/* $OpenBSD: kern_exit.c,v 1.150 2015/08/22 20:18:49 deraadt Exp $ */ /* $NetBSD: kern_exit.c,v 1.39 1996/04/22 01:38:25 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SYSVSEM #include #endif #include "systrace.h" #include #include #include #include /* * exit -- * Death of process. */ int sys_exit(struct proc *p, void *v, register_t *retval) { struct sys_exit_args /* { syscallarg(int) rval; } */ *uap = v; exit1(p, W_EXITCODE(SCARG(uap, rval), 0), EXIT_NORMAL); /* NOTREACHED */ return (0); } int sys___threxit(struct proc *p, void *v, register_t *retval) { struct sys___threxit_args /* { syscallarg(pid_t *) notdead; } */ *uap = v; if (SCARG(uap, notdead) != NULL) { pid_t zero = 0; if (copyout(&zero, SCARG(uap, notdead), sizeof(zero))) psignal(p, SIGSEGV); } exit1(p, 0, EXIT_THREAD); return (0); } /* * Exit: deallocate address space and other resources, change proc state * to zombie, and unlink proc from allproc and parent's lists. Save exit * status and rusage for wait(). Check for child processes and orphan them. */ void exit1(struct proc *p, int rv, int flags) { struct process *pr, *qr, *nqr; struct rusage *rup; struct vnode *ovp; atomic_setbits_int(&p->p_flag, P_WEXIT); pr = p->p_p; /* single-threaded? */ if (TAILQ_FIRST(&pr->ps_threads) == p && TAILQ_NEXT(p, p_thr_link) == NULL) { flags = EXIT_NORMAL; } else { /* nope, multi-threaded */ if (flags == EXIT_NORMAL) single_thread_set(p, SINGLE_EXIT, 0); else if (flags == EXIT_THREAD) single_thread_check(p, 0); } if (flags == EXIT_NORMAL) { if (pr->ps_pid == 1) panic("init died (signal %d, exit %d)", WTERMSIG(rv), WEXITSTATUS(rv)); atomic_setbits_int(&pr->ps_flags, PS_EXITING); pr->ps_mainproc->p_xstat = rv; /* * If parent is waiting for us to exit or exec, PS_PPWAIT * is set; we wake up the parent early to avoid deadlock. */ if (pr->ps_flags & PS_PPWAIT) { atomic_clearbits_int(&pr->ps_flags, PS_PPWAIT); atomic_clearbits_int(&pr->ps_pptr->ps_flags, PS_ISPWAIT); wakeup(pr->ps_pptr); } } /* unlink ourselves from the active threads */ TAILQ_REMOVE(&pr->ps_threads, p, p_thr_link); if ((p->p_flag & P_THREAD) == 0) { /* main thread gotta wait because it has the pid, et al */ while (pr->ps_refcnt > 1) tsleep(&pr->ps_threads, PUSER, "thrdeath", 0); if (pr->ps_flags & PS_PROFIL) stopprofclock(pr); } rup = pr->ps_ru; if (rup == NULL) { rup = pool_get(&rusage_pool, PR_WAITOK | PR_ZERO); if (pr->ps_ru == NULL) { pr->ps_ru = rup; } else { pool_put(&rusage_pool, rup); rup = pr->ps_ru; } } p->p_siglist = 0; if ((p->p_flag & P_THREAD) == 0) { /* close open files and release open-file table */ fdfree(p); timeout_del(&pr->ps_realit_to); #ifdef SYSVSEM semexit(pr); #endif if (SESS_LEADER(pr)) { struct session *sp = pr->ps_session; if (sp->s_ttyvp) { /* * Controlling process. * Signal foreground pgrp, * drain controlling terminal * and revoke access to controlling terminal. */ if (sp->s_ttyp->t_session == sp) { if (sp->s_ttyp->t_pgrp) pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1); ttywait(sp->s_ttyp); /* * The tty could have been revoked * if we blocked. */ if (sp->s_ttyvp) VOP_REVOKE(sp->s_ttyvp, REVOKEALL); } ovp = sp->s_ttyvp; sp->s_ttyvp = NULL; if (ovp) vrele(ovp); /* * s_ttyp is not zero'd; we use this to * indicate that the session once had a * controlling terminal. (for logging and * informational purposes) */ } sp->s_leader = NULL; } fixjobc(pr, pr->ps_pgrp, 0); #ifdef ACCOUNTING acct_process(p); #endif #ifdef KTRACE /* release trace file */ if (pr->ps_tracevp) ktrcleartrace(pr); #endif /* * If parent has the SAS_NOCLDWAIT flag set, we're not * going to become a zombie. */ if (pr->ps_pptr->ps_sigacts->ps_flags & SAS_NOCLDWAIT) atomic_setbits_int(&pr->ps_flags, PS_NOZOMBIE); } p->p_fd = NULL; /* zap the thread's copy */ #if NSYSTRACE > 0 if (ISSET(p->p_flag, P_SYSTRACE)) systrace_exit(p); #endif /* * If emulation has thread exit hook, call it now. */ if (pr->ps_emul->e_proc_exit) (*pr->ps_emul->e_proc_exit)(p); /* * Remove proc from pidhash chain and allproc so looking * it up won't work. We will put the proc on the * deadproc list later (using the p_hash member), and * wake up the reaper when we do. If this is the last * thread of a process that isn't PS_NOZOMBIE, we'll put * the process on the zombprocess list below. */ /* * NOTE: WE ARE NO LONGER ALLOWED TO SLEEP! */ p->p_stat = SDEAD; LIST_REMOVE(p, p_hash); LIST_REMOVE(p, p_list); if ((p->p_flag & P_THREAD) == 0) { LIST_REMOVE(pr, ps_list); if ((pr->ps_flags & PS_NOZOMBIE) == 0) LIST_INSERT_HEAD(&zombprocess, pr, ps_list); else { /* * Not going to be a zombie, so it's now off all * the lists scanned by ispidtaken(), so block * fast reuse of the pid now. */ freepid(p->p_pid); } /* * Give orphaned children to init(8). */ qr = LIST_FIRST(&pr->ps_children); if (qr) /* only need this if any child is S_ZOMB */ wakeup(initprocess); for (; qr != 0; qr = nqr) { nqr = LIST_NEXT(qr, ps_sibling); proc_reparent(qr, initprocess); /* * Traced processes are killed since their * existence means someone is screwing up. */ if (qr->ps_flags & PS_TRACED && !(qr->ps_flags & PS_EXITING)) { atomic_clearbits_int(&qr->ps_flags, PS_TRACED); /* * If single threading is active, * direct the signal to the active * thread to avoid deadlock. */ if (qr->ps_single) ptsignal(qr->ps_single, SIGKILL, STHREAD); else prsignal(qr, SIGKILL); } } } /* add thread's accumulated rusage into the process's total */ ruadd(rup, &p->p_ru); tuagg(pr, p); /* * clear %cpu usage during swap */ p->p_pctcpu = 0; if ((p->p_flag & P_THREAD) == 0) { /* * Final thread has died, so add on our children's rusage * and calculate the total times */ calcru(&pr->ps_tu, &rup->ru_utime, &rup->ru_stime, NULL); ruadd(rup, &pr->ps_cru); /* notify interested parties of our demise and clean up */ knote_processexit(p); /* * Notify parent that we're gone. If we're not going to * become a zombie, reparent to process 1 (init) so that * we can wake our original parent to possibly unblock * wait4() to return ECHILD. */ if (pr->ps_flags & PS_NOZOMBIE) { struct process *ppr = pr->ps_pptr; proc_reparent(pr, initprocess); wakeup(ppr); } /* * Release the process's signal state. */ sigactsfree(pr); } /* just a thread? detach it from its process */ if (p->p_flag & P_THREAD) { /* scheduler_wait_hook(pr->ps_mainproc, p); XXX */ if (--pr->ps_refcnt == 1) wakeup(&pr->ps_threads); KASSERT(pr->ps_refcnt > 0); } /* * Other substructures are freed from reaper and wait(). */ /* * Finally, call machine-dependent code to switch to a new * context (possibly the idle context). Once we are no longer * using the dead process's vmspace and stack, exit2() will be * called to schedule those resources to be released by the * reaper thread. * * Note that cpu_exit() will end with a call equivalent to * cpu_switch(), finishing our execution (pun intended). */ uvmexp.swtch++; cpu_exit(p); panic("cpu_exit returned"); } /* * Locking of this proclist is special; it's accessed in a * critical section of process exit, and thus locking it can't * modify interrupt state. We use a simple spin lock for this * proclist. We use the p_hash member to linkup to deadproc. */ struct mutex deadproc_mutex = MUTEX_INITIALIZER(IPL_NONE); struct proclist deadproc = LIST_HEAD_INITIALIZER(deadproc); /* * We are called from cpu_exit() once it is safe to schedule the * dead process's resources to be freed. * * NOTE: One must be careful with locking in this routine. It's * called from a critical section in machine-dependent code, so * we should refrain from changing any interrupt state. * * We lock the deadproc list, place the proc on that list (using * the p_hash member), and wake up the reaper. */ void exit2(struct proc *p) { mtx_enter(&deadproc_mutex); LIST_INSERT_HEAD(&deadproc, p, p_hash); mtx_leave(&deadproc_mutex); wakeup(&deadproc); } void proc_free(struct proc *p) { crfree(p->p_ucred); pool_put(&proc_pool, p); nthreads--; } /* * Process reaper. This is run by a kernel thread to free the resources * of a dead process. Once the resources are free, the process becomes * a zombie, and the parent is allowed to read the undead's status. */ void reaper(void) { struct proc *p; KERNEL_UNLOCK(); SCHED_ASSERT_UNLOCKED(); for (;;) { mtx_enter(&deadproc_mutex); while ((p = LIST_FIRST(&deadproc)) == NULL) msleep(&deadproc, &deadproc_mutex, PVM, "reaper", 0); /* Remove us from the deadproc list. */ LIST_REMOVE(p, p_hash); mtx_leave(&deadproc_mutex); KERNEL_LOCK(); /* * Free the VM resources we're still holding on to. * We must do this from a valid thread because doing * so may block. */ uvm_uarea_free(p); p->p_vmspace = NULL; /* zap the thread's copy */ if (p->p_flag & P_THREAD) { /* Just a thread */ proc_free(p); } else { struct process *pr = p->p_p; /* Release the rest of the process's vmspace */ uvm_exit(pr); if ((pr->ps_flags & PS_NOZOMBIE) == 0) { /* Process is now a true zombie. */ atomic_setbits_int(&pr->ps_flags, PS_ZOMBIE); prsignal(pr->ps_pptr, SIGCHLD); /* Wake up the parent so it can get exit status. */ wakeup(pr->ps_pptr); } else { /* No one will wait for us. Just zap the process now */ process_zap(pr); } } KERNEL_UNLOCK(); } } int sys_wait4(struct proc *q, void *v, register_t *retval) { struct sys_wait4_args /* { syscallarg(pid_t) pid; syscallarg(int *) status; syscallarg(int) options; syscallarg(struct rusage *) rusage; } */ *uap = v; struct rusage ru; int status, error; error = dowait4(q, SCARG(uap, pid), SCARG(uap, status) ? &status : NULL, SCARG(uap, options), SCARG(uap, rusage) ? &ru : NULL, retval); if (error == 0 && retval[0] > 0 && SCARG(uap, status)) { error = copyout(&status, SCARG(uap, status), sizeof(status)); } if (error == 0 && retval[0] > 0 && SCARG(uap, rusage)) { error = copyout(&ru, SCARG(uap, rusage), sizeof(ru)); #ifdef KTRACE if (error == 0 && KTRPOINT(q, KTR_STRUCT)) ktrrusage(q, &ru); #endif } return (error); } int dowait4(struct proc *q, pid_t pid, int *statusp, int options, struct rusage *rusage, register_t *retval) { int nfound; struct process *pr; struct proc *p; int error; if (pid == 0) pid = -q->p_p->ps_pgid; if (options &~ (WUNTRACED|WNOHANG|WCONTINUED)) return (EINVAL); loop: nfound = 0; LIST_FOREACH(pr, &q->p_p->ps_children, ps_sibling) { p = pr->ps_mainproc; if ((pr->ps_flags & PS_NOZOMBIE) || (pid != WAIT_ANY && p->p_pid != pid && pr->ps_pgid != -pid)) continue; nfound++; if (pr->ps_flags & PS_ZOMBIE) { retval[0] = p->p_pid; if (statusp != NULL) *statusp = p->p_xstat; /* convert to int */ if (rusage != NULL) memcpy(rusage, pr->ps_ru, sizeof(*rusage)); proc_finish_wait(q, p); return (0); } if (pr->ps_flags & PS_TRACED && (pr->ps_flags & PS_WAITED) == 0 && pr->ps_single && pr->ps_single->p_stat == SSTOP && (pr->ps_single->p_flag & P_SUSPSINGLE) == 0) { single_thread_wait(pr); atomic_setbits_int(&pr->ps_flags, PS_WAITED); retval[0] = p->p_pid; if (statusp != NULL) *statusp = W_STOPCODE(pr->ps_single->p_xstat); if (rusage != NULL) memset(rusage, 0, sizeof(*rusage)); return (0); } if (p->p_stat == SSTOP && (pr->ps_flags & PS_WAITED) == 0 && (p->p_flag & P_SUSPSINGLE) == 0 && (pr->ps_flags & PS_TRACED || options & WUNTRACED)) { atomic_setbits_int(&pr->ps_flags, PS_WAITED); retval[0] = p->p_pid; if (statusp != NULL) *statusp = W_STOPCODE(p->p_xstat); if (rusage != NULL) memset(rusage, 0, sizeof(*rusage)); return (0); } if ((options & WCONTINUED) && (p->p_flag & P_CONTINUED)) { atomic_clearbits_int(&p->p_flag, P_CONTINUED); retval[0] = p->p_pid; if (statusp != NULL) *statusp = _WCONTINUED; if (rusage != NULL) memset(rusage, 0, sizeof(*rusage)); return (0); } } if (nfound == 0) return (ECHILD); if (options & WNOHANG) { retval[0] = 0; return (0); } if ((error = tsleep(q->p_p, PWAIT | PCATCH, "wait", 0)) != 0) return (error); goto loop; } void proc_finish_wait(struct proc *waiter, struct proc *p) { struct process *pr, *tr; struct rusage *rup; /* * If we got the child via a ptrace 'attach', * we need to give it back to the old parent. */ pr = p->p_p; if (pr->ps_oppid && (tr = prfind(pr->ps_oppid))) { atomic_clearbits_int(&pr->ps_flags, PS_TRACED); pr->ps_oppid = 0; proc_reparent(pr, tr); prsignal(tr, SIGCHLD); wakeup(tr); } else { scheduler_wait_hook(waiter, p); p->p_xstat = 0; rup = &waiter->p_p->ps_cru; ruadd(rup, pr->ps_ru); LIST_REMOVE(pr, ps_list); /* off zombprocess */ freepid(p->p_pid); process_zap(pr); } } /* * make process 'parent' the new parent of process 'child'. */ void proc_reparent(struct process *child, struct process *parent) { if (child->ps_pptr == parent) return; LIST_REMOVE(child, ps_sibling); LIST_INSERT_HEAD(&parent->ps_children, child, ps_sibling); child->ps_pptr = parent; } void process_zap(struct process *pr) { struct vnode *otvp; struct proc *p = pr->ps_mainproc; /* * Finally finished with old proc entry. * Unlink it from its process group and free it. */ leavepgrp(pr); LIST_REMOVE(pr, ps_sibling); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(pr->ps_ucred->cr_ruid, -1); if (pr->ps_tamepaths && --pr->ps_tamepaths->wl_ref == 0) { struct whitepaths *wl = pr->ps_tamepaths; int i; for (i = 0; i < wl->wl_count; i++) free(wl->wl_paths[i].name, M_TEMP, wl->wl_paths[i].len); free(wl, M_TEMP, wl->wl_size); } pr->ps_tamepaths = NULL; /* * Release reference to text vnode */ otvp = pr->ps_textvp; pr->ps_textvp = NULL; if (otvp) vrele(otvp); KASSERT(pr->ps_refcnt == 1); if (pr->ps_ptstat != NULL) free(pr->ps_ptstat, M_SUBPROC, 0); pool_put(&rusage_pool, pr->ps_ru); KASSERT(TAILQ_EMPTY(&pr->ps_threads)); limfree(pr->ps_limit); crfree(pr->ps_ucred); pool_put(&process_pool, pr); nprocesses--; proc_free(p); }