/* $OpenBSD: kern_fork.c,v 1.108 2010/01/14 23:12:11 schwarze Exp $ */ /* $NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "systrace.h" #include #include #include int nprocs = 1; /* process 0 */ int randompid; /* when set to 1, pid's go random */ pid_t lastpid; struct forkstat forkstat; void fork_return(void *); int pidtaken(pid_t); void process_new(struct proc *, struct proc *); void fork_return(void *arg) { struct proc *p = (struct proc *)arg; if (p->p_flag & P_TRACED) psignal(p, SIGTRAP); child_return(p); } /*ARGSUSED*/ int sys_fork(struct proc *p, void *v, register_t *retval) { int flags; flags = FORK_FORK; if (p->p_ptmask & PTRACE_FORK) flags |= FORK_PTRACE; return (fork1(p, SIGCHLD, flags, NULL, 0, fork_return, NULL, retval, NULL)); } /*ARGSUSED*/ int sys_vfork(struct proc *p, void *v, register_t *retval) { return (fork1(p, SIGCHLD, FORK_VFORK|FORK_PPWAIT, NULL, 0, NULL, NULL, retval, NULL)); } int sys_rfork(struct proc *p, void *v, register_t *retval) { struct sys_rfork_args /* { syscallarg(int) flags; } */ *uap = v; int rforkflags; int flags; flags = FORK_RFORK; rforkflags = SCARG(uap, flags); if ((rforkflags & RFPROC) == 0) return (EINVAL); switch(rforkflags & (RFFDG|RFCFDG)) { case (RFFDG|RFCFDG): return EINVAL; case RFCFDG: flags |= FORK_CLEANFILES; break; case RFFDG: break; default: flags |= FORK_SHAREFILES; break; } if (rforkflags & RFNOWAIT) flags |= FORK_NOZOMBIE; if (rforkflags & RFMEM) flags |= FORK_SHAREVM; if (rforkflags & RFTHREAD) flags |= FORK_THREAD | FORK_SIGHAND | FORK_NOZOMBIE; return (fork1(p, SIGCHLD, flags, NULL, 0, NULL, NULL, retval, NULL)); } /* * Allocate and initialize a new process. */ void process_new(struct proc *newproc, struct proc *parentproc) { struct process *pr, *parent; pr = pool_get(&process_pool, PR_WAITOK); pr->ps_mainproc = newproc; TAILQ_INIT(&pr->ps_threads); TAILQ_INSERT_TAIL(&pr->ps_threads, newproc, p_thr_link); pr->ps_refcnt = 1; parent = parentproc->p_p; pr->ps_rdomain = parent->ps_rdomain; newproc->p_p = pr; } /* print the 'table full' message once per 10 seconds */ struct timeval fork_tfmrate = { 10, 0 }; int fork1(struct proc *p1, int exitsig, int flags, void *stack, size_t stacksize, void (*func)(void *), void *arg, register_t *retval, struct proc **rnewprocp) { struct proc *p2; uid_t uid; struct vmspace *vm; int count; vaddr_t uaddr; int s; extern void endtsleep(void *); extern void realitexpire(void *); struct ptrace_state *newptstat = NULL; #if NSYSTRACE > 0 void *newstrp = NULL; #endif /* sanity check some flag combinations */ if (flags & FORK_THREAD) { #ifdef RTHREADS if ((flags & (FORK_SIGHAND | FORK_NOZOMBIE)) != (FORK_SIGHAND | FORK_NOZOMBIE)) return (EINVAL); #else return (ENOTSUP); #endif } if (flags & FORK_SIGHAND && (flags & FORK_SHAREVM) == 0) return (EINVAL); /* * Although process entries are dynamically created, we still keep * a global limit on the maximum number we will create. We reserve * the last 5 processes to root. The variable nprocs is the current * number of processes, maxproc is the limit. */ uid = p1->p_cred->p_ruid; if ((nprocs >= maxproc - 5 && uid != 0) || nprocs >= maxproc) { static struct timeval lasttfm; if (ratecheck(&lasttfm, &fork_tfmrate)) tablefull("proc"); return (EAGAIN); } nprocs++; /* * Increment the count of procs running with this uid. Don't allow * a nonprivileged user to exceed their current limit. */ count = chgproccnt(uid, 1); if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) { (void)chgproccnt(uid, -1); nprocs--; return (EAGAIN); } uaddr = uvm_km_alloc1(kernel_map, USPACE, USPACE_ALIGN, 1); if (uaddr == 0) { chgproccnt(uid, -1); nprocs--; return (ENOMEM); } /* * From now on, we're committed to the fork and cannot fail. */ /* Allocate new proc. */ p2 = pool_get(&proc_pool, PR_WAITOK); p2->p_stat = SIDL; /* protect against others */ p2->p_exitsig = exitsig; p2->p_flag = 0; #ifdef RTHREADS if (flags & FORK_THREAD) { atomic_setbits_int(&p2->p_flag, P_THREAD); p2->p_p = p1->p_p; TAILQ_INSERT_TAIL(&p2->p_p->ps_threads, p2, p_thr_link); p2->p_p->ps_refcnt++; } else { process_new(p2, p1); } #else process_new(p2, p1); #endif /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ bzero(&p2->p_startzero, (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero)); bcopy(&p1->p_startcopy, &p2->p_startcopy, (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy)); /* * Initialize the timeouts. */ timeout_set(&p2->p_sleep_to, endtsleep, p2); timeout_set(&p2->p_realit_to, realitexpire, p2); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. * The p_stats and p_sigacts substructs are set in vm_fork. */ if (p1->p_flag & P_PROFIL) startprofclock(p2); atomic_setbits_int(&p2->p_flag, p1->p_flag & (P_SUGID | P_SUGIDEXEC)); if (flags & FORK_PTRACE) atomic_setbits_int(&p2->p_flag, p1->p_flag & P_TRACED); #ifdef RTHREADS if (flags & FORK_THREAD) { /* nothing */ } else #endif { p2->p_p->ps_cred = pool_get(&pcred_pool, PR_WAITOK); bcopy(p1->p_p->ps_cred, p2->p_p->ps_cred, sizeof(*p2->p_p->ps_cred)); p2->p_p->ps_cred->p_refcnt = 1; crhold(p1->p_ucred); } /* bump references to the text vnode (for procfs) */ p2->p_textvp = p1->p_textvp; if (p2->p_textvp) vref(p2->p_textvp); if (flags & FORK_CLEANFILES) p2->p_fd = fdinit(p1); else if (flags & FORK_SHAREFILES) p2->p_fd = fdshare(p1); else p2->p_fd = fdcopy(p1); /* * If ps_limit is still copy-on-write, bump refcnt, * otherwise get a copy that won't be modified. * (If PL_SHAREMOD is clear, the structure is shared * copy-on-write.) */ #ifdef RTHREADS if (flags & FORK_THREAD) { /* nothing */ } else #endif { if (p1->p_p->ps_limit->p_lflags & PL_SHAREMOD) p2->p_p->ps_limit = limcopy(p1->p_p->ps_limit); else { p2->p_p->ps_limit = p1->p_p->ps_limit; p2->p_p->ps_limit->p_refcnt++; } } if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) atomic_setbits_int(&p2->p_flag, P_CONTROLT); if (flags & FORK_PPWAIT) atomic_setbits_int(&p2->p_flag, P_PPWAIT); p2->p_pptr = p1; if (flags & FORK_NOZOMBIE) atomic_setbits_int(&p2->p_flag, P_NOZOMBIE); LIST_INIT(&p2->p_children); #ifdef KTRACE /* * Copy traceflag and tracefile if enabled. * If not inherited, these were zeroed above. */ if (p1->p_traceflag & KTRFAC_INHERIT) { p2->p_traceflag = p1->p_traceflag; if ((p2->p_tracep = p1->p_tracep) != NULL) vref(p2->p_tracep); } #endif /* * set priority of child to be that of parent * XXX should move p_estcpu into the region of struct proc which gets * copied. */ scheduler_fork_hook(p1, p2); /* * Create signal actions for the child process. */ if (flags & FORK_SIGHAND) sigactsshare(p1, p2); else p2->p_sigacts = sigactsinit(p1); /* * If emulation has process fork hook, call it now. */ if (p2->p_emul->e_proc_fork) (*p2->p_emul->e_proc_fork)(p2, p1); p2->p_addr = (struct user *)uaddr; /* * Finish creating the child process. It will return through a * different path later. */ uvm_fork(p1, p2, ((flags & FORK_SHAREVM) ? TRUE : FALSE), stack, stacksize, func ? func : child_return, arg ? arg : p2); timeout_set(&p2->p_stats->p_virt_to, virttimer_trampoline, p2); timeout_set(&p2->p_stats->p_prof_to, proftimer_trampoline, p2); vm = p2->p_vmspace; if (flags & FORK_FORK) { forkstat.cntfork++; forkstat.sizfork += vm->vm_dsize + vm->vm_ssize; } else if (flags & FORK_VFORK) { forkstat.cntvfork++; forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize; } else if (flags & FORK_RFORK) { forkstat.cntrfork++; forkstat.sizrfork += vm->vm_dsize + vm->vm_ssize; } else { forkstat.cntkthread++; forkstat.sizkthread += vm->vm_dsize + vm->vm_ssize; } if (p2->p_flag & P_TRACED && flags & FORK_FORK) newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK); #if NSYSTRACE > 0 if (ISSET(p1->p_flag, P_SYSTRACE)) newstrp = systrace_getproc(); #endif /* Find an unused pid satisfying 1 <= lastpid <= PID_MAX */ do { lastpid = 1 + (randompid ? arc4random() : lastpid) % PID_MAX; } while (pidtaken(lastpid)); p2->p_pid = lastpid; LIST_INSERT_HEAD(&allproc, p2, p_list); LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); LIST_INSERT_AFTER(p1, p2, p_pglist); if (p2->p_flag & P_TRACED) { p2->p_oppid = p1->p_pid; if (p2->p_pptr != p1->p_pptr) proc_reparent(p2, p1->p_pptr); /* * Set ptrace status. */ if (flags & FORK_FORK) { p2->p_ptstat = newptstat; newptstat = NULL; p1->p_ptstat->pe_report_event = PTRACE_FORK; p2->p_ptstat->pe_report_event = PTRACE_FORK; p1->p_ptstat->pe_other_pid = p2->p_pid; p2->p_ptstat->pe_other_pid = p1->p_pid; } } #if NSYSTRACE > 0 if (newstrp) systrace_fork(p1, p2, newstrp); #endif /* * Make child runnable, set start time, and add to run queue. */ SCHED_LOCK(s); getmicrotime(&p2->p_stats->p_start); p2->p_acflag = AFORK; p2->p_stat = SRUN; p2->p_cpu = sched_choosecpu_fork(p1, flags); setrunqueue(p2); SCHED_UNLOCK(s); if (newptstat) free(newptstat, M_SUBPROC); /* * Notify any interested parties about the new process. */ KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid); /* * Update stats now that we know the fork was successful. */ uvmexp.forks++; if (flags & FORK_PPWAIT) uvmexp.forks_ppwait++; if (flags & FORK_SHAREVM) uvmexp.forks_sharevm++; /* * Pass a pointer to the new process to the caller. */ if (rnewprocp != NULL) *rnewprocp = p2; /* * Preserve synchronization semantics of vfork. If waiting for * child to exec or exit, set P_PPWAIT on child, and sleep on our * proc (in case of exit). */ if (flags & FORK_PPWAIT) while (p2->p_flag & P_PPWAIT) tsleep(p1, PWAIT, "ppwait", 0); /* * If we're tracing the child, alert the parent too. */ if ((flags & FORK_PTRACE) && (p1->p_flag & P_TRACED)) psignal(p1, SIGTRAP); /* * Return child pid to parent process, * marking us as parent via retval[1]. */ if (retval != NULL) { retval[0] = p2->p_pid; retval[1] = 0; } return (0); } /* * Checks for current use of a pid, either as a pid or pgid. */ int pidtaken(pid_t pid) { struct proc *p; if (pfind(pid) != NULL) return (1); if (pgfind(pid) != NULL) return (1); LIST_FOREACH(p, &zombproc, p_list) if (p->p_pid == pid || p->p_pgid == pid) return (1); return (0); } #if defined(MULTIPROCESSOR) /* * XXX This is a slight hack to get newly-formed processes to * XXX acquire the kernel lock as soon as they run. */ void proc_trampoline_mp(void) { struct proc *p; p = curproc; SCHED_ASSERT_LOCKED(); __mp_unlock(&sched_lock); spl0(); SCHED_ASSERT_UNLOCKED(); KASSERT(__mp_lock_held(&kernel_lock) == 0); KERNEL_PROC_LOCK(p); } #endif