate the required entry for the table. */ error = usb_allocmem(&sc->sc_bus, npage * sizeof(uint64_t), 64, &sc->sc_spad.table_dma); if (error) return (ENOMEM); pte = KERNADDR(&sc->sc_spad.table_dma, 0); /* Alloccate space for the pages. */ error = usb_allocmem(&sc->sc_bus, npage * sc->sc_pagesize, sc->sc_pagesize, &sc->sc_spad.pages_dma); if (error) { usb_freemem(&sc->sc_bus, &sc->sc_spad.table_dma); return (ENOMEM); } memset(KERNADDR(&sc->sc_spad.pages_dma, 0), 0, npage * sc->sc_pagesize); usb_syncmem(&sc->sc_spad.pages_dma, 0, npage * sc->sc_pagesize, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); for (i = 0; i < npage; i++) { pte[i] = htole64( DMAADDR(&sc->sc_spad.pages_dma, i * sc->sc_pagesize) ); } usb_syncmem(&sc->sc_spad.table_dma, 0, npage * sizeof(uint64_t), BUS_DMASYNC_PREWRITE); /* Entry 0 points to the table of scratchpad pointers. */ sc->sc_dcbaa.segs[0] = htole64(DMAADDR(&sc->sc_spad.table_dma, 0)); usb_syncmem(&sc->sc_dcbaa.dma, 0, sizeof(uint64_t), BUS_DMASYNC_PREWRITE); sc->sc_spad.npage = npage; return (0); } void xhci_scratchpad_free(struct xhci_softc *sc) { sc->sc_dcbaa.segs[0] = 0; usb_syncmem(&sc->sc_dcbaa.dma, 0, sizeof(uint64_t), BUS_DMASYNC_PREWRITE); usb_freemem(&sc->sc_bus, &sc->sc_spad.pages_dma); usb_freemem(&sc->sc_bus, &sc->sc_spad.table_dma); } int xhci_ring_alloc(struct xhci_softc *sc, struct xhci_ring *ring, size_t ntrb) { size_t size; size = ntrb * sizeof(struct xhci_trb); if (usb_allocmem(&sc->sc_bus, size, 16, &ring->dma) != 0) return (ENOMEM); ring->trbs = KERNADDR(&ring->dma, 0); ring->ntrb = ntrb; xhci_ring_reset(sc, ring); return (0); } void xhci_ring_free(struct xhci_softc *sc, struct xhci_ring *ring) { usb_freemem(&sc->sc_bus, &ring->dma); } void xhci_ring_reset(struct xhci_softc *sc, struct xhci_ring *ring) { size_t size; size = ring->ntrb * sizeof(struct xhci_trb); memset(ring->trbs, 0, size); ring->index = 0; ring->toggle = XHCI_TRB_CYCLE; /* * Since all our rings use only one segment, at least for * the moment, link their tail to their head. */ if (ring != &sc->sc_evt_ring) { struct xhci_trb *trb = &ring->trbs[ring->ntrb - 1]; trb->trb_paddr = htole64(DMAADDR(&ring->dma, 0)); trb->trb_flags = htole32(XHCI_TRB_TYPE_LINK | XHCI_TRB_LINKSEG); } usb_syncmem(&ring->dma, 0, size, BUS_DMASYNC_PREWRITE); } struct xhci_trb* xhci_ring_dequeue(struct xhci_softc *sc, struct xhci_ring *ring, int cons) { struct xhci_trb *trb; uint32_t idx = ring->index; KASSERT(idx < ring->ntrb); usb_syncmem(&ring->dma, idx * sizeof(struct xhci_trb), sizeof(struct xhci_trb), BUS_DMASYNC_POSTREAD); trb = &ring->trbs[idx]; /* Make sure this TRB can be consumed. */ if (cons && ring->toggle != (letoh32(trb->trb_flags) & XHCI_TRB_CYCLE)) return (NULL); idx++; if (idx < (ring->ntrb - 1)) { ring->index = idx; } else { if (ring->toggle) ring->trbs[idx].trb_flags |= htole32(XHCI_TRB_CYCLE); else ring->trbs[idx].trb_flags &= ~htole32(XHCI_TRB_CYCLE); usb_syncmem(&ring->dma, sizeof(struct xhci_trb) * idx, sizeof(struct xhci_trb), BUS_DMASYNC_PREWRITE); ring->index = 0; ring->toggle ^= 1; } return (trb); } struct xhci_trb * xhci_xfer_get_trb(struct xhci_softc *sc, struct usbd_xfer* xfer, uint8_t *togglep, int last) { struct xhci_pipe *xp = (struct xhci_pipe *)xfer->pipe; struct xhci_xfer *xx = (struct xhci_xfer *)xfer; KASSERT(xp->free_trbs >= 1); /* Associate this TRB to our xfer. */ xp->pending_xfers[xp->ring.index] = xfer; xp->free_trbs--; xx->index = (last) ? xp->ring.index : -1; xx->ntrb += 1; *togglep = xp->ring.toggle; return (xhci_ring_dequeue(sc, &xp->ring, 0)); } int xhci_command_submit(struct xhci_softc *sc, struct xhci_trb *trb0, int timeout) { struct xhci_trb *trb; int error = 0; KASSERT(timeout == 0 || sc->sc_cmd_trb == NULL); trb0->trb_flags |= htole32(sc->sc_cmd_ring.toggle); trb = xhci_ring_dequeue(sc, &sc->sc_cmd_ring, 0); memcpy(trb, trb0, sizeof(struct xhci_trb)); usb_syncmem(&sc->sc_cmd_ring.dma, TRBOFF(sc->sc_cmd_ring, trb), sizeof(struct xhci_trb), BUS_DMASYNC_PREWRITE); if (timeout) sc->sc_cmd_trb = trb; XDWRITE4(sc, XHCI_DOORBELL(0), 0); if (timeout == 0) return (0); assertwaitok(); error = tsleep(&sc->sc_cmd_trb, PZERO, "xhcicmd", (timeout*hz+999)/ 1000 + 1); if (error) { #ifdef XHCI_DEBUG printf("%s: tsleep() = %d\n", __func__, error); printf("cmd = %d " ,XHCI_TRB_TYPE(letoh32(trb->trb_flags))); xhci_dump_trb(trb); #endif KASSERT(sc->sc_cmd_trb == trb); sc->sc_cmd_trb = NULL; return (error); } memcpy(trb0, &sc->sc_result_trb, sizeof(struct xhci_trb)); if (XHCI_TRB_GET_CODE(letoh32(trb0->trb_status)) != XHCI_CODE_SUCCESS) { printf("%s: event error code=%d\n", DEVNAME(sc), XHCI_TRB_GET_CODE(letoh32(trb0->trb_status))); error = EIO; } #ifdef XHCI_DEBUG if (error) { printf("result = %d ", XHCI_TRB_TYPE(letoh32(trb0->trb_flags))); xhci_dump_trb(trb0); } #endif return (error); } int xhci_command_abort(struct xhci_softc *sc) { uint32_t reg; int i; reg = XOREAD4(sc, XHCI_CRCR_LO); if ((reg & XHCI_CRCR_LO_CRR) == 0) return (0); XOWRITE4(sc, XHCI_CRCR_LO, reg | XHCI_CRCR_LO_CA); XOWRITE4(sc, XHCI_CRCR_HI, 0); for (i = 0; i < 250; i++) { usb_delay_ms(&sc->sc_bus, 1); reg = XOREAD4(sc, XHCI_CRCR_LO) & XHCI_CRCR_LO_CRR; if (!reg) break; } if (reg) { printf("%s: command ring abort timeout\n", DEVNAME(sc)); return (1); } return (0); } int xhci_cmd_configure_ep(struct xhci_softc *sc, uint8_t slot, uint64_t addr) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = htole64(addr); trb.trb_status = 0; trb.trb_flags = htole32( XHCI_TRB_SET_SLOT(slot) | XHCI_CMD_CONFIG_EP ); return (xhci_command_submit(sc, &trb, XHCI_COMMAND_TIMEOUT)); } int xhci_cmd_stop_ep(struct xhci_softc *sc, uint8_t slot, uint8_t dci) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = 0; trb.trb_status = 0; trb.trb_flags = htole32( XHCI_TRB_SET_SLOT(slot) | XHCI_TRB_SET_EP(dci) | XHCI_CMD_STOP_EP ); return (xhci_command_submit(sc, &trb, XHCI_COMMAND_TIMEOUT)); } void xhci_cmd_reset_endpoint_async(struct xhci_softc *sc, uint8_t slot, uint8_t dci) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = 0; trb.trb_status = 0; trb.trb_flags = htole32( XHCI_TRB_SET_SLOT(slot) | XHCI_TRB_SET_EP(dci) | XHCI_CMD_RESET_EP ); xhci_command_submit(sc, &trb, 0); } void xhci_cmd_set_tr_deq_async(struct xhci_softc *sc, uint8_t slot, uint8_t dci, uint64_t addr) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = htole64(addr); trb.trb_status = 0; trb.trb_flags = htole32( XHCI_TRB_SET_SLOT(slot) | XHCI_TRB_SET_EP(dci) | XHCI_CMD_SET_TR_DEQ ); xhci_command_submit(sc, &trb, 0); } int xhci_cmd_slot_control(struct xhci_softc *sc, uint8_t *slotp, int enable) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = 0; trb.trb_status = 0; if (enable) trb.trb_flags = htole32(XHCI_CMD_ENABLE_SLOT); else trb.trb_flags = htole32( XHCI_TRB_SET_SLOT(*slotp) | XHCI_CMD_DISABLE_SLOT ); if (xhci_command_submit(sc, &trb, XHCI_COMMAND_TIMEOUT)) return (EIO); if (enable) *slotp = XHCI_TRB_GET_SLOT(letoh32(trb.trb_flags)); return (0); } int xhci_cmd_address_device(struct xhci_softc *sc, uint8_t slot, uint64_t addr) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = htole64(addr); trb.trb_status = 0; trb.trb_flags = htole32( XHCI_TRB_SET_SLOT(slot) | XHCI_CMD_ADDRESS_DEVICE ); return (xhci_command_submit(sc, &trb, XHCI_COMMAND_TIMEOUT)); } int xhci_cmd_evaluate_ctx(struct xhci_softc *sc, uint8_t slot, uint64_t addr) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = htole64(addr); trb.trb_status = 0; trb.trb_flags = htole32( XHCI_TRB_SET_SLOT(slot) | XHCI_CMD_EVAL_CTX ); return (xhci_command_submit(sc, &trb, XHCI_COMMAND_TIMEOUT)); } #ifdef XHCI_DEBUG int xhci_cmd_noop(struct xhci_softc *sc) { struct xhci_trb trb; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); trb.trb_paddr = 0; trb.trb_status = 0; trb.trb_flags = htole32(XHCI_CMD_NOOP); return (xhci_command_submit(sc, &trb, XHCI_COMMAND_TIMEOUT)); } #endif int xhci_softdev_alloc(struct xhci_softc *sc, uint8_t slot) { struct xhci_soft_dev *sdev = &sc->sc_sdevs[slot]; int i, error; /* * Setup input context. Even with 64 byte context size, it * fits into the smallest supported page size, so use that. */ error = usb_allocmem(&sc->sc_bus, sc->sc_pagesize, sc->sc_pagesize, &sdev->ictx_dma); if (error) return (ENOMEM); memset(KERNADDR(&sdev->ictx_dma, 0), 0, sc->sc_pagesize); sdev->input_ctx = KERNADDR(&sdev->ictx_dma, 0); sdev->slot_ctx = KERNADDR(&sdev->ictx_dma, sc->sc_ctxsize); for (i = 0; i < 31; i++) sdev->ep_ctx[i] = KERNADDR(&sdev->ictx_dma, (i + 2) * sc->sc_ctxsize); DPRINTF(("%s: dev %d, input=%p slot=%p ep0=%p\n", DEVNAME(sc), slot, sdev->input_ctx, sdev->slot_ctx, sdev->ep_ctx[0])); /* Setup output context */ error = usb_allocmem(&sc->sc_bus, sc->sc_pagesize, sc->sc_pagesize, &sdev->octx_dma); if (error) { usb_freemem(&sc->sc_bus, &sdev->ictx_dma); return (ENOMEM); } memset(KERNADDR(&sdev->octx_dma, 0), 0, sc->sc_pagesize); memset(&sdev->pipes, 0, sizeof(sdev->pipes)); DPRINTF(("%s: dev %d, setting DCBAA to 0x%016llx\n", DEVNAME(sc), slot, (long long)DMAADDR(&sdev->octx_dma, 0))); sc->sc_dcbaa.segs[slot] = htole64(DMAADDR(&sdev->octx_dma, 0)); usb_syncmem(&sc->sc_dcbaa.dma, slot * sizeof(uint64_t), sizeof(uint64_t), BUS_DMASYNC_PREWRITE); return (0); } void xhci_softdev_free(struct xhci_softc *sc, uint8_t slot) { struct xhci_soft_dev *sdev = &sc->sc_sdevs[slot]; sc->sc_dcbaa.segs[slot] = 0; usb_syncmem(&sc->sc_dcbaa.dma, slot * sizeof(uint64_t), sizeof(uint64_t), BUS_DMASYNC_PREWRITE); usb_freemem(&sc->sc_bus, &sdev->octx_dma); usb_freemem(&sc->sc_bus, &sdev->ictx_dma); memset(sdev, 0, sizeof(struct xhci_soft_dev)); } /* Root hub descriptors. */ usb_device_descriptor_t xhci_devd = { USB_DEVICE_DESCRIPTOR_SIZE, UDESC_DEVICE, /* type */ {0x00, 0x03}, /* USB version */ UDCLASS_HUB, /* class */ UDSUBCLASS_HUB, /* subclass */ UDPROTO_HSHUBSTT, /* protocol */ 9, /* max packet */ {0},{0},{0x00,0x01}, /* device id */ 1,2,0, /* string indexes */ 1 /* # of configurations */ }; const usb_config_descriptor_t xhci_confd = { USB_CONFIG_DESCRIPTOR_SIZE, UDESC_CONFIG, {USB_CONFIG_DESCRIPTOR_SIZE + USB_INTERFACE_DESCRIPTOR_SIZE + USB_ENDPOINT_DESCRIPTOR_SIZE}, 1, 1, 0, UC_SELF_POWERED, 0 /* max power */ }; const usb_interface_descriptor_t xhci_ifcd = { USB_INTERFACE_DESCRIPTOR_SIZE, UDESC_INTERFACE, 0, 0, 1, UICLASS_HUB, UISUBCLASS_HUB, UIPROTO_HSHUBSTT, 0 }; const usb_endpoint_descriptor_t xhci_endpd = { USB_ENDPOINT_DESCRIPTOR_SIZE, UDESC_ENDPOINT, UE_DIR_IN | XHCI_INTR_ENDPT, UE_INTERRUPT, {2, 0}, /* max 15 ports */ 255 }; const usb_endpoint_ss_comp_descriptor_t xhci_endpcd = { USB_ENDPOINT_SS_COMP_DESCRIPTOR_SIZE, UDESC_ENDPOINT_SS_COMP, 0, 0, {0, 0} }; const usb_hub_descriptor_t xhci_hubd = { USB_HUB_DESCRIPTOR_SIZE, UDESC_SS_HUB, 0, {0,0}, 0, 0, {0}, }; void xhci_abort_xfer(struct usbd_xfer *xfer, usbd_status status) { int s; xfer->status = status; timeout_del(&xfer->timeout_handle); usb_rem_task(xfer->device, &xfer->abort_task); s = splusb(); xhci_xfer_done(xfer); usb_transfer_complete(xfer); splx(s); } void xhci_timeout(void *addr) { struct usbd_xfer *xfer = addr; struct xhci_softc *sc = (struct xhci_softc *)xfer->device->bus; if (sc->sc_bus.dying) { xhci_timeout_task(addr); return; } usb_init_task(&xfer->abort_task, xhci_timeout_task, addr, USB_TASK_TYPE_ABORT); usb_add_task(xfer->device, &xfer->abort_task); } void xhci_timeout_task(void *addr) { struct usbd_xfer *xfer = addr; DPRINTF(("%s: xfer=%p\n", __func__, xfer)); xhci_abort_xfer(xfer, USBD_TIMEOUT); } usbd_status xhci_root_ctrl_transfer(struct usbd_xfer *xfer) { usbd_status err; err = usb_insert_transfer(xfer); if (err) return (err); return (xhci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status xhci_root_ctrl_start(struct usbd_xfer *xfer) { struct xhci_softc *sc = (struct xhci_softc *)xfer->device->bus; usb_port_status_t ps; usb_device_request_t *req; void *buf = NULL; usb_hub_descriptor_t hubd; usbd_status err; int s, len, value, index; int l, totlen = 0; int port, i; uint32_t v; KASSERT(xfer->rqflags & URQ_REQUEST); if (sc->sc_bus.dying) return (USBD_IOERROR); req = &xfer->request; DPRINTFN(4,("%s: type=0x%02x request=%02x\n", __func__, req->bmRequestType, req->bRequest)); len = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); if (len != 0) buf = KERNADDR(&xfer->dmabuf, 0); #define C(x,y) ((x) | ((y) << 8)) switch(C(req->bRequest, req->bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): if (len > 0) { *(uint8_t *)buf = sc->sc_conf; totlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): DPRINTFN(8,("xhci_root_ctrl_start: wValue=0x%04x\n", value)); switch(value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE); USETW(xhci_devd.idVendor, sc->sc_id_vendor); memcpy(buf, &xhci_devd, l); break; /* * We can't really operate at another speed, but the spec says * we need this descriptor. */ case UDESC_OTHER_SPEED_CONFIGURATION: case UDESC_CONFIG: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE); memcpy(buf, &xhci_confd, l); ((usb_config_descriptor_t *)buf)->bDescriptorType = value >> 8; buf = (char *)buf + l; len -= l; l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &xhci_ifcd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &xhci_endpd, l); break; case UDESC_STRING: if (len == 0) break; *(u_int8_t *)buf = 0; totlen = 1; switch (value & 0xff) { case 0: /* Language table */ totlen = usbd_str(buf, len, "\001"); break; case 1: /* Vendor */ totlen = usbd_str(buf, len, sc->sc_vendor); break; case 2: /* Product */ totlen = usbd_str(buf, len, "xHCI root hub"); break; } break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): if (len > 0) { *(uint8_t *)buf = 0; totlen = 1; } break; case C(UR_GET_STATUS, UT_READ_DEVICE): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED); totlen = 2; } break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus, 0); totlen = 2; } break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= USB_MAX_DEVICES) { err = USBD_IOERROR; goto ret; } break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if (value != 0 && value != 1) { err = USBD_IOERROR; goto ret; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): err = USBD_IOERROR; goto ret; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(8, ("xhci_root_ctrl_start: UR_CLEAR_PORT_FEATURE " "port=%d feature=%d\n", index, value)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = XHCI_PORTSC(index); v = XOREAD4(sc, port) & ~XHCI_PS_CLEAR; switch (value) { case UHF_PORT_ENABLE: XOWRITE4(sc, port, v | XHCI_PS_PED); break; case UHF_PORT_SUSPEND: /* TODO */ break; case UHF_PORT_POWER: XOWRITE4(sc, port, v & ~XHCI_PS_PP); break; case UHF_PORT_INDICATOR: XOWRITE4(sc, port, v & ~XHCI_PS_SET_PIC(3)); break; case UHF_C_PORT_CONNECTION: XOWRITE4(sc, port, v | XHCI_PS_CSC); break; case UHF_C_PORT_ENABLE: XOWRITE4(sc, port, v | XHCI_PS_PEC); break; case UHF_C_PORT_SUSPEND: XOWRITE4(sc, port, v | XHCI_PS_PLC); break; case UHF_C_PORT_OVER_CURRENT: XOWRITE4(sc, port, v | XHCI_PS_OCC); break; case UHF_C_PORT_RESET: XOWRITE4(sc, port, v | XHCI_PS_PRC); break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if (len == 0) break; if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } v = XREAD4(sc, XHCI_HCCPARAMS); hubd = xhci_hubd; hubd.bNbrPorts = sc->sc_noport; USETW(hubd.wHubCharacteristics, (XHCI_HCC_PPC(v) ? UHD_PWR_INDIVIDUAL : UHD_PWR_GANGED) | (XHCI_HCC_PIND(v) ? UHD_PORT_IND : 0)); hubd.bPwrOn2PwrGood = 10; /* xHCI section 5.4.9 */ for (i = 1; i <= sc->sc_noport; i++) { v = XOREAD4(sc, XHCI_PORTSC(i)); if (v & XHCI_PS_DR) hubd.DeviceRemovable[i / 8] |= 1U << (i % 8); } hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i; l = min(len, hubd.bDescLength); totlen = l; memcpy(buf, &hubd, l); break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): if (len != 16) { err = USBD_IOERROR; goto ret; } memset(buf, 0, len); totlen = len; break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): DPRINTFN(8,("xhci_root_ctrl_start: get port status i=%d\n", index)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } if (len != 4) { err = USBD_IOERROR; goto ret; } v = XOREAD4(sc, XHCI_PORTSC(index)); DPRINTFN(8,("xhci_root_ctrl_start: port status=0x%04x\n", v)); switch (XHCI_PS_SPEED(v)) { case XHCI_SPEED_FULL: i = UPS_FULL_SPEED; break; case XHCI_SPEED_LOW: i = UPS_LOW_SPEED; break; case XHCI_SPEED_HIGH: i = UPS_HIGH_SPEED; break; case XHCI_SPEED_SUPER: default: i = UPS_SUPER_SPEED; break; } if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS; if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED; if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR; if (v & XHCI_PS_PR) i |= UPS_RESET; if (v & XHCI_PS_PP) i |= UPS_PORT_POWER; USETW(ps.wPortStatus, i); i = 0; if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS; if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED; if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR; if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET; USETW(ps.wPortChange, i); l = min(len, sizeof ps); memcpy(buf, &ps, l); totlen = l; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): err = USBD_IOERROR; goto ret; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): i = index >> 8; index &= 0x00ff; if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = XHCI_PORTSC(index); v = XOREAD4(sc, port) & ~XHCI_PS_CLEAR; switch (value) { case UHF_PORT_ENABLE: XOWRITE4(sc, port, v | XHCI_PS_PED); break; case UHF_PORT_SUSPEND: DPRINTFN(6, ("suspend port %u (LPM=%u)\n", index, i)); if (XHCI_PS_SPEED(v) == XHCI_SPEED_SUPER) { err = USBD_IOERROR; goto ret; } XOWRITE4(sc, port, v | XHCI_PS_SET_PLS(i ? 2 /* LPM */ : 3) | XHCI_PS_LWS); break; case UHF_PORT_RESET: DPRINTFN(6, ("reset port %d\n", index)); XOWRITE4(sc, port, v | XHCI_PS_PR); break; case UHF_PORT_POWER: DPRINTFN(3, ("set port power %d\n", index)); XOWRITE4(sc, port, v | XHCI_PS_PP); break; case UHF_PORT_INDICATOR: DPRINTFN(3, ("set port indicator %d\n", index)); v &= ~XHCI_PS_SET_PIC(3); v |= XHCI_PS_SET_PIC(1); XOWRITE4(sc, port, v); break; case UHF_C_PORT_RESET: XOWRITE4(sc, port, v | XHCI_PS_PRC); break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER): case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER): case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER): case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER): break; default: err = USBD_IOERROR; goto ret; } xfer->actlen = totlen; err = USBD_NORMAL_COMPLETION; ret: xfer->status = err; s = splusb(); usb_transfer_complete(xfer); splx(s); return (USBD_IN_PROGRESS); } void xhci_noop(struct usbd_xfer *xfer) { } usbd_status xhci_root_intr_transfer(struct usbd_xfer *xfer) { usbd_status err; err = usb_insert_transfer(xfer); if (err) return (err); return (xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status xhci_root_intr_start(struct usbd_xfer *xfer) { struct xhci_softc *sc = (struct xhci_softc *)xfer->device->bus; if (sc->sc_bus.dying) return (USBD_IOERROR); sc->sc_intrxfer = xfer; return (USBD_IN_PROGRESS); } void xhci_root_intr_abort(struct usbd_xfer *xfer) { struct xhci_softc *sc = (struct xhci_softc *)xfer->device->bus; int s; sc->sc_intrxfer = NULL; xfer->status = USBD_CANCELLED; s = splusb(); usb_transfer_complete(xfer); splx(s); } void xhci_root_intr_done(struct usbd_xfer *xfer) { } usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *xfer) { usbd_status err; err = usb_insert_transfer(xfer); if (err) return (err); return (xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status xhci_device_ctrl_start(struct usbd_xfer *xfer) { struct xhci_softc *sc = (struct xhci_softc *)xfer->device->bus; struct xhci_pipe *xp = (struct xhci_pipe *)xfer->pipe; struct xhci_trb *trb0, *trb; uint32_t len = UGETW(xfer->request.wLength); uint8_t toggle0, toggle; KASSERT(xfer->rqflags & URQ_REQUEST); if (sc->sc_bus.dying || xp->halted) return (USBD_IOERROR); if (xp->free_trbs < 3) return (USBD_NOMEM); /* We'll do the setup TRB once we're finished with the other stages. */ trb0 = xhci_xfer_get_trb(sc, xfer, &toggle0, 0); /* Data TRB */ if (len != 0) { trb = xhci_xfer_get_trb(sc, xfer, &toggle, 0); trb->trb_paddr = htole64(DMAADDR(&xfer->dmabuf, 0)); trb->trb_status = htole32( XHCI_TRB_INTR(0) | XHCI_TRB_TDREM(1) | XHCI_TRB_LEN(len) ); trb->trb_flags = htole32(XHCI_TRB_TYPE_DATA | toggle); if (usbd_xfer_isread(xfer)) trb->trb_flags |= htole32(XHCI_TRB_DIR_IN|XHCI_TRB_ISP); } /* Status TRB */ trb = xhci_xfer_get_trb(sc, xfer, &toggle, 1); trb->trb_paddr = 0; trb->trb_status = htole32(XHCI_TRB_INTR(0)); trb->trb_flags = htole32(XHCI_TRB_TYPE_STATUS | XHCI_TRB_IOC | toggle); if (len == 0 || !usbd_xfer_isread(xfer)) trb->trb_flags |= htole32(XHCI_TRB_DIR_IN); /* Setup TRB */ trb0->trb_paddr = (uint64_t)*((uint64_t *)&xfer->request); trb0->trb_status = htole32(XHCI_TRB_INTR(0) | XHCI_TRB_LEN(8)); trb0->trb_flags = htole32(XHCI_TRB_TYPE_SETUP | XHCI_TRB_IDT); if (len != 0) { if (usbd_xfer_isread(xfer)) trb0->trb_flags |= htole32(XHCI_TRB_TRT_IN); else trb0->trb_flags |= htole32(XHCI_TRB_TRT_OUT); } trb0->trb_flags |= htole32(toggle0); usb_syncmem(&xp->ring.dma, TRBOFF(xp->ring, trb0), 3 * sizeof(struct xhci_trb), BUS_DMASYNC_PREWRITE); XDWRITE4(sc, XHCI_DOORBELL(xp->slot), xp->dci); xfer->status = USBD_IN_PROGRESS; if (sc->sc_bus.use_polling) xhci_waitintr(sc, xfer); #if notyet else if (xfer->timeout) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, xhci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } #endif return (USBD_IN_PROGRESS); } void xhci_device_ctrl_abort(struct usbd_xfer *xfer) { xhci_abort_xfer(xfer, USBD_CANCELLED); } usbd_status xhci_device_generic_transfer(struct usbd_xfer *xfer) { usbd_status err; err = usb_insert_transfer(xfer); if (err) return (err); return (xhci_device_generic_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } usbd_status xhci_device_generic_start(struct usbd_xfer *xfer) { struct xhci_softc *sc = (struct xhci_softc *)xfer->device->bus; struct xhci_pipe *xp = (struct xhci_pipe *)xfer->pipe; struct xhci_trb *trb; uint8_t toggle; KASSERT(!(xfer->rqflags & URQ_REQUEST)); if (sc->sc_bus.dying || xp->halted) return (USBD_IOERROR); if (xp->free_trbs < 1) return (USBD_NOMEM); trb = xhci_xfer_get_trb(sc, xfer, &toggle, 1); trb->trb_paddr = htole64(DMAADDR(&xfer->dmabuf, 0)); trb->trb_status = htole32( XHCI_TRB_INTR(0) | XHCI_TRB_TDREM(1) | XHCI_TRB_LEN(xfer->length) ); trb->trb_flags = htole32( XHCI_TRB_TYPE_NORMAL | XHCI_TRB_ISP | XHCI_TRB_IOC | toggle ); usb_syncmem(&xp->ring.dma, TRBOFF(xp->ring, trb), sizeof(struct xhci_trb), BUS_DMASYNC_PREWRITE); XDWRITE4(sc, XHCI_DOORBELL(xp->slot), xp->dci); xfer->status = USBD_IN_PROGRESS; if (sc->sc_bus.use_polling) xhci_waitintr(sc, xfer); #if notyet else if (xfer->timeout) { timeout_del(&xfer->timeout_handle); timeout_set(&xfer->timeout_handle, xhci_timeout, xfer); timeout_add_msec(&xfer->timeout_handle, xfer->timeout); } #endif return (USBD_IN_PROGRESS); } void xhci_device_generic_done(struct usbd_xfer *xfer) { usb_syncmem(&xfer->dmabuf, 0, xfer->length, usbd_xfer_isread(xfer) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); /* Only happens with interrupt transfers. */ if (xfer->pipe->repeat) { xfer->actlen = 0; xhci_device_generic_start(xfer); } } void xhci_device_generic_abort(struct usbd_xfer *xfer) { KASSERT(!xfer->pipe->repeat || xfer->pipe->intrxfer == xfer); xhci_abort_xfer(xfer, USBD_CANCELLED); }