/* $OpenBSD: wsmouse.c,v 1.29 2016/03/30 23:34:12 bru Exp $ */ /* $NetBSD: wsmouse.c,v 1.35 2005/02/27 00:27:52 perry Exp $ */ /* * Copyright (c) 1996, 1997 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ms.c 8.1 (Berkeley) 6/11/93 */ /* * Mouse driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wsmux.h" #include "wsdisplay.h" #include "wskbd.h" #include #if defined(WSMUX_DEBUG) && NWSMUX > 0 #define DPRINTF(x) if (wsmuxdebug) printf x #define DPRINTFN(n,x) if (wsmuxdebug > (n)) printf x extern int wsmuxdebug; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define INVALID_X INT_MAX #define INVALID_Y INT_MAX #define INVALID_Z INT_MAX #define INVALID_W INT_MAX struct wsmouse_softc { struct wsevsrc sc_base; const struct wsmouse_accessops *sc_accessops; void *sc_accesscookie; u_int sc_mb; /* mouse button state */ u_int sc_ub; /* user button state */ int sc_dx; /* delta-x */ int sc_dy; /* delta-y */ int sc_dz; /* delta-z */ int sc_dw; /* delta-w */ int sc_x; /* absolute-x */ int sc_y; /* absolute-y */ int sc_z; /* absolute-z */ int sc_w; /* absolute-w */ struct wsmouseinput input; int sc_refcnt; u_char sc_dying; /* device is being detached */ }; int wsmouse_match(struct device *, void *, void *); void wsmouse_attach(struct device *, struct device *, void *); int wsmouse_detach(struct device *, int); int wsmouse_activate(struct device *, int); int wsmouse_do_ioctl(struct wsmouse_softc *, u_long, caddr_t, int, struct proc *); #if NWSMUX > 0 int wsmouse_mux_open(struct wsevsrc *, struct wseventvar *); int wsmouse_mux_close(struct wsevsrc *); #endif int wsmousedoioctl(struct device *, u_long, caddr_t, int, struct proc *); int wsmousedoopen(struct wsmouse_softc *, struct wseventvar *); struct cfdriver wsmouse_cd = { NULL, "wsmouse", DV_TTY }; struct cfattach wsmouse_ca = { sizeof (struct wsmouse_softc), wsmouse_match, wsmouse_attach, wsmouse_detach, wsmouse_activate }; #if NWSMUX > 0 struct wssrcops wsmouse_srcops = { WSMUX_MOUSE, wsmouse_mux_open, wsmouse_mux_close, wsmousedoioctl, NULL, NULL }; #endif /* * Print function (for parent devices). */ int wsmousedevprint(void *aux, const char *pnp) { if (pnp) printf("wsmouse at %s", pnp); return (UNCONF); } int wsmouse_match(struct device *parent, void *match, void *aux) { return (1); } void wsmouse_attach(struct device *parent, struct device *self, void *aux) { struct wsmouse_softc *sc = (struct wsmouse_softc *)self; struct wsmousedev_attach_args *ap = aux; #if NWSMUX > 0 int mux, error; #endif sc->sc_accessops = ap->accessops; sc->sc_accesscookie = ap->accesscookie; wsmouse_input_init(&sc->input, &sc->sc_base.me_evp); #if NWSMUX > 0 sc->sc_base.me_ops = &wsmouse_srcops; mux = sc->sc_base.me_dv.dv_cfdata->wsmousedevcf_mux; if (mux >= 0) { error = wsmux_attach_sc(wsmux_getmux(mux), &sc->sc_base); if (error) printf(" attach error=%d", error); else printf(" mux %d", mux); } #else #if 0 /* not worth keeping, especially since the default value is not -1... */ if (sc->sc_base.me_dv.dv_cfdata->wsmousedevcf_mux >= 0) printf(" (mux ignored)"); #endif #endif /* NWSMUX > 0 */ printf("\n"); } int wsmouse_activate(struct device *self, int act) { struct wsmouse_softc *sc = (struct wsmouse_softc *)self; if (act == DVACT_DEACTIVATE) sc->sc_dying = 1; return (0); } /* * Detach a mouse. To keep track of users of the softc we keep * a reference count that's incremented while inside, e.g., read. * If the mouse is active and the reference count is > 0 (0 is the * normal state) we post an event and then wait for the process * that had the reference to wake us up again. Then we blow away the * vnode and return (which will deallocate the softc). */ int wsmouse_detach(struct device *self, int flags) { struct wsmouse_softc *sc = (struct wsmouse_softc *)self; struct wseventvar *evar; int maj, mn; int s; #if NWSMUX > 0 /* Tell parent mux we're leaving. */ if (sc->sc_base.me_parent != NULL) { DPRINTF(("wsmouse_detach:\n")); wsmux_detach_sc(&sc->sc_base); } #endif /* If we're open ... */ evar = sc->sc_base.me_evp; if (evar != NULL && evar->io != NULL) { s = spltty(); if (--sc->sc_refcnt >= 0) { /* Wake everyone by generating a dummy event. */ if (++evar->put >= WSEVENT_QSIZE) evar->put = 0; WSEVENT_WAKEUP(evar); /* Wait for processes to go away. */ if (tsleep(sc, PZERO, "wsmdet", hz * 60)) printf("wsmouse_detach: %s didn't detach\n", sc->sc_base.me_dv.dv_xname); } splx(s); } /* locate the major number */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == wsmouseopen) break; /* Nuke the vnodes for any open instances (calls close). */ mn = self->dv_unit; vdevgone(maj, mn, mn, VCHR); wsmouse_input_cleanup(&sc->input); return (0); } void wsmouse_input(struct device *wsmousedev, u_int btns, /* 0 is up */ int x, int y, int z, int w, u_int flags) { struct wsmouse_softc *sc = (struct wsmouse_softc *)wsmousedev; struct wscons_event *ev; struct wseventvar *evar; int mb, ub, d, get, put, any; add_mouse_randomness(x ^ y ^ z ^ w ^ btns); /* * Discard input if not ready. */ evar = sc->sc_base.me_evp; if (evar == NULL) return; #ifdef DIAGNOSTIC if (evar->q == NULL) { printf("wsmouse_input: evar->q=NULL\n"); return; } #endif #if NWSMUX > 0 DPRINTFN(5,("wsmouse_input: %s mux=%p, evar=%p\n", sc->sc_base.me_dv.dv_xname, sc->sc_base.me_parent, evar)); #endif sc->sc_mb = btns; if (!(flags & WSMOUSE_INPUT_ABSOLUTE_X)) sc->sc_dx += x; if (!(flags & WSMOUSE_INPUT_ABSOLUTE_Y)) sc->sc_dy += y; if (!(flags & WSMOUSE_INPUT_ABSOLUTE_Z)) sc->sc_dz += z; if (!(flags & WSMOUSE_INPUT_ABSOLUTE_W)) sc->sc_dw += w; /* * We have at least one event (mouse button, delta-X, or * delta-Y; possibly all three, and possibly three separate * button events). Deliver these events until we are out * of changes or out of room. As events get delivered, * mark them `unchanged'. */ ub = sc->sc_ub; any = 0; get = evar->get; put = evar->put; ev = &evar->q[put]; /* NEXT prepares to put the next event, backing off if necessary */ #define NEXT \ if ((++put) % WSEVENT_QSIZE == get) { \ put--; \ goto out; \ } /* ADVANCE completes the `put' of the event */ #define ADVANCE \ ev++; \ if (put >= WSEVENT_QSIZE) { \ put = 0; \ ev = &evar->q[0]; \ } \ any = 1 /* TIMESTAMP sets `time' field of the event to the current time */ #define TIMESTAMP \ do { \ getnanotime(&ev->time); \ } while (0) if (flags & WSMOUSE_INPUT_ABSOLUTE_X) { if (sc->sc_x != x) { NEXT; ev->type = WSCONS_EVENT_MOUSE_ABSOLUTE_X; ev->value = x; TIMESTAMP; ADVANCE; sc->sc_x = x; } } else { if (sc->sc_dx) { NEXT; ev->type = WSCONS_EVENT_MOUSE_DELTA_X; ev->value = sc->sc_dx; TIMESTAMP; ADVANCE; sc->sc_dx = 0; } } if (flags & WSMOUSE_INPUT_ABSOLUTE_Y) { if (sc->sc_y != y) { NEXT; ev->type = WSCONS_EVENT_MOUSE_ABSOLUTE_Y; ev->value = y; TIMESTAMP; ADVANCE; sc->sc_y = y; } } else { if (sc->sc_dy) { NEXT; ev->type = WSCONS_EVENT_MOUSE_DELTA_Y; ev->value = sc->sc_dy; TIMESTAMP; ADVANCE; sc->sc_dy = 0; } } if (flags & WSMOUSE_INPUT_ABSOLUTE_Z) { if (sc->sc_z != z) { NEXT; ev->type = WSCONS_EVENT_MOUSE_ABSOLUTE_Z; ev->value = z; TIMESTAMP; ADVANCE; sc->sc_z = z; } } else { if (sc->sc_dz) { NEXT; ev->type = WSCONS_EVENT_MOUSE_DELTA_Z; ev->value = sc->sc_dz; TIMESTAMP; ADVANCE; sc->sc_dz = 0; } } if (flags & WSMOUSE_INPUT_ABSOLUTE_W) { if (sc->sc_w != w) { NEXT; ev->type = WSCONS_EVENT_MOUSE_ABSOLUTE_W; ev->value = w; TIMESTAMP; ADVANCE; sc->sc_w = w; } } else { if (sc->sc_dw) { NEXT; ev->type = WSCONS_EVENT_MOUSE_DELTA_W; ev->value = sc->sc_dw; TIMESTAMP; ADVANCE; sc->sc_dw = 0; } } mb = sc->sc_mb; while ((d = mb ^ ub) != 0) { /* * Mouse button change. Find the first change and drop * it into the event queue. */ NEXT; ev->value = ffs(d) - 1; KASSERT(ev->value >= 0); d = 1 << ev->value; ev->type = (mb & d) ? WSCONS_EVENT_MOUSE_DOWN : WSCONS_EVENT_MOUSE_UP; TIMESTAMP; ADVANCE; ub ^= d; } NEXT; ev->type = WSCONS_EVENT_SYNC; ev->value = 0; TIMESTAMP; ADVANCE; #undef TIMESTAMP #undef ADVANCE #undef NEXT out: if (any) { sc->sc_ub = ub; evar->put = put; WSEVENT_WAKEUP(evar); #ifdef HAVE_BURNER_SUPPORT /* wsdisplay_burn(sc->sc_displaydv, WSDISPLAY_BURN_MOUSE); */ #endif #if NWSMUX > 0 DPRINTFN(5,("wsmouse_input: %s wakeup evar=%p\n", sc->sc_base.me_dv.dv_xname, evar)); #endif } } int wsmouseopen(dev_t dev, int flags, int mode, struct proc *p) { struct wsmouse_softc *sc; struct wseventvar *evar; int error, unit; unit = minor(dev); if (unit >= wsmouse_cd.cd_ndevs || /* make sure it was attached */ (sc = wsmouse_cd.cd_devs[unit]) == NULL) return (ENXIO); #if NWSMUX > 0 DPRINTF(("wsmouseopen: %s mux=%p p=%p\n", sc->sc_base.me_dv.dv_xname, sc->sc_base.me_parent, p)); #endif if (sc->sc_dying) return (EIO); if ((flags & (FREAD | FWRITE)) == FWRITE) return (0); /* always allow open for write so ioctl() is possible. */ #if NWSMUX > 0 if (sc->sc_base.me_parent != NULL) { /* Grab the mouse out of the greedy hands of the mux. */ DPRINTF(("wsmouseopen: detach\n")); wsmux_detach_sc(&sc->sc_base); } #endif if (sc->sc_base.me_evp != NULL) return (EBUSY); evar = &sc->sc_base.me_evar; wsevent_init(evar); evar->io = p->p_p; error = wsmousedoopen(sc, evar); if (error) { DPRINTF(("wsmouseopen: %s open failed\n", sc->sc_base.me_dv.dv_xname)); sc->sc_base.me_evp = NULL; wsevent_fini(evar); } return (error); } int wsmouseclose(dev_t dev, int flags, int mode, struct proc *p) { struct wsmouse_softc *sc = (struct wsmouse_softc *)wsmouse_cd.cd_devs[minor(dev)]; struct wseventvar *evar = sc->sc_base.me_evp; if ((flags & (FREAD | FWRITE)) == FWRITE) return (0); /* see wsmouseopen() */ if (evar == NULL) /* not open for read */ return (0); sc->sc_base.me_evp = NULL; (*sc->sc_accessops->disable)(sc->sc_accesscookie); wsevent_fini(evar); #if NWSMUX > 0 if (sc->sc_base.me_parent == NULL) { int mux, error; DPRINTF(("wsmouseclose: attach\n")); mux = sc->sc_base.me_dv.dv_cfdata->wsmousedevcf_mux; if (mux >= 0) { error = wsmux_attach_sc(wsmux_getmux(mux), &sc->sc_base); if (error) printf("%s: can't attach mux (error=%d)\n", sc->sc_base.me_dv.dv_xname, error); } } #endif return (0); } int wsmousedoopen(struct wsmouse_softc *sc, struct wseventvar *evp) { sc->sc_base.me_evp = evp; sc->sc_x = INVALID_X; sc->sc_y = INVALID_Y; sc->sc_z = INVALID_Z; sc->sc_w = INVALID_W; /* enable the device, and punt if that's not possible */ return (*sc->sc_accessops->enable)(sc->sc_accesscookie); } int wsmouseread(dev_t dev, struct uio *uio, int flags) { struct wsmouse_softc *sc = wsmouse_cd.cd_devs[minor(dev)]; int error; if (sc->sc_dying) return (EIO); #ifdef DIAGNOSTIC if (sc->sc_base.me_evp == NULL) { printf("wsmouseread: evp == NULL\n"); return (EINVAL); } #endif sc->sc_refcnt++; error = wsevent_read(sc->sc_base.me_evp, uio, flags); if (--sc->sc_refcnt < 0) { wakeup(sc); error = EIO; } return (error); } int wsmouseioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { return (wsmousedoioctl(wsmouse_cd.cd_devs[minor(dev)], cmd, data, flag, p)); } /* A wrapper around the ioctl() workhorse to make reference counting easy. */ int wsmousedoioctl(struct device *dv, u_long cmd, caddr_t data, int flag, struct proc *p) { struct wsmouse_softc *sc = (struct wsmouse_softc *)dv; int error; sc->sc_refcnt++; error = wsmouse_do_ioctl(sc, cmd, data, flag, p); if (--sc->sc_refcnt < 0) wakeup(sc); return (error); } int wsmouse_do_ioctl(struct wsmouse_softc *sc, u_long cmd, caddr_t data, int flag, struct proc *p) { int error; if (sc->sc_dying) return (EIO); /* * Try the generic ioctls that the wsmouse interface supports. */ switch (cmd) { case FIOASYNC: case FIOSETOWN: case TIOCSPGRP: if ((flag & FWRITE) == 0) return (EACCES); } switch (cmd) { case FIONBIO: /* we will remove this someday (soon???) */ return (0); case FIOASYNC: if (sc->sc_base.me_evp == NULL) return (EINVAL); sc->sc_base.me_evp->async = *(int *)data != 0; return (0); case FIOSETOWN: if (sc->sc_base.me_evp == NULL) return (EINVAL); if (-*(int *)data != sc->sc_base.me_evp->io->ps_pgid && *(int *)data != sc->sc_base.me_evp->io->ps_pid) return (EPERM); return (0); case TIOCSPGRP: if (sc->sc_base.me_evp == NULL) return (EINVAL); if (*(int *)data != sc->sc_base.me_evp->io->ps_pgid) return (EPERM); return (0); } /* * Try the mouse driver for WSMOUSEIO ioctls. It returns -1 * if it didn't recognize the request. */ error = (*sc->sc_accessops->ioctl)(sc->sc_accesscookie, cmd, data, flag, p); return (error != -1 ? error : ENOTTY); } int wsmousepoll(dev_t dev, int events, struct proc *p) { struct wsmouse_softc *sc = wsmouse_cd.cd_devs[minor(dev)]; if (sc->sc_base.me_evp == NULL) return (POLLERR); return (wsevent_poll(sc->sc_base.me_evp, events, p)); } int wsmousekqfilter(dev_t dev, struct knote *kn) { struct wsmouse_softc *sc = wsmouse_cd.cd_devs[minor(dev)]; if (sc->sc_base.me_evp == NULL) return (ENXIO); return (wsevent_kqfilter(sc->sc_base.me_evp, kn)); } #if NWSMUX > 0 int wsmouse_mux_open(struct wsevsrc *me, struct wseventvar *evp) { struct wsmouse_softc *sc = (struct wsmouse_softc *)me; if (sc->sc_base.me_evp != NULL) return (EBUSY); return wsmousedoopen(sc, evp); } int wsmouse_mux_close(struct wsevsrc *me) { struct wsmouse_softc *sc = (struct wsmouse_softc *)me; sc->sc_base.me_evp = NULL; (*sc->sc_accessops->disable)(sc->sc_accesscookie); return (0); } int wsmouse_add_mux(int unit, struct wsmux_softc *muxsc) { struct wsmouse_softc *sc; if (unit < 0 || unit >= wsmouse_cd.cd_ndevs || (sc = wsmouse_cd.cd_devs[unit]) == NULL) return (ENXIO); if (sc->sc_base.me_parent != NULL || sc->sc_base.me_evp != NULL) return (EBUSY); return (wsmux_attach_sc(muxsc, &sc->sc_base)); } #endif /* NWSMUX > 0 */ void wsmouse_buttons(struct device *sc, u_int buttons) { struct btn_state *btn = &((struct wsmouse_softc *) sc)->input.btn; if (btn->sync) /* Restore the old state. */ btn->buttons ^= btn->sync; btn->sync = btn->buttons ^ buttons; btn->buttons = buttons; } void wsmouse_motion(struct device *sc, int dx, int dy, int dz, int dw) { struct motion_state *motion = &((struct wsmouse_softc *) sc)->input.motion; motion->dx = dx; motion->dy = dy; motion->dz = dz; motion->dw = dw; if (dx || dy || dz || dw) motion->sync |= SYNC_DELTAS; } /* * Handle absolute coordinates. * * x_delta/y_delta are used by touchpad code. The values are only * valid if the SYNC-flags are set, and will be cleared by update- or * conversion-functions if a touch shouldn't trigger pointer motion. */ void wsmouse_position(struct device *sc, int x, int y) { struct motion_state *motion = &((struct wsmouse_softc *) sc)->input.motion; int delta; delta = x - motion->x; if (delta) { motion->x = x; motion->sync |= SYNC_X; motion->x_delta = delta; } delta = y - motion->y; if (delta) { motion->y = y; motion->sync |= SYNC_Y; motion->y_delta = delta; } } static __inline int normalized_pressure(struct wsmouseinput *input, int pressure) { int limit = imax(input->touch.min_pressure, 1); if (pressure >= limit) return pressure; else return (pressure < 0 ? limit : 0); } void wsmouse_touch(struct device *sc, int pressure, int contacts) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct touch_state *touch = &input->touch; pressure = normalized_pressure(input, pressure); contacts = (pressure ? imax(contacts, 1) : 0); if (pressure == 0 || pressure != touch->pressure) { /* * pressure == 0: Drivers may report possibly arbitrary * coordinates in this case; touch_update will correct them. */ touch->pressure = pressure; touch->sync |= SYNC_PRESSURE; } if (contacts != touch->contacts) { touch->contacts = contacts; touch->sync |= SYNC_CONTACTS; } } void wsmouse_mtstate(struct device *sc, int slot, int x, int y, int pressure) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct mt_state *mt = &input->mt; struct mt_slot *mts; u_int bit; int initial; if (slot < 0 || slot >= mt->num_slots) return; bit = (1 << slot); mt->frame |= bit; /* Is this a new touch? */ initial = ((mt->touches & bit) == (mt->sync[MTS_TOUCH] & bit)); mts = &mt->slots[slot]; if (x != mts->x || initial) { mts->x = x; mt->sync[MTS_X] |= bit; } if (y != mts->y || initial) { mts->y = y; mt->sync[MTS_Y] |= bit; } pressure = normalized_pressure(input, pressure); if (pressure != mts->pressure || initial) { mts->pressure = pressure; mt->sync[MTS_PRESSURE] |= bit; if (pressure) { if ((mt->touches & bit) == 0) { mt->num_touches++; mt->touches |= bit; mt->sync[MTS_TOUCH] |= bit; } } else if (mt->touches & bit) { mt->num_touches--; mt->touches ^= bit; mt->sync[MTS_TOUCH] |= bit; } } } void wsmouse_set(struct device *sc, enum wsmouseval type, int value, int aux) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct mt_slot *mts; if (WSMOUSE_IS_MT_CODE(type)) { if (aux < 0 || aux >= input->mt.num_slots) return; mts = &input->mt.slots[aux]; } switch (type) { case WSMOUSE_REL_X: value += input->motion.x; /* fall through */ case WSMOUSE_ABS_X: wsmouse_position(sc, value, input->motion.y); return; case WSMOUSE_REL_Y: value += input->motion.y; case WSMOUSE_ABS_Y: wsmouse_position(sc, input->motion.x, value); return; case WSMOUSE_PRESSURE: wsmouse_touch(sc, value, input->touch.contacts); return; case WSMOUSE_CONTACTS: /* Contact counts can be overridden by wsmouse_touch. */ if (value != input->touch.contacts) { input->touch.contacts = value; input->touch.sync |= SYNC_CONTACTS; } return; case WSMOUSE_TOUCH_WIDTH: if (value != input->touch.width) { input->touch.width = value; input->touch.sync |= SYNC_TOUCH_WIDTH; } return; case WSMOUSE_MT_REL_X: value += mts->x; /* fall through */ case WSMOUSE_MT_ABS_X: wsmouse_mtstate(sc, aux, value, mts->y, mts->pressure); return; case WSMOUSE_MT_REL_Y: value += mts->y; case WSMOUSE_MT_ABS_Y: wsmouse_mtstate(sc, aux, mts->x, value, mts->pressure); return; case WSMOUSE_MT_PRESSURE: wsmouse_mtstate(sc, aux, mts->x, mts->y, value); return; } } /* Make touch and motion state consistent. */ void wsmouse_touch_update(struct wsmouseinput *input) { struct motion_state *motion = &input->motion; struct touch_state *touch = &input->touch; if (touch->pressure == 0) { /* Restore valid coordinates. */ if (motion->sync & SYNC_X) motion->x -= motion->x_delta; if (motion->sync & SYNC_Y) motion->y -= motion->y_delta; /* Don't generate motion/position events. */ motion->sync &= ~SYNC_POSITION; } if (touch->sync & SYNC_CONTACTS) /* Suppress pointer motion. */ motion->x_delta = motion->y_delta = 0; if ((touch->sync & SYNC_PRESSURE) && touch->min_pressure) { if (touch->pressure >= input->params.pressure_hi) touch->min_pressure = input->params.pressure_lo; else if (touch->pressure < input->params.pressure_lo) touch->min_pressure = input->params.pressure_hi; } } /* Normalize multitouch state. */ void wsmouse_mt_update(struct wsmouseinput *input) { int i; /* * The same as above: There may be arbitrary coordinates if * (pressure == 0). Clear the sync flags for touches that have * been released. */ if (input->mt.sync[MTS_TOUCH] & ~input->mt.touches) { for (i = MTS_X; i < MTS_SIZE; i++) input->mt.sync[i] &= input->mt.touches; } } /* * Select the pointer-controlling MT slot. * * Pointer-control is assigned to slots with non-zero motion deltas if * at least one such slot exists. This function doesn't impose any * restrictions on the way drivers use wsmouse_mtstate(), it covers * partial, unordered, and "delta-filtered" input. * * The "cycle" is the set of slots with X/Y updates in previous sync * operations; it will be cleared and rebuilt whenever a slot that is * being updated is already a member. If a cycle ends that doesn't * contain the pointer-controlling slot, a new slot will be selected. */ void wsmouse_ptr_ctrl(struct mt_state *mt) { u_int updates; int select, slot; mt->prev_ptr = mt->ptr; if (mt->num_touches <= 1) { mt->ptr = mt->touches; mt->ptr_cycle = mt->ptr; return; } /* * If there is no pointer-controlling slot or it is inactive, * select a new one. */ select = ((mt->ptr & mt->touches) == 0); /* Remove slots without X/Y deltas from the cycle. */ updates = (mt->sync[MTS_X] | mt->sync[MTS_Y]) & ~mt->sync[MTS_TOUCH]; mt->ptr_cycle &= ~(mt->frame ^ updates); if (mt->ptr_cycle & updates) { select |= ((mt->ptr_cycle & mt->ptr) == 0); mt->ptr_cycle = updates; } else { mt->ptr_cycle |= updates; } if (select) { slot = (mt->ptr_cycle ? ffs(mt->ptr_cycle) - 1 : ffs(mt->touches) - 1); mt->ptr = (1 << slot); } } /* Derive touch and motion state from MT state. */ void wsmouse_mt_convert(struct device *sc) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct mt_state *mt = &input->mt; struct mt_slot *mts; int slot, pressure; wsmouse_ptr_ctrl(mt); if (mt->ptr) { slot = ffs(mt->ptr) - 1; mts = &mt->slots[slot]; wsmouse_position(sc, mts->x, mts->y); if (mt->ptr != mt->prev_ptr) /* Suppress pointer motion. */ input->motion.x_delta = input->motion.y_delta = 0; pressure = mts->pressure; } else { pressure = 0; } wsmouse_touch(sc, pressure, mt->num_touches); } void wsmouse_evq_put(struct evq_access *evq, int ev_type, int ev_value) { struct wscons_event *ev; int space; space = evq->evar->get - evq->put; if (space != 1 && space != 1 - WSEVENT_QSIZE) { ev = &evq->evar->q[evq->put++]; evq->put %= WSEVENT_QSIZE; ev->type = ev_type; ev->value = ev_value; memcpy(&ev->time, &evq->ts, sizeof(struct timespec)); evq->result |= EVQ_RESULT_SUCCESS; } else { evq->result = EVQ_RESULT_OVERFLOW; } } void wsmouse_btn_sync(struct wsmouseinput *input, struct evq_access *evq) { struct btn_state *btn = &input->btn; int button, ev_type; u_int bit, sync; for (sync = btn->sync; sync; sync ^= bit) { button = ffs(sync) - 1; bit = (1 << button); ev_type = (btn->buttons & bit) ? BTN_DOWN_EV : BTN_UP_EV; wsmouse_evq_put(evq, ev_type, button); } } /* * Scale with a [*.12] fixed-point factor and a remainder: */ static __inline int scale(int val, int factor, int *rmdr) { val = val * factor + *rmdr; if (val >= 0) { *rmdr = val & 0xfff; return (val >> 12); } else { *rmdr = -(-val & 0xfff); return -(-val >> 12); } } void wsmouse_motion_sync(struct wsmouseinput *input, struct evq_access *evq) { struct motion_state *motion = &input->motion; struct wsmouseparams *params = &input->params; struct axis_filter *fltr; int x, y, dx, dy; if (motion->sync & SYNC_DELTAS) { dx = params->x_inv ? -motion->dx : motion->dx; dy = params->y_inv ? -motion->dy : motion->dy; if (input->flags & SCALE_DELTAS) { fltr = &input->fltr.h; dx = scale(dx, fltr->scale, &fltr->rmdr); fltr = &input->fltr.v; dy = scale(dy, fltr->scale, &fltr->rmdr); } if (dx) wsmouse_evq_put(evq, DELTA_X_EV(input->flags), dx); if (dy) wsmouse_evq_put(evq, DELTA_Y_EV(input->flags), dy); if (motion->dz) wsmouse_evq_put(evq, DELTA_Z_EV, motion->dz); if (motion->dw) wsmouse_evq_put(evq, DELTA_W_EV, motion->dw); } if (motion->sync & SYNC_POSITION) { if (motion->sync & SYNC_X) { x = (params->x_inv ? params->x_inv - motion->x : motion->x); wsmouse_evq_put(evq, ABS_X_EV(input->flags), x); } if (motion->sync & SYNC_Y) { y = (params->y_inv ? params->y_inv - motion->y : motion->y); wsmouse_evq_put(evq, ABS_Y_EV(input->flags), y); } if (motion->x_delta == 0 && motion->y_delta == 0 && (input->flags & TPAD_NATIVE_MODE)) /* Suppress pointer motion. */ wsmouse_evq_put(evq, WSCONS_EVENT_TOUCH_RESET, 0); } } void wsmouse_touch_sync(struct wsmouseinput *input, struct evq_access *evq) { struct touch_state *touch = &input->touch; if (touch->sync & SYNC_PRESSURE) wsmouse_evq_put(evq, ABS_Z_EV, touch->pressure); if (touch->sync & SYNC_CONTACTS) wsmouse_evq_put(evq, ABS_W_EV, touch->contacts); if ((touch->sync & SYNC_TOUCH_WIDTH) && (input->flags & TPAD_NATIVE_MODE)) wsmouse_evq_put(evq, WSCONS_EVENT_TOUCH_WIDTH, touch->width); } /* * Convert absolute touchpad input (compatibility mode). */ void wsmouse_compat_convert(struct device *sc, struct evq_access *evq) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct wsmouseparams *params = &input->params; int dx, dy, dz, dw; dx = (input->motion.sync & SYNC_X) ? input->motion.x_delta : 0; dy = (input->motion.sync & SYNC_Y) ? input->motion.y_delta : 0; dz = (input->motion.sync & SYNC_DELTAS) ? input->motion.dz : 0; dw = (input->motion.sync & SYNC_DELTAS) ? input->motion.dw : 0; if ((params->dx_max && abs(dx) > params->dx_max) || (params->dy_max && abs(dy) > params->dy_max)) { dx = dy = 0; } wsmouse_motion(sc, dx, dy, dz, dw); input->motion.sync &= ~SYNC_POSITION; input->touch.sync = 0; } static __inline void clear_sync_flags(struct wsmouseinput *input) { int i; input->btn.sync = 0; input->motion.sync = 0; input->touch.sync = 0; if (input->mt.frame) { input->mt.frame = 0; for (i = 0; i < MTS_SIZE; i++) input->mt.sync[i] = 0; } } void wsmouse_input_sync(struct device *sc) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct evq_access evq; evq.evar = *input->evar; if (evq.evar == NULL) return; evq.put = evq.evar->put; evq.result = EVQ_RESULT_NONE; getnanotime(&evq.ts); add_mouse_randomness(input->btn.buttons ^ input->motion.dx ^ input->motion.dy ^ input->motion.x ^ input->motion.y ^ input->motion.dz ^ input->motion.dw); if (input->mt.frame) { wsmouse_mt_update(input); wsmouse_mt_convert(sc); } if (input->touch.sync) wsmouse_touch_update(input); if (input->flags & TPAD_COMPAT_MODE) wsmouse_compat_convert(sc, &evq); if (input->flags & RESYNC) { input->flags &= ~RESYNC; input->motion.sync &= SYNC_POSITION; input->motion.x_delta = input->motion.y_delta = 0; } if (input->btn.sync) wsmouse_btn_sync(input, &evq); if (input->motion.sync) wsmouse_motion_sync(input, &evq); if (input->touch.sync) wsmouse_touch_sync(input, &evq); /* No MT events are generated yet. */ if (evq.result == EVQ_RESULT_SUCCESS) { wsmouse_evq_put(&evq, WSCONS_EVENT_SYNC, 0); if (evq.result == EVQ_RESULT_SUCCESS) { evq.evar->put = evq.put; WSEVENT_WAKEUP(evq.evar); } } if (evq.result != EVQ_RESULT_OVERFLOW) clear_sync_flags(input); else input->flags |= RESYNC; } int wsmouse_id_to_slot(struct device *sc, int id) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct mt_state *mt = &input->mt; int slot; if (mt->num_slots == 0) return (-1); FOREACHBIT(mt->touches, slot) { if (mt->slots[slot].id == id) return slot; } slot = ffs(~(mt->touches | mt->frame)) - 1; if (slot >= 0 && slot < mt->num_slots) { mt->frame |= 1 << slot; mt->slots[slot].id = id; return (slot); } else { return (-1); } } /* * Find a minimum-weight matching for an m-by-n matrix. * * m must be greater than or equal to n. The size of the buffer must be * at least 4m + 3n. * * On return, the first m elements of the buffer contain the row-to- * column mappings, i.e., buffer[i] is the column index for row i, or -1 * if there is no assignment for that row (which may happen if n < m). * * Wrong results because of overflows will not occur with input values * in the range of 0 to INT_MAX / 2 inclusive. * * The function applies the Dinic-Kronrod algorithm. It is not modern or * popular, but it seems to be a good choice for small matrices at least. * The original form of the algorithm is modified as follows: There is no * initial search for row minima, the initial assignments are in a * "virtual" column with the index -1 and zero values. This permits inputs * with n < m, and it simplifies the reassignments. */ void wsmouse_matching(int *matrix, int m, int n, int *buffer) { int i, j, k, d, e, row, col, delta; int *p; int *r2c = buffer; /* row-to-column assignments */ int *red = r2c + m; /* reduced values of the assignments */ int *alt = red + m; /* alternative assignments */ int *mc = alt + m; /* row-wise minimal elements of cs */ int *cs = mc + m; /* the column set */ int *c2r = cs + n; /* column-to-row assignments in cs */ int *cd = c2r + n; /* column deltas (reduction) */ for (p = r2c; p < red; *p++ = -1) {} for (; p < alt; *p++ = 0) {} for (col = 0; col < n; col++) { delta = INT_MAX; for (i = 0, p = matrix + col; i < m; i++, p += n) if ((d = *p - red[i]) <= delta) { delta = d; row = i; } cd[col] = delta; if (r2c[row] < 0) { r2c[row] = col; continue; } for (p = alt; p < mc; *p++ = -1) {} for (; p < cs; *p++ = col) {} for (k = 0; (j = r2c[row]) >= 0;) { cs[k++] = j; c2r[j] = row; alt[row] = mc[row]; delta = INT_MAX; for (i = 0, p = matrix; i < m; i++, p += n) if (alt[i] < 0) { d = p[mc[i]] - cd[mc[i]]; e = p[j] - cd[j]; if (e < d) { d = e; mc[i] = j; } d -= red[i]; if (d <= delta) { delta = d; row = i; } } cd[col] += delta; for (i = 0; i < k; i++) { cd[cs[i]] += delta; red[c2r[cs[i]]] -= delta; } } for (j = mc[row]; (r2c[row] = j) != col;) { row = c2r[j]; j = alt[row]; } } } void wsmouse_mtframe(struct device *sc, struct mtpoint *pt, int size) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct mt_state *mt = &input->mt; int i, j, m, n, dx, dy, slot, maxdist; int *p, *r2c, *c2r; u_int touches; if (mt->num_slots == 0 || mt->matrix == NULL) return; size = imax(0, imin(size, mt->num_slots)); p = mt->matrix; touches = mt->touches; if (mt->num_touches >= size) { FOREACHBIT(touches, slot) for (i = 0; i < size; i++) { dx = pt[i].x - mt->slots[slot].x; dy = pt[i].y - mt->slots[slot].y; *p++ = dx * dx + dy * dy; } m = mt->num_touches; n = size; } else { for (i = 0; i < size; i++) FOREACHBIT(touches, slot) { dx = pt[i].x - mt->slots[slot].x; dy = pt[i].y - mt->slots[slot].y; *p++ = dx * dx + dy * dy; } m = size; n = mt->num_touches; } wsmouse_matching(mt->matrix, m, n, p); r2c = p; c2r = p + m; maxdist = input->params.tracking_maxdist; maxdist = (maxdist ? maxdist * maxdist : INT_MAX); for (i = 0, p = mt->matrix; i < m; i++, p += n) if ((j = r2c[i]) >= 0) { if (p[j] <= maxdist) c2r[j] = i; else c2r[j] = r2c[i] = -1; } p = (n == size ? c2r : r2c); for (i = 0; i < size; i++) if (*p++ < 0) { slot = ffs(~(mt->touches | mt->frame)) - 1; if (slot < 0 || slot >= mt->num_slots) break; wsmouse_mtstate(sc, slot, pt[i].x, pt[i].y, pt[i].pressure); pt[i].slot = slot; } p = (n == size ? r2c : c2r); FOREACHBIT(touches, slot) if ((i = *p++) >= 0) { wsmouse_mtstate(sc, slot, pt[i].x, pt[i].y, pt[i].pressure); pt[i].slot = slot; } else { wsmouse_mtstate(sc, slot, 0, 0, 0); } } static __inline void free_mt_slots(struct wsmouseinput *input) { int n, size; if ((n = input->mt.num_slots)) { size = n * sizeof(struct mt_slot); if (input->flags & MT_TRACKING) size += MATRIX_SIZE(n); input->mt.num_slots = 0; free(input->mt.slots, M_DEVBUF, size); input->mt.slots = NULL; input->mt.matrix = NULL; } } /* Allocate the MT slots and, if necessary, the buffers for MT tracking. */ int wsmouse_mt_init(struct device *sc, int num_slots, int tracking) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; int n, size; if (num_slots == input->mt.num_slots && (!tracking == ((input->flags & MT_TRACKING) == 0))) return (0); free_mt_slots(input); if (tracking) input->flags |= MT_TRACKING; else input->flags &= ~MT_TRACKING; n = imin(imax(num_slots, 0), WSMOUSE_MT_SLOTS_MAX); if (n) { size = n * sizeof(struct mt_slot); if (input->flags & MT_TRACKING) size += MATRIX_SIZE(n); input->mt.slots = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO); if (input->mt.slots != NULL) { if (input->flags & MT_TRACKING) input->mt.matrix = (int *) (input->mt.slots + n); input->mt.num_slots = n; return (0); } } return (-1); } void wsmouse_init_scaling(struct wsmouseinput *input) { struct wsmouseparams *params = &input->params; int m, n; if (params->dx_mul || params->dx_div || params->dy_mul || params->dy_div) { /* Scale factors have a [*.12] fixed point format. */ m = (params->dx_mul ? abs(params->dx_mul) : 1); n = (params->dx_div ? abs(params->dx_div) : 1); input->fltr.h.scale = (m << 12) / n; input->fltr.h.rmdr = 0; m = (params->dy_mul ? abs(params->dy_mul) : 1); n = (params->dy_div ? abs(params->dy_div): 1); input->fltr.v.scale = (m << 12) / n; input->fltr.v.rmdr = 0; input->flags |= SCALE_DELTAS; } else { input->flags &= ~SCALE_DELTAS; } } void wsmouse_set_param(struct device *sc, size_t param, int value) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; struct wsmouseparams *params = &input->params; int *p; if (param < 0 || param > WSMPARAM_LASTFIELD) { printf("wsmouse_set_param: invalid parameter type\n"); return; } p = (int *) (((void *) params) + param); *p = value; if (IS_WSMFLTR_PARAM(param)) { wsmouse_init_scaling(input); } else if (param == WSMPARAM_SWAPXY) { if (value) input->flags |= SWAPXY; else input->flags &= ~SWAPXY; } else if (param == WSMPARAM_PRESSURE_LO) { params->pressure_hi = imax(params->pressure_lo, params->pressure_hi); input->touch.min_pressure = params->pressure_hi; } else if (param == WSMPARAM_PRESSURE_HI && params->pressure_lo == 0) { params->pressure_lo = params->pressure_hi; input->touch.min_pressure = params->pressure_hi; } } int wsmouse_set_mode(struct device *sc, int mode) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->input; if (mode == WSMOUSE_COMPAT) { input->flags &= ~TPAD_NATIVE_MODE; input->flags |= TPAD_COMPAT_MODE; return (0); } else if (mode == WSMOUSE_NATIVE) { input->flags &= ~TPAD_COMPAT_MODE; input->flags |= TPAD_NATIVE_MODE; return (0); } return (-1); } void wsmouse_input_init(struct wsmouseinput *input, struct wseventvar **evar) { input->evar = evar; } void wsmouse_input_cleanup(struct wsmouseinput *input) { free_mt_slots(input); }